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Abstract 19 

Functional MRI (fMRI) study of naturalistic conditions, e.g. movie watching, usually focuses on shared 20 

responses across subjects.  However, individual differences have been attracting increasing attention in 21 

search of group differences or associations with behavioral outcomes.  Individual differences are typically 22 

studied by directly modeling the pair-wise intersubject correlation matrix or projecting the relations onto a 23 

single dimension.  We contend that it is critical to examine whether there are one or more consistent 24 

responses underlying the whole sample, because multiple components, if exist, may undermine the 25 

intersubject relations using the previous methods.  We propose to use principal component analysis (PCA) 26 

to examine the heterogeneity of brain responses across subjects and project the individual variability into 27 

higher dimensions.  By analyzing an fMRI dataset of children and adults watching a cartoon movie, we 28 

showed evidence of two consistent responses in the supramarginal gyrus and other regions.  While the 29 

first components in many regions represented a response pattern mostly in older children and adults, the 30 

second components mainly represented the younger children.  The second components in the 31 

supramarginal network resembled a delayed version of the first PCs for 4 seconds (2 TR), indicating 32 

slower responses in the younger children than the older children and adults.  The analyses highlight the 33 

importance of identifying multiple consistent responses in responses to naturalistic stimuli.  This PCA-34 

based approach could be complementary to the commonly used intersubject correlation to analyze movie 35 

watching data.  36 

 37 

Keywords: development; individual difference; naturalistic condition; principal component analysis; 38 

supramarginal gyrus; theory of mind; movie watching  39 
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1. Introduction 40 

Neuroimaging study of brain functions has observed a paradigm shift from using well-controlled 41 

experimental tasks or completely unconstrained resting-state to using more naturalistic and complex 42 

stimuli such as movies and stories (Hasson et al., 2004; Nastase et al., 2019; Sonkusare et al., 2019).  43 

Compared with the resting-state, the naturalistic condition is more confined to the inputs, which could 44 

ensure that different subjects follow similar brain states.  On the other hand, the stimuli are more 45 

naturalistic than arbitrarily defined trials and tasks, and maybe more efficient to elicit higher-order brain 46 

functions.  When watching or listening to the same naturalistic stimuli, different subjects tend to have 47 

similar brain responses in certain brain regions (Hasson et al., 2004), which can be examined by using 48 

intersubject correlations (Chen et al., 2016; Nastase et al., 2019).   49 

 In addition to the study of shared responses, a growing research interest has begun focusing on 50 

the individual differences of responses during naturalistic conditions (Chen et al., 2017; Finn et al., 2020).  51 

Differences in shared responses have been shown between children and adults (Cantlon and Li, 2013; 52 

Moraczewski et al., 2018; Petroni et al., 2018), during aging (Campbell et al., 2015), as well as in mental 53 

disorders, such as autism spectrum disorder (Byrge et al., 2015; Hasson et al., 2009; Salmi et al., 2013) 54 

and schizophrenia (Yang et al., 2019).  Within a healthy subject group, the intersubject correlations of 55 

brain responses were also correlated with the similarities of subjective ratings of the stimuli (Jääskeläinen 56 

et al., 2016; Nummenmaa et al., 2012), and subjects’ trait-like characteristics such as paranoia (Finn et al., 57 

2018) and cognitive style (Bacha-Trams et al., 2018).  58 

 The methods for studying the individual differences in responses to naturalistic stimuli is still 59 

being developed (Chen et al., 2017; Finn et al., 2020).  For a given brain region (or voxel), each subject i 60 

has a response time series xi(t), which can be partitioned into three components (Nastase et al., 2019): 61 

����� � ���� � �	���� � 
����          (1) 62 

where c(t) represents the consistent response across subjects, idi(t) represents the idiosyncratic response 63 

for each subject i, and ε(t) represent noises.  The idiosyncratic response idi(t) ideally is unique to each 64 

subject, therefore it is usually referred to as the source of individual differences.  This is true by its 65 
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definition.  However, if everyone has different responses, it is difficult to link the responses to individual 66 

measures or group differences.  In a real case scenario, it is usually assumed that there is a underlying 67 

canonical responses pattern (Finn et al., 2020), which is present across subjects but weights differently for 68 

individuals.  The model can then be modified with an additional weight parameter ai:  69 

����� � �� · ���� � �	���� � 
����          (2) 70 

The estimates of ai can then be used to correlate with group or individual differences.  Here the model is 71 

different from Finn et al. (Finn et al., 2020) because they added the weight parameter to the idiosyncratic 72 

term id(t) rather than c(t).  But essentially the two models are the same because they both assume an 73 

underlying canonical response, and individual differences arise from the weightings.   74 

 A straightforward way to obtain ai for is to first estimate the consistent component c(t), and 75 

correlate each subject’s time series xi(t) with c(t).  c(t) is usually calculated by excluding the examined 76 

subject and averaging the remaining subjects to avoid bias, a strategy also known as leave-one-out (LOO) 77 

(Nastase et al., 2019).  An alternative strategy is to calculated a pairwise intersubject correlations matrix, 78 

which projects ai into two dimensions.  The differences between pairs of subjects can be compared by 79 

using linear mixed-effect modeling (Chen et al., 2017).  Moreover, a few models have been proposed to 80 

translate individuals’ behavioral measures into pair-wise relationships, e.g. Nearest Neighbors model and 81 

