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Abstract 
Cryo-electron microscopy of protein complexes often leads to moderate resolution maps (4-8 Å), 
with visible secondary structure elements but poorly resolved loops, making model-building 
challenging.  In the absence of high-resolution structures of homologues, only coarse-grained 
structural features are typically inferred from these maps, and it is often impossible to assign 
specific regions of density to individual protein subunits. This paper describes a new method for 
overcoming these difficulties that integrates predicted residue distance distributions from a 
deep-learned convolutional neural network, computational protein folding using Rosetta, and 
automated EM-map-guided complex assembly.  We apply this method to a  4.6 Å resolution 
cryoEM map of Fanconi Anemia core complex (FAcc), an E3 ubiquitin ligase required for DNA 
interstrand crosslink repair, which was previously challenging to interpret as it is comprised of 
6557 residues, only 1897 of which are covered by homology models.  In the published structure 
built from this map, only 387 residues could be assigned to specific subunits.  By building and 
placing into density 42 deep-learning guided models containing 4795 residues not included in 
the previously published structure, we are able to determine an almost-complete atomic model 
of FAcc, in which 5182 of the 6557 residues were placed.  The resulting model is consistent with 
previously published biochemical data, and facilitates interpretation of disease related 
mutational data.  We anticipate that our approach will be broadly useful for cryoEM structure 
determination of large complexes containing many subunits for which there are no homologues 
of known structure.  
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Introduction 
With the advent of direct electron detectors and advances in image processing software there 
has been an influx of large protein complex structures determined with cryoelectron microscopy 
(cryoEM).  These technologies allow the structural characterization of protein assemblies that 
have eluded X-ray crystallography, and have led to maps with resolutions that allow atomic 
models to be built directly (3.3-4.6 Å or better) (Y. Cheng & Walz, 2009; Hryc et al., 2011) or 
lower subnanometer resolutions (~5-9 Å) that can be interpreted by fitting of existing models. 
CryoEM data are noisy and structure determination requires a large number of particle images 
to be averaged together. This averaging, when combined with complications such as image 
misclassification, highly heterogeneous samples, or a limited number of sample views,  typically 
limits the resolutions that can be attained (Lyumkis, 2019).  This makes map interpretation 
difficult, and has necessitated the development of a number of tools for model-building and 
refinement into such cryoEM maps (Bonomi et al., 2019; Chen et al., 2016; Segura et al., 2016; 
Terashi & Kihara, 2018; Terwilliger et al., 2018; van Zundert et al., 2015). 

In the absence of homologous structural information, cryoEM structures at intermediate 
resolutions are often largely “uninterpretable;” that is, while secondary structures may be 
identified and domains can often be roughly segmented, atomic-level information may not be 
accurately inferred  (Gatsogiannis et al., 2013; Janssen et al., 2015; Kube et al., 2014; Stuttfeld 
et al., 2018).  At best, a combination of secondary structure placement and sequence-based 
secondary structure prediction can lead to low-resolution complete or partial backbone trace 
models (L. Cheng et al., 2010; Snijder et al., 2017).  Furthermore, while computational tools 
exist for modelling in maps at these resolutions (Bonomi et al., 2019; Kovacs et al., 2018; 
Segura et al., 2016; van Zundert et al., 2015; Webb et al., 2018), no tool is capable of inferring 
such structures de novo.  Finally, while co-evolution information can provide valuable structural 
information (Kim et al., 2014; Nugent & Jones, 2012; Ovchinnikov et al., 2014), the availability of 
large numbers of sequences makes the method of limited applicability, though it has been used 
in determination of some cryoEM structures (Klink et al., 2020; Y.-J. Park et al., 2018; Schoebel 
et al., 2017). 

In this manuscript, we take advantage of recent advances in protein structure 
prediction which employ deep convolutional neural networks to predict protein contacts or 
pairwise distances from multiple sequence alignments (Kandathil et al., 2019; Nugent & Jones, 
2012; Senior et al., 2020; Xu, 2019; Yang et al., 2020; Zheng et al., 2019). We combine 
predictions from trRosetta (Yang et al., 2020), which uses a deep residual-convolutional neural 
network to predict both distance and orientation between all pairs of residues in a protein, and a 
fast model building protocol that utilizes the results from the network to constraint folding.  We 
then dock models generated using this approach into cryo-EM maps.  The experimental EM 
data and deep-learning based structure predictions are synergistic:  the deep-learned 
predictions serve the same role as high-resolution structures of homologues, informing the 
topology of individual domains and making the search space manageable, while the EM data, 
addresses two weaknesses in contact-guided prediction: it validates the accuracy of 
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contact-guided predictions, and secondly, it provides information on the quaternary structure of 
complexes.  

We illustrate the effectiveness of this approach by building an atomistic model of the 
Gallus gallus (chicken) Fanconi Anemia core complex (FAcc), guided by a recently published 
heterogeneous 4.6 Å single-particle cryoEM reconstruction and cross-linking mass spectrometry 
data. In previous work, crystal structures of FANCF, FANCE and FANCL were docked, and 
secondary structural elements were placed into the map (Shakeel et al., 2019). In contrast, here 
we are able to generate an atomistic model for nearly all of the complex.  This method 
overcomes limitations of direct interpretation of the cryoEM map, including a lack of 
recognizable homology to proteins of known structure for the majority of subunits, and the 
relatively low resolution of substantial portions of the complex. The novel structural information 
provided by trRosetta-predicted distance-distributions enables accurate topology-level 
predictions for domains and subunits with no recognizable homology.  By combining these 
trRosetta predictions (and Rosetta density-guided modelling tools (Wang et al., 2016)) with 
subnanometer resolution cryoEM data, we are able to infer a nearly-complete FAcc model, 
providing key insights into the function and organization of this complex.  
 

