1	Culturing of 'Unculturable' Subsurface Microbes: Natural Organic Carbon Source
2	Fuels the Growth of Diverse and Distinct Bacteria from Groundwater
3	
4	
5	Xiaoqin Wu ¹ , Sarah Spencer ² , Sara Gushgari-Doyle ¹ , Mon Oo Yee ¹ , Jana Voriskova ¹ ,
6	Yifan Li ¹ , Eric J. Alm ² , Romy Chakraborty ^{1*}
7	
8	
9	¹ Department of Ecology, Earth and Environmental Sciences Area, Lawrence Berkeley
10	National Laboratory, Berkeley, California 94720, USA
11	² Department of Biological Engineering, Massachusetts Institute of Technology,
12	Cambridge, Massachusetts 02139, USA
13	
14	
15	
16	*Corresponding author:
17	Romy Chakraborty
18	Address: 70A-3317F, 1 Cyclotron Rd., Berkeley, CA 94720
19	Tel: (510) 486-4091
20	Email: rchakraborty@lbl.gov
~ 1	

22 ABSTRACT

23 The recovery and cultivation of diverse field-related microorganisms from the terrestrial 24 subsurface environment remains a challenge despite recent advances in modern 25 molecular technology. Here we applied natural organic carbon (C), i.e., sediment-derived 26 natural organic matter (NOM) and bacterial cell lysate, to groundwater microbial 27 communities for a 30-day enrichment incubation, followed by conventional direct-plating 28 for isolation. The groundwater was collected from a background well at the Oak Ridge 29 Reservation Field Research Center, Tennessee. As a comparison, we also included 30 enrichments amended with simple organic C sources, including glucose, acetate, 31 benzoate, oleic acid, cellulose, and mixed vitamins. Our results demonstrate that complex 32 natural organic C sources are more effective in enriching diverse bacterial species from 33 groundwater than simple organic C sources. Microcosms amended with simple organic C 34 (glucose, acetate, benzoate, or oleic acid) show significantly lower biodiversity than 35 unamended control and are dominated by only few phyla such as Proteobacteria and 36 Bacteroidetes. In contrast, microcosms amended with complex natural organic C 37 (sediment NOM or bacterial cell lysate) display significantly higher biodiversity, and 38 enrich distinct species from the phyla that are poorly represented in published culture 39 collections (e.g., Verrucomicrobia, Planctomycetes, and Armatimonadetes). Our 40 subsequent isolation efforts from natural organic C-amended enrichments led to 222 41 purified bacterial isolates representing 5 phyla, 16 orders, and 54 distinct species 42 including candidate novel, rarely cultivated, and undescribed organisms. 43

44 Importance

45	Innovative strategies for recovering bacterial strains representing the true diversity of
46	microbial communities in the terrestrial subsurface would significantly advance the
47	understanding of ecologically critical taxa residing in these ecosystems. In this study, we
48	demonstrate that complex natural organic C that mimic the naturally available resources
49	for microbes encourages the growth of diverse bacteria much more robustly than
50	traditional simplistic organic C sources. Results from this study will substantially
51	advance and improve the design of strategies to effectively cultivate and isolate diverse
52	and novel subsurface microorganisms in the laboratory. Obtaining axenic cultures of the
53	'once-unculturable' microorganisms will greatly enhance our understanding of microbial
54	physiology, function, and roles in different biogeochemical niches in terrestrial
55	subsurface ecosystems.

57 Introduction

58	Compared to animal and plant hosts, other non-human environments on Earth
59	such as marine sediment, seawater, soil, and the terrestrial subsurface host prodigious and
60	undiscovered microbial populations, as most of them have never been cultured and
61	characterized in the laboratory ¹ . In the terrestrial subsurface, it is estimated that there are
62	$2,500 \times 10^{26}$ microbial cells, of which more than 70% belong to uncultured clades and
63	thus their physiologies and ecological impacts remain largely mysterious ¹ . Despite rapid
64	technological advances in modern molecular tools—such as metagenomics,
65	metatranscriptomics, and metaproteomics-for identification of key microbial taxa and
66	critical metabolic processes in a given environment, a complete interpretation of omics-
67	based data is still constrained by the unavailability of reference genomes and isolates ² .
68	Challenges in microbial cultivation/isolation in the laboratory have impeded the ability of
69	microbiologists to fully investigate the roles and function of microbes in terrestrial
70	subsurface ecosystems.
71	Successful recovery and cultivation of environmental microbes in the laboratory
72	critically depends on appropriate growth media and incubation conditions that best mimic
73	the ecological habitat of the bacteria ³ . Enrichment culturing is a common initial step in
74	microbial isolation to select for microorganisms with specific metabolisms within the
75	total microbial population. The choice of organic carbon (C) substrate is of paramount
76	importance in enrichment media composition. Yeast extract and simple organic
77	compounds such as glucose, acetate, lactate, pyruvate, and casamino acids are amended
78	routinely, either as an individual C source or as a mixture with the understanding that
79	most microbes utilize these C substrates ⁴ . However, these labile C compounds commonly

