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ABSTRACT

In response to the global pandemic of the last four months, some progress has been made in understanding the molecular-level
host interactions of the new coronavirus SARS-CoV-2 responsible for COVID-19. However, when the virus enters the body it
interacts not only with the host but also with the micro-organisms already inhabiting the host. Understanding the virus-host-
microbiome interactions can yield additional insights into the biological processes perturbed by the viral invasion. We carry
out a comparative functional analysis of bronchoalveolar lavage fluid of eight COVID-19, twenty-five community-acquired
pneumonia (CAP) patients and twenty healthy controls. The resulting functional profiles clearly separate the cohorts, even
more sharply than just their corresponding taxonomic profiles. We also detect distinct pathway signatures in the respiratory
tract microbiome that consistently distinguish COVID-19 patients from both the CAP and healthy cohorts. These include
increased vitamin, drug, nucleotide, and energy metabolism during SARS-CoV-2 infection, contrasted with decreased amino
acid and carbohydrate metabolism. This comparative analysis indicates consistent differences in COVID-19 respiratory tract
metatranscriptomes compared to CAP and healthy samples.

Introduction

An impressive number of scientific studies have rapidly been published on the genomics and molecular-level host interactions
of the new coronavirus SARS-Cov-2! of reported bat origin,? responsible for the COVID-19 disease pandemic. Additionally,
understanding changes in the microenvironment within the host can yield insights into related biological processes perturbed by
the virus. The respiratory tract microbiome community composition during pathogen infections has been studied previously,
along with its predictivity of clinical outcomes and associated potential probiotic interventions.’ Studies profiling the
respiratory microbiome community in COVID-19 patients are also beginning to appear.'-8-10

To better understand the role of the microbiome in COVID-19, we introduce a functional analysis of recently published
metatranscriptomes® from bronchoalveolar lavage fluid (BALF) of COVID-19 patients, healthy subjects, and community-
acquired pneumonia (CAP) cases. While Shen et al.® focused on the SARS-Cov-2 genomes and taxonomic profiling of the
microbiomes, here we perform functional profiling to characterize active biological processes.

The sequenced reads were classified with PRROMenade'! using a vast amino acid sequence collection of 12 million
bacterial and viral protein domains from the IBM Functional Genomics Platform,'? annotated with KEGG enzyme codes from
a corresponding functional hierarchy.!3 Post-processing and robust rank-based RoDEO'* projection of the annotations onto a
unified scale made the resulting profiles comparable. The overall analysis workflow is depicted in Fig. 1A.

The functional profiling separated samples by cohort, and the more abundant enzymes codes in COVID-19 mapped to
vitamin, drug, nucleotide, and energy metabolism pathways, while the less abundant ones mapped mostly to amino acid
and carbohydrate pathways. In related literature, similarly altered pathways were indicated in the lower respiratory tract
microbiomes of mice infected with the influenza virus.!> The results from this robust comparative analysis highlight consistent
differences in microbial pathways in COVID-19 compared to community-acquired pneumonia and healthy control samples.

Results

Microbiome functional profiles cluster by cohort
The functional profiles were first visualized with Krona'® to examine their average distribution per cohort (Fig. 1B, see
Supplemental File 1 for interactive version including all samples). While there are certain differences detectable in these
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coarsely averaged profiles, a subsequent robust comparative analysis reveals specific functions that are consistently altered
between cohorts.

Multi-dimensional scaling of pairwise Spearman distances between samples clearly separates the cohorts, with just a few
co-locating healthy control and CAP samples (Fig. 1C). A significant difference in functional profiles was observed between
the COVID-19, CAP, and healthy control groups according to PERMANOVA test (p < 0.0001). Functional profiling separated
the groups more sharply than taxonomic profiling (R* = 0.12 from functional profiling vs. R* = 0.07 from taxonomic profiling
by Shen et al®). Nearly identical results were also obtained when utilizing only the bacterial subset of the database for read
matching; the separation is not merely due to COVID-19 sample reads matching SARS-CoV-2 protein domains (Supplemental
Fig. S1).

Differentially abundant functions distinguish COVID-19 samples

The sequencing data had varying total number of reads and human content per sample (Supplemental Fig. S2). Therefore we
used RODEO'* to project the samples onto a robust comparable scale. To examine the features that differentiate COVID-19
from others, we extracted the top-ranked features from the COVID vs. CAP and COVID vs. healthy control comparisons, and
considered the union of top 30 features from each comparison, resulting in 51 EC numbers. Their clustering shows three main
feature clusters that correspond to the sample clusters of i) 20 healthy controls (with 8§ CAP samples included), ii) 15 CAP, and
iii) 8§ COVID-19 (with 2 CAP samples included) (Fig. 2A, three outlined rectangles).