Results 
A full description of our methodology is described in below and in the Methods. Briefly, Figure 1 
illustrates how we determine complex structures using trRosetta models. The protocol is a 
five-stage process where we first generate multiple sequence alignments (MSAs) for the target 
proteins and use these to manually segment sequences into domains. Second, trRosetta is 
used to build models corresponding to these domains. Third, using Rosetta’s dock_into_density, 
we search the cryoEM reconstruction for the best-matching placements of each domain model. 
In the fourth step, we take all docked results in addition to crosslinking-mass spectrometry 
(XL-MS) data, and using Monte Carlo sampling of domain assignments in density, we find the 
arrangement of (and choice of) domain models maximizing the agreement with the cryoEM and 
XL-MS data. Finally, using RosettaCM we rebuild the connections between domains, and refine 
the entire complex against the cryoEM map. 

We illustrate the power of trRosetta predictions by applying this approach to build an atomic 
model into the recently determined cryoEM reconstruction of the Fanconi Anemia core complex 
(FAcc) (Shakeel et al., 2019).  These data were obtained from a fully recombinant complex after 
overexpression of  8 protein subunits (FANCA, FANCB, FANCC, FANCE, FANCF, FANCG, 
FANCL, and FAAP100) in insect cells. A 3D reconstruction at an overall resolution of 4.6 Å and 
cross-linking mass spectrometry data were obtained. We previously identified  secondary 
structure elements within the majority of the cryoEM map, and fit in homology models (Figure 
2A). Using crosslinking, native and hydrogen-deuterium exchange mass spectrometry, as well 
as EM of purified subcomplexes we identified the general locations of all components except 
FANCA. However, in this previous work, we were only able to confidently determine residue 
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assignments for FANCL. To gain further insight into the molecular mechanisms of FAcc, atomic 
models of all subunits are required. 

Using trRosetta-predicted distance distributions, we were able to determine a complete 
sequence assignment of the full FAcc (Figure 2B), encompassing 5182 residues out of a total 
expected 6154 residues, or 84% of all sequence, with very little unexplained density (Figure 
S1).  Modelling did not make use of the domain assignments or backbone trace of the prior 
work.  Our model validates much of the putative subunit assignments from the prior study (with 
minor differences) and provides residue level detail of subunit locations and interactions. The 
next several sections describe the modelling process, followed by an analysis of our final model. 

Fold trRosetta Models 

Our protocol uses multiple sequence alignments (MSAs) for individual proteins as the input to a 
deep residual-convolutional network which predicts the relative distances and orientations of all 
residue pairs in the protein.  These predictions are applied to a restrained minimization using a 
Rosetta model building protocol.  For FAcc, MSAs were generated for every chain without 
known homologous structures (homology models were available for portions of FANCE, 
FANCF, FANCL, and FAAP100, see Figure 2A).  Although homologous structures to FANCG 
also exist, there was significant structural variability within the family, and therefore we modeled 
it with trRosetta in addition to building homology models.  

From the MSAs, domains were manually parsed (see Methods), and models were built using 
trRosetta (in regions with no known homologs) or comparative modeling (in regions with known 
homologs) .  Modelling yielded converged structures for almost all domains (Figure 3A), with 
typical maximal RMSds over the top models of 2-4Å.  Several of the domains that showed poor 
convergence (two of the domains in FANCB and 2 of the domains in FAAP100) still contained 
subregions (“converged cores”) with small deviations (2-4 Å) between models; for these cases, 
unconverged or poorly packed segments of the models were manually trimmed.  Three of the 
domains (the coiled coil domains of FANCB and FAAP100, and the α/β+CTH of FAAP100) were 
poorly converged with no “converged core”; a modified version of trRosetta (unpublished) in 
which structural information of distant homologues were used as inputs to the neural network 
led to well converged models.  In total, trRosetta was able to build all 42 attempted domains 
(Figure S2A) which were used in the following stages of the model building protocol.  

Assembling Domains into cryoEM Density 

While we found FANCL, FANCF, and FANCE straightforward to manually place into the map, 
ambiguity for placement of other subunits necessitated a more robust automated assembly 
procedure.  Initially, the top 5 models for each domain were docked using an FFT-accelerated 
6D search of the map.  A modified version of the Monte Carlo simulated annealing (MC-SA) 
sampling protocol described in Wang et al. (2015) was then used to identify the non-clashing 
placement of models that maximizes the overall fit of the complex model to the density.  This 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 3, 2020. ; https://doi.org/10.1101/2020.05.01.072751doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.01.072751
http://creativecommons.org/licenses/by-nc-nd/4.0/


MC-SA domain assembly assigns a placement or “not found” to each domain, to account for the 
possibility that either all of our predicted models are incorrect, or that domains are correct but 
not present in the map.  In this way, the map serves not only to orient domains, but as validation 
for the trRosetta predictions.  Some examples of model validation with the map are shown in 
Figure 3B.  Two examples of incorrect predictions (subsequently fixed by splitting models into 
two domains) are shown in Figure 3C-D.  For several domains (the aforementioned coiled coil 
domains of FANCB and FAAP 100, and the FAAP 100 α/β + CtH domains), manual docking 
was necessary. 