80 lead to selective and biased growth of microorganisms with kinetic advantages (e.g. fast growing microorganisms), generally considered as 'weeds'^{5, 6}, and have rarely recovered 81 82 slow growing metabolically active microbes from the environment⁷. For this reason, 83 despite the rapid advances in "omics" technologies, we have still only been able to cultivate less than 2% of microbes on Earth in the laboratory⁸⁻¹⁰. 84 85 Rationally designed growth medium that closely mimics the natural 86 environmental habitats of microorganisms has proven to be an effective strategy in recovering diverse and previously uncultivable organisms from various environments¹¹⁻ 87 88 ¹⁶. Specifically, microorganisms in subsurface are reported to grow optimally in low nutrient availability or oligotrophic conditions¹⁷. In groundwater, natural organic matter 89 90 (NOM) derived from the adjacent sediment provides the available C source for 91 microorganisms. Our previous study shows that sediment-derived NOM contains a 92 myriad of heterogenous organic compounds—mostly recalcitrant C such as lignin-like 93 compounds and a small portion of relatively labile C such as carbohydrate- and proteinlike compounds¹⁸. Other natural C source available for microorganisms in groundwater 94 95 can be from dead, lysed microbial biomass turnover. Despite the potential of these natural 96 C sources for diverse microbial cultivation under laboratory conditions, no research has 97 been reported on the application of sediment NOM or microbial cell lysate for 98 cultivation/isolation of microorganisms from the terrestrial subsurface environment. 99 In this study, we aim to develop an effective cultivation strategy using naturally 100 occurring complex C to recover diverse, rarely cultivated, and novel bacteria from 101 groundwater collected at the Field Research Center (FRC) in Oak Ridge, Tennessee. Our 102 results show that natural complex C such as NOM and bacterial cell lysate are much

103	more effective than conventional simple organic C sources in encouraging the growth of
104	diverse and distinct bacteria from groundwater, providing a platform for the recovery of
105	undiscovered bacteria that constitute 'microbial dark matter' in the subsurface. Results
106	from this study will aid in the design of successful cultivation strategies to unlock diverse
107	novel, previously uncultured, or ecologically important subsurface microbes for
108	phenotypic and genomic analysis, which will greatly advance our understanding of
109	microbial physiology, roles, and function in biogeochemical cycles in the terrestrial
110	subsurface.
111	

112 **Results**

113 In this study, we applied a two-step workflow for cultivating and isolating a broad 114 diversity of bacteria from groundwater. Microcosm enrichments amended with different 115 C sources were used as the first step to enrich bacterial species from Oak Ridge FRC 116 groundwater. We evaluated two types of complex natural organic C source: FRC 117 sediment-extracted NOM and bacterial cell lysate. The bacterial cell lysate was prepared 118 using a native, naturally abundant bacterial strain isolated from FRC groundwater to 119 mimic the cell lysis products available for groundwater microorganisms. For comparison, 120 we also evaluated several types of simple organic C source, i.e., conventional C source 121 (glucose and acetate), naturally occurring compounds (benzoate, oleic acid, and 122 cellulose), and mixed vitamins. The mixed vitamins were included because they are often added as supplements to bacterial growth media^{19, 20}, and we wanted to test whether they 123 124 are a limiting factor for support of microbial growth in this experiment. After enrichment 125 cultivation, conventional direct plating was conducted to obtain axenic bacterial isolates

from enrichment cultures amended with complex natural organic C source (i.e. NOM orcell lysate).

128

129 Natural organic C source increases bacterial diversity in enrichments

130 Our results show that both C type and length of incubation have significant 131 influence on bacterial community structure in enrichment cultures. Statistical analysis 132 reveals that C type is the major driver of community dissimilarity (MANOVA/adonis, R^2 133 = 0.56; ANOSIM, R = 0.88, p = 0.001), with incubation time contributing to a lesser extent to variation (MANOVA/adonis, $R^2 = 0.09$; ANOSIM, R = 0.12, p = 0.001). We 134 135 accordingly grouped samples by NMDS ordination based on the type of amended C 136 source (Figure 1). The bacterial community in enrichments amended with glucose, 137 acetate, benzoate, oleic acid, bacterial cell lysate, or sediment NOM clearly differs from 138 the unamended control. The bacterial community composition in cultures amended with 139 small organic C (glucose, acetate, benzoate, or oleic acid) are noticeably similar to each 140 other at an early stage of incubation, and then diversify at later stages—while bacterial 141 community composition in cultures amended with complex natural organic C (bacterial 142 cell lysate or sediment NOM) separate far from other groups from early on.