Anna Karenina model (Finn et al., 2020).  The pair-wise relations in brain activity measures and those in 82 

behavioral measures can then be correlated to verify which model can best describe the intersubject 83 

relationships. 84 

 There are two main limitations in the current methods.  First, the representational similarity 85 

approach depends on the hypothesis of the relationships.  For example, Anna Karenina model assumes 86 

that the subjects with higher scores of a behavioral measure tend to have similar responses, but those with 87 

lower scores all respond differently.  A model may not be appropriate for certain domains, and may not be 88 

able to capture complex relationships such as a non-monotonic developmental curve.  Secondly, it is 89 

usually implicitly assumed that there is only one consistent component.  But this may not be true in a real 90 

case scenario.  For example, children may comprehend a cartoon movie differently from adults, or males 91 
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and females may pay attention to different scenes and objects.  Therefore, we may need to assume 92 

multiple consistent components among all the subjects.  Equation 2 can then be expanded to include two 93 

consistent components c1(t) and c2(t):  94 

����� � �� · ����� � � · ����� � �	���� � 
����          (3) 95 

Now there are two sets of parameters to represent individual differences, ai and bi .  LOO correlation 96 

method cannot recover both sets of the parameters.  And the pair-wise correlation matrix may also be 97 

difficult to capture using simple models such as Anna Karenina model. 98 

   We take development as an example.  A certain function may start to develop after a certain age 99 

and then reach a plateau.  If the function requires a certain pattern of brain responses, then the weight 100 

parameters ai for that response will look like Figure 1A.  A developmental curve may also like Figure 1B, 101 

where the likelihood to respond to a certain pattern first increases and then decreases as age increases.  102 

Figure 1D and 1E show the pair-wise intersubject correlations for the two developmental curves.  Matrix 103 

1D can be described by Anna Karenina model.  But new models are needed to describe the relationships 104 

in matrix 1E.  Alternatively, we can calculate LOO intersubject correlations, and the individual LOO 105 

correlations can reflect the hypothetical developmental trends (Figure 1G and 1H).  A more complex 106 

scenarios is that the two consistent components may both exist and they are independent (Figure 1C).  107 

The pair-wise correlations become more complicated to be modeled (Figure 1F).  And the LOO 108 

correlations can only show an averaged age effect, but cannot recover the two separate trends (Figure 1I). 109 

 110 

[Insert Figure 1 about here] 111 

 112 

 To untangle the complex intersubject relationships, we proposed a principal component analysis 113 

(PCA) based analysis strategy.  The time series of all the subjects form a matrix X (time points x subject).  114 

PCA identifies a transformation matrix W to transform the individual response matrix X into a series of 115 

principal components (PCs) T: 116 

� � � · �          (4) 117 
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The PCs are all orthogonal.  The first PC explains the largest variance of the data, and the remaining PCs 118 

similarly maximize the explained variance of the remaining variance.  The variance explained by each PC 119 

is indexed by the eigenvalue of the covariance matrix of X, which could be an indicator of whether there 120 

are multiple consistent response patterns.  In the first two hypothetical developmental functions, a single 121 

component explained a large portion of variance (Figure 1J and 1K).  In contrast, in the third case with 122 

two consistent responses, the first two components both explained large portions of variance (Figure 1L). 123 

 Usually, we are only interested in the first few PCs.  For the ith PC, its relations to individuals’ 124 

time series are as follow:  125 

�� � � · ��           (5) 126 

If we assume the first or second PCs as consistent responses, then the weight vector wi may reflect the 127 

weight of each subject on the consistent responses.  We calculated the loadings of the first PCs for the 128 

first two hypothetical developmental functions, and the loadings showed similar patterns as the 129 

developmental functions and the individual LOO correlations (Figure 1M and 1N).  Moreover, the 130 

loadings of the first two PCs from the third scenario can differentiate the developmental patterns of the 131 

two consistent components (Figure 1O).   132 

 The study of group differences, e.g. a case-control study, also faces a similar problem.  For 133 

example, we may expect that a group of subjects with a mental disorder have lower intersubject 134 

correlations.  On the other hand, all healthy subjects might have consistent responses.  But the critical 135 

question becomes whether the patient group has diminished responses at all or has a different canonical 136 

response from those in the healthy group.  One can compare pair-wise intersubject correlations between 137 

groups to answer this question (Chen et al., 2017, 2016).  But it could be overlooked if one only used the 138 

LOO-based method.  139 

 In summary, we have briefly reviewed the methods for studying individual differences in 140 

response to naturalistic stimuli.  We argue that it is critical to examine whether there are multiple 141 

consistent components.  We therefore propose a PCA-based approach to first indicate whether there are 142 

potentially multiple consistent components, and then examine individual loadings of these components.  143 
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Age and biological sex are two common factors that affect the individual differences in brain structures 144 

and functions (Dosenbach et al., 2010; Lenroot et al., 2007).  By using the movie-watching paradigm, two 145 

previous studies have shown higher intersubject correlations in adults compared with children (Cantlon 146 

and Li, 2013; Moraczewski et al., 2018).  In the current study, by analyzing another publicly available 147 

fMRI dataset of children and adults who watched an animated movie, we ask whether there are multiple 148 

consistent response patterns in the sample.  We applied our PCA-based approach and showed evidence of 149 

second consistent components in certain brain regions.  We also examined the relations between the PCA-150 

based approach and the commonly used LOO correlations in the real fMRI data.  151 

 152 

2. Materials and methods 153 

2.1. Data and task 154 

The fMRI data were obtained through openneuro (https://openneuro.org/), with accession #: ds000228.  155 

There are in total of 155 subjects, with 33 adults (18 to 39 years old) and 122 children subjects (3 to 12 156 

years old).  We adopted the same criteria to remove data with poor spatial coverage and large head 157 

motion (see below) as our previous paper with only adult subjects analyzed (Di and Biswal, 2020).  As a 158 

result, the adult group included 17 females and 12 males.  The age range was 18 to 39 years old (mean = 159 

24.6, standard deviation = 5.3).  The children group included 28 females and 25 males.  The age range 160 

was 3.5 to 12.3 years old (mean = 7.0, standard deviation = 2.5).  The original study was approved by the 161 

Committee on the Use of Humans as Experimental Subjects (COUHES) at the Massachusetts Institute of 162 