In order to model FAcc in its entirety this Monte Carlo simulated annealing assembly process 
was applied iteratively: in each round, the converged domains from the previous round were 
frozen; all unassigned domains were redocked and reassembled.  Convergence was assessed 
by manually inspecting the ten domain assignments with best overall agreement to the density 
and XL-MS data.  Once the iterative process converged (after 5 rounds) -- with the vast majority 
of the density occupied -- the connections between domains were built and refined in the 
context of the cryoEM density with RosettaCM (Song et al., 2013). Additionally, placed domains 
were individually inspected, and poorly placed segments were also rebuilt in RosettaCM. 

When refining the final assembled model we found most trRosetta models were quite accurate, 
often requiring only modest (<6Å RMSd) modifications throughout the refinement process 
(Figure 2E). Only one placed domain required significant movement: the β-propeller domain of 
FANCB.  To refine this domain, the model was automatically segmented into subdomains (see 
Methods) and redocked and assembled using the same Monte Carlo procedure before 
refinement. A comparison between the initial and final structure of the β-propeller after this 
protocol is shown in Supplemental Video 1.  

Finally, for FANCG, a repeat protein for which homologous structures were available, we had 
additionally used trRosetta for modelling, as predicting changes in repeat geometries can prove 
challenging.  As Figure S3 shows, trRosetta yielded models that contained two long adjacent 
helices between residues 416 and 491 while homology modeling generated models which 
contained 4 shorter helices. In assembly, both trRosetta and homology models were 
considered, and we found that the trRosetta models led to much better agreement between 
model and map. In contrast, in previous work homology modelling was used for FANCG and we 
were only able to approximately place ~280 residues into the map (Shakeel et al., 2019).  

Analysis of final model 

With our protocol, we were able to build and assign 5,182 residues (out of 6,557 in the full 
complex); in previous work only 337 residues were assigned.  Still, the protein and domain 
identities assigned previously were largely consistent with models obtained with this new 
method:  we found similar placements of FANCB, FANCF, FAAP100 and FANCL, as well as 
one of the two copies of FANCG.  While we were unable to identify any density associated with 
FANCA, trRosetta provided well-converged models (Figure S2A).  Combining these models with 
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the crosslinking data, we speculate that a region of unassigned density in the middle of the 
complex corresponds to FANCA (Figure S4).  However, due to the poor quality and 
incompleteness of the density in this region, we were not able to confidently dock the model into 
the map. 

Our final model reveals that the “bottom lobe” (Figure 2B) contains (using the domain 
terminology of Figure 2A)  FANCBβprop, FANCL, FANCE, FANCF, FANCG, and the 
FAAP100 βprop. In contrast, in previous work FANCC-FANCE were identified within a region of 
density that we assign to FANCG.  The “middle lobe” of our model consists of 2 copies of 
FANCBβsand+α/β+CtH, a second copy of FANCG, and 2 copies of FAAP100 βsand+α/β+CtH, all consistent 
with the previously proposed domain assignment (Shakeel et al., 2019).  Finally, the “top lobe” 
was found to contain a second copy of FANCBβprop, FANCL ELF, and a second copy of 
FAAP100 βprop.  This also is consistent with the hypothesized model of the prior work.  Finally, 
both top and bottom lobes were connected to the middle lobe through a FANCB and FAAP100 
intermolecular coiled coil.  Thus, in addition to validating much of the domain assignment of 
previous work, our new model now provides accurate positioning of all protein residues. 

Model Validation 

One potential source of model validation arises from the crosslinking data.  However, as this 
data was used in domain assembly, it does not serve as independent validation data.  As a 
measure of confidence, we can still use this data by analyzing the gap between the satisfied 
crosslinks in our model, and the number satisfied by the second-best domain arrangement.  In 
our final model, we see good agreement between crosslinks and model (146/188 total; most of 
the 834 crosslinks in the full dataset involve FANCA, not present in our model).  Of the 
inter-domain crosslinks, 40/60 (67%) are satisfied to a CA-CA distance of 30 Å, which is 
regarded as an acceptable distance given the usage of the BS3 crosslinker (Merkley et al., 
2014).  Freezing the unambiguously placed domains, and redocking the remaining potentially 
ambiguous domains (see Methods) finds a second-best arrangement only satisfies only 33/63 
(52%) of inter-domain crosslinks. This loss in inter-domain crosslink satisfaction provides fairly 
strong confidence in our final model.  Further analysis of the unsatisfied crosslinks reveals that 
most of the unsatisfied crosslinks (14/19) occur between the C-terminus (residues 103+) of 
FANCL.  Our model suggests that one of the two copies of FANCL in the complex has a 
disordered C-terminal domain, strongly suggesting that most unsatisfied crosslinks come from 
this disordered (and possibly dynamic) region. 

One particularly strong criteria for model validation is the agreement of the maps to individual 
domain models The trRosetta models of individual domains were predicted without using 
density data at all, so rigid-body fitting of these domains into density can be seen as 
“independent validation.”  Aside from domains exhibiting internal symmetry or pseudo-symmetry 
(FANCBβprop, FAAP100 βprop), we found that trRosetta predictions all matched with real-space 
correlations of 0.72 or better (FANCC 0.82, FANCENtD 0.75, FAAPβsand 0.75, FAAPα/β  0.72), 
while the second-best solution (the best “wrong” solution) has a correlation gap of at least 0.05 
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in all cases.  Subjectively, these second-best, incorrect placements look significantly worse.  For 
our placed domains, this large gap between the best and second-best solutions is quite large, 
and strongly suggests these domains are unlikely to match this well by random chance. 

