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ABSTRACT 

The steady state expression of each gene is the result of a dynamic transcription and 

degradation of that gene. While regular RNA-seq methods only measure steady state expression 

levels, RNA-seq of metabolically labeled RNA identifies transcripts that were transcribed during 

the window of metabolic labeling. Whereas short-read RNA sequencing can identify 

metabolically labeled RNA at the gene level, long-read sequencing provides much better 

resolution of isoform-level transcription. Here we combine thiouridine-to-cytosine conversion 

(TUC) with PacBio long-read sequencing to study the dynamics of mRNA transcription in the 

GM12878 cell line. We show that using long-TUC-seq, we can detect metabolically labeled 

mRNA of distinct isoforms more reliably than using short reads. Long-TUC-seq holds the 

promise of capturing isoform dynamics robustly and without the need for enrichment. 

 

INTRODUCTION 

Transcription is a dynamic process and different transcriptome profiles are indicative of 

different cellular states. While each cellular state can be identified by a set of quasi-steady state 

expression levels, all mRNA transcripts are transcribed and degraded at different rates 1,2. The 

expression level of each gene isoform depends on its transcription rate, processing rate, and 

degradation rate. Although regular RNA-seq studies inform us of the steady state levels of each 

transcript, these lack any information on transcript stability or turnover rates. Transcription is 

controlled by cis-regulatory elements such as promoter and enhancer regions which play a role in 

determining the transcription rate of a transcript 3. The binding of transcription factors as well as 

characterization of epigenetic marks from this category is primarily studied using ChIP-seq 4 and 

the chromatin accessibility can be measured by assays such as ATAC-seq 5. However, RNA 
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degradation rates are just as important, and often times overlooked,  when defining the steady 

state levels of expression (Maekawa et al.; Ghosh and Jacobson). Post-transcriptional regulatory 

factors such as miRNA and RNA binding proteins are the main players in regulating RNA 

stability and decay. Assays such as CLIP-seq and miRNA-seq have been developed to study the 

effects of each of these elements on gene expression 8,9. Overall, transcription is a complex 

process and using the expression profiles to understand the role of each of these regulators can be 

ambiguous and challenging. 

Several new methods have been developed for genome-wide study of transcription 

dynamics. One category of these methods focuses on the study of nascent transcriptomes by 

profiling the RNA molecules instantaneously as they are being transcribed or processed.  For 

instance, global run-on sequencing (GRO-seq) and precision nuclear run-on sequencing (PRO-

seq) sequence the positions that the polymerase is residing at, providing information regarding 

active genes and the polymerase pausing dynamics 10,11. Another set of methods, such as native 

elongating transcript sequencing (NET-seq), report polymerase positions at the 3’ ends of 

nascent transcripts 12,13. While GRO-seq, PRO-seq, and NET-seq investigate nascent transcripts, 

other methods focus on metabolic labeling of nascent RNA molecules that have been made over 

a window of time in order to study transcription and degradation rates. These methods use 

different nucleotide analogs to label the newly made RNA over a pulsing window followed by 

high throughput sequencing to detect the RNA molecules that incorporated the analog. A group 

of these methods such as bromouridine sequencing (Bru-seq), 4-thiouridine sequencing (4SU-

seq) and transient transcriptome sequencing (TT-seq) rely on enrichment methods to recover 

signal from labeled transcripts 14–16. Many of these methods suffer from enrichment biases and 
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elution issues that lead to low yield and biases due to modified nucleotide identity used for 

enrichment. 

More recently, additional methods have been developed that can still characterize 

modified nucleoside incorporation, but do not rely on enrichment. TimeLapse-seq, thiol(SH)-

linked alkylation for the metabolic sequencing (SLAM seq), and thiouridine to cytidine 

conversion sequencing (TUC-seq) rely on chemical conversion of the metabolically incorporated 

analog. Modified positions are then identified in mutated cDNA in order to distinguish the 

metabolically labeled reads from pre-existing none-labeled reads 17–19. One of the challenges of 

this group of methods is the low incorporation rate of 4SU that results in under-estimation of 

recently transcribed genes 20, especially when using short-read sequencing, which is still a long-

standing challenge in transcriptomics, especially when interrogating more complex 

transcriptomes with large dynamic range. 