We also observe that the diversity of the enriched bacterial community is related to the complexity of amended C substrates (Figure 2). The bacterial diversities in enrichments amended with small organic C (glucose, acetate, benzoate, or oleic acid) are generally lower than those in unamended control (Figure 2A). This strongly suggests that providing microbial communities with a simple, small organic C source in growth media will decrease diversity and lead to enrichment of a select few bacterial species that

149	preferentially utilize these C substrates. In contrast, the bacterial diversities in
150	enrichments amended with complex natural organic C (bacterial cell lysate or sediment
151	NOM) are higher than those in unamended control, demonstrating the power of natural
152	organic C in promoting growth of diverse bacteria (Figure 2A).
153	Cellulose and mixed vitamins show relatively little influence on bacterial
154	community composition and diversity in comparison with the unamended control (Figure
155	1 and 2A), and therefore are not included in our further statistical analysis.
156	
157	Natural organic C source enriches distinct bacterial taxa
158	We investigate the short-term response of bacterial community structure to
159	different C sources in enrichment cultures via 16S rRNA gene survey. Out of the quality-
160	filtered reads, organisms from 21 phyla and 94 orders are taxonomically identified,
161	covering 71–100% of all reads, except for two samples (57% and 60%) in the bacterial
162	cell lysate-amended group. All phyla and abundant orders (with relative abundance $>1\%$
163	in any sample) are presented in Figure 2B and Supplementary Figure S1, respectively.
164	Proteobacteria and Bacteroidetes are the two most dominant phyla in all groups,
165	especially in those amended with small organic C. It is worth noting that the phyla
166	Verrucomicrobia, Planctomycetes, and Armatimonadetes, which are rarely cultivated
167	from environmental samples, are enriched abundantly in sediment NOM-amended
168	cultures with clear succession patterns (Figure 2B). The relative abundance of
169	Verrucomicrobia significantly diminishes over time from 18–27% at Day 10 to less than
170	2% at Day 30. Meanwhile <i>Planctomycetes</i> becomes one of the major phyla at later stages,
171	with relative abundance increasing from $0.1-1\%$ at Day 10 to $5-33\%$ at Day 30.

Armatimonadetes also increases during the incubation period, with relative abundance upto 10% at Day 30.

In microcosms amended with small organic C, only a few taxonomic orders such
as *Caulobacterales, Burkholderiales, Rhodocyclales*, and *Cytophagales* are enriched,
while in complex natural organic C-amended microcosms, diverse taxonomic orders are
enriched, including those scarcely enriched in other groups, e.g., *Sphingobacteriales*, *Gemmatales, Planctomycetales, Verrucomicrobiales*, and *Solibacterales* (Supplementary
Figure S1).

180 Based on one-way ANOVA with Dunnett's test results, we identify a total of 166 181 OTUs that are promoted to grow by test C sources, with significantly (p < 0.01) increased 182 relative abundances in C-amended enrichment cultures compared to the corresponding 183 unamended control at each time point. These promoted OTUs widely distribute across 11 184 phyla (Figure 3A). Compared to simple organic C sources (glucose, acetate, benzoate, 185 and oleic acid), the complex natural organic C sources (sediment NOM and bacterial cell 186 lysate) show a great advantage in promoting the growth of diverse and distinct bacterial 187 species. Most of promoted OTUs (110 out of 166) are exclusively promoted by complex 188 natural organic C sources (Figure 3B), especially those from rarely cultured phyla 189 Verrucomicrobia, Planctomycetes, and Armatimonadetes. A small portion (41 out of 166) 190 are exclusively promoted by simple organic C sources, most of which are from the phyla 191 Proteobacteria and Bacteroidetes, and a few from Acidobacteria and WPS-2 (Figure 192 3B). There are 15 OTUs that can be promoted by both simple and complex organic C sources, suggesting that they likely harbor the metabolic potential for utilizing diverse C 193 194 sources, from simple organic C to complex natural organic C.

00

. 1

• 1

1 1

• •

105

• 1

10

195	Besides amended C source, incubation time also affects the enriched bacterial
196	species. In those 110 OTUs exclusively promoted by complex C sources, we observe
197	slow growers (25 out of 110) that exhibit significant enrichment at late incubation stage
198	(on Day 30), and also consistent growers (29 out of 110) which are enriched in the
199	cultures consistently from Day 10 to Day 30 (Figure 3A).
200	
201	Novel bacterial isolates from natural organic C-amended enrichments
202	Since complex natural organic C shows greater potential in enriching diverse and
203	distinct bacterial species, we then use the complex C (bacterial cell lysate and sediment
204	NOM)-amended enrichments as inocula in our further isolation work. In this study, we
205	obtained a total of 222 bacterial isolates (Supplementary Table S2) representing 5 phyla,
206	16 orders, and 54 distinct species (Figure 4 and Supplementary Table S3). A comparison
207	between the enrichment and isolation results shows that our bacterial isolates represent
208	one-third (10 out of 33) of the enriched orders (Supplementary Figure S1), and 16% (27
209	out of 166) of the promoted OTUs (Figure 3A and Supplementary Table S1). We
210	obtained representative isolates not only for the OTUs that are exclusively promoted by
211	complex C source (e.g., denovo1156), but also for the OTUs that are exclusively
212	promoted by simple C sources and exist at very low relative abundance (< 0.1%) in the
213	complex C-amended enrichment cultures (e.g., denovo2244). We also obtained bacterial
214	isolates representing slow growers (e.g., denovo3150) and consistent growers (e.g.,
215	denovo243, denovo422, denovo1156, and denovo2687) from our isolation efforts (Figure
216	3A).
217	Thresholds for determining the novelty of an isolate based on 16S rRNA gene