The CAP patient samples were collected from different hospital sources, yet these samples cluster together and separate
from the COVID-19 patient samples. While the features were selected as those differentiating COVID-19 from CAP and
healthy controls, they also tend to separate CAP from the controls. Although two CAP samples cluster here with COVID-19,
note that the CAP samples were collected prior to the current pandemic and represent distinctly different pneumonia cases.

The bottom five COVID-19 samples in Fig. 2A (3,4,5,7,8) separate from other samples, with more abundant features includ-
ing 4.4.1.3 "Sulfur metabolism" and 1.7.2.4 "Nitrogen metabolism" related to energy metabolism, and 2.7.4.25 "Prokaryotic
cytidylate kinase" related to pyrimidine metabolism. The result is also an indication that the samples do not merely cluster by
number of sequenced reads or fraction of microbial annotated reads, since according to those statistics the COVID-19 samples 6
and 7 appear quite similar (Supplemental Fig. S2) while here are in different COVID-19 subclusters.

Altered lung microbiome pathways indicated in COVID-19

We further checked the 51 top differential functions shown in Fig. 2A for extract those whose average abundance changed
in a consistent direction in the COVID-19 cohort compared to both the CAP and the healthy cohort. The average difference
between COVID-19 vs. CAP and COVID-19 vs. healthy controls was visualized against their corresponding pathways from the
KEGG pathway mapping (Fig. 2B).

Functions with increased relative abundance are linked to energy metabolism (methane, nitrogen, sulfur), metabolism
of cofactors and vitamins (B6, folate, lipoic acid) and purine — related to one-carbon metabolism, nucleotide metabolism
(purine, pyrimidine), and drug metabolism. Several functions with decreased relative abundance are related to amino acid and
carbohydrate metabolism. Decreased amino acid and carbohydrate metabolism with increased metabolism of cofactors and
vitamins and nucleotide metabolism were also indicated among the changes in lower respiratory tract microbiomes at the acute
phase (day 7) of mice infected with influenza virus, with increased energy metabolism in the early days of infection (day 3)."

Discussion

Analyzing COVID-19 respiratory tract metatranscriptomes from a functional perspective offers an additional view into their
differences from healthy controls and subjects with community-acquired pneumonia (CAP). Querying translated reads against
amino acid sequences allows for more flexibility in sequence matching, as synonymous mutations will not affect the matching.
This also supports the detection of functions performed by unknown organisms yet to be characterized.'”

The resulting functional profiles clearly distinguish COVID-19 from CAP and healthy controls, even more so than the
original taxonomy-based analysis of the community members.® From this profiling, we detected consistent differences in
COVID-19 samples compared to both the healthy control and CAP samples.

Features with increased relative abundance mapped to metabolism of vitamins, drugs, purine, pyrimidine, and energy
metabolism. Several features with decreased relative abundance were related to amino acid and carbohydrate metabolism.
Similar observations were recently made in a comprehensive study of microbiomes in mice infected with the influenza virus."
With limited clinical data available for these patients it is unclear if administered therapies had an effect on the detected
microbiome differences and the detected subclusters of COVID-19 samples. The comparative approach taken here carefully
avoids possible experimental variation and resulting biases within individual samples, and focuses on detecting robust and
consistent differences between cohorts.
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These preliminary observations call for further in-depth analysis of microbial functions and host-microbiome interactions
from studies coupling sequencing and clinical data, as viewing them with the lens of functional annotation can yield additional
insights into the altered biological processes.

Methods

Sequence data and functional database

The recently published bronchoalveolar lavage fluid (BALF) metatranscriptomic sequencing data of 8 COVID-19 patients,
20 healthy controls, and 25 samples of community-acquired pneumonia (CAP) were obtained from the National Genomics
Data Center.® '8 Pre-processing was performed as described by Utro et al.'! including Trim Galore'® trimming and bowtie2*’
human read filtering, resulting in 40k to 32M input reads for microbial functional annotation per sample (Supplemental Fig. S2).
Human reads were already filtered by Shen et al.%, still we removed additional reads that mapped to human with the bowtie 2
local alignment mode.

The KEGG Enzyme Nomenclature code (EC) reference hierarchy'® was used as the functional annotation tree. EC numbers
define a four-level hierarchy. For example, 1.5.1.3. = "Dihydrofolate reductase" is a fourth (leaf) level code linked to top level
code 1 = “Oxidoreductases”, via 1.5. = “Acting on the CH-NH group of donors" and 1.5.1 = “With NAD+ or NADP+ as
acceptor”.