All of these techniques rely on short-read Illumina sequencing, which even with higher 

sequencing depth cannot overcome these limitations. In addition, reconstructing different 

transcript models and quantifying the expression at the level of isoforms using short reads 

remains challenging and limited 21. Long-read sequencing can improve the sensitivity of the 

assay by sequencing over the whole transcript, which would have a higher number of 4SU 

incorporated and makes it easier to detect over sequencing and biological noise. The two main 

long-read sequencing platforms are Pacific Biosciences (PacBio) and Oxford Nanopore 

Technology (ONT). Despite the higher error rates in long-read technologies, the circular 

consensus technique implemented by PacBio has reduced the final error rate down to 1% 22. 

Furthermore, long-read sequencing can unambiguously identify transcript isoforms using 
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packages such as TALON (Wyman and Balderrama-Gutierrez et al., 2019), SQANTI 24 or 

FLAIR 25. 

In this work, we combine TUC metabolic labeling with long-read sequencing on the 

PacBio Sequel II platform to develop long-TUC-seq. We pulsed the GM12878 cells with 4 thio-

Uridine (4SU) for 8 hours and then converted the incorporated 4SUs into cytidines using osmium 

tetroxide. We then built cDNA and libraries for sequencing on both Illumina NextSeq and 

PacBio platforms. We quantified the expression levels of each gene that correspond to the 

recently made RNA during the 8 hours pulsing window by quantifying the number of TàC 

substitutions identified in every read. We explored different thresholds to count the read with 

different levels of certainty as newly synthesized. We demonstrate that long-TUC-seq has higher 

sensitivity and lower FDR compared to the corresponding short-read version of TUC-seq. 

Finally, we count the reads in each category for all the isoforms to identify differences in 

transcription rates between isoforms of the same gene. Overall, long-TUC-seq is a robust 

protocol that would be widely applicable to a variety of settings were the metabolic labeling can 

be used to study transcriptome dynamics.  

 

METHODS 

Sample collection and RNA extraction 

GM12878 cells were obtained from Corriell Institute and were cultured in accordance 

with ENCODE protocols (www.encodeproject.org). The cells were passed every two to three 

days at 200k-500k cells/mL density and were harvested for the experiments at 500k-1M 

cells/mL. The RNA was extracted using QIAGEN RNeasy Plus kit (Cat. No. 74134). 
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TUC-seq sample preparation  

4-thiouridine was obtained from Sigma Aldrich (T4609) and used fresh at a working 

concentration of 200 mM. For each TUC-seq experiment, 10-15M cells were spun down and 

resuspended in 10-15 mL of fresh media with added 4SU at a final concentration of 1mM (no 

4SU was added for the osmium controls). The cells were incubated with 4SU for 8 hours and 

harvested for RNA extraction. The RNA was then treated with OsO4 solution for 3 hours at room 

temperature in dark. The osmium solution was prepared fresh every time by mixing 20 µl of 

1mM OsO4 (Sigma Aldrich, 201030) with 4µl of 2M NH4Cl at pH 8.8 and 1µl of RNasin Plus 

RNase inhibitor (Promega, N2615) for every 10µg of RNA. The RNA was then purified using 

Zymo RNA cleanup kit (R1015). Finally, the RNA was treated with 1U of exonuclease from 

epicenter (Terminator™ 5´-Phosphate-Dependent Exonuclease, TER51020) for 1 hour at 30oC 

and neutralized by 1µl 100mM EDTA. Then, the RNA was once more purified with Zymo RNA 

cleanup kit. 