Technology. 163 

 During the fMRI scan, the subjects watched a silent version of the Pixar animated movie “Partly 164 

Cloudy”, which is 5.6 minutes long (https://www.pixar.com/partly-cloudy#partly-cloudy-1).  Brain MRI 165 

images were acquired on a 3-Tesla Siemens Tim Trio scanner.  Younger children were scanned using one 166 

of two 32-channel custom head coils, and older children and adults were scanned using the standard 167 

Siemens 32-channel head coil.  Functional images were collected with a gradient-echo EPI sequence 168 

sensitive to blood-oxygen-level dependent (BOLD) contrast in 32 interleaved near-axial slices (EPI factor: 169 
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64; TR: 2�s, TE: 30�ms, flip angle: 90°).  The subjects were recruited for different studies with slightly 170 

different voxel size and slice gaps, 1) 3.13�mm isotropic with no gap; 2) 3.13�mm isotropic with 10% 171 

gap; 3) 3�mm isotropic with 20% gap; and 4) 3�mm isotropic with 10% gap).  During the preprocessing, 172 

all the functional images were resampled to 3 mm isotropic voxel size.  168 functional images were 173 

acquired for each subject, with four dummy scans collected before the real scans to allow for steady-state 174 

magnetization.  T1-weighted structural images were collected in 176 interleaved sagittal slices with 175 

1�mm isotropic voxels (GRAPPA parallel imaging, acceleration factor of 3; FOV: 256�mm).  For more 176 

information on the dataset please refers to (Richardson et al., 2018). 177 

 178 

2.2. FMRI data processing 179 

2.2.1. Preprocessing 180 

FMRI data processing and analyses were performed using SPM12 (SPM: RRID:SCR_007037; 181 

https://www.fil.ion.ucl.ac.uk/spm/) and MATLAB (R2017b) scripts.  A subject’s T1 weighted structural 182 

image was first segmented into gray matter, white matter, cerebrospinal fluid, and other tissue types, and 183 

was normalized into standard Montreal Neurological Institute (MNI) space.  The T1 images were then 184 

skull stripped based on the segmentation results.  Next, all the functional images of a subject were 185 

realigned to the first image and coregistered to the skull stripped T1 image of the same subject.  186 

Framewise displacement was calculated for the translation and rotation directions for each subject (Di and 187 

Biswal, 2015).  Subjects who had maximum framewise displacement greater than 1.5 mm or 1.5o were 188 

discarded from further analysis.  The functional images were then normalized to MNI space using the 189 

parameters obtained from the segmentation step with a resampled voxel size of 3 x 3 x 3 mm3.  The 190 

functional images were then spatially smoothed using a Gaussian kernel of 8 mm.  Lastly, a voxel-wise 191 

general linear model (GLM) was built for each subject to model head motion effects (Friston’s 24-192 

parameter model) (Friston et al., 1996), low-frequency drift via a discrete cosine basis set (1/128 Hz 193 

cutoff), and a constant offset.  The residuals of the GLM were saved as a 4-D image series, which were 194 

used for further intersubject correlation analysis. 195 
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 Regarding the potential head motion effects, we firstly calculated framewise displacement in 196 

translation and rotation separately (Di and Biswal, 2015), and removed subjects with maximum 197 

framewise displacement greater than 1.5 mm or 1.5o.  As a result, 82 subjects were included in the final 198 

analysis.  Secondly, we performed PCA on the framewise displacement time series in translation and 199 

rotation.  The first components explained 4.66% and 4.30% of the variance in the two directions, 200 

respectively, suggesting that there were very limited intersubject correlations of head movements across 201 

subjects (also see Supplementary Figure S1).  Thirdly, in preprocessing 24 head motion variables have 202 

been removed from the fMRI time series.  Lastly, we calculated mean framewise displacement in 203 

translation and rotation for each subject.  The children group showed significant larger mean framewise 204 

displacement in rotation compared with the adult group (t = 6.04, p < 0.001) (see Supplementary section 205 

S1 for details).  In later analyses considering age effects or behavioral correlations, we regressed out the 206 

mean framewise displacements in translation and rotation from the PC loadings and compared the results 207 

before and after the regression. 208 

 209 

2.2.2 Dimension reduction 210 

We first focused on a small number of large-scale networks, which enabled us to perform an in-depth 211 

analysis of their time courses and individual variations.  We performed spatial independent component 212 

analysis (ICA) to define large-scale networks by using Group ICA of fMRI Toolbox (GIFT: 213 

RRID:SCR_001953; http://mialab.mrn.org/software/gift) (Calhoun et al., 2001).  Twenty components 214 

were extracted.  The resulting IC maps were visually inspected, and fifteen maps were included in the 215 

subsequent analysis as functionally meaningful brain networks.  The full maps of all the 20 ICs can be 216 

found at: https://neurovault.org/collections/INSJUAIW/.  For each IC, a time series was back-217 

reconstructed to each subject using the group ICA method, resulting in a 168 (time points) x 82 (subject) 218 

matrix.  To avoid confusion with PCA in the current paper, we refer to the IC maps as networks below.  219 

Secondly, we performed PCA on a voxel basis to study the spatial distributions. 220 

 221 
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2.3. Principal component analysis  222 

For each network (IC) or voxel, we performed PCA on a 168 (time points) x 82 (subject) matrix X.  The 223 

time series of each subject (each column) was first z transformed, which is a critical step in PCA.  Then, 224 

PCA was performed in MATLAB by using the singular value decomposition algorithm.  The eigenvalues 225 

of the covariance matrix of X were obtained.  The percentage variance explained by each PC was then be 226 

calculated as the corresponding eigenvalue divided by the sum of all the eigenvalues.  The PC scores 227 

