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Abstract

The site frequency spectrum (SFS) is a statistic that summarizes the distribution of derived allele

frequencies in a sample of DNA sequences. The SFS provides useful information about genetic

variation within and among populations and it can used to make population genetic inferences.

Methods for computing the SFS based on the diffusion approximation are computationally efficient

when computing all terms of the SFS simultaneously and they can handle complicated demographic

scenarios. However, in practice it is sometimes only necessary to compute a subset of terms of

the SFS, in which case coalescent-based methods can achieve greater computational efficiency.

Here, we present simple and accurate approximate formulas for the expected joint SFS for multiple

populations connected by migration. Compared with existing exact approaches, our approximate

formulas greatly reduce the complexity of computing each entry of the SFS and have simple forms.

The computational complexity of our method depends on the index of the entry to be computed,

rather than on the sample size, and the accuracy of our approximation improves as the sample size

increases.
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1. Introduction

The site frequency spectrum (SFS) is a statistic that records the distribution of allele frequencies

across one or more populations (Hartl and Clark 2007, Wakeley 2008). The distribution of allele

frequencies contains information about the size history of a population and evolutionary factors

such selective pressures (Watterson 1975, McCoy et al. 2014, Bhaskar and Song 2014, Tajima 1989,

Fay and Wu 2000, Nielsen et al. 2005), making the SFS is a useful statistic for performing inference

under population-genetic models (Marth et al. 2004, Keinan et al. 2007, Gutenkunst et al. 2009,

Excoffier et al. 2013).

Many methods have been developed for computing the SFS among populations of time-varying

size connected by migration. Methods based on the Wright-Fisher diffusion model (Gutenkunst

et al. 2009, Gravel et al. 2011, Lukić and Hey 2012) are typically quite fast when the number of

populations is small. However, for multiple populations, the SFS is a multidimensional array in

which the number of dimensions equals the number of populations. Because diffusion-based methods

must keep track of the full multidimensional distribution of allele frequencies when integrating

forward in time, these approaches rapidly become computationally challenging as the number of

populations increases.

In contrast to diffusion-based approaches, methods based on the coalescent model only consider

the histories of alleles that are observed in the present-day sample. Thus, coalescent approaches allow

the computation of the SFS term-by-term. Such approaches can lead to considerable improvements

in both speed and accuracy for computing subsets of entries of the SFS, which can improve the

efficiency of inference. Coalescent formulas for computing the expected SFS have been obtained for

both single populations of time-varying size and for multiple populations connected by migration

(Wakeley and Hey 1997, Chen 2012, Chen and Chen 2013). Recently, Kamm et al. (2017) greatly

improved the efficiency and numerical stability of coalescent approaches by developing a recursive

algorithm for computing the SFS in populations of time-varying size with pulse migrations among

them. Jouganous et al. (2017) have also developed a method that is a variation on diffusion

approaches, which allows the SFS to be computed for larger numbers of populations.

Although the methods of Kamm et al. (2017) and Jouganous et al. (2017) have made computation

of the SFS extremely fast, it may be possible to reduce the complexity of computing terms of the

SFS still further. A potential approach for reducing the complexity of coalescent methods is to

derive accurate approximations of the SFS using deterministic approximations of the number of

ancestral coalescent lineages remaining in the population at each time in the past (Griffiths 1984,

Slatkin and Rannala 1997, Volz et al. 2009, Maruvka et al. 2011, Chen and Chen 2013, Jewett and

Rosenberg 2014). These approximations can be used to derive accurate approximate formulas for a

variety of useful population genetic quantities (Maruvka et al. 2011, Chen and Chen 2013, Jewett

and Rosenberg 2014) and they can be computed under complicated demographic histories that are

difficult for classical coalescent models (Jewett and Rosenberg 2014).

Chen and Chen (2013) derived an approximation of the single-population SFS using a formula

by Polanski and Kimmel (2003), in which the single-population SFS is expressed as a sum over

expected coalescent waiting times. The approximate formulas of Chen and Chen (2013), which were

obtained by replacing exact expressions for expected coalescent waiting times in the Polanski and
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Kimmel formula with accurate approximations, are fast and accurate for computing the SFS in a

single population.

Here, we take an analogous approach to that of Chen and Chen (2013) to compute an accurate

approximation of the SFS in a set of populations with migration. However, rather than using the

expression from Polanski and Kimmel (2003) for the SFS as a sum over expected waiting times, we

take a new approach, deriving formulas for the SFS under an approximate coalescent framework in

which the number of lineages as a function of time is deterministically equal to its expected value.

Using this approach, we show that the SFS can be expressed as a sum over the expected total length

of branches ancestral to subsets of sampled sequences. As we will see, this alternative formulation

of the SFS provides a simple and intuitive way of deriving approximations of the SFS in multiple

populations connected by migration. This approach allows us to obtain formulas for the SFS that

have simple expressions and low computational complexity.

2. A summary of the main results

In a single population, the SFS for a sample of n sequences is an ordered tuple ξn = (ξn,1, . . . , ξn,n−1)

of length n− 1 in which the ith term records the number of polymorphic sites at which the derived

allele appears in exactly i out of n sequences. For P populations with np sequences sampled from

population p, the SFS is a P -dimensional array in which entry i1, . . . , iP records the number of

polymorphic sites at which the derived allele appears in ip copies in population p, for p = 1, . . . , P .

We first present approximate formulas for the SFS in the case of a single population of piecewise

constant size and then consider more complicated models. All derivations are deferred to Section 3.

2.1. Computing the SFS in a single population. Consider a single population of piecewise

constant size like the one shown in the figure in Box 1. In such a population, the size N(t) at time t

changes over the course of K different time intervals {tk−1, tk}Kk=1 satisfying t0 < t1 < · · · < tK ≤ ∞
in such a way that N(t) = N(tk−1) for t ∈ [tk−1, tk). We denote the relative population size at time

t by ν(t) = N(t)/N for some reference effective population size N , where time is measured in units

of 2N generations.

In Section 3.3, we show that our approach yields the exact formula for the SFS given in

Equation (1), which is equivalent to Equation (10) of Kamm et al. (2017). Because the formula

appears in a general form expressed as an integral in Kamm et al. (2017), we report the specific

simple form for a piecewise constant population here for completeness. Note that when tK <∞,

Equation (1) computes the truncated SFS derived in Kamm et al. (2017). In Section 3.4, we also

show that the expectation of ξn in a population of piecewise constant size can be approximated

using Equation (3) in Box 1.