The overall agreement between the refined model and map is consistent with what we would 
expect given the resolution of the data. We were able to assess the quality of our model by 
segmenting it against the three individual focused classification maps (used to generate the 
composite map used in modeling).   We find that the model-map correlation for the bottom and 
middle reconstructions has an FSC=0.5 crossing at about 7.2Å, while the top reconstruction has 
an FSC=0.5 crossing of about 7.1Å.  The overall model-map FSC curves (Figure S6A) shows 
that the model-map agreements are worse at higher resolutions for the “bottom” reconstruction 
than the other two, consistent with local resolution estimates (Figure S6B). 

Additionally, we can validate models by mapping human mutation data onto the final structure. 
Using the Fanconi Anemia Mutation Database (http://www2.rockefeller.edu/fanconi/) database, 
we identified 30 mutations not identified as benign throughout the complex.  While most (22) of 
these are in the core of protein subunits (likely destabilizing individual subunits), we identify 4 (of 
the remaining 8) at protein-protein interfaces in our model of the FANCcomplex. Mutations of 
FANCB 230 and 236 would appear to disturb the interface between the FANCBβprop and 
FANCGHR, while a mutation at FANCB 336 would disturb the interface between the FANCBβprop 

and the FAAP100 βprop.  Additionally, a mutation to FANCC 295 would likely disturb the interface 
between FANCC and FANCE. All interface mutations are all marked as magenta spheres in 
Figure 4A, while non-interface mutations are marked with a tan colored sphere. 

Discussion 
Here we report a new computational method for determining atomistic models of 

protein complexes, guided by a subnanometer cryoEM map and cross-linking mass 
spectrometry data. Using distance distributions predicted from deep residual neural networks, 
we built accurate models of 42 domains of the FAcc, obviating the necessity for homologous 
high-resolution structures for interpretation of intermediate resolution maps.  This provides a 
complete picture of the full FAcc, while previous efforts had resulted in atomic models for only 
three subunits (FANCL, FANCE, and FANCF) in the map.  The strong agreement between 
RosettaTR-predicted models and density (not used in prediction) provides validation of our 
predictions, as does the model’s consistency with biochemical data, including cross-linking 
mass spectrometry and mutational studies.  Our all-atom model provides molecular insight into 
the underlying mechanisms of previously reported disease causing mutations, and illustrates the 
potential of combining intermediate resolution cryoEM density and cutting edge de-novo 
structure prediction.  

The challenges faced when determining a model of the FAcc are not unique (Chou et al., 
2019; S. J. Kim et al., 2018). As microscopists pursue larger, more difficult, and more dynamic 
complexes, we will need more computational techniques that are able to build models of 
subnanometer resolution data with little to no homologous structure information available.  While 
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tools have been developed for integrative modelling of structures into subnanometer resolution 
density, all of these tools require either the existence of homologous structures for domains, or 
are necessarily low-resolution “domain level” models.  Previous attempts to model FAcc 
resulting in only 387 residues being assigned to the cryoEM data, while the methods described 
in this paper -- making use of 42 deep-learning guided domain predictions, and a protocol able 
to infer their arrangement -- were able to increase the number of assigned residues to 5182. 

Our approach shows that, while maps at these resolutions are not of sufficient quality to 
build models by direct chain tracing, the resolution is sufficient enough to assess the tertiary 
structure and accuracy of predicted models.  In the absence of high-resolution homologous 
structures, the method is able to determine structures to an atomic level of detail. In addition to 
cryoEM data, we have recently shown that a similar approach can be applied to solve low 
resolution crystal structure data where traditional molecular replacement techniques were 
unsuccessful (Bhargava et al., 2020).  We expect that the modeling power of  trRosetta and 
related techniques will continue to improve in the future as the number of known sequences 
increases, coupled with improvements in deep learning methodologies. We anticipate that this 
combined approach will be an important tool for determining atomic models of protein 
complexes, particularly when combined with low resolution data sources, enabling accurate 
protein complex structure determination without the requirement of high resolution data. 

Methods 

Composite map generation 
The cryoEM map used for all computation (and displayed in all figures) is a composite 

map generated from 3 individual focused refinements.  The EMDB IDs of these maps are: 
10293 (bottom), 10292 (middle), 10291 (top).  The maps were combined by first aligning each 
map to the “bottom” map in UCSF Chimera (Pettersen et al., 2004) using the ‘fit into density’ tool 
and resampled using “vop resample”.  Next, with a custom script the “bottom” map was 
normalized to density values between 0 and 1, and  histogram matching was used to remap the 
density distribution of the “middle” and “top” map to that of the “bottom.”  Finally, a weighted 
average of the three maps was computed, where the weight of each map’s contribution to the 
composite map was proportional to the density value in each map at a given point.  

Local resolution plots for figure S6B were estimated using ResMap (Kucukelbir et al., 
2014) by using the aligned maps generated in the previous step and their respective half maps.  