(time series) and the associated weighting for each subject wi were also obtained.  PC loadings were 228 

calculated as the PC weights multiplying the standard deviation of the eigenvalue.  229 

 To determine whether a PC explained greater variance than the random level, we performed a 230 

circular time-shift randomization to determine the null distributions (Kauppi et al., 2010).  The time-shift 231 

method can preserve the autocorrelations in the BOLD time series, which is preferable to a simple 232 

permutation test.  Specifically, each subject’s time series were added a delay drawn from a discrete 233 

uniform distribution of 0 to 167 with replacement, then the PCA was performed, and the variances 234 

explained by the first PC was obtained.  The process was repeated 10,000 times to form a null distribution.  235 

The variances explained by the first two PCs from the real fMRI data were compared with the null 236 

distributions to obtain the p values.  It is noteworthy that the null distributions were calculated based on 237 

the first PC, which is a conservative choice for the statistics of the second PCs. 238 

 For the ICA-based analysis, we performed the circular time-shift randomizations for every 239 

network (ICs).  We adopted a threshold of p < 0.001 to account for the multiple comparisons.  An 240 

alternative approach is to use false discovery rate (FDR) correction.  However, FDR depends on the 241 

overall distributions of all the regions.  It may make the thresholding different among different spatial 242 

scales.  We therefore adopt the same threshold of p < 0.001 for the ICA-based and voxel-wise analyses, 243 

which was more stringent than FDR corrected p < 0.05 in the current case.  The randomization was quite 244 

computationally expensive for the voxel-wise analysis.  Therefore, we performed PCA on 1,000 regions 245 

(Schaefer et al., 2018) and calculated the local null distributions.  The voxel-wise PCA results were 246 

compared with the null distribution in a local region to compute the p values.  247 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 21, 2021. ; https://doi.org/10.1101/2020.05.01.073163doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.01.073163
http://creativecommons.org/licenses/by-nc-nd/4.0/


11 

 

 Because the later PCs may represent only a small number of subjects, we evaluated whether the 248 

PCs could be reliability identified with sample variations.  We performed bootstrapping along the subject 249 

dimension for 1,000 times.  PCA was performed on the bootstrapping samples, and the correlations of the 250 

PCs were calculated among the samples.  The goal is to verify whether the identified PCs were consistent 251 

across the bootstrapping samples.  The 95% confidence interval of the variance explained by the second 252 

PCs were also obtained.  This analysis was only performed for the ICA-based analysis.  253 

 254 

2.4. Cross-correlation and delay estimates 255 

Because we found that the second PC score in some networks seemed to be delayed to the first PC, we 256 

calculated cross-correlations between the two PC scores to confirm this.  The autocorrelation in BOLD 257 

signals could produce spurious cross-correlations (Dean and Dunsmuir, 2016), therefore, we performed 258 

simulations with components of convolution with hemodynamic response function (HRF).  Specifically, 259 

we generated two Gaussian time series with 168 time points and convolved them with the canonical HRF 260 

in SPM.  Cross-correlations were then calculated, and the maximum absolute value of the cross-261 

correlations was obtained.  The procedure was repeated 100,000 times to form a null distribution of the 262 

maximum value.  The 95 percentile of the distribution was used as the critical value for the cross-263 

correlation analysis for the real fMRI data. 264 

 We also calculated the time lags between the time series of every subject with reference to the 265 

first PC score by obtaining the time point of maximum absolute cross-correlation.  Because single subject 266 

time series were noisy, we set a maximum lag of ±5 time points in search of lags. 267 

 268 

2.5. Behavioral correlates 269 

We next asked whether the first two PCs of different networks can provide complementary information in 270 

explaining the variability of a behavioral measure.  Test scores of theory of mind performance are 271 

available for the children subjects (n = 53).  The theory of mind battery includes custom-made stories and 272 

questions that require an understanding of the characters’ mental states.  The theory of mind task 273 
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performance was summarized as the proportion of correct questions out of the 24 items.  More 274 

information about the task and scores can be found in Richardson et al. (2018).  The analysis was only 275 

performed for the ICA-based analysis, where the second PC explained significant variance (i.e. the 276 

supramarginal network).  We first examined simple correlations between the first or second PC loadings 277 

and the theory of mind performance.  Next, we put the two PC loadings together in a linear regression 278 

model to explain the variance of the theory of mind performance.  The t statistics corresponding to the 279 

two PC loading regressors were obtained. 280 

 281 

2.6. LOO correlation and the relations to PCA-based method 282 

Although the main focus of this study is to apply PCA to identify potentially multiple consistent 283 

responses, PCA can also provide measures on intersubject correlations.  Specifically, we asked whether 284 

the variance explained by the first PC is related to the averaged intersubject correlations and whether the 285 

loadings of PC1 are related to the individual LOO correlations.  For a specific region, we calculated LOO 286 

intersubject correlations on the 168 (time points) x 82 (subject) matrix X.  Specifically, a subject’s time 287 

series was held out and the consistent component was calculated by averaging the remaining 81 subjects.  288 

Then the correlation between the subject’s time series and the averaged time series was calculated.  Each 289 

subject then had a LOO correlation value.  The LOO correlations were Fisher’s z transformed, averaged, 290 

and then transformed back to r values to form an averaged intersubject correlation in a region.  291 

 We first examine the relationships on all the 20 networks (ICs).  The averaged intersubject 292 

correlations were squared to match with the variance quantity.  We then calculated the correlations 293 

between the variance explained by the first PC and the squared mean correlations across the 20 networks.  294 

Next, for each network, we calculated the correlations between the first PC loadings and individual LOO 295 

correlations.  The same analysis was performed on the 1,000 ROIs. 296 

 The rationale for including the noise ICs in the analysis is to reveal more general relations 297 

between PCA and LOO correlations.  Imagine if all the time series are noise, given the high 298 

dimensionality (number of subjects), then the first PC may not be identified as the averaged time series.  299 
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But if there are underlying consistent signals, then the first PC may turn out to be very similar to the 300 

averaged time series, i.e. the consistent response.  This will in turn give rise to high correlations between 301 