The approximate formula for the SFS in Box 1 provides a fast method for computing the SFS that

is simple to implement. Although diffusion approaches are still the fastest methods for computing

the complete SFS for large n, Equation (3) provides an improvement in efficiency over existing

methods for computing subsets of entries. In particular, the complexity of Equation (3) does not

depend on the sample size n. Instead, it depends linearly on the index i of the computed term.

The complexity for computing the first L terms of the SFS is O(L2K), where K is the number of
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Box 1 Computing Eξn in a single population of piecewise constant size.

2

3

4

t1

t0

t3

t4

t2

1

⌫(t3)

⌫(t2)

⌫(t1)

⌫(t0)

Consider a population size history defined piecewise over K different time
intervals {[tk−1, tk)}Kk=1 for times satisfying t0 < t1 < · · · < tK ≤ ∞,
where time is measured in coalescent units of 2N generations with
respect to a reference population of arbitrary size N diploids. Suppose
that the relative population size in the kth time interval is given by
ν(t) = ν(tk−1) for t ∈ [tk−1, tk). An example of such a population history
with four time intervals is shown on the left.

The exact expectation of the ith entry of the classical SFS ξn is

Eξn,i =
θ

2

K∑
k=1

ν(tk−1)
n∑

m=2

Wn,i,me
−(m2 )τk−1

(
m

2

)−1 [
1− e−(m2 )

tk−tk−1
ν(tk−1)

]
(1)

where

Wn,i,m = −(2m− 1)

(
n

i

) i∑
j=0

(−1)i−j
(
i

j

)
(n− j)[m]

(n− j)(m)
. (2)

The quantity Wn,i,m can also be computed efficiently using the following recursion from
Kamm et al. (2017)

Wn,i,m =
6

n+ 1
, if m = 2

Wn,i,m = 30
n− 2i

(n+ 1)(n+ 2)
, if m = 3

Wn,i,m = −(m− 1)(2m− 1)(n−m+ 2)

(m− 2)(2m− 5)(n+m− 1)
Wn,i,m−2 +

(2m− 1)(n− 2i)

(m− 2)(n+m− 1)
Wn,i,m−1, if m > 3.

An approximate formula: The expectation of the ith term of the SFS can be
approximated by

Eξn,i ≈
(
n

i

)
θ

K∑
k=1

ν(tk−1)
i∑

j=0

(−1)i−j+1

(
i

j

)
log

[
1 +

(n− j)[e(tk−tk−1)/2ν(tk−1) − 1]

n− j − (n− j − 1)e−τk−1/2

]
(3)

whenever tK <∞, where τk =
∑k

j=1(tj − tj−1)/ν(tj−1) and θ
2 is the mutation rate in the

coalescent.

piecewise constant epochs, which is lower than the O(LnK) complexity of Equation (1), which is

the current state of the art.

Panels A and E of Figure 1 show the runtimes of evaluating the formulas in Box 1 implemented

in Mathematica, compared with those of the SFS software packages momi and ∂a∂i. For all plots

in Figure 1, the SFS was computed for a population with a bottleneck. The population size history

is given by ν(t0) = 1, ν(t1) = 0.5, ν(t2) = 1 at times t0 = 0, t1 = 0.1, t2 = 0.2, and t3 =∞. When

computing Equation (3), we require t3 <∞ so we chose the large value t3 = 20. As expected, the

runtime of the approximate formula (Equation 3) is constant in n, whereas the runtimes of momi

and ∂a∂i increase with n.
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Figure 1. Accuracy and timing of the formulas in Box 1 for a population with a bottleneck. All
panels correspond to a population history in which the size is given by ν(t0) = ν(t2) = 1, ν(t1) = 0.5,
at times t0 = 0, t1 = 0.1, and t3 = 0.2. Panel A shows the runtime for computing the top 9 entries
of the SFS for different sample sizes. Panels B-D show the accuracy in the top 9 entries of the SFS
as the sample size n is increased from 10 to 50. Panel E shows the runtime for computing the top
49 entries, and panels F-H show the accuracy in the top 49 entries as the sample size n is increased
from 50 to 100.

It is evident from Panels A and E of Figure 1 that, even though the asymptotic complexity of

Equation (1) is the same as that of momi, additional speed-ups obtained in the implementation of

momi make momi extremely fast for computing low-order terms of the SFS when sample sizes are

small to moderate. In fact, both momi and ∂a∂i are fast in the case of a single population.

2.2. Computing the joint SFS in multiple populations with pulse migrations. For samples

taken from P different populations, the SFS is a P -dimensional array. In particular, if np homologous

sequences are sampled from population p (p = 1, . . . , P ), then ξ is an array with dimensions

n1 × n2 × · · · × nP in which entry (i1, . . . , iP ) records the number of polymorphic sites at which

the derived allele appears on i1 sequences from the first population, i2 sequences from the second

population, and so on.

We show in Section 3 that the SFS for a collection of populations of piecewise constant size

connected by instantaneous pulse migrations can be approximated using Equation (4) in Box 2.

Figure 3 shows the accuracy and timing of Equation (4) compared with momi and ∂a∂i for the

case of two populations of sizes ν1 = 3 and ν2 = 2 that split from an ancestral population of size

νA = 1 at t = 0.05 coalescent time units in the past. From Panels A-F of Figure 3, it can be seen

that the approximate formula accurately captures the lower-order terms of the SFS even when the

number of samples is small (e.g., n1 = n2 ≈ 20).

There is always a certain amount of error in the higher order terms of the SFS, which is visible

as the right-hand-side of Panels A-C of Figure 3. However, for lower order terms of the SFS, the

approximation becomes more accurate than ∂a∂i as the sample size increases. This can be seen in

panels G, H and I of Figure 3, which compare errors in the approximation with errors in ∂a∂i, taking
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1 2 … P
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Figure 2. Time for computing the first term of the SFS using the approximation in Box 2, for
different numbers of populations and pulse migration events. The form of the population history is
shown in the inset diagram. In this model, a new population branches from its ancestral population
every 0.1 coalescent units and each population has constant size N = 10, 000. Migrations from the
descendant population to the ancestral population are evenly spaced between the present-day and
the founding event and 10% of the lineages in the descendant population migrate in each event.
The sample size from each population is 50 lineages.

the values of momi as the truth. Panels G and H show average absolute errors, ξApproxi,j − ξmomii,j

and ξ∂a∂ii,j − ξmomii,j , whereas Panel I shows average percent errors, (ξApproxi,j − ξmomii,j )/ξmomii,j and

(ξ∂a∂ii,j − ξmomii,j )/ξmomii,j .