Subunit multiple sequence alignment generations  
In order to model the subunits of FAcc we first generated multiple sequence alignments 

(MSAs) for every subunit of FAcc with a two-step procedure. In the first stage, four rounds of 
iterative HHblits (Steinegger et al., 2019) (version 3.0.3) searches against the Uniclust30 
database (Aug 2018 version) with gradually relaxed e-value cutoffs (10 -80, 10 -70, 10 -60, 10 -40, 
10 -20) were used to generate an initial alignment. The resulting alignment was then converted to 
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an HMM profile and additional sequences were collected by a single run of hmmsearch (version 
3.1b2) (Eddy, 1998)against an extensive custom sequence database as described in Wu et al 
(2020) (Wu et al., 2020); a bit-score threshold of 0.2*(protein length) was used to select 
significant hits. The composite MSAs were filtered with hhfilter at 99% sequence identity and 
50% coverage cutoffs. 

trRosetta domain model building 
We used trRosetta to predict structures of the following components: FANCA, FANCB, 

FANCC, FANCE, FANCF, FANCG, FANCL, and Fanconi Anemia core complex Associated 
Protein (FAAP) 100. trRosetta model building is a two step process where in the initial step a 
deep residual convolutional neural network is used to generate inter-residue distance and 
orientation  predictions, and in the second step those predictions are used to model a protein of 
interest (Yang et al., 2020).  The MSAs were used as inputs to the neural network which 
generates residue pair distance distributions in addition to orientation information between all 
residue pairs.  These predictions are then used as input to a custom Rosetta based folding 
protocol.  This protocol works by randomly setting backbone torsions and utilizing random 
subsets of the predictions as restraints for a centroid (Rosetta’s reduced residue representation) 
torsional quasi–Newton-based energy minimization (MinMover).  For each domain 150 centroid 
models are generated, and then each model is refined with Rostta’s fullatom FastRelax 
protocol.  The results from this refinement are used to sort the models based on the REF2015 
score function, and the top 3 models were selected and manually inspected.  For all domains 
except the CC domains and the FAAP FAAP100 α/β + CtH we observed well converged 
structure, and representative structures from this modeling are shown in figure 3A.  

The original trRosetta pipeline was unable to generate converged models for the 
sequence between the β-propeller regions and the β sandwich regions of FAAP100 and 
FANCB, and the sequence of  FAAP100 α/β + CtH, so we employed a modified version of the 
network which, in addition to the MSA, also used information on the top 50 putative structural 
homologs as identified by HHsearch against PDB100 database of templates.  HHsearch hits 
were converted into 2D network inputs by extracting pairwise distances and orientations from 
the structure of the template for the matched positions only. Additionally, positional (1D) 
similarity and confidence scores provided by HHsearch as well as backbone torsions were 
used; we tiled them in both axes of the 2D inputs and stacked with them producing the resulting 
2D feature matrix. Features for all unmatched positions were set to zero. Templates were first 
processed independently by one round of 2D convolutions and then merged together into a 
single 2D feature matrix using a pixel-wise attention mechanism. This processed feature matrix 
was then concatenated with the features extracted from the MSA as in the original trRosetta 
network; the architecture of the upstream part of the network remained unchanged. For the CC 
domains this improved the quality of models for the β-propellers as well as models for the 
extended helices C-terminal to the β-propellers.  For  FAAP100 α/β + CtH we modeled 
FAAP100 CC+βsand+α/β+CtH with this modified version and found strong convergence for all 
of the domains.  The coiled coil domains of FANCB and FAAP, and the FAAP100 α/β and CtH 
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were manually extracted for use in the next stages.  The results from this modified version of 
trRosetta are shown in figure S2B. 
 

Inferring domain boundaries 
To infer domain boundaries we used the MSAs as initial guidelines by adding cutpoints 

at residues with poor alignment coverage.  Using these domain definitions we then performed 
structural modeling of the domains and used these models to manually split the sequence 
further based on the observed convergence, and trimmed away floppy regions. The following 
domain boundaries were determined:  

● FANCA: [71-260], [251-500], [500-651], [1011-1210] 
● FANCB: [1-235], [1-370], [231-365], [441-660], [441-780], [466-626], [651-770], 

[665-755] 
● FANCC : [1-175], [1-335], [176-335], [331-570] 
● FANCE: [1-150], [261-520] 
● FANCF: [1-130], [121-350], [142-350] 
● FANCG: [1-175], [1-320], [181-320], [201-435], [204-315], [321-648], [350-564] 
● FANCL: [1-100], [2-91], [101-205], [101-300], [104-373], [191-300], [301-373] 
● FAAP100: [1-200], [1-300], [28-442], [186-480], [301-480], [491-615], [491-820], 

[510-609], [711-820], [717-820] 
Then, based on the availability of homologous structures in these regions either 

RosettaCM (Song et al., 2013) (if homologous structures were available) or trRosetta (Yang et 
al., 2020) (if homologous structures were not available) were used to generate models for each 
domain. 

RosettaCM domain model building 
We modeled FANCECtH, FANCFhr, FANCG, FANCL ELF+URD+RING hr, and FAAP100 βprop 

usingRosettaCM (Song et al., 2013). The following templates were used for each subunit: 
● FANCE: 2ilr (chain A) 
● FANCFHR: 2iqc (chain A) 
● FANCG: 6eou (chain A),  2xpi (chain A),  3hym (chain J),  3cvp (chain A),  4rg9 (chain 

A),  5dse (chain A),  3fp2 (chain A),  5orq (chain A), 5i9f (chain A),  4g1t (chain B),  3ieg 
(chain A),  2y4t (chain A),  5aio (chain A),  4pjr (chain A),  1fch (chain B),  4zlh (chain B), 
2gw1 (chain A), 6c9m (chain C),  3u4t (chain A),  4buj (chain B) 

● FANCL ELF+URD+RING:  3k1l (chain B),  4zdt (chain A),  4ccg (chain Y),  1vyx (chain A),  5o6c 
(chain A), 2d8s (chain A) 