 

PacBio library preparation and sequencing 

The set III of SIRV controls were spiked into the RNA samples at a level of 0.03% of the 

total RNA. The cDNA was generated using a modified version of SMART-seq2 protocol. We 

then followed SMRTbell Template Prep Kit 2.0 to build PacBio libraries using 1-2µg of input 

RNA. We checked the quality of the libraries using the Bioanalyzer 2000 and Qubit to get the 

final concentrations. Finally, the libraries were delivered for sequencing on a Sequel II platform 

at UCI sequencing core facility, using 1 SMRT cell per library. 

 

Illumina library preparation and sequencing 
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Starting from 30-50ng of the same cDNA, we followed the Illumina tagmentation 

protocol using Nextera DNA Flex Library Prep Kit to generate Illumina short-read libraries. We 

checked the concentration of the libraries with Qubit and got the average length of the library 

using the Bioanalyzer. We then performed a 2x43 paired-end sequencing on our NextSeq 500 

instrument. 

 

PacBio data processing 

Raw reads from Sequel II machine were processed by PacBio circular consensus package (CCS 

v4.0.0) to filter any reads with less than 3 passes (parameters: --noPolish --minLength=10 --

minPasses=3 –min-rq=0.9 –min-snr=2.5). Then reads with misconfigured adapters were filtered 

using PacBio lima package (v1.10.0; parameters: --isoseq --num-threads 12 --min-score 0 --min-

end-score 0 --min-signal-increase 10 --min-score-lead 0). Finally, full-length non-chimeric 

(FLNC) reads were extracted using the PacBio Refine package (v3.2.2; parameters: --min-polya-

length 20 --require-polya). The bam files processed by Refine were then converted to fastq files 

and they were all deposited to GEO 

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE149551) with the exception of 

PacBio GM12878 control sample which has been previously deposited onto ENCODE portal 

(https://www.encodeproject.org/experiments/ENCSR838WFC/). 

The FLNC reads were then aligned to a modified version of human genome reference (GRCh38 

with added SIRV and ERCC references) using minimap2 (v2.17; parameters: -ax splice:hq -t 16 

--cs -uf). We then used TransciptClean (v2.0.2; parameters: -m False --primaryOnly) for 

reference-based error correction of the reads. We provided TranscriptClean with splice junctions 

reference derived from the GENCODE annotations using TranscriptClean accessory script 
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get_SJs_from_gtf.py. We also provided it with VCF-formatted NA12878 truth-set small variants 

from Illumina Platinum Genomes. We first initialized the TALON database with GENCODE 

v29 + SIRVs/ ERCC annotations using talon_initialize_database and finally annotated the reads 

by running TALON V4.4.2 module on all the datasets. We obtained the table of annotated reads 

from all the datasets by running the talon_summarize module. All the scripts used for analysis of 

long-TUC-seq Pacbio data can be accessed on the mortazabilab github. 

(https://github.com/mortazavilab/long-TUC-seq) 

 

PacBio labeling of the reads 

We used a custom python script (mismatch_analysis_PB.py) to annotate the reads with 

their corresponding substitutions. The script uses the CS tag option from minimap2 to count 

different types of substitutions and to generate a text file containing each read name and its 

corresponding substitution tally. The script also breaks down the alignment file into subfiles, 

each containing one of one category of reads ( > 0 , > 6 , > 20 and > 30 TàC) for visualization 

on the UCSC genome browser. The information on different substitutions was added to the 

annotations obtained from TALON. We then calculate the TPM and counts for each of the 

categories for each gene and transcript. 

 

Illumina data processing 

The reads from illumina runs were mapped to human transcriptome reference (GRCh38.p12, 

gencode.v29.primary_assembly.annotation) using STAR aligner (v2.6.0c; parameters: --

outFilterMismatchNmax 15 --outFilterMismatchNoverReadLmax 0.07 --

outFilterMultimapNmax 10 --outSAMunmapped None --outSAMattributes MD NM --
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alignIntronMax 10 --alignIntronMin 20 --outSAMtype BAM SortedByCoordinate). The raw 

fastq files for each sample is available on GEO database under GSE149551 accession. 

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE149551). 