As expected, the absolute error in the approximation is greatest in the terms of greatest magnitude,

which are typically the low order terms of the SFS. This can be seen in Figure 3G, which shows

the mean absolute difference between the approximation and momi for different subsets of SFS

terms. In particular, the yellow solid line shows the average absolute error across the first 5 × 5

terms of the SFS, whereas the dashed dotted yellow line shows the average absolute error across the

expanded set containing the first 20× 20 terms. Because the solid line in Figure 3G is above the

dashed and dashed-dotted lines, it can be seen that the average absolute error is greater for the first

5× 5 terms than for the higher order terms.

The fact that the low-order (high magnitude) terms of the SFS have the greatest absolute error

is supported by figure Figure 3H, which shows that the maximum absolute error is the same when

considering the first 5× 5 terms, the first 10× 10 terms, or the first 20× 20 terms (the solid, dashed,

and dashed-dotted lines are on top of one another), indicating that the maximum absolute error is

in the set of first 5× 5 term. In contrast, the mean relative error increases as we consider higher

order terms of the SFS (Figure 3I), suggesting that the greatest relative error is in the higher order

terms.

In Figures 3G-H, we have also compared ∂a∂i to momi (green lines). From Figures 3G-H it can

be seen that the diffusion approximation in ∂a∂i diverges from the values computed by momi as

the sample size increases.
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When computing the low-order entries of the SFS in the case of multiple populations, the

approximate SFS is also faster than existing approaches. Figure 3K shows the computation time

of the first 11× 11 entries of the SFS corresponding to counts counts i1 = 0, ..., 10 in population

1 and i2 = 0, ..., 10 in population 2. From Figure 3K, it can be seen that the approximation

can be computed in constant time in the sample size n, making it faster than the current state

of-the-art approaches for computing terms of the SFS when the sample size is large. Although the

approximation is the fastest approach for computing each individual SFS term, Figure 3L suggests

that ∂a∂i is still the fastest method for computing the full spectrum.

Figure 2 shows the computation time for the approximation under increasingly complicated

demographic histories with increasing numbers of populations and pulse migration events. In

particular, we modeled multiple populations by considering a serial founder model in which each

population gave rise to an offspring population via a pulse migration consisting of 10% of its lineages.

To evaluate the computation time of the approximation for p populations, we considered the youngest

p populations. To evaluate the computation time in the presence of pulse migrations, we we added

increasing numbers of pulse migrations between each population and its parent population, evenly

spaced across the age of the younger population. The computation time grows quadratically in the

number of populations and linearly in the number of pulse migration events (Figure 2).

3. Derivation of the formulas

In this section we derive the equations presented in Sections 2.1 and 2.2. Our approach is to first

express the SFS as a sum of expected total branch lengths ancestral to different subsets of sampled

sequences. This approach is analogous to that of Polanski and Kimmel (2003) who expressed

the SFS as a sum of expected coalescence waiting times. As we will see, the exact formulas for

the SFS obtained by the two approaches are the same; however, our approach of integrating over

branch lengths makes it straightforward to derive fast approximate formulas in the case of multiple

populations.

To facilitate the derivations, we define notation that we will use throughout this section. For

a set of n sequences sampled from a single population, let Si denote a particular subsample of i

sequences. Let π(Si) denote the number of sites at which the derived allele is private to the sample

Si and let α(Si) denote the number of sites at which the derived allele is ancestral to all of the i

sequences in the sample, and to no others. The quantities π(Si) and α(Si) are illustrated in Figure 4

for a subsample of size i = 3 sequences at 3 different loci.

The quantity α(Si) is closely related to the ith term of the ξ, which is simply the sum of α(Si)

over all subsets of size i; the summation yielding the total number of segregating sites that appear

in exactly i lineages. To compute α(Si) directly, we could consider the number of lineages that are

ancestral to all members of Si at each time t in the past and then integrate this quantity over all

time, multiplied by the rate of new mutations. Our approach is to observe that the quantity π(Si)

is considerably easier to compute, being the integral over the total number of branches ancestral to

the set Si. The quantity α(Si) is related to π(Si) via the principle of inclusion and exclusion. We

now provide the details of this computation.
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Figure 3. Accuracy and timing of Equation (4) in Box 2 for two populations of constant sizes
ν1 = 3 and ν2 = 2 that diverged at time t = 0.05 from a population of size νA = 1. No migration
occurred after the split. Panels A, B, and C show a comparison between the approximate SFS
(Equation 4) and the SFS generated by momi. Panels D-F show the same comparison, zoomed-in
on the first 11 × 11 corner of the SFS corresponding to counts i1 = 0, ..., 10 in population 1 and
i2 = 0, ..., 10 in population 2. Panels G through I show average errors over subsets of SFS terms. In
Panels G-I, ∂a∂i and Equation (4) are separately compared to momi, which is taken as the true
SFS. Averages are taken over subsets of SFS terms corresponding to the first 6× 6 terms, the first
11× 11 terms, and the first 21× 21 terms. Panel J shows the percent error in each of the top 11× 11
terms for a sample size of n1 = n2 = n = 500. Panel K shows the runtime for computing the first
11× 11 corner of the SFS. Panel L shows the runtime for computing the full spectrum. Colors are
consistent among panels A-F and J, and separately among panels G, H, I, K, and L. Plot marker
shapes are consistent across panels.
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Box 2 Approximating Eξn in P piecewise constant populations with pulse migrations.

m1,2,1

m1,1,3

m2,2,3

m1,2,3

m4,2,3

m4,2,1
m4,3,2

t1

t2

t3

t4

t0

⌫1,1 ⌫1,2 ⌫1,3

m3,3,1

m3,3,2

t5 Consider a collection of P piecewise constant popu-
lations with pulse migrations in which the relative
size of population p is νp(t) = νk,p for t ∈ [tk−1, tk)
measured in units of 2N generations and satisfying
t0 < t1 < · · · < tK <∞. Let mk,p,p′ be the fraction of
population p′ that instantaneously immigrates from
population p at the top of interval k, looking forward
in time and let Mk be the P × P matrix whose (p, p′)

entry is mk,p,p′ if p 6= p′ and −∑P
q=1,q 6=pmk,q,p if p = p′. Note that a population split at

the top of interval k is handled by setting mk,p,p′ = 1 so that all lineages migrate into one
population. Suppose that np sequences are sampled from population p, for p = 1, . . . , P ,
and let n = (n1, . . . , nP ). Then entry (i1, . . . , iP ) of the SFS ξn can be computed using
the formula