218	sequence similarity have differed slightly in different reports ^{21, 22} . Here we apply the
219	thresholds of 98% for novel species, 95% for novel genera, and 90% for novel families ¹⁵ .
220	According to these criteria, of the 54 distinct bacterial species isolated from FRC
221	groundwater, nine belong to candidate novel species and three belong to candidate novel
222	genera (Figure 4 and Supplementary Table S3). These novel isolates distribute across two
223	phyla Proteobacteria and Bacteroidetes, which are the most dominant phyla in the
224	original FRC groundwater sample (data not shown) as well as enrichment cultures in this
225	study. Besides, there are 9 undescribed species unassigned at the genus level in the
226	SILVA database, indicating that they are from the less characterized genera with
227	unresolved taxonomy. The reconstructed phylogenetic trees for these novel and
228	undescribed organisms are presented in Figure 5 and Supplementary Figure S2.
229	
230	Discussion
231	There is a compelling need for improving the recovery of diverse bacteria from
232	environments. Several ongoing efforts include modification of growth
233	media/conditions ²³ , use of diluted medium or serial dilution culture ^{24, 25} , and cultivation
234	with physical separation (e.g., iChip ²⁶ or diffusion chambers ^{12, 27, 28}). However, the
235	collective capability for recovering microorganisms from the terrestrial subsurface,
236	especially those mediating critical biogeochemical cycles, is still limited. This bottleneck
237	continues to hinder a thorough investigation of microbial ecology and understanding of
238	physiology and true metabolic potential of key organisms residing in subsurface
239	
	ecosystems.

240

In this study, we demonstrate that natural organic C sources (sediment NOM and

241 bacterial cell lysate) fuel the growth of much more diverse and distinct groups of 242 microbes compared to traditional simple organic C sources. Natural organic C is a 243 mixture of heterogeneous naturally occurring substrates¹⁸, making it a suitably 244 appropriate C source in encouraging growth of diverse microbe representatives of in-situ 245 environmental communities and typically those not cultivated in the laboratory. As 246 shown in our enrichment results, almost all species from the rarely cultured phyla 247 Verrucomicrobia, Planctomycetes, and Armatimonadetes show exclusive preference for 248 complex C source especially sediment NOM (Figure 3A, 3B). To date, only a handful of *Verrucomicrobia* isolates have been successfully cultivated^{24, 29-33}, although members of 249 this bacterial phylum are highly prevalent in the environment^{34, 35}. It is reported that only 250 $\sim 2\%$ of strains in *Planctomycetes* have been isolated in pure cultures³⁶. *Planctomycetes* 251 252 are of deep interest to microbiologists because of their unique characteristics. They are 253 reported to be comparatively slow growing organisms with low demand for C and 254 nitrogen sources³⁶, which may explain their significant enrichments at late incubation 255 stage (Day 20 and 30) in this experiment (Figure 2B). The phylum Armatimonadetes lacked an isolated representative until 2011³⁷, and so far, only a few cultivated strains in 256 this phylum have been reported³⁷⁻⁴⁰. In this study, we observe that most of promoted 257 258 Planctomycetes and Armatimonadetes species are exclusively enriched in sediment 259 NOM-amended cultures only at late incubation stage (Figure 3A), indicating that these 260 slow growers may possess high metabolic potential of utilizing relative recalcitrant C in 261 sediment NOM, therefore avoid competition for labile C in sediment NOM with competitive fast growers¹⁸. Although we have not yet isolated pure bacterial strains from 262 263 Verrucomicrobia, Planctomycetes, and Armatimonadetes, the results of this study will

augment our ongoing efforts to obtain pure isolates in the very near future.