 

Illumina calling of the labeled reads 

We ran a custom python script (mismatch_analysis_ill.py) to annotate each of the mapped reads 

with the number different substitution events. The script uses the MD tag to tally the number of 

substitutions for each read. The script also breaks down the alignment file into sub-files of reads 

with > 0, > 2, > 4 and > 6 TàC substitutions. Finally, we count the reads in each category using 

eXpress (v1.5.1; parameters: --no-bias-correct). The quantification can be accessed under 

GSE149551 accession in GEO database. 

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE149551). All the scripts used to 

process illumina TUC-seq data can be accessed on the Mortazavilab github. 

(https://github.com/mortazavilab/TUC-seq) 

 

 Degradation rate and half-life calculations: 

Assuming steady-state and doubling rate of zero during the pulsing time, we can calculate 

the degradation rate (li) and consequently the half-life (hli) of gene i: 

𝜆" = 	
−ln	(1 − 𝐿"

𝑅"
)

𝑡.
, 

ℎ𝑙" = 	
𝑙𝑛2
𝜆"

 

 Here R refers to the steady state expression of the specific mRNA, L stands for the expression of 

labeled RNA, and tL is the labeling time. 
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Isoform specificity analysis 

In order to help us understand the isoform specificity of each gene and its dynamics, we 

introduce an index for isoform specificity of a gene (ISI) as follows: 

𝐼𝑆𝐼" = 	
∑ (1 − 𝑋"8)
8
9
𝑁" − 1

 

Here, index i corresponds to each gene and index j represents each corresponding isoform 

for gene i. X is the expression level of the isoform normalized to the expression level of the 

highest expressed isoform of the gene i. Finally, Ni is the number of isoforms corresponding to 

gene i. We calculated the isoform specificity indices for each of the genes using the total and 

labeled RNA. Then we filter for the genes with more than 2 isoforms that has an ISItotal < 0.35 

and ISIlabeled > 0.85. We then plot the expression of each isoform of a representative set of these 

genes and color the portion of the expression that corresponds to the labeled reads. 

 

RESULTS 

Identifying metabolically labeled RNA using long-TUC-seq 

Our long-TUC-seq method relies on the incorporation of 4SU into the RNA and its 

further conversion to a regular cytidine (Fig. 1A.) We initially tested 4SU incorporation into 

recently synthesized transcripts by incubating GM12878 cells with 0.1mM and 1mM 4SU for a 

period of time between 2 to 24 hours and compared the amount of incorporation by dot blots. We 

then checked the RNA integrity after the treatment of the RNA samples with osmium tetroxide 

under different conditions (mainly time and temperature of the incubation). We compared the 

RNA Integrity Numbers (RINs) of the RNA samples after the treatment using a Bioanalyzer. 

Even with milder temperature (room temperature) we observed substantial degradation at 3 hours 
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(RIN = 5.6). However, the integrity of the samples is improved with the addition of RNase 

inhibitor to the OsO4 mix at this condition. Finally, we tested the conversion of incorporated 4SU 

by OsO4 at this condition by checking the amount of 4SU remaining in the RNA sample before 

and after osmium treatment, using a dot blot assay. The dot blot shows complete conversion of 

4SU with 3 hours of OsO4 at room temperature. 

We pulsed biological replicates of GM12878 cells with 1mM of 4SU for 8 hours and 

extracted the RNA, which were treated with osmium tetroxide. We also generated matching 

libraries of osmium treated samples without any 4SU pulsing. We built Illumina and PacBio 

libraries from these samples and sequenced them on their respective platforms and analyzed the 

data (Fig. 1B). Each of the PacBio libraries yielded between 3.4M - 6.2M raw sequencing reads 

(Table S1). After all the filtering, we are left with a minimum of 1.2M of reads for each sample 

that were mapped to human genome using minimap2 with an average of 99.65% mapping rate. 