Eξn,(i1,...,iP ) =

i1,...,iP∑
j1,...,jP=0

EUn,(j1,...,jP )

P∏
k=1

(−1)ik−jk
(
ik
jk

)(
nk
ik

)
(4)

where

EUn,(j1,...,jP ) ≈ θ
K∑
k=1

P∑
p=1

νk,p log

 1 + [e
tk−tk−1

2νk,p − 1]EAn,p(tk−1)

1 + [e
tk−tk−1

2νk,p − 1]EAn−j,p(tk−1)

 . (5)

In Equation (4), the quantity EAi,p(tk) is the expected number of ancestral lineages at
time tk in population p, before migration occurs looking forward in time, given that
i = (i1, . . . , iP ) lineages are initially sampled at time zero. The quantity Ai,p(tk) can be
found recursively using

[EAi,1(tk), . . . ,EAi,P (tk)] = Mk[EA′i,1(tk), . . . ,EA′i,P (tk)]
T (6)

where

EA′i,p(tk) ≈
EAi,p(tk−1)

EAi,p(tk−1)− [EAi,p(tk−1)− 1]e−(tk−tk−1)/2νk,p
(7)

is the number of lineages remaining in population p immediately after migration occurs at
time tk, looking forward in time, and EA′i,p(t0) ≡ ik.

Considering all possible subsets S
(m)
i , m = 1, . . . ,

(
n
i

)
, of {1, . . . , n} with exactly i elements, we

define a quantity Un,i as

Un,i =
1(
n
i

) (ni)∑
m=1

π(S
(m)
i ). (8)

Intuitively, the quantity Un,i is the average number of sites that are private to a set of i lineages.

Equation (8) is similar in form to the expression for the ith term of the SFS, which can be expressed

as

ξn,i =

(n2)∑
m=1

α(S
(m)
i ) (9)
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Figure 4. The quantities π(Si) and α(Si). A subsample of i = 3 sequences (arrows) is shown for
a total sample of n = 7 sequences. Trees are shown for three different loci along these sequences.
Squares indicate mutations. For the indicated subsample, the number of private sites is π(Si) = 13
(sum of all red and yellow squares), whereas the number of ancestral sites is α(Si) = 2 (red squares).
Note that private sites are counted even when the subsample does not form a monophyletic clade.

By relating π(Si) with α(Si), we can establish a relationship between Eξn,i with EUn,i. Because

EUn,i is proportional to an expected branch length, this approach allows us to establish a formula

for Eξn in terms of expected sums of branch lengths. This is the approach that we will take here to

derive the approximations given Section 2.

3.1. The relationship between Un and ξn in one population. We first establish the rela-

tionship between Un,i and ξn,i in a single population before proceeding to the case of multiple

populations. To derive the relationship, note that a site is private to Si if and only if it is ancestral

to some subset S
(q)
j of j ≤ i sequences satisfying S

(q)
j ≤ Si, and to no others. Moreover, the set of

mutations that are ancestral only to one particular subset S
(q)
j of size j is mutually exclusive of

the mutations ancestral only to a different subset S
(q′)
j of size j. Thus, the number π(Si) of private

sites in Si is equal to the sum over the ancestral sites in every subset of Si of every size. In other

words, we have

π(Si) =
i∑

j=1

∑
q:S

(q)
j ⊆Si

α(S
(q)
j ). (10)

Plugging Equation (10) into the definition in Equation (8) gives

Un,i =
1(
n
i

) (ni)∑
m=1

π(S
(m)
i )

=
1(
n
i

) (ni)∑
m=1

i∑
j=1

(nj)∑
q=1

α(S
(q)
j )I[S

(q)
j ⊆ S

(m)
i ]

=
1(
n
i

) i∑
j=1

(nj)∑
q=1

α(S
(q)
j )

(ni)∑
m=1

I[S
(q)
j ⊆ S

(m)
i ]

=
1(
n
i

) i∑
j=1

(nj)∑
q=1

α(S
(q)
j )

(
n− j
i− j

)
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=
1(
n
i

) i∑
j=1

ξn,j

(
n− j
i− j

)

=
i∑

j=1

(
i
j

)(
n
j

)ξn,j , (11)

where I[·] is the the indicator function, which is equal to 1 when its argument is true and 0 otherwise.

The second equality in Equation (11) follows by plugging Equation (10) into Equation (8) and

writing it in a slightly different way as a summation over all subsets of size i, times an indicator

of set inclusion. The fourth equality follows from the fact that there are exactly
(
n−i
j−i
)

sets of size

i that contain a particular set of size j. This follows from the fact that, given that the j specific

elements are in the set of size i, there are
(
n−j
i−j
)

ways to choose the other i− j elements of the set.

The fifth equality follows from the definition of ξi in Equation (9) and the final equality follows

from rearranging the identity
(
n
j

)(
n−j
i−j
)

=
(
i
j

)(
n
i

)
.

If we define Un = (U1, . . . , Un−1) and ξn = (ξn,1, . . . , ξn,n−1), we can rewrite Equation (11) in

matrix form to yield the particularly simple matrix relationship

Un = Tξn, (12)

where T is the lower triangular matrix of dimension (n− 1)× (n− 1) whose element (i, j) is given by

[T]ij =

(
i
j

)(
n
j

) . (13)

Because T is a lower-triangular matrix with non-zero diagonal elements ([T]ii =
(
n
i

)−1
on the

diagonal), its determinant is nonzero and it is therefore invertible. As we will show in the more

general case of multiple populations in Section 3.5, the inverse transformation from U to ξ in one

population can be expressed as

ξn,i =

i∑
j=1

(−1)i−j
(
n

i

)(
i

j

)
Un,j , (14)

which has the more compact matrix representation ξ = T−1U where T−1 is the lower triangular

matrix whose elements are given by

[T−1]ij = (−1)i−j
(
n

i

)(
i

j

)
. (15)