PC1 loadings and individual LOO correlations.  We performed a simple simulation to reveal such a 302 

relationship.  We generated a 168 x 82 matrix with a 168 Gaussian vector representing the consistent 303 

response and a 168 x 82 Gaussian random matrix representing the noises.  The consistent component had 304 

different weights for subjects drawn from a uniform distribution between 0 and 1.  And finally, the 305 

subjects’ weights were multiplied by an overall weight value from a uniform random distribution (from 0 306 

to 1) to vary the overall levels of intersubject correlations.  The procedure was repeated 1,000 times.  We 307 

then calculated PCA and LOO correlations and examined their relations.   308 

 309 

 310 

3. Results 311 

3.1. ICA-based analysis 312 

We first performed PCA on the 15 large-scale networks and obtained the percentage of variances 313 

explained by the PCs (Figure 2).  The first PCs of all the 15 networks explained more than chance-level 314 

variance at p < 0.001.  Among the 6 networks that explained the highest variance (more than 15%), five 315 

were visual related networks and the remaining IC 17 was located in the supramarginal gyrus.  These are 316 

consistent with our previous voxel-wise analysis in only adult subjects (Di and Biswal, 2020).  For the 317 

second PCs, only the supramarginal network (IC17) explained more than chance-level variance (6.01%, p 318 

< 0.001).  Supplementary Figure S4 shows the variance explained by all the PCs in this network.  It is 319 

noteworthy that the variance explained by the second PC would be much less than those explained by the 320 

first one.  But it may be still meaningful, because the differences may reflect the number of subjects 321 

represented in different PCs.  To evaluate the stability of the PC2, we performed a bootstrapping along 322 

the subject dimension.  Supplementary Figure S5A and S5B show that PC2 could be reliability identified 323 

among the bootstrapping samples.  And the 95% confidence interval of the explained variance by PC2 324 

was between 5.65% and 7.50%.  325 
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 326 

[Insert Figure 2 about here] 327 

 328 

 The pair-wise correlation matrix in the supramarginal network clearly showed a trend of greater 329 

intersubject correlations in older subjects (Figure 3A).  The PC1 loadings were mostly positive and were 330 

greater as age increased and reached a plateau during the adult age range.  In contrast, the PC2 loadings 331 

were positive for the younger children but mostly negative for the adults.  No clear sex differences can be 332 

found in both PCs.  We also calculated the LOO intersubject correlations (Figure 3D), which turned out to 333 

be very similar to the PC1 loadings (r ≈ 1, p < 0.001, see also the scatter plot in supplementary Figure S6).  334 

The mean framewise displacement in rotation showed small but statistically significant correlations with 335 

both PC1 loading (r = -0.30, p = 0.007) and PC2 loading (r = 0.29, p = 0.009).  We therefore regressed 336 

out the mean framewise displacements from the two PC loadings.  The age effects on the adjusted PC 337 

loadings remain very similar to what on the original PC loadings (Figure S2). 338 

 339 

[Insert Figure 3 about here] 340 

 341 

 Figure 4A shows the time series of the first two PCs (PC scores) in the supramarginal network.  342 

Interestingly, PC2 looked similar to PC1 but seemed delayed compared with the PC1.  Cross-correlation 343 

analysis confirmed a 2-TR (4 s) delay between them (Figure 4B).  Further, we examined whether the 344 

loadings of the PC2 reflect the lags of an individual’s time series.  We calculated the time shifts between 345 

each individual’s time series with reference to the PC1 time series.  80 out of the 82 subjects had a -1 to 1 346 

time points shifts.  The individual’s time shifts related to PC1 were highly correlated with the PC2 347 

loadings (Figure 4C).  In Supplementary Figure S8, we show individual time series with subjects ordered 348 

according to age (top row) and the PC2 loadings (bottom row).  It shows clearly that for older subjects the 349 

time series appeared to be faster compared with the younger subjects.  The time lags became clearer when 350 

the subjects were sorted by the PC2 loadings. 351 
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 352 

[Insert Figure 4 about here] 353 

 354 

 We next asked whether the two PCs of the supramarginal network (IC17) can provide 355 

complementary information in explaining the variations of the theory of mind task performance 356 

(proportion correct).  The first PC loadings were positively correlated with the theory of mind 357 

performance (r = 0.468, p < 0.001, Figure 5A), and the second PC loading was negatively correlated with 358 

the theory of mind performance (r = -0.398, p = 0.003, Figure 5B).  However, when including both the 359 

first two PC loadings in a linear regression model to predict the theory of mind performance, only the first 360 

PC loadings had a statistical significant effect (tPC1 = 2.47, pPC1 = 0.017; tPC2 = -1.44, pPC2 = 0.157).  This 361 

is probably due to the fact that the two PC loadings were correlated (r = -0.532, p < 0.001).  We also 362 

regressed out the mean framewise displacement in both translation and rotation from the PC loadings.  363 

The correlations between the adjusted PC loadings and the theory of mind performances remained 364 

significant (PC1: r = 0.428, p = 0.001; PC2: r = -0.278, p = 0.044).  Lastly, the LOO intersubject 365 

correlations were also correlated with theory of mind performance (r = 0.461, p < 0.001). 366 