In order to identify the reads that were synthesized during the 4SU pulse window, we counted 

the number of TàC substitutions for each read. We inspected the reads that mapped onto the 

MYC locus, which is known to be a fast turnover transcript (Fig. 1C). We observe that a high 

percentage (94%) of TUC-seq reads mapping to the MYC locus have at least 6 TàC events. By 

contrast, none of the reads mapping to MYC in the osmium control (sample without 4SU pulse 

and treated with OsO4) or in publicly available PacBio ENCODE datasets are marked as labeled. 

We can therefore detect 4SU labeled reads based on the number of substitutions in a long read. 
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Distinct substitution profiles of long-TUC-seq at the level of base calls and reads 

The nucleotide composition of the human genome is equally distributed between all the 

four nucleotides. There are some biological variations from multitude of SNPs that will introduce 

specific substitution events across the genome and some technical variation that is introduced via 

PCR or SBS. However, all of these substitutions should be distributed evenly between the 12 

different possible substitution types globally. While this equal distribution is observed in the 

control PacBio RNA-seq from ENCODE and the osmium control, there is a very distinct profile 

in our long-TUC-seq samples with a much higher TàC counts as expected (Fig. 3A). In order to 

asses our ability to call a read as labeled, we analyze the distribution of reads based on the 

number of TàC observed. We detect 34% of all the reads being labeled with more than 6 TàC 

in the TUC-seq samples compared to 0.4% in the osmium control and in the RNA-seq control 

(Fig. 3B). In addition, we detect 27% and 21% of the reads from the TUC-seq samples are 

labeled with a minimum of 20 and 30 TàC.   

To ensure that the reads labeled by long-TUC-seq are not heavily biased by longer 

transcripts, we determined the correlation of the number of TàC with the length of each 

transcript. Although the number of observed Tà C in a read does correlate weakly with length 

of the transcript (Pearson correlation coefficient of 0.25), its distribution in the controls indicates 

that the transcript length is not a big driver of noise, which will therefore not hinder an accurate 

count of labeled transcripts (Fig. 3C). Finally, we counted the number of Ts in each transcript 

that has been converted to C in order to obtain an estimate of 4SU incorporation rate. Our 8-hour 

long-TUC-seq results indicate an average of 11.33% for 4SU incorporation in the transcription 

process, assuming a 100% conversion to C (Fig. 3D). 
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Robust detection of recently synthesized genes by long-TUC-seq 

We used TranscriptClean 26 to correct the indels in our reads before running TALON 

V4.4.2 (Wyman and Balderrama-Gutierrez et al., 2019) to annotate the reads as known and novel 

transcripts, as well as to obtain accurate counts for each gene and transcript for each of our 4 

datasets (1 RNA-seq control, 1 osmium controls and 2 TUC-seq samples). For the purpose of 

this study, we focused on known isoforms. We detect 21,496 known genes across the 

experiments and 32,250 (TPM > 0) known transcripts. We added the labeling information for 

each read to the TALON annotations and calculated the expression levels for each gene and 

transcript for the following 4 categories: all reads, permissive threshold (>6 TàC), intermediate 

threshold (>20 TàC) and conservative threshold (>30 TàC.)  We detect an average of 9,270 

genes labeled at permissive threshold with more than 2 TPM expression of labeled reads, in the 

TUC-seq samples compared to 35 genes out of 10,584 genes detected in the controls (FDR = 

0.33%). This number drops to 8,169 in the conservative category of labeled reads in the TUC-seq 

samples (Fig. 3A). The detection of recently synthesized genes is very robust across the 

replicates, with 80% of detected labeled genes (> 2 TPM at permissive threshold) being 

confirmed by both replicates (Fig. 3B). There is also a high concordance amongst the expression 

levels of these recently synthesized genes across the replicates with 0.93 Pearson correlation 

(Fig. 3C). This correlation is still high for genes detected in the higher categories with Pearson 

correlation of 0.93 for intermediate labeled reads and 0. 92 for conservative reads. 