3.2. Computing the expected number of private segregating sites in a single population.

We now obtain an expression for EUn,i = Eπ(Si) in a single population by computing the expected

number of sites that are private to a subset Si. Suppose that n sequences are sampled at time t = 0

(the present) and let An(t) denote the random number of ancestral lineages remaining at time t in

the past. Let Ln(r, s) denote the sum of total branch lengths in the genealogy between times r and

s in the past with r ≤ s. Then Ln(r, s) can be expressed as an integral over the expected number of

ancestral lineages:

ELn(r, s) =

∫ s

r
EAn(t)dt. (16)
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The result in Equation (16) was stated as an asymptotic approximation by Chen and Chen (2013)

in the limit as n→∞ (Equation 29 of that paper) and it was proved to hold exactly for finite n

by Jewett and Rosenberg (2014) (Theorem 2.1 of that paper). Using Equation (16), Jewett and

Rosenberg showed that under the infinite sites model, the expected total number of mutations

d[r,s](Sn) private to a set Sn of n homologous sequences arising during the time interval [r, s] is

given by

Ed[r,s](Sn) =
θ

2
ELn(r, s) =

θ

2

∫ s

r
EAn(t)dt. (17)

Equation (17) can be used to compute the expected number of sites Eπ(Si) that are private to a

subset of i sampled sequences. In particular, if d[r,s](Sn) is the total number of mutations private

to the full sample of size n in the time interval [r, s] and d[r,s](Sn\Si) is the number of mutations

private to the set Sn\Si of n− i other sequences, then

π[r,s](Si) = d[r,s](Sn)− d[r,s](Sn\Si) (18)

is the number of mutations arising in the time interval [r, s] that are private to the sequences Si,

and no others. Taking the expectation of both sides and invoking Equation (17) gives

Eπ[r,s](Si) =
θ

2
E[Ln(r, s)− Ln−i(r, s)] =

θ

2

∫ s

r
[EAn(t)dt− EAn−i(t)] dt. (19)

Equation (19) provides a simple way to compute expected numbers of private sites by integrating

over expected numbers of ancestral lineages.

3.3. Computing Eξn exactly in a single population. Equation (19) gives us a way to compute

Un,i, (and hence ξn using Equation 14) as long as we can compute the expected number of ancestors

EAn(t) as a function of time. In a population with time-varying relative size ν(t), the expected

number of ancestors can be computed exactly using the following expression due to Tavaré (1984)

(Eqn. 5.11):

EAn(t) =
n∑

m=1

(2m− 1)
n[m]

n(m)
e−(m2 )τ(t), (20)

where τ(t) is the scaled coalescence time given by

τ(t) =

∫ t

0

1

ν(z)
dz. (21)

In Equation (20), the quantities n[m] = n(n− 1) · · · (n−m+ 1) and n(m) = n(n+ 1) · · · (n+m− 1)

are the mth falling and rising factorials of n. If the population has constant size ν(r) in the time

interval [r, s], then integrating both sides of Equation (20) gives∫ s

r
EAn(t)dt =

n∑
m=1

(2m− 1)
n[m]

n(m)

∫ s

r
e−(m2 )τ(t)dt

= (s− r) +
n∑

m=2

(2m− 1)
n[m]

n(m)

∫ s

r
e−(m2 )τ(t)dt
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= (s− r) +

n∑
m=2

(2m− 1)
n[m]

n(m)

∫ s−r

0
e
−(m2 )

[
τ(r)+ t

ν(r)

]
dt

= (s− r) +
n∑

m=2

(2m− 1)
n[m]

n(m)
ν(r)e−(m2 )τ(r)

(
m

2

)−1 [
1− e−(m2 ) s−rν(r)

]
. (22)

Combining Equation (22) with Equation (19) gives the expected number of private sites in a set

of i sequences arising in the time interval [r, s] in which the population has constant relative size

ν(r):

Eπ[r,s](Si) =
θ

2

∫ s

r
[EAn(t)− EAn−i(t)]dt

=
θ

2

n∑
m=2

(2m− 1)
n[m]

n(m)
ν(r)e−(m2 )τ(r)

(
m

2

)−1 [
1− e−(m2 ) s−rν(r)

]

− θ

2

n−i∑
m=2

(2m− 1)
(n− i)[m]

(n− i)(m)
ν(r)e−(m2 )τ(r)

(
m

2

)−1 [
1− e−(m2 ) s−rν(r)

]
=
θ

2

n∑
m=2

(2m− 1)

[
n[m]

n(m)
−

(n− i)[m]

(n− i)(m)

]
ν(r)e−(m2 )τ(r)

(
m

2

)−1 [
1− e−(m2 ) s−rν(r)

]
. (23)

In Equation (23), we were able to combine the two summations in the second equality because

(n− i)[m]/(n− i)(m) = 0 for m > n− i; thus, the upper bound in the second summation can be set

to n.

For a population history that is piecewise constant with relative size ν(tk−1) in each of the K

epochs {[tk−1, tk)}Kk=1, summing over all time intervals gives

EUn,i =
θ

2

K∑
k=1

n∑
m=2

(2m− 1)

[
n[m]

n(m)
−

(n− i)[m]

(n− i)(m)

]
ν(tk−1)e

−(m2 )τ(tk−1)

(
m

2

)−1 [
1− e−(m2 )

tk−tk−1
ν(tk−1)

]
,

(24)

where τ(tk) =
∑k

p′=1

tp′−tp′−1

ν(tp′ )
. Finally, taking the expectation of both sides of Equation (14) and

plugging in Equation (24) gives

Eξn,i =
i∑

j=1

(−1)i−j
(
n

i

)(
i

j

)
EUn,j

=
θ

2

n∑
m=2

(2m− 1)
i∑

j=1

(−1)i−j
(
n

i

)(
i

j

)[
n[m]

n(m)
−

(n− j)[m]

(n− j)(m)

]

×
K∑
k=1

ν(tk−1)e
−(m2 )τ(tk−1)

(
m

2

)−1 [
1− e−(m2 )

tk−tk−1
ν(tk−1)

]

=
θ

2

n∑
m=2

Wn,i,m

K∑
k=1

ν(tk−1)e
−(m2 )τ(tk−1)

(
m

2

)−1 [
1− e−(m2 )

tk−tk−1
ν(tk−1)

]
, (25)
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where

Wn,i,m = −(2m− 1)

(
n

i

) i∑
j=0

(−1)i−j
(
i

j

)
(n− j)[m]

(n− j)(m)
. (26)

In Equation (26), we have set the lower bound on the summation to j = 0 because n[m]/n(m)− (n−
j)[m]/(n− j)(m) = 0 when j = 0. Moreover, the term n[m]/n(m) in the second equality of Equation

(25) drops out because it is constant in j and
∑i

j=0(−1)i−j
(
i
j

)
= 0 by the binomial theorem.