265	Applying the two-step cultivation strategy, i.e., enrichment followed by isolation,
266	we obtained pure cultures of 54 distinct bacterial species from groundwater, some of
267	which are novel, previously uncultured, and uncharacterized organisms. Notably, we
268	obtained two similar isolates (FW305-C-21 and FW305-C-23) from the candidate family
269	env.OPS 17, which is a poorly described family in literature and lacks representative
270	isolates. To date, there are only five described cultured organisms within this family,
271	found to be associated with ascomycetous ectomycorrhizal fungi ⁴¹ or in freshwater
272	springs (NCBI database). Our isolates FW305-C-21 and FW305-C-23 are distinct from
273	those five cultured organisms (Figure 5, only showing FW305-C-21). While several of
274	their close neighbors have been detected via molecular tools in various environments
275	including pit ⁴² , drinking water ⁴³ , uranium mining wastes ⁴⁴ , freshwater lake, pond, soil,
276	and sludge (information from the NCBI database), our isolates are the very first cultured
277	organisms in this distinct clade. Our enrichment results show that species from this
278	candidate family env.OPS 17, i.e., denovo1405 (with representative isolate FW305-C-21
279	and FW305-C-23) and denovo2797, exclusively prefer complex natural C sources
280	(Figure 3A and Table S1), which may explain why these organisms have rarely been
281	cultivated in the laboratory.
282	We also obtained pure cultures of three distinct species: FW305-C-2, FW305-C-3,
283	and FW305-C-57, from an undercharacterized order Salinisphaerales which has only 17
284	reported genomes so far, the second-fewest in the class Gammaproteobacteria (NCBI
285	lifemap). The isolates FW305-C-2 and FW305-C-3 are novel candidate genus members

286 (Figure 4 and Table S3). Phylogenetic analysis of the isolate FW305-C-3 shows that it is

287 close to the genus Fontimonas (Figure S2). The isolate FW305-C-2 clusters together in 288 the phylogenetic tree with multiple uncultured organisms (Figure S2). The only cultured 289 organism in this clade, *Sinobacteraceae* bacterium MG649968.1, was reported very 290 recently from surface freshwater⁴⁵. We have therefore made a good contribution to the 291 number of representative cultured organisms in this distinct clade. 292 This study demonstrates the potential of complex natural organic C, especially 293 NOM, for enriching diverse and ecologically relevant bacterial taxa, and for retrieving 294 pure cultures of novel, previously uncultured organisms from the terrestrial subsurface. 295 Our cultivation strategy will benefit future development of effective and ecologically 296 relevant cultivation/isolation strategies. These improved capabilities will be crucial for 297 further understanding of bacterial physiology, functions, and roles in biogeochemical

298 cycles in terrestrial subsurface ecosystems.

299

300 Materials and Methods

301 *Preparation of C stock solutions*

302 Glucose, sodium acetate, sodium benzoate, cellulose, oleic acid, vitamins, and 303 thioctic acid were purchased from Sigma-Aldrich (St. Louis, MO). Stock solutions of 304 glucose, sodium acetate, and sodium benzoate were prepared by dissolving the chemical 305 in MilliQ-water (18.2 MQ \cdot cm, 0.22 µm membrane filtered) at 200 mM, 200 mM, and 50 306 mM, respectively, followed by filter-sterilization with a filtration system (0.22 μ m pore-307 sized, polyethersulfone (PES), Corning). Oleic acid and cellulose were added to MilliQ-308 water at an initial concentration of 50 g/L and 20 g/L, respectively, followed by 309 sterilization using an autoclave. Since oleic acid and cellulose are generally insoluble,

310	their concentrations in water are expressed as initial grams per liter. A stock solution of
311	mixed vitamins, including vitamin B1, B2, B3, B5, B6, B7, B9, B10, B12, and thioctic acid,
312	was prepared in MilliQ-water according to the recipe reported by Balch et al. ¹⁹
313	(Supplementary Table S4), and then filter-sterilized (0.22 µm pore-sized, PES, Corning).
314	Preparation of cell lysate solution was modified based on published methods ^{46, 47} .
315	A strain of Pseudomonas spp previously isolated from Oak Ridge FRC groundwater was
316	used for this purpose. The isolate, which by 16S rRNA gene sequence analysis was 99%
317	identical to Pseudomonas fluorescens, was grown in a Luria broth (LB) liquid medium at
318	30°C aerobically until early stationary phase. A 30 ml aliquot of the culture was
319	harvested, followed by centrifugation at $6,000 g$ for 20 min. The supernatant was
320	removed, and the pellet was washed by MilliQ-water three times before being re-
321	suspended in 10 ml of MilliQ-water. A two-step lysis procedure was used, including
322	autoclaving and sonication in a water bath for two hours, followed by centrifugation at
323	6,000 g for 20 min. The supernatant was decanted and filtered through a syringe filter
324	(0.2 μ m pore-sized, PES, Thermo Scientific). The filtrate was stored at 4°C until use.
325	Total organic C (TOC) content of the filtrate, i.e., cell lysate stock solution, was 2.67 g/L,
326	measured by TOC-5050A Total Organic Carbon Analyzer (Shimadzu, Japan).
327	The sediment used for NOM extraction was collected from a background well
328	FW305 at ORR-FRC, at a depth of 1.1 m below ground surface. The water-soluble
329	fraction of sediment NOM was extracted according to a method previously developed in
330	our lab ¹⁸ . Briefly, the freeze-dried sediment sample was extracted with Milli-Q water via
331	rotary shaking (170 rpm) overnight at 35°C, and then sonicated in a water bath for 2
332	hours. The ratio of water and sediment was 4:1 (w/w). After extraction, the water-