○ (the resulting models were segmented more before docking) 
● FAAP100 βprop: 4ggc (chain A),  5opt (chain p),  5xyi (chain g),  6chg (chain A),  5oql 

(chain F),  2pbi (chain D),  1r5m (chain A),  6eoj (chain D),  6f9n (chain B),  5m89 (chain 
B),  3odt (chain B),  5a31 (chain R),  5m23 (chain A),  5kdo (chain B) 

For each of the above 200 models were generated, using the command line:  
rosetta_scripts \ 
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    -in:file:fasta FANCX.fasta \ 

    -parser:protocol hybridize.xml \ 

    -relax:jump_move true \ 

    -default_max_cycles 200 \ 

    -beta_cart \ 

    -relax:dualspace 
 
The input XML file (hybridize.xml) is shown below: 

<ROSETTASCRIPTS> 

  <SCOREFXNS> 

    <ScoreFunction name="stage1" weights="score3"> 

      <Reweight scoretype="atom_pair_constraint" weight="0.1"/> 

    </ScoreFunction> 

    <ScoreFunction name="stage2" weights="score4_smooth_cart"> 

      <Reweight scoretype="atom_pair_constraint" weight="0.1"/> 

    </ScoreFunction> 

    <ScoreFunction name="fullatom" weights="beta_cart"> 

      <Reweight scoretype="atom_pair_constraint" weight="0.1"/> 

    </ScoreFunction> 

  </SCOREFXNS> 

  <MOVERS> 

    <Hybridize name="hybridize" stage1_scorefxn="stage1"  

        stage2_scorefxn="stage2" fa_scorefxn="fullatom" batch="1" > 

      <Template pdb="000_2ilr_A.pdb" cst_file="AUTO" weight="1.0" /> 

    </Hybridize> 

  </MOVERS> 

  <PROTOCOLS> 

    <Add mover="hybridize" /> 

  </PROTOCOLS> 

  <OUTPUT scorefxn="fullatom" /> 

</ROSETTASCRIPTS> 

Docking of domain models into density 
A new Rosetta tool, dock_pdb_into_density, and a wrapper script (dgdp,py, for 

density-guided domain placement) were used for the initial assembly of models. Briefly, 
dock_pdb_into_density uses a FFT-accelerated six-dimensional search to find the rigid body 
placements of a molecule that maximize overlap between model and map.  For all domains that 
were modelled, we began by docking the top 3 models into density using 
dock_pdb_into_density.  This method carries out FFT convolutions in rotational space, explicitly 
enumerating over translations, the method identified 50,000 points with high density (and >2 Å 
apart).  For each domain, all solutions were combined, and the top 1000 were filtered, and 
rigid-body minimized in Rosetta using a masked correlation function (DiMaio et al., 2009).  After 
minimization, results were filtered for redundancy (using an 11 Å RMS cutoff) and the top 200 
solutions were selected. 

The following command line carries out the procedure for FANCC: 
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python dgdp.py \ 

  --executable ~/Rosetta/dgdp/source/bin/dgdp.static.linuxgccrelease \  

  --point_radius 3.0 \ 

  --n_output 200 \ 

  --n_filtered 1000 \ 

  --n_to_search 50000 \ 

  --mapfile fancc_map.mrc \ 

  --clust_radius 11 \ 

  --mapreso 5 \ 

  --pdbs input_fancc_*.pdb \ 

  --name fancc \ 

  --cores 10 \ 

  --min \ 

  --constrain_refinement 10 \ 

  --queue medium \ 

  --final_result_name FANC_C0 

 .  Typical cpu usage for docking one model is highly dependent on the size of the 
density map and the number of residues in the model, but for FAcc we generally see docking 
take 5.5 hours total cpu time.  However this is highly parallelizable, and by using the python 
dask library (Dask Development Team, 2016) with ample computing resources the total time 
taken can be reduced significantly  (54 minutes with 10 CPUs).  

Docked domain assembly  
 

Given the docked domains of the previous section, we use a modified version of the 
Monte Carlo simulated annealing (MC-SA) sampling protocol described in Wang et al. (2015)  to 
build a model of the complex. Briefly, the protocol uses the top 200 placements for each model 
from our docking protocol, in addition to the crosslinking data, in order to determine a set of 
domain placements most consistent with all available data.  This MC-SA domain assembly 
assigns a placement or “not found” to each domain, to account for the possibility that either all of 
our predicted models are incorrect, or that domains are correct but not present in the map. 
Consistency is measured through the function (where dN is all domains): 

core (D d , ..d }) w core (d )  s total = { 0 . N =  dens ∑
 

d∈Fi

s dens i  

w core (d , ) +  
proximity  

∑
 

d ,d∈Fi j

s proximity i dj
 

 

core (d , )+ w
centroid_energy  

∑
 

d ,d∈Fi j

s centroid_energy i dj  

core (d , ) )+ w
distance_constraints  

∑
 

d ,d∈Fi j

s distance_constraints i dj  

Where scoredens measures the fit of the selected domains to the density and the other 
terms assess interactions between all domains.  The term scoreproximity validates that when two 
domains are part of the same peptide chain and not overlapping they are placed within a 
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distance that is closable by a later built peptide linker.  The scorecentroid energy term is Rosetta's 
centroid energy score term which is a coarse grained representation that is used to verify the 
quality of domain-domain interfaces, as well as screen for clashing placements.  The centroid 
energy between two domains is evaluated by using Rosetta to combine the two domains into a 
single system (Pose), evaluate the system’s energy, then spatially separating the two domains 
and again evaluating the energy of the system.  The former is subtracted by the latter, and this 
is used as the unweighted centroid_energy score.  Finally the scoredistance constraint term serves as a 
way to incorporate experimental data such as cross linking mass-spectrometry data, and 
assesses the satisfaction of these constraints.  The inter-domain geometry terms are assessed 
as follows: 