By comparison with Equation (10) of Kamm et al. (2017), it can be seen that the two formulas

are the same. In particular, the quantity Wn,i,m in Equation (26) is precisely the quantity Wn,i,m in

Kamm et al. (2017) and the internal summation over k in Equation (25) is the explicit form of the

integral
∫ tK
0 e

−(m2 ) 1
ν(t)dt for a population of constant size. Our approach provides a closed formula

for the term Wn,i,m, which was found by a recursion in Kamm et al. (2017), following the derivation

in Polanski and Kimmel (2003). However, because the recursion is faster to compute in practice, we

provide the recursive form of Wn,i,m in the final presentation of the formula in Box 1.

3.4. Approximating Eξn in a single population. So far, we have computed exact formulas

for the SFS. However, in preparation for deriving approximate formulas for the SFS that are

computationally efficient in the case of multiple populations with pulse migration events, we first

consider the approximation in a single population.

An approximate expression for ξn,i can be obtained by following the the same approach used in

Section 3.3, but replacing the exact formula for EAn(t) (Equation 20) with an approximate formula.

The simplicity and computational efficiency of existing approximations of EAn(t) make it possible

to obtain fast approximate formulas for Eπ[r,s](Si), allowing us to obtain fast approximations of the

SFS.

In a single population, Griffiths (1984) showed that the expected number of ancestors at time t

in a population with relative size ν(t) for t ∈ [0,∞) can be approximated by

EAn(t) ≈ n

n− (n− 1)e−τ(t)/2
, (27)

where τ(t) is the scaled coalescence time given in Equation (21). Griffiths showed that the

approximation in Equation (27) holds asymptotically as n→∞ or as t→ 0.

If the population has constant size in the time interval [r, s], then integrating both sides of

Equation (27) over the time interval [r, s] gives (Appendix C)∫ s

r
EAn(t)dt ≈ 2ν(r) log

[
1 +

n[e
s−r
2ν(r) − 1]

n− (n− 1)e−τ(r)/2

]
. (28)

If the population has piecewise constant size defined over the intervals {tk−1, tk}Kk=1 in which

ν(t) = ν(tk−1) for t ∈ [tk−1, tk) and t0 < t1 < · · · < tK <∞, then by combining Equation (28) with

Equation (19), we find that the number of sites private to i sequences that arise in the kth time

interval is given by

Eπ[tk−1,tk](Si) =
θ

2

∫ tk

tk−1

[EAn(t)− EAn−i(t)]dt
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≈ θν(tk−1) log

[
Q(n, tk−1, tk)

Q(n− i, tk−1, tk)

]
, (29)

where Q(n, r, s) is given by

Q(n, r, s) = 1 +
n[e

s−r
2ν(r) − 1]

n− (n− 1)e−τ(r)/2
, (30)

and the scaled time in Equation (30) is given by

τ(t) =

∫ t

0

1

ν(z)
dz =

K∑
k=1

tk − tk−1
ν(tk−1)

. (31)

Summing Equation (29) over all time intervals and using the fact that EUn,i = Eπ(Si) (Equation 8)

gives

EUn,i ≈ θ
K∑
k=1

ν(tk−1) log

[
Q(n, tk−1, tk)

Q(n− i, tk−1, tk)

]
. (32)

Finally, plugging Equation (32) into the expectation of Equation (14) gives

Eξn,i =

i∑
j=1

(−1)i−j
(
n

i

)(
i

j

)
EUn,j ,

≈ θ
K∑
k=1

ν(tk−1)

i∑
j=0

(−1)i−j
(
n

i

)(
i

j

)
log

[
Q(n, tk−1, tk)

Q(n− j, tk−1, tk)

]

= −θ
K∑
k=1

ν(tk−1)

(
n

i

) i∑
j=0

(−1)i−j
(
i

j

)
log [Q(n− j, tk−1, tk)] , (33)

where the lower bound on the summation in the second equality can be taken to zero because the

summand is zero at j = 0 and the final equality follows from the fact that Q(n, r, s) is constant in j

and
∑i

j=0(−1)i−j
(
i
j

)
= 0 by the binomial theorem. This gives the approximation of ξn,i in Equation

(3) of Box 1.

3.5. The relationship between Un and ξn in multiple populations. The derivation of the

relationship between ξn and Un in multiple populations follows the same approach as the derivation

in the case of a single population. In the case of P different populations with samples of sizes

n1, . . . , nP , respectively, let Si1,...,iP denote a subsample of sequences with ip lineages in population

p, for p = 1, . . . , P . As in the case of a single population, define π(Si1,...,iP ) to be the number of

private sites in the sample and define α(Si1,...,iP ) to be the number of sites that are ancestral to the

subsample and to no other sequences.

The multi-population forms of Un,(i1,...,iP ) and ξn,(j1,...,jP ), are

Un,(i1,...,iP ) =

 P∏
p=1

(
np
ip

)−1
∏P
p=1 (npip )∑
m=1

π(S
(m)
i1,...,iP

), (34)
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and

ξn,(i1,...,iP ) =

∏P
p=1 (npip )∑
m=1

α(S
(m)
i1,...,iP

). (35)

The relationship between Un,(i1,...,iP ) and ξn,(i1,...,iP ) can be established by the same approach we

used to derive Equation (11). This derivation is carried out in Appendix A and gives

Un,(j1,...,jP ) =

j1,...,jP∑
i1,...,iP=0

ξn,(i1,...,iP )

P∏
p=1

(jp
ip

)(np
ip

) , (36)

where we take Un,(0,...,0) = ξn,(0,...,0) = 0. It is straightforward to check that the inverse transforma-

tion from Un to ξn is given by

ξn,(i1,...,iP ) =

i1,...,iP∑
j1,...,jP=0

Un,(j1,...,jP )

P∏
p=1

(−1)ip−jp
(
np
ip

)(
ip
jp

)
, (37)

which can be checked by plugging Equation (37) into Equation (36) and showing that the composite

transformation yields the identity. We carry out these calculations in Appendix B.