 

Comparison of long-TUC-seq with Illumina short-TUC-seq  

Current methods using metabolic labeling for studying the dynamics of transcription rely 

on short read illumina sequencing. In order to benchmark our long-TUC-seq results we 
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compared it with the short-read TUC-seq of the same samples. We built the Illumina Nextera 

libraries using the same cDNA materials that were used for PacBio libraries. We then sequenced 

these libraries on the Illumina NextSeq platform and mapped the reads to the human 

transcriptome reference using STAR with an average of 45M single end reads mapped per 

sample. We annotated each read with the number of observed substitutions and annotated the 

aligned reads with it. Here we also detect higher TàC substitution profile for TUC-seq samples 

compared to the controls. The TUC-seq samples contain more reads with higher TàC compared 

to the controls; based on the substitution profiles and the read distributions, we decided to used 2, 

4 and 6 TàC as permissive, intermediate and conservative thresholds for calling the labeled 

reads. We detect 27% of total reads labeled with > 2 TàC in TUC-seq samples compared to 1.5 

% in control samples. Although raising the threshold to 4 TàC reduces the percentage of false 

positive labeled reads in controls to 0.14%, it also reduces the percentage of labeled reads in the 

TUC-seq samples to 15%. Finally, we calculated the 4SU incorporation rate from Illumina short-

read TUC-seq samples to be 17.22% which is 6% higher than what we have obtained using 

Pacbio long-TUC-seq data.  

Using the permissive threshold of 2 TàC, we detect 57% of reads mapping to MYC in 

labeled samples, which is 37% lower than what was detected by PacBio. We then quantify the 

expression levels in each category using eXpress 27 as described in the methods. In order to 

compare the detection of labeled genes by each platform, we use the intermediate threshold for 

Illumina (4 TàC) which resulted in similar FDR (0.5%) to that of PacBio data with permissive 

threshold (FDR = 0.3%). Although Illumina TUC-seq detects twice as many genes across all the 

samples compared to PacBio (> 0 TPM), the number of detected genes at intermediate threshold 

is 5,511, which is much less than labeled genes in PacBio. When comparing genes (expressed > 
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2 TPM) detected as labeled in either platforms, we find that 47% are shared and the majority of 

the remainder (41% of all labeled genes) is detected only in PacBio (Fig. 3D). In general, the 

expression levels of the genes detected at 2 TPM or higher by only one of the platforms is lower 

than the expression of the commonly shared detected genes (Fig. 3E). Thus long-TUC-seq is 

more sensitive than its short-read equivalent at similar FDR thresholds.  

 

Calculating degradation rates with long-TUC-seq 

After annotating the detected genes with the different degrees of labeling, we focused on 

the dynamics of transcription for each gene and analyzed the rate at which each gene is 

transcribed. On average, 50% of the total expression of genes at the end of our 8-hour labeling 

window comes from newly synthesized RNA. MYC is one of the genes with faster turnover rate 

that is expressed at 111 TPM with 95% of its expression being labeled whereas GAPDH with a 

high expression of 11,378 TPM has only 5.6% labeled RNA (Fig. 4A; Table S2).  

Under a steady-state assumption that the overall expression level of a gene stays the same 

through the 8-hour pulsing window, the rates at which a gene is being transcribed and the rate at 

which it is degraded are constant. We calculated the degradation rates and the half-life of each 

gene using the total expression of the gene and its newly synthesized RNA. We obtained a 

degradation rate of 45 TPM/hour and a half-life of 1.7 hours for the MYC gene. The ranking of 

genes based on their half-life time is similar to what has been observed previously (Spearman 

correlation of 0.74 with timeLapse-seq ranking in K562 cells) 17. Although we used a long 

labeling time of 8 hours, the method could work with substantially shorter labeling time. Long-

TUC-seq can be used to calculate degradation rates from 4SU labeling of transcripts and genes.  
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Analysis of isoform-specific expression and transcription rates 