333	sediment slurry was centrifuged at $6000 g$ for 20 min. The supernatant was decanted and
334	sterilized using a filtration system (0.22 µm pore-sized, PES, Corning). Filtrate
335	containing water-extractable NOM was freeze-dried, and the lyophilized material was
336	stored at -20°C until use.
337	
338	Microcosm enrichment
339	The groundwater sample was collected from a background well, which adjoined
340	the sediment well FW305 at ORR-FRC. The sample was shipped immediately to the lab
341	after collection with ice packs and stored at 4°C for up to 1 week. At the time of
342	sampling, groundwater temperature was measured to be 15.4°C, pH was 6.37, dissolved
343	oxygen (DO) was 1.39 mg/L, TOC was 5.9 mg/L, NO ₃ ⁻ was 0.34 mg/L, PO ₄ ³⁻ was less
344	than 3.0 mg/L. The DO in groundwater exceeded 0.5 mg/L, indicating that the
345	groundwater sample's redox state was oxic (Ohio EPA,
346	http://epa.ohio.gov/Portals/28/documents/gwqcp/redox_ts.pdf).
347	Microcosm incubation experiments were performed in pre-sterilized 250 ml-
348	flasks, each containing 89 ml of filtered groundwater (0.22 µm pore-sized, PES, Corning)
349	as culture medium, 10 ml of unfiltered groundwater (cell density: 2.1×10^6 cells/ml) as
350	inoculum, and 1 ml of individual C stock solution. For oleic acid and cellulose, the stocks
351	were shaken thoroughly to mix and homogenize the solution before adding to the
352	enrichments. For the sediment NOM-amended group, the lyophilized NOM material was
353	fully dissolved in filtered groundwater at 200 mg/L, and filter-sterilized (0.22 μm pore-
354	sized, PES, Corning). TOC content of the filtrate was measured to be 48.4 mg/L. A 90 ml
355	aliquot of the filtrate (containing sediment NOM) was added with 10 ml of unfiltered

356	groundwater. The organic C content added to the microcosms were designed to be at least
357	five times higher than that in background groundwater (TOC 5.9 mg/L). The final
358	concentration of substrates in the microcosms are listed in Supplementary Table S5.
359	An unamended control without any additional C source was included in this
360	study, for which each flask only contained 90 ml of filtered groundwater and 10 ml of
361	unfiltered groundwater. All groups were performed in six replicates. One blank control
362	(without inoculum) was included in each group to monitor potential microbial
363	contamination during incubation. All microcosms were incubated aerobically at 25°C in
364	the dark for up to 30 days, with rotary shaking at 100 rpm. At each sampling time point
365	(days 10, 20, and 30), a 10 ml aliquot of subculture was sampled using a sterile
366	volumetric pipette. Microbes were concentrated by filtration through a membrane filter
367	(0.2 μ m pore-sized, PES, 25 mm, Sterlitech Corp.). The filter was then removed from the
368	syringe filter holder and kept frozen at -80°C until DNA extraction.
369	
370	DNA extraction for microbial community analysis
371	Before DNA extraction was conducted, the filters were cut into 2 mm-wide
372	stripes using sterile blades and put into DNA extraction tubes provided in PowerMax Soil
373	DNA Isolation Kit (MO BIO I aboratories Inc. Carlshad CA) DNA was extracted

373 DNA Isolation Kit (MO BIO Laboratories, Inc., Carlsbad, CA). DNA was extracted

374 following the manufacturer's protocol, and quantified using the Qubit dsDNA HS Assay

375 Kit (Life Technologies, Eugene, OR) with a Qubit fluorometer (Invitrogen, Eugene, OR).

376 Extracted DNA were stored at -20° C until further processing.

377

378 16S rRNA gene amplicon library preparation

For analysis of bacterial community composition, a two-step PCR protocol was performed. In the first step the 16S rRNA gene of V4 variable region was amplified and in the second step Illumina barcodes and adapters for sequencing were added. Extracted DNA from enrichments were each aliquoted into one of three randomized plate layouts in a laminar flow hood.