3.6. Approximating Un in multiple populations with piecewise constant sizes and pulse

migrations. The results of Sections 3.2 through 3.5 can be combined to obtain a fast approximate

formula for ξn in a collection of piecewise constant populations connected by pulse migrations. In

particular, for a set of P populations with np lineages sampled from population p, for p = 1, . . . , P ,

let An(t) denote the total number of ancestors at time t of the set Sn1,...,nP of n1, . . . , nP sampled

sequences. Similarly, let Ai(t) denote the total number of ancestors at time t of a subset Si1,...,iP of

i1, . . . , iP sequences. Finally, let An,p(t) denote the number of ancestors of n1, . . . , nP sequences

that exist in population p at time t, and similarly define Ai,p(t).

If the size of each of the P populations is constant in a time interval [r, s], then the total number

of alleles arising in the time interval [r, s] that are private to the subsample Si1,...,iP can be found

using Equation (19) as

Eπ[r,s](Si1,...,iP )

=
θ

2

∫ s

r
[EAn(t)− EAn−i(t)] dt

=
θ

2

P∑
p=1

∫ s

r
[EAn,p(t)− EAn−i,p(t)] dt

≈ θ
P∑
p=1

νp(r) log

 1 + [e
s−r

2νp(r) − 1]EAn,p(r)

1 + [e
s−r

2νp(r) − 1]EAn−i,p(r)

 , (38)

where the final equality comes from Equation (C.5) in the Appendix.

Now suppose that the relative size of the pth population is νp(t) = νp(tk−1) in the time interval

t ∈ [tk−1, tk), for K different time intervals {[tk−1, tk)}Kk=1 satisfying t0 < · · · < tK <∞. Then the
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total number of private segregating sites over all time intervals is

EUn,(i1,...,iP ) ≡ Eπ(Si1,...,iP ) ≈ θ
K∑
k=1

P∑
p=1

νp(tk−1) log

 1 + [e
tk−tk−1
2νp(tk−1) − 1]EAn,p(tk−1)

1 + [e
tk−tk−1
2νp(tk−1) − 1]EAn−i,p(tk−1)

 . (39)

To find EAn,p(t), we can use the fact that pulse migrations simply transfer ancestral lineages

from one population to another at fixed times in the past. Let mk,p,p′ be the fraction of population

p′ that instantaneously immigrates from population p at the top of interval k, looking forward

in time and let Mk be the P × P matrix whose (p, p′) entry is [Mk]p,p′ = mk,p,p′ if p 6= p′ and

[Mk]p,p = −∑P
q=1,q 6=pmk,q,p. Given that EAn,p(tk−1) ancestors exist in population p at the bottom

of the kth time interval, then using Equation (27), the number EA′n,p(tk) remaining at the top of

the interval immediately before migration is approximately

EA′n,p(tk) ≈
EAn,p(tk−1)

EAn,p(tk−1)− [EAn,p(tk−1)− 1]e
−

tk−tk−1
2νp(tk−1)

(40)

and the number remaining at the top after migration is

EAn,p(tk) =

P∑
p′=1

mk,p,p′EA′n,p′(tk), (41)

which has the more compact matrix representation

(EAn,1(tk), . . . ,EAn,P (tk)) = Mk(EA′n,1(tk), . . . ,EA′n,P (tk)). (42)

Thus, the quantities EAn,p(tk) can be found by recursively applying Equations (40) and (42).

Applying the relationship between ξn,(j1,...,jP ) and Un,(i1,...,iP ) given in Equation (37) to Equation (39)

gives the result in Equation (4) of Box 2.

4. Discussion

We have obtained accurate approximate formulas for computing the SFS in populations of

piecewise constant size with instantaneous pulse migrations among them. The computational

complexity of these formulas depends the index of the term of the SFS being computed, rather than

on the sample size, allowing low-order terms of the SFS to be computed quickly for arbitrarily large

sample sizes.

Our formulas for the SFS were derived by conceptualizing the SFS as a weighted sum over

expected total ancestral branch lengths among i sampled lineages. In contrast, previous approaches

expressed the SFS as a weighted sum over expected first coalescence times among 2, . . . , n lineages

(Polanski and Kimmel 2003, Chen and Chen 2013, Kamm et al. 2017). Conceptualizing the SFS in

terms of expected sums of branch lengths makes it possible to obtain the simple and fast formulas

we derive here. The approach is useful more generally for deriving approximate coalescent formulas

under complicated demographic models (Jewett and Rosenberg 2014).

It is important to note that approaches based on the diffusion approximation of the Wright-Fisher

model are still the most efficient methods for computing the full SFS when the number of populations

is small. However, computing the full SFS becomes intractably slow as the number of samples and
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populations increases. Thus, the benefit of the approximate formulas we present is their higher

efficiency for computing a subset of SFS terms when sample sizes are large. The approximations

derived here are also more accurate than the diffusion approximation for low order terms of the SFS

when the number of sampled haplotypes is moderate or large.

The formulas we obtain are for populations of piecewise constant size with instantaneous pulse

migrations. However, they can be used to approximate the SFS for populations of time-varying

size and continuous migration by taking the time-step to be short. It is also possible to derive

approximations of the SFS in the case of exponentially growing populations and continuous migration

by substituting approximate or exact formulas for the expected number of ancestral lineages under

these scenarios into the penultimate equality of Equation (38). Approximations for the expected

number of ancestral lineages under continuous migration and arbitrary size changes are given in

Jewett and Rosenberg (2014). However, for populations with exponentially changing sizes the

approach described here yields formulas that are computationally less efficient and numerically

less stable than existing methods. Thus, we have chosen to focus on the fast approximations for

piecewise constant populations presented in this paper.
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Appendix A. The relationship between Un,(j1,...,jP ) and ξn,(i1,...,iP )

To derive the relationship between Un,(j1,...,jP ) and ξn,(i1,...,iP ), we begin with the definition of

Un,(j1,...,jP ):

Un,(j1,...,jP ) =

[
1∏P

p=1

(np
jp

)]
∏P
p=1 (npjp)∑
m=1

π(S
(m)
j1,...,jP

)

=

[
1∏P

p=1

(np
jp

)]
∏P
p=1 (npjp)∑
m=1

j1,...,jP∑
i1,...,iP=0

∏P
p=1 (npip )∑
h=1

α(S
(h)
i1,...,iP

)I[S
(h)
i1,...,iP

⊆ S(m)
j1,...,jP

]