One of the advantages of long-read sequencing is that it inherently measures the 

expression levels of the isoforms of each gene. In our study, more than 58% of genes are 

expressed as multiple isoforms with an average of 2.5 isoforms per gene. GAPDH, which is one 

of the higher expressed genes, has 4 distinct isoforms. MYC, which is one of the higher turnover 

genes, has 2 isoforms detected. The highest number of isoforms belong to MSL3, with 15 

isoforms detected. We can also take a step further and analyze the expression levels of each 

isoform to see if the gene is expressed through one isoform more than the other, or if it is 

expressed uniformly across different isoforms by calculating the isoform specificity index (ISI) 

for all genes as described in the methods. In the case of a gene that expresses all its isoforms 

equally, the ISI will be closer to zero and in the case of a gene that expresses primarily one of its 

multiple isoforms, the ISI will be closer to one. MYC and GAPDH each have an ISI of 0.67 and 

0.99, respectively, which for MYC translates to the fact that its isoforms are expressed in a 3:1 

ratio, and for GAPDH it means that its isoforms are expressed in approximately a 800:20:4:1 

ratio. 

We can similarly define the isoform specificity index based on the expression levels of 

newly synthesized transcripts (ISInew) and inspect the isoform specificity of the transcription 

machinery for a specific gene at a given time. The distribution of ISItotal and ISInew for all the 

genes of GM12878 shows that majority of multi-isoform genes are expressed and being 

transcribed in a highly isoform-specific manner, and there is a Pearson correlation coefficient of 

0.63 between total and labeled isoform specificity (Fig. 4B; Table S3). Furthermore, we are 

interested in genes with ubiquitous isoform expression that are being transcribed in an isoform-

specific manner. In order to obtain a list of such genes, we filter the genes with lower ISItotal (< 
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0.35) and higher ISInew (>0.85). There are 9 genes in this category, all with two isoforms detected 

in our dataset, the expression of which are less than two-fold apart. However, the expression of 

recently synthesized isoforms is in some cases more than 70-fold different (Fig. 4C). One such 

gene is LRR1 that encodes for Leucine-rich repeat protein 1, which plays a role in protein 

ubiquitination and modification. This gene has five isoforms, two of which have been detected in 

our dataset with similar expression levels of about 5 TPM (201 and 202). These isoforms are 

protein coding and they differ only in one exon; however, the LRR1-202 isoform which has an 

extra exon compared to the 201 isoform has a much higher turnover, and about 73% of its 

expression has been made within the 8-hour pulse window. 

 

DISCUSSION 

Here, we introduce a method for detecting and quantifying metabolically labeled RNA at 

a single isoform resolution using PacBio long-read sequencing. To do so, we relied on the 

conversion of incorporated 4SU to C by TUC-seq chemistry. We demonstrated that even though 

short-read Illumina sequencing provides much higher depth in comparison to PacBio sequencing, 

we are able to recover higher number of labeled genes with PacBio. We also show that not only 

can PacBio detect the labeled RNA reproducibly, the quantification of these labeled RNAs is 

also highly concordant between the biological replicates. Furthermore, we took advantage of 

having T to C substitution data for full transcripts in order to calculate an accurate estimation of 

4SU incorporation rate within each transcript. This estimation using illumina short-read 

technique would be in accurate and over-estimated due to the fact that many of the reads aligning 

to the T depleted regions are dis-missed as unlabeled.  
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We use long-TUC-seq data to obtain estimations of degradation rates of genes and 

consequently their half-lives. The caveats with these estimations are the two assumptions used in 

their calculations. First is the steady state assumption that the expression level, synthesis rate, 

and degradation rate of each gene is constant during the pulsing time, which can be closer to 

reality when the pulsing time is much shorter than 8 hours. The other assumption used in these 

calculations is that there is no doubling of cells during the 8-hour pulsing window. Although that 

might be the case with some of the cells, many of the cells would have inevitably doubled and 

the observed total and labeled RNA could be coming from different number of cells from 

beginning of the pulsing to the end point. However, all these limitations apply to the estimations 

obtained by short-read TUC-seq and similar labeling techniques. While in this study we focus on 

labeling newly synthesized RNA using pulse labeling with 4SU, we could have instead 

performed a chase experiment to obtain degradation rates in situations where the main 

assumption would not hold. 