 367 

[Insert Figure 5 about here] 368 

 369 

3.2. Spatial distributions of variances explained by the second PCs 370 

The left panel of Figure 6 shows the spatial distributions of significant second PCs at p < 0.001.  For 371 

reference, the PC1 variance map is shown in the right panel.  One major cluster of the PC2 map covered 372 

the supramarginal gyrus and extended to the posterior parietal lobe and posterior visual regions.  We 373 

further increased the threshold to 5% to break it into three small clusters, including two clusters covering 374 

the left and right supramarginal gyrus and one cluster in posterior visual areas.  We extracted the averaged 375 

time series in these clusters and performed PCA.  The first two PC loadings in the three clusters were very 376 
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similar to those of the supramarginal network (IC 17), i.e. the first PC loadings reflected a maturation age 377 

effect and the second PC loadings reflected higher weights in younger children.  378 

 379 

[Insert Figure 6 about here] 380 

 381 

 Outside the major cluster, there were three clusters larger than 40 voxels at p < 0.001, including 382 

the precuneus and left and right sensorimotor regions.  The preceneus, which is part of the default mode 383 

network, is particular interesting given its role in theory of mind processing (Richardson et al., 2018).  384 

The first two PCs and their loadings of the precuneus are shown in Figure 7.  Similar to the supramarginal 385 

network (IC 17), the first PC loadings showed a maturation age effect and the second PC loadings had 386 

higher weights in younger children.  The PC2 time series also seemed to be a delayed version of PC1 but 387 

with a 2-TR (4 s) lag (Figure 7A and 7D). 388 

 389 

[Insert Figure 7 about here] 390 

 391 

 The left and right sensorimotor regions had very similar time courses and age effects.  Figure 8 392 

shows the left sensorimotor region as an example.  In contrast to the previous networks and regions, the 393 

PC1 loadings of the left sensorimotor region first increased with age in the children group, but decreased 394 

with age in the adult group.  Conversely, the PC2 loadings had higher weights in the adult group.  The 395 

cross-correlation between PC1 and PC2 also had maximum correlation at 2-TR (4 s) lag, but PC2 was 2-396 

TR in advance.  Because PC1 had large weights in younger subjects and PC2 had larger weights in older 397 

subjects and PC, the cross-correlation indicated that the older group had a faster brain activity compared 398 

with the younger group, which is consistent with the previous networks and regions.  Lastly, the age 399 

effects of the PC loadings were not confounded by the head motions.  When regressing out framewise 400 

displacement from the PC loadings, the age effects remained very similar (Supplementary Figure S3). 401 

 402 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 21, 2021. ; https://doi.org/10.1101/2020.05.01.073163doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.01.073163
http://creativecommons.org/licenses/by-nc-nd/4.0/


17 

 

[Insert Figure 8 about here] 403 

 404 

 405 

3.3. Relations to LOO correlations  406 

Lastly, we asked whether the PCA-based measures are related to the commonly used intersubject 407 

correlation measures.  Among the 20 networks (ICs) and the 1,000 ROIs, we found almost perfect linear 408 

relations between the squared mean intersubject correlations and the percentage of variance explained by 409 

the first PCs (Figure 9A and 9B).  However, their relations were off the y = x% line, suggesting that their 410 

quantities were not directly comparable.  A similar relation can be found in the simulations (Figure 9C).  411 

 412 

[Insert Figure 9 about here] 413 

 414 

 As expected, we found that the correlations between PC1 loadings and individual LOO 415 

correlations are related to the noise level of a region.  We therefore plotted the correlations against the 416 

variance explained by the first PC in a network (Figure 9D) and ROI (Figure 9E).  We found that if the 417 

variance explained by the first PC were higher than 5%, i.e. there are likely underlying consistent 418 

responses, then the correlations between the PC1 loadings and individual LOO correlations were higher 419 

than 0.95.  But if there were very low variance explained by the first PC, then the correlation could drop 420 

to 0.5.  The two networks with low correlations in Figure 9D were both considered noise components, 421 

which were excluded in the current analysis.  Such a relationship was confirmed by the simulation data 422 

(Figure 9F).  The simulation results further showed that in noisy conditions the correlations between PC1 423 

loadings and individual LOO correlations varied in a wide range.  But if there were underlying consistent 424 

signals, then their correlations could be close to 1.  In supplementary Figure S9, we further show that the 425 

correlations between PC1 loadings and LOO correlations were related to whether PC1 could capture the 426 

averaged signals.  In other words, the higher the correlations between PC1 and averaged signals, the 427 

higher the correlations between PC1 loadings and LOO correlations.  428 
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 429 

 430 

4. Discussion 431 

In the current paper, we proposed a PCA-based framework to study the individual differences in response 432 

to naturalistic stimuli in fMRI data.  On a movie watching dataset of children and adults, we showed 433 

evidence of second PCs in distributed brain regions, which may represent a second consistent response to 434 

the movie in the tested sample.  The two PCs showed different distributions in age but not in biological 435 

sex, suggesting that the two consistent responses represent different age groups.  The regions that showed 436 

the second consistent responses were in the supramarginal gyrus, posterior parietal lobe, visual areas, the 437 

precuneus, and sensorimotor regions.  Interestingly, in the supramarginal gyrus, the second PC 438 

represented delayed responses than the first PC for 4 seconds (2 TR), suggesting the children around 5 439 

years old may have delayed response compared with the adults.  The results indicate the importance of 440 

studying potentially multiple consistent responses in large samples.  441 

 By calculating the eigenvalues of the covariance matrix, we provided evidence of potentially 442 

multiple consistent responses in the sample, which cannot be identified by using intersubject correlations.  443 