A PRROMenade'! database was constructed from a total of 11.88M bacterial and 51k viral annotated protein domain
sequences, obtained from the IBM Functional Genomics Platform!? (formerly known as OMXWare). The virus domain
sequences (including from SARS-Cov-2) were added to the previously described bacterial sequence collection,'! totaling 3.72
billion amino acids.

Functional annotation and downstream analysis

Metatranscriptomic sequencing reads were annotated with PRROMenade by locating the maximal length exact match for each
read and processed as described by Utro et al.!" Minimum match length cutoff of 9 AA (27 nt) was employed. Classified read
counts (13k to 5.0M per sample, see Supplemental Fig. S2-S3) were post-processed to summarized the counts at the leaf level
of the functional hierarchy. Leaf nodes contributing > 0.1% of total annotated reads in at least one sample were retained, 595
nodes. Functional profiles were processed with RoDEQO'* for robust comparability (parameters P=10, I=100, R = 107). A
two-sample Kolmogorov-Smirnov test was applied to identify differentially abundant features between COVID-19 samples and
CAP, healthy control samples.
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Figure 1. A. Overall analysis workflow. Each microbiome sequencing sample is annotated with PRROMenade, utilizing
labeled reference data from the IBM Functional Genomic Platform. The resulting functional profiles are visualized and
compared in downstream analyses. B. Visualization of averaged functional profiles per cohort with Krona. Interactive versions
including all samples are included in Supplemental File 1. C. Multidimensional scaling of the functional profiles using the
Spearman distance. Each sample is represented by a dot colored by cohort.

5/6


https://doi.org/10.1101/2020.05.01.073171

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.01.073171,; this version posted May 5, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

‘ | - 10
1

e T

o CE;IA
‘LE g
% W COVID-19
t W CAP
[ Healthy

IHI_II__IF-

EC 1 - Oxidoreductases MIEC 2 - Transferases = EC 3 - Hydrolases

WEC 4 - Lyases M EC 5 - Isomerases EC 6 - Ligases
B - Arginine biosynthesis
] - Glycine, serine and threonine metabolism
I l - Cysteine and methionine metabolism

- Lysine biosynthesis
- Arginine and proline metabolism
- Histidine metabolism

l - Oxidative phosphorylation; Photosynthesis
- Phosphonate and phosphinate metabolism
I - Selenocompound metabolism
- D-Glutamine and D-glutamate metabolism
| - Glycolysis / Gluconeogenesis; Citrate cycle (TCA cycle)
1 - Pentose and glucuronate interconversions
1 - Fructose and mannose metabolism
- Starch and sucrose metabolism
1 - Amino sugar and nucleotide sugar metabolism
- Inositol phosphate metabolism Amino acid metabolism
| - Pyruvate metabolism
] 1 - Methane metabolism I Metabolism of other amino acids
I 1 - Nitrogen metabolism m Carbohydrate metabolism
I - Sulfur metabolism
I I - One carbon pool by folate Energy metabolism
1 - Thiamine metabolism Metabolism of cofactors
- Riboflavin metabolism and vitamins
| - Vitamin B6 metabolism ) .
P Nucleotide metabolism
I - Lipoic acid metabolism
1 - Folate biosynthesis Other
I Porphyrin and chlorophyll metabolism
I I I - Purine metabolism
I - Pyrimidine metabolism
- Alanine, aspartate and glutamate metabolism
[ §] 1 - Drug metabolism - other enzymes
| | - Atrazine degradation
I - Aminoacyl-tRNA biosynthesis
- Monabactam biosynthesis 4
I - Carbapenem biosynthesis 2
- Lipopolysaccharide biosynthesis

Figure 2. A. RoDEO processed EC abundance values (10 denotes highest possible value), for 51 features differentiating
COVID-19 from CAP and healthy controls. Columns and rows are ordered independently by average linkage hierarchical
clustering of features and samples. The colors attached to the dendrogram on the left reflect the cohort labels. The colors
attached to the dendrogram on top reflect the top level codes in the functional hierarchy (e.g. Oxidoreductases). Three main
blocks are shown within the heatmap with colored outlines for healthy, CAP, and COVID-19 clusters. B. The same 51 features
as in A, with their pathway mappings and additional labels on the most frequent high level concepts, e.g. Amino acid
metabolism. The heatmap colors reflect the average RODEO-processed EC abundance change from CAP and healthy control
samples to COVID-19 (red indicates more abundant in COVID-19). White indicates the EC number is not mapped to the
pathway, or does not change from CAP and healthy to COVID-19 in the same direction. The columns are ordered by EC

number and their corresponding top level codes indicated by the colors at the top of the figure. 6/6
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