Finally, the main advantage of using long-read sequencing for detection and 

quantification of recently transcribed genes is that it allows us to annotate the recently 

synthesized transcripts at isoform levels. Using this feature of long-read sequencing, we were 

able to identify a representative set of genes that, despite having rather ubiquitous expression 

across their isoforms, have substantially different transcription dynamics across isoforms. This 

could reflect the fact that some isoforms are required for a faster dynamic of a response whereas 

other isoforms are required to be more stable in order to confer robustness to some pathways. 

Having such resolution, one can infer the degradation rate, synthesis rate and the half-life of each 

of the isoforms and study the regulatory mechanism that affect these rates by integrating this data 

with other genomic assays such as miRNA-seq and ChIP-seq, and assays that focus on poly-A 
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tails and 3’/5’-UTRs. In summary, Long-TUC-seq can robustly identify and quantify recently 

transcribed genes at the level of individual isoforms to shed light on differential isoform 

transcription and degradation rates. 
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FIGURES 
 

 
Figure 1. Identification of recently synthesized transcripts in GM12878 by long-TUC-seq. 
Osmium tetroxide converts an incorporated 4SU into a regular cytidine. b) Experimental layout 
of TUC-seq sample preparation, starting with the incorporation of 4SU into the GM12878 cells 
following by its conversion to C using OsO4 and finally library building from cDNAs. c) 
Genome browser screenshot of PacBio data of GM12878 control from ENCODE, Osmium 
treated GM12878 without 4SU incorporation and two biological replicates of long-TUC-seq 
samples. The shot shows reads aligned to MYC, with increasing levels of labeled reads colored 
with darkening shades of red. The tracks are shown on a scale of 0 to 200 reads. 
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Figure 2. Identifying labeled reads in long-TUC-seq. a) Comparison of the profiles for all the 
possible substitutions at a reference T base across the TUC-seq samples and controls. b) The 
distribution of PacBio reads with respect to the number of TàC substitutions observed for each 
read. The three dotted lines indicate the thresholds we used to define lower, medium and higher 
labeled reads. c) Number of substitution events observed in each read with respect to the length 
of each read, showing slightly higher TàC events in the longer reads for TUC-seq samples. d) 
Average number of Ts in each read converted to C for labeled and unlabeled reads across the 
TUC-seq samples and controls. 
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Figure 3. Robust identification and quantification of recently transcribed genes. a) 
Expression levels of genes with more than 2 TPM in each of the labeling categories. The total 
number of genes is indicated on top of each of the boxplots. b) The overlap of genes detected as 
lower labeled in either of the TUC-seq replicates showing the percentage of genes in each 
section of the Euler diagram. c) The correlation of lower labeled genes between the two 
replicates with a Pearson correlation coefficient of 0.93. d) Overlap of genes detected as lower 
labeled by both replicates on Illumina and those detected by both replicates of PacBio. e) The 
expression levels of the genes in each section of the Euler plot in section c. The expression levels 
of “both” and “PacBio only” groups are from PacBio and the expression levels of the middle 
group (“Illumina only”) is from Illumina data. 
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Figure 4. Dynamics of expression at the level of individual isoforms. a) Expression levels of 
recently transcribed genes (labeled at permissive threshold) with respect to the total expression 
level of that gene (for genes >2 TPM). The equation corresponds to the regression line drawn in 
red. Two example genes (MYC and GAPDH) are highlighted in red. b) The distribution of 
isoform specificity indices for all of the genes calculated from total expression (in grey) and 
from recently made transcripts (in red). The dotted lines indicate the thresholds used to find 
genes with lower ISItotal ( < 0.35) and higher ISIlabeled (> 0.85). c) Expression levels of the 
isoforms corresponding to representative genes from the set defined in b. The grey portion of the 
bars corresponds to the expression level of pre-existing RNA and the red portion corresponds to 
the recently synthesized transcripts. Finally, the percentages on top of the bars are representing 
the percentage of total expression of the isoform that is transcribed recently. 
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