It is noteworthy that the variance explained by the second PCs in the current study were around 5% to 6%, 444 

which were much smaller than those by the first PCs.  It may reflect the fact that the second PCs only 445 

represented a small number of subjects, but not that the correlations among them were lower.  By using 446 

bootstrapping on the subject dimension, we showed that the second PC in the supramarginal gyrus were 447 

reliable against subject sampling, which support the former interpretation.  As the sample sizes in 448 

neuroimaging studies become larger and larger, it becomes more important to identify sub-groups of 449 

subjects with distinct but consistent responses from other subjects.  PCA provides an unsupervised tool to 450 

visualize and identify the potential sub-groups.  451 

 The regions that showed evidence of a second consistent components included the supramarginal 452 

gyrus, the posterior parietal lobe, higher visual areas, the precuneus, and sensorimotor regions.  Except for 453 

the sensorimotor regions, the other regions seemed to follow similar subject weightings.  That is, the first 454 
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PC represented an increasingly similar response as age increased, and the second PC represented a higher 455 

similar response in children around age 5.  These all suggest that the children around 5 years old showed a 456 

unique pattern of brain responses compared with both the adults and the other children groups.   457 

 The supramarginal network is a critical region involving in the theory of mind process (Silani et 458 

al., 2013) and the understandings of others’ pain (Bruneau et al., 2015).  In the current results, the 459 

loadings of both PC1 and PC2 were correlated with the theory of mind performance, further confirmed its 460 

role in the understanding of the movie.  Interestingly, we found that the PC2 seemed to be a delayed 461 

version with reference to the PC1, and the PC2 loadings could reflect the delays of an individual’s time 462 

series.  This suggests a multivariate nature of functional developments in this region.  For the youngest 463 

children in this sample, theory of mind has not been fully developed.  The functional responses in the 464 

supramarginal gyrus did not show similarity among each other, nor with the older children or adults.  For 465 

the children around 5 years old, the theory of mind ability has started developing, but the brain responses 466 

may be less reliable and slower compared with adults.  As growing older, the responses becomes more 467 

reliable and similar to the adults.  A study using the same movie stimuli has shown that when the movie 468 

was shown the second time to children of 6-7 years old, the responses shifted earlier than those from the 469 

first presentation (Richardson and Saxe, 2020), further support that the brain response time may reflect 470 

the ability of the understanding the movie.   471 

 One consideration related to the delays in BOLD signals is the inherent autocorrelation (Friston et 472 

al., 2000, 1994).  Usually, the BOLD signals have a high autocorrelation at 1-TR (2 s) lag, and remain a 473 

small autocorrelation at 2-TR (4 s) lag.  This means that if the delays are with 2 seconds, then PCA 474 

probably will not able to identify two distinguished components.  Moreover, PCA forces the latter PCs to 475 

be orthogonal to the former PCs, meaning the signals related to PC1 have been removed from PC2.  This 476 

may make PC2 look spikier than PC1.  In other words, PC2 doesn’t simply represent one particular group 477 

of subjects, but those after considering the PC1 effects.  One can think of PC2 as a higher-order deviation 478 

to PC1 that captures certain individual variations in the sample. 479 
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 In the voxel-wise analysis, we observed distributed regions in the posterior parietal lobe, higher 480 

visual areas, the precuneus, and sensorimotor regions who showed evidence of second consistent 481 

components.  The precuneus is particularly interesting given its role in theory of mind processing 482 

(Richardson et al., 2018).  The other regions may be related to attention and sensorimotor processing.  483 

Previous studies have suggested that children and adults activate different brain regions when watching 484 

real versus cartoon movies (Han et al., 2007, 2005).  They found that the medial prefrontal cortex was 485 

activated in children but not adults when watching cartoon movies.  Although the regions identified are 486 

different, all the studies have suggest different brain response patterns between children and adults.  487 

 PCA is an unsupervised approach that relaxes the assumptions on the interindividual relationships.  488 

It is particularly useful for continuous variables such as age, where the exact timing of developments may 489 

be unknown or the developmental effects may not be monotonic.  Two previous studies have compared 490 

the pair-wise intersubject correlations between children and adults and found reduced intersubject 491 

correlations in children (Cantlon and Li, 2013; Moraczewski et al., 2018).  These were done by defining 492 

specific age groups.  When using the PCA-based approach or LOO-based approach (Campbell et al., 493 

2015), age can be treated as a continuous variable, so that the age effects can be modeled as 494 

developmental trajectories.  On the other hand, when using the intersubject representational similarity 495 

analysis approach (Finn et al., 2020), the age effect may be captured by Anna Karenina model, where 496 

only older subjects respond more similarly to each other.  But this model cannot capture a non-monotonic 497 

age effect, nor different consistent responses.  One may need to develop new models to capture complex 498 

age effects when using the representational similarity approach. 499 

 In addition to the information about multiple consistent components, PCA can also provide 500 

similar information as LOO intersubject correlations.  The variance explained by the first PC is a similar 501 

measure as averaged intersubject correlations.  The current results showed that across brain regions the 502 

variance explained by the first PC was almost perfectly correlated with the averaged intersubject 503 

correlations.  Moreover, the loadings of the first PC provide a simple way to project the consistent 504 

response to an individual’s dimension, which is easier than correlating each subject’s time series with the 505 
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LOO averaged time series (Nastase et al., 2019).  The current results showed very high correlations 506 

between PC1 loadings and LOO intersubject correlations in real fMRI data.  A simple simulation also 507 

suggested that when there were underlying consistent components, PC1 loadings and LOO correlations 508 

were highly correlated.  Therefore, the PCA-based method can provide similar information as LOO 509 

intersubject correlations. 510 

 There are also limitations regarding the PCA-based method.  First, the baseline of the variance 511 

explained by the first PC is not zero (the x-intercept in Figure 9A through 9C), and is related to the 512 

number of subjects.  When there are n subjects, imagine if the first PC is randomly assigned as one 513 

subject’s time series, it will explain 1/n variance.  Therefore, the variance explained by the first PC cannot 514 

be compared between different sample sizes.  Second, statistical testing for the PCA related parameters 515 

are not straightforward.  In the current study, we adopted randomization-based nonparametric methods, 516 

which are time-consuming.  517 

 A more general challenge in studying naturalistic stimuli is the interpretations of the observed 518 

consistent responses.  It becomes more difficult when multiple consistent responses are identified.  In the 519 

current data, we found that delays of the signals may explain the differences between the two PCs.  There 520 

may be other factors that could contribute to the differences.  Future study may need to formulate testable 521 

hypotheses regarding the brain responses in different age groups to examine the causes of the differences 522 

further.  More generally, when there are multiple consistent responses, reverse correlation technique 523 