=

[
1∏P

p=1

(np
jp

)] j1,...,jP∑
i1,...,iP=0

∏P
p=1 (npip )∑
h=1

α(S
(h)
i1,...,iP

)

∏P
p=1 (npjp)∑
m=1

I[S
(h)
i1,...,iP

⊆ S(m)
j1,...,jP

]

=

[
1∏P

p=1

(np
jp

)] j1,...,jP∑
i1,...,iP=0

∏P
p=1 (npip )∑
h=1

α(S
(h)
i1,...,iP

)
P∏
p=1

(
np − ip
jp − ip

)

=

[
1∏P

p=1

(np
jp

)] j1,...,jP∑
i1,...,iP=0

ξn,(i1,...,iP )

P∏
p=1

(
np − ip
jp − ip

)

=

j1,...,jP∑
i1,...,iP=0

ξn,(i1,...,iP )

P∏
p=1

(jp
ip

)(np
ip

) . (A.1)

In Equation (A.1), the second equality follows from writing the summand as a sum over alleles

ancestral to all subsets S
(h)
i1,...,iP

⊆ S(m)
j1,...,jP

such that ip ≤ jp for p = 1, . . . , P . The fourth equality

follows from the fact that
(np−ip
jp−ip

)
is the number of subsets of size jp in population p that contain a

particular subset of size ip. As in the single-population case, this result follows from the fact that

there are
(np−ip
jp−ip

)
ways to choose the jp − ip other members of this subset. The fifth equality follows

from the definition of ξn,(i1,...,iP ) in Equation (35) and the final equality follows from rearranging

the identity
(
n
i

)(
n−i
j−i
)

=
(
j
i

)(
n
j

)
.

Appendix B. The inverse transform from Un,(j1,...,jP ) to ξn,(i1,...,iP )

This transform can be derived by plugging Equation (37) into Equation (36) and showing that

the composite transformation yields the identity:

Un,(j1,...,jP ) =

j1,...,jP∑
i1,...,iP=0

ξn,(i1,...,iP )

P∏
p=1

(jp
ip

)(np
ip

)
=

j1,...,jP∑
i1,...,iP=0

i1,...,iP∑
m1,...,mP=0

Un,(m1,...,mP )

P∏
p=1

(−1)ip−mp
(
np
ip

)(
ip
mp

)(
jp
ip

)(
np
ip

)−1

=

j1,...,jP∑
i1,...,iP=0

i1,...,iP∑
m1,...,mP=0

Un,(m1,...,mP )

P∏
p=1

(−1)ip−mp
(
jp
ip

)(
ip
mp

)
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=

j1,...,jP∑
i1,...,iP=0

j1,...,jP∑
m1,...,mP=0

Un,(m1,...,mP )

P∏
p=1

(−1)ip−mp
(
jp
ip

)(
ip
mp

)

=

j1,...,jP∑
m1,...,mP=0

Un,(m1,...,mP )

P∏
p=1

jp∑
ip=mp

(−1)ip−mp
(
jp
mp

)(
jp −mp

ip −mp

)

=

j1,...,jP∑
m1,...,mP=0

Un,(m1,...,mP )

P∏
p=1

(
jp
mp

) jp∑
ip=mp

(−1)ip−mp
(
jp −mp

ip −mp

)

=

j1,...,jP∑
m1,...,mP=0

Un,(m1,...,mP )

P∏
p=1

I[mp = jp]. (B.1)

In the fourth equality, we have extended the upper bound of the inner summation up to j1, ..., jP

using the fact that
(
ip
mp

)
= 0 for mp > ip. In the fifth equality, we brought the summation inside

the product and used the identity
(
p
r

)(
r
q

)
=
(
p
q

)(
p−q
r−q
)
. The final equality follows from reindexing

hp = ip −mp and noting that the summation
∑jp−mp

hp=0 (−1)hp
(jp−mp

hp

)
= (1− 1)jp−mp = 0 whenever

jp 6= mp by the binomial theorem, and it is equal to one if jp = mp. Thus, we arrive at the fact that

the right-hand side of Equation (B.1) is equal to Un,(j1,...,jP ), proving the identity.

Appendix C. Approximation of
∫ s
r EAn(t)dt

The derivation of Equation (28) amounts to a change of variables and some algebra. First, noting

that τ(t) = τ(r) + (t− r)/ν(r) for t ∈ [r, s] whenever the relative population size is constant in [r, s],

we have ∫ s

r
EAn(t)dt

≈
∫ s

r

n

n− (n− 1)e−τ(t)/2
dt

≈
∫ s

r

n

n− (n− 1)e−τ(r)/2+r/2ν(r)−t/2ν(r)
dt. (C.1)

Thus, setting b = −(n− 1)e−τ(r)/2+r/2ν(r), c = −1/2ν(r) we have an integral of the form

n

∫ s

r

1

n+ bect
dt. (C.2)

Making the change of variables y = ect so that dt = 1
cydy, we have

n

∫ s

r

1

n+ bect
dt

= n

∫ ecs

y=ecr

1

n+ by

1

cy
dy

=
1

c
log

[
y

n+ by

] ∣∣∣∣∣
ecs

ecr
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=
1

c
log

[
1

ny−1 + b

] ∣∣∣∣∣
ecs

ecr

= −1

c
log

[
ne−cs + b

ne−cr + b

]
= −1

c
log

[
ne−c(s−r) + becr

n+ becr

]

= −1

c
log

[
ne−c(s−r) − n+ n+ becr

n+ becr

]

= −1

c
log

[
1 +

n[e−c(s−r) − 1]

n+ becr

]
. (C.3)

Plugging in b = −(n− 1)e−τ(r)/2+r/2ν(r) and c = −1/2ν(r), we obtain the result in Equation (28):∫ s

r
EAn(t)dt ≈ 2ν(r) log

[
1 +

n[e
s−r
2ν(r) − 1]

n− (n− 1)e−τ(r)/2

]
, (C.4)

Noting that n/(n− (n− 1)e−τ(r)/2) ≡ An(r), we can express Equation (C.4) more compactly as∫ s

r
EAn(t)dt ≈ 2ν(r) log

[
1 + [e

s−r
2ν(r) − 1]EAn(r)

]
. (C.5)

Equation (C.5) allows us to approximate the expected branch length in a time interval [r, s] as long

as we know the number of ancestors remaining at time r.
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