384 Before the first step PCR, all samples were subjected to a qPCR at multiple 385 dilutions to determine target dilutions and threshold cycles for the first step. We used 16S 386 rRNA gene primers PE16S V4 U515 F and PE16S V4 E786R (Supplementary Table 387 S6). Both 1:1 and 1:10 dilutions of each sample were prepared in duplicate with 0.5XSYBR Green I nucleic acid gel stain (Sigma-Aldrich, St. Louis, MO), plus 280 nM for 388 389 each primer and the standard reagents in the Phusion High-Fidelity PCR Kit (New 390 England BioLabs, Ipswich, MA). Samples were then cycled under the following qPCR 391 conditions: 98°C 30 sec; 30 cycles of 98°C 30 sec, 52°C 30 sec, 72°C 30 sec; 4°C hold. 392 Threshold cycles were calculated and dilutions were prepared to normalize samples and 393 ensure consistent amplification cycles across plates. PCR under the same conditions, 394 minus the SYBR Green, was completed in quadruplicate for each sample, then 395 quadruplicate sets were pooled and purified with Agencourt AMPure XP Beads 396 according to the manufacturer's protocol (Beckman Coulter, Brea, CA). 397 The second step PCR was used to add sample indices and final Illumina adaptors 398 to the 16S rRNA gene amplicons. Reactions were compiled using the Phusion High-399 Fidelity PCR Kit according to the manufacturer's instructions, with 420 nM indexing 400 primers PE-III-PCR-F and PE-IV-PCR-R (Supplementary Table S6), then cycled under 401 the following conditions: 98°C 30 sec; 7 cycles of 98°C 30 sec, 83°C 30 sec, 72°C 30

402	sec; 4°C hold. Final libraries were purified with Agencourt AMPure XP Beads according
403	to the manufacturer's protocol, then quantified and pooled prior to 2×250 paired-end
404	sequencing on an Illumina MiSeq. Data are available on the NCBI database under the
405	accession code PRJNA524696.
406	
407	16S rRNA gene amplicon data processing and operational taxonomic unit (OTU)
408	analysis
409	Raw reads were quality filtered and clustered into operational taxonomic units
410	(OTUs) primarily with the QIIME software package ⁴⁸ using default parameters unless
411	otherwise noted. Paired-end reads were joined with the join_paired_ends.py command,
412	then barcodes were extracted from the successfully joined reads with the
413	extract_barcodes.py command (and additional parameters -c barcode_in_label, -l 16, -s
414	'#'). Quality filtering was accomplished with split_libraries_fastq.py (barcode_type 16,
415	min_per_read_length_fraction 0.40, -q 20,max_barcode_errors 0,
416	max_bad_run_length 0,phred_offset 33). We checked for the correct forward and
417	reverse primers with a custom script and exported reads with primers removed and length
418	trimmed to 225 bp. Finally, chimeric sequences were removed using
419	identify_chimeric_seqs.py (-m usearch61,suppress_usearch61_ref), followed by
420	filter_fasta.py.
421	After quality filtering, reads were clustered into 97% OTUs, classified against a
422	16S rRNA database, and aligned in order to build phylogenetic trees. We ran the QIIME
423	commands pick_otus.py, pick_rep_set.py (-m most_abundant), and make_otu_table.py to

424	produce the OTU table. The RDP classifier was used to assign taxonomy with d	efault
425	parameters and the 16S rRNA training set ⁴⁹ .	

426 In this study, 16S rRNA gene amplicon sequencing resulted in over 10 million

427 prokaryotic 16S rRNA gene reads, which were clustered into 3463 OTUs. Only rarefied

- 428 OTU richness was considered further, in order to compensate for differences in
- 429 sequencing depth between 144 samples. No DNA was detected in blank controls,

430 suggesting that microbial contamination was negligible during incubation.

431

432 Bacterial isolation

The natural complex C (bacterial cell lysate and sediment NOM)-amended
enrichments at each time point were used as inocula for further bacterial isolation.

435 Isolation from simple C enrichments was not pursued. The enrichment inoculum was

436 streaked on a complex C agar plate, prepared using the same medium as corresponding

437 liquid enrichment (cell lysate or NOM) with 1.5% agar (BD Biosciences, USA) and were

438 incubated at 27°C in the dark. We also streaked the enrichment sample on diluted,

439 commercially available culture media (with 1.5% agar), i.e., 1/25 LB, 1/25 tryptic soy

440 broth (TSB), and 1/10 Reasoner's 2A (R2A), to obtain as many colonies as possible.

441 Bacterial colonies were streaked again if necessary until single colonies were obtained.

442 The single colony was picked from a plate and transferred to 3 ml of corresponding liquid

443 media. The liquid cultures were incubated at 27°C in the dark for up to 3 weeks before

444 DNA extraction. All the bacterial isolates were confirmed for growth and maintenance on

445 easily available commercial media (1/25 LB, 1/25 TSB or 1/10 R2A).