(Hasson et al., 2004; Richardson et al., 2018) could be used to identify the events represented in different 524 

consistent responses.  Advanced encoding models may also be helpful to explain the underlying coding of 525 

different consistent responses (Bartels et al., 2008; Nishimoto et al., 2011).  But it could be difficult when 526 

the effects of interest are higher-order social processes such as theory of mind.  Secondly, studies have 527 

shown that the shared responses are dynamic (Di and Biswal, 2020; Simony et al., 2016).  The presence 528 

of multiple response components and their relations may also be sensitive to the movie context, thus 529 

showing fluctuations.  For example, delays in responses may only occur to certain events, but not 530 

throughout the whole time series.  Further studies may take dynamics into account to fully characterize 531 
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the individual differences in responses.  Lastly, the current study is limited by the sample size and scan 532 

time of each subject.  Further study is needed with larger sample size and longer scan time to evaluate the 533 

generalizability and reliability of the current findings.  534 

 535 

 536 

5. Conclusion 537 

When watching movies, the brain may respond similarly or idiosyncratically across individuals.  It is also 538 

possible that multiple consistent responses exist in different subgroups, which is overlooked by the 539 

currently available methods.  We proposed a PCA-based approach to analyze the individual differences in 540 

response to naturalistic stimuli, which can detect the potential multiple consistent responses.  With an 541 

example movie watching data of children and young adults, we showed evidence of two consistent 542 

responses in many brain regions, one more weighted in the adults and the other more weighted in younger 543 

children.  The results highlight the importance of identifying multiple consistent components when 544 

studying shared responses to naturalistic stimuli.  And PCA could be a complementary approach to 545 

analyze naturalistic stimuli data.  546 

 547 

 548 
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 666 

Figure Legends 667 

Figure 1 Illustrations of developmental effects of shared responses in a brain region.  A and B illustrate 668 

two hypothetical developmental functions of consistent responses.  The age range was set between 0 and 669 

30 years, which overlaps with the empirical data.  Note that the consistent responses in A and B may be 670 

independent.  C shows the scenario where the two separate consistent components are present.  D through 671 

F show the pair-wise correlation matrices across subjects.  G through I show the intersubject correlations 672 

calculated using the leave-one-out (LOO) method against the subjects’ age.  J through L show the 673 

percentage of variances explained by the first 10 principal components (PCs) from principal component 674 

analysis (PCA).  M through O show the PC loadings of the first one or two PCs against age. 675 

 676 

Figure 2 A. Maps of 15 independent components (ICs) that are included in the current analysis.  The 677 

group averaged maps were thresholded at z > 2.3.  B. Percentage of variance explained by the first three 678 

principal components for the 15 networks (ICs).  The bar colors correspond to the network colors in panel 679 

A.  * represents p < 0.001 by using a circular time-shift randomization method.  The brain networks were 680 

visualized with BrainNet Viewer (RRID: SCR_009446) (Xia et al., 2013). 681 

 682 

Figure 3 A, Correlation matrix of the supramarginal gyrus network (independent component 17) across 683 

the 82 subjects.  The subject were sorted by age in an ascending order.  B and C, Principal component 684 

(PC) loadings for the first and second PCs as functions of age.  D, Leave-one-out (LOO) intersubject 685 

correlations as a function of age.  The brain slice illustrates the location of the network.  686 

 687 

Figure 4 A, Principal component (PC) scores of the first two PCs in the supramarginal network 688 

(independent component 17).  The brain slice illustrates the location of the network.  B, Cross-689 

correlations between the first two PCs.  The red lines indicate p < 0.05 of absolute peak cross-690 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 21, 2021. ; https://doi.org/10.1101/2020.05.01.073163doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.01.073163
http://creativecommons.org/licenses/by-nc-nd/4.0/


26 

 

correlations.  C, Time shifts of individual’s time series with reference to the first PC score as a function of 691 

the PC2 loading. 692 

 693 

Figure 5 Correlations between theory of mind (ToM) performance (proportion of correct) and principal 694 

component (PC) loadings for the first two PCs of the supramarginal gyrus network (independent 695 

component 17).  The brain slice illustrates the location of the network. 696 

 697 

Figure 6 Percentage of variance explained by the second (A) and first (B) principal components (PCs) 698 

from the voxel-wise analysis (C).  The voxels in A were thresholded at p < 0.001.  The voxels in B were 699 

thresholded at 9%.  The brain networks were visualized with BrainNet Viewer (RRID: SCR_009446) 700 

(Xia et al., 2013). 701 

 702 

Figure 7  A, the time series of the first two principal components (PC scores) for the precuneus region 703 

(depicted in the brain slice).  B and C, the first and second principal component (PC) loadings as 704 

functions of age.  D, the cross-correlations between the two PCs.  The red lines indicate p < 0.05 of 705 

absolute peak cross-correlations. 706 

 707 

Figure 8 A, the time series of the first two principal components (PC scores) for the left sensorimotor 708 

region (depicted in the brain slice).  B and C, the first and second principal component (PC) loadings as 709 

functions of age.  D, the cross-correlations between the two PCs.  The red lines indicate p < 0.05 of 710 

absolute peak cross-correlations. 711 

 712 

Figure 9 Upper row, correlations between the squared mean intersubject correlations using leave-one-out 713 

(LOO) method and the variance explained by the first principal component (PC).  Lower row, the 714 

correlations between the first PC loadings and individual LOO correlations as functions of the variance 715 

explained by the first PC. 716 
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