core (d , ) 1/(1 ))s proximity i dj = ( + e(−5 (gap_distance −gap_N_residues  3.4+1)* i,j *   

core (d , ) (1/(1 ))  s distance_constraints i dj = ∑
 

{i,j}∈ distance_constraints 

+ e(−0.6 ( x −x −32)* || i j ||  

Weights were determined by fitting on a training set with synthetic 10 Å cryoEM data, 
and the weights used were wdens = 260, w distance_constraint = 30,000, wcentroid_energy=150,  wproximity= 
1,000. 

Using the scoring function above, we evaluate the consistency of the results from 
docking for all domain-domain pairs.  Prior to scorefunction evaluation a custom pairwise 
interface optimization protocol is applied: domains are slid along an axis through each domains’ 
center of mass to be in contact, but not clashing with each other, moving no more than 5 Å.  If 
after this, domains are still clashing (defined as Rosetta vdw score > 1500), we remove all 
clashing residues (Rosetta vdw score > 3) with: a) no secondary structure, and b) surface 
exposure (less than 10 Cα’s within 12Å), and rescored.  This is then followed by breaking both 
domains into subdomains (using a reimplementation of DDomainParse (Zhou et al., 2007) in 
Rosetta), and rigid-body minimizing these domains with respect to the energy function above. 

Once all pairs of domains have been refined, and their refined inter-domain energies 
have been computed, Monte Carlo simulated annealing (MC-SA) sampling is carried out.  Each 
MC-SA move reassigns one domain to either another placement, or “no placement.”  We carry 
out 200,000 steps of MC-SA sampling, ending at a temperature of kT=1 .  50,000 independent 
trajectories are carried out and the top ten scoring assignments are assessed for convergence. 
Convergence is assessed by manually inspecting the ten domain assignments for domains that 
were present in a majority of the models. This process is applied iteratively;  after each round of 
assembly, domains that converged in location are locked into place, where convergence was 
assessed, the density occupied by converged domains was removed from the density map, and 
unassigned domains were re-docked and used as inputs for the next round. 

In the case of FAcc, the iterative process progressed as follows:  After the first round 
FANCBα/β, FANCC,  FANCENtD, FANCF, 6 helices of FANCG (204-315, and FANCL were found 
to  converged and were locked into place.    After the second round, 8 helices of FANCG 
(350-564) were locked into place.  After this round, the density associated with the two 
β-propellers was segmented out, and both the FANCB and FAAP β-propellers were docked into 
this segmented density, which were used as inputs for the next round.  During the third round, 
the β-propellers of FANCB and FAAP100 and the two coiled coils of FANCB and FAAP100 both 
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were frozen into place. In the fourth round, we found converged placement of FANCBβsand.  After 
this round utilizing the remaining models and density, we manually docked the FAAP 100 Bsand 

,FAAP 100 α/β, and FAAP 100 CtH domains into the density. 
  

Structure Finalization 
In order to finalize the structure, all of the placed domains from the previous step were 

combined and linked together with RosettaCM (Song et al., 2013). There were five areas that 
required directed rebuilding with Rosetta,  the FANCB β-propeller, the FANCB loop between the 
CC helix and β-sandwich, The FANCB C-terminal helix, FANCG, and the FAAP 100 α/β+CtH 
domain. 

The FANCB β-propeller as solved by trRosetta was very similar to the density but the 
spacing between each propeller blade was off by a significant enough margin to make it difficult 
for RosettaCM to properly minimize into the density.  Therefore, we ran an automatic domain 
splitting script, and used  dock_pdb_into_density to place subdomains of the propeller into the 
β-propeller density, assembled using the protocol described above.  

The FANCB helix to β sandwich loop required excessive sampling to build due to its 
length (41 residues) and lack of density.  The density around this area was segmented, and 
iterative hybridize (H. Park et al., 2018) was run with the initial amount of structures generated 
being 5000 followed by 4 rounds each generating 100 structures. 

The FANCB extended helix built with trRosetta was added, using Chimera’s fit into map 
tool, after the α/β domain of FANCB had been placed.  This was done because of the 
unambiguous  density leading from the α/β extending to helical density which made. 

For FANCG, assembly placed only two domains, corresponding to residues 204-315 and 
350-564.  The remaining structure was built in the following way.  First, The N terminal domain 
(1-204) was well converged in trRosetta, and was manually docked into the map by aligning to 
overlapping residues in one of the placed domains (residues 200-230 overlapped between the 
two).  The same process was carried out with the C-terminal domain (residues 565-648), where 
the overlapping residues used were 551-562.  These placements were validated by manually 
inspecting fit to density. 

The FAAP100 α/β  domain posed a particularly difficult problem due to low local resolution 
and poor connectivity (this domain is preceded by a long unstructured loop).  Due to these 
ambiguities, FAAP100 CtH models had to be manually aligned to the density (using Chimera’s fit 
into map).  Full-length trRosetta models were used as a reference for placement. 

Finally, after refining the structure with RosettaCM, we applied fragment based structural 
refinement (Wang et al., 2016), and selected the top scoring model as our final model. 

 
Data Accessibility 
 
All methods are available in Rosetta releases after 2020.12.  
The model is deposited in pdb-dev with accession id XXX. 
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The crosslinking data that was as distance constraints during this process is located at 
the PRIDE database with accession code PXD014282.  
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Figure 1 

 
An overview of the workflow for modelling the FAcc. Initially, multiple sequence alignments 
(MSAs) of all protein sequences are generated, sequences are segmented into domains using 
the MSAs, and individual domains are folded using trRosetta. These domains are individually 
docked into the cryoEM density.  Monte Carlo sampling finds the domain assignment maximally 
consistent with the density.  Finally, linkers between domains are sampled and the entire 
structure is refined. 
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Figure 2 
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An overview of the FAcc.  A) Domain organization of the 7 subunits of FANC.  Based on our 
modeling we find the complex consists of 18 domains, indicated with narrow bars.  FANCB and 
FAAP100 have the same domain organization with a β-propeller(βprop) followed by a long 
coiled coil (CC), a β-sandwich (βsand), then an ɑ/β domain, followed finally by a C-terminal 
helical region.  FANCC, FANCF, and FANCG are all comprised of a single helical repeat 
domain, while we find FANCE to have 2 separated helical repeat domains (one N-terminal and 
one C-terminal.)  Finally FANCL is organized as an ELF domain, followed by a URD domain, 
and then lastly a RING domain. Also indicated is the availability of known structures or 
homologous proteins throughout the modeling process with striations. Domains with known 
structures or available  homologous proteins used include the C-terminal helices of FANCE, the 
helical repeats of FANCF, all of FANCG and FANCL, and the β-propeller of FAAP 100. B) Three 
views of the complete model of the Fanconi Anemia Nuclear Complex as determined by our 
modeling protocol.  Colors are matched to the diagram of subpanel A, with those that have 
multiple copies (FANCB, FANCG, and FAAP100) having different shades of the subpanel 
coloring. The orientation of the top, middle, and bottom lobes are indicated. 
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Figure 3 

 
An overview of trRosetta-predicted domains.  A)The top three models from trRosetta for ten 
representative domains indicate tight convergence of modelling. The identity of the domains 
follows the coloring of Figure 2A.  Domains from FANCB, FANCE, FANCC are shown in the top 
row; those from FAAP 100 and FANCG are shown in the bottom.  B)  Several examples of 
trRosetta models docked into density before refinement, showing the role the map plays in 
validation and selection of models. From left to right (colors match Figure 2A), the helical 
repeats of FANCC, the N-terminal repeats of FANCE, the ɑ/β domain of FANCB, and the 
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β-sandwich of FAAP100.  C-D) Two examples illustrating the importance of domain 
segmentation when docking trRosetta-generated models.  C) The trRosetta model of FANCG 
(magenta) poorly matches the final structure (green); segmenting this model into two domains 
(red and blue) shows a much better match, as the individual domain structures are accurate, 
even though their relative orientation is not.  D) Similarly, a  trRosetta prediction of the FANCB 
β-sandwich - ɑ/β domain (pink) is dissimilar from the final structure (blue); splitting into domains 
(brown and green) shows good overall agreement.  E) trRosetta models (blue) generally fit the 
map well, though some refinement was necessary to maximize agreement with the density 
(orange).  
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Figure 4 

 
Model validation by mutational and crosslinking data.  A) 30 non-benign human mutations 
mapped to our model of FAcc.  All interface mutations are all marked with magenta spheres; 
non-interface mutations are marked with tan spheres.   B) Close up renderings of crosslinks 
throughout the FAcc model. Black lines indicate crosslinks satisfied (<30 Å) by the final refined 
structure. Representatives from each crosslink cluster are shown for the middle lobe (left) and 
the bottom lobe (right). 
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Figure S1 

 
An overlay of the density map used to build the FAcc complex (Grey), with the density not within 
3.5 Å of the model highlighted in yellow.  We were unable to build into the yellow density due to 
the low resolution, and lack of continuity between regions. 
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Figure S2

 
Top scoring models for all of the domains built in order to build the FAcc.  A) All domains that 
were individually docked into the density.  Colors match Figure 2A.  B) All models built by the 
novel implementation of trRosetta that uses distant homology information in order to improve 
prediction accuracy.  In these three cases, the original implementation of trRosetta was unable 
to generate well converged models for the combinations shown. 
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Figure S3

 
Top 5 scoring ensemble from RosettaCM from FANCG (left), with the top 2 models overlaid on 
the final structure of FANCG (middle). The right shows the model  made by trRosetta, which fits 
the density significantly better than the RosettaCM models 
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Figure S4 

 
A speculative location for the N-terminal domain of FANCA.  We hypothesize, based on the 
trRosetta models fit to the sparse electron density, and crosslink satisfaction that the N-terminal 
domain of FANCA rests at or near this location.  
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Figure S5 

 
Evaluation of crosslink satisfaction across our final model. We see approximately 77% 
satisfaction of all crosslinks at a cutoff of 30Å which is acceptable given our BS3 crosslinker. 
The histogram in blue plots the number of crosslinks satisfied in 5 Å bins (0-5, 5-10, …) and is 
plotted against the left Y axis.  The line plot in red is a continuous measure of the percent of the 
total number of crosslinks satisfied in our model (right Y axis) as a function of their evaluated 
distance in Å. 
 
 
 
 
 
 
Figure S6 
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Evaluation of model from map.  A) FSC plot of our model segmented to the three maps that 
generated the composite map used throughout modeling.  B) Local resolution plot of the map 
used during modeling. 
 
Supplemental video 1 
Supp_video_01_fanc.mp4 
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