446

447 Species identification

448	Genomic DNA of bacterial isolates were extracted using a PureLink Genomic
449	DNA Mini Kit (Invitrogen, United States), following the manufacturer's protocol. 16S
450	rRNA genes were amplified (initial denaturation step at 98°C for 5 min, followed by 30
451	cycles at 95°C for 30 s, 50°C for 30 s and 72°C for 2 min, followed by a final step at
452	72°C for 3 min) using the eubacterial primers 27F (AGA GTT TGA TCC TGG CTC AG)
453	and 1492R (ACG GCT ACC TTG TTA CGA CTT) purchased from Integrated DNA
454	Technologies, Inc. (USA). Cleanup of PCR products and DNA sequencing were
455	performed at University of California Berkeley DNA Sequencing Facility. The PCR
456	products were sequenced using the internal primers 27F and 1492R. Sequences were
457	obtained by Sanger sequencing with ABI 3730XL DNA Analyzers (ThermoFisher,
458	United States). Consensus sequences (1200-1400 base pairs) from forward and reverse
459	sequences were generated using Geneious (version 9.1.3) and deposited in Genbank
460	under the access codes listed in Table S2. The SILVA database was used for bacterial
461	isolate classification. Sequence alignments, finding nearest neighbors, and phylogenetic
462	tree reconstructions were performed in SILVA using SINA (v1.2.11) and RAxML.
463	Phylogenetic tree visualization of the selected OTUs was performed using iTOL
464	(https://itol.embl.de).
465	

465

466 Data analysis and statistics

467 Shannon's diversity index (*H'*) and multivariate statistics were performed using
468 the R package *vegan*. OTU distributions were transformed into relative abundances using
469 the function *decostand*. These were subjected to Hellinger transformation before

470	calculation of Bray-Curtis dissimilarity matrices comparing community composition
471	between samples. Nonmetric multidimensional scaling (NMDS) using function metaMDS
472	was performed using these dissimilarity matrices. A multivariate analysis of variance
473	(MANOVA) model was implemented in the vegan function adonis. Analysis of similarity
474	(ANOSIM) was carried out based on Bray-Curtis dissimilarities to evaluate the effect of
475	C source and incubation time on community structure. We compared the relative
476	abundance of taxa among the samples and selected 'promoted' OTUs using R software.
477	Samples were compared by one-way ANOVA followed by the Dunnett's test ($p < 0.01$)
478	for multiple comparisons.
479	
480	Acknowledgement
481	This research by ENIGMA-Ecosystems and Networks Integrated with Genes and
482	Molecular Assemblies (http://enigma.lbl.gov), a Scientific Focus Area Program at
483	Lawrence Berkeley National Laboratory, is based upon work supported by the U.S.
484	Department of Energy, Office of Science, Office of Biological & Environmental
405	
485	Research under contract number DE-AC02-05CH11231. The FRC groundwater sample
485 486	Research under contract number DE-AC02-05CH11231. The FRC groundwater sample was kindly provided by Terry C Hazen and Dominique C Joyner, Oak Ridge National
486	was kindly provided by Terry C Hazen and Dominique C Joyner, Oak Ridge National
486 487	was kindly provided by Terry C Hazen and Dominique C Joyner, Oak Ridge National Laboratory. We would also like to thank the MIT BioMicro Center for sequencing

491 **Reference:**

- 1. Lloyd, K. G.; Steen, A. D.; Ladau, J.; Yin, J. Q.; Crosby, L., Phylogenetically Novel
- 493 Uncultured Microbial Cells Dominate Earth Microbiomes. *Msystems* **2018**, *3* (5).
- 494 2. Giovannoni, S.; Stingl, U., The importance of culturing bacterioplankton in the 'omics'
- 495 age. *Nature Reviews Microbiology* **2007**, *5* (10), 820-826.
- 496 3. Overmann, J., Principles of Enrichment, Isolation, Cultivation, and Preservation of
- 497 Prokaryotes. In The Prokaryotes, Dworkin, M.; Falkow, S.; Rosenberg, E.; Schleifer,
- 498 K.-H.; Stackebrandt, E. (Eds.), Springer-Verlag New York, 2006.
- 499 4. Eilers, H.; Pernthaler, J.; Glockner, F. O.; Amann, R., Culturability and in situ
- abundance of pelagic bacteria from the North Sea. *Applied and Environmental Microbiology* 2000, 66 (7), 3044-3051.
- 502 5. Cui, Y. W.; Zhang, H. Y.; Lu, P. F.; Peng, Y. Z., Effects of carbon sources on the
- enrichment of halophilic polyhydroxyalkanoate-storing mixed microbial culture in an
 aerobic dynamic feeding process. *Scientific Reports* 2016, 6.
- 505 6. Wawrik, B.; Kerkhof, L.; Kukor, J.; Zylstra, G., Effect of different carbon sources on
- community composition of bacterial enrichments from soil. *Applied and Environmental Microbiology* 2005, *71* (11), 6776-6783.
- 508 7. Lok, C., Mining the microbial dark matter. *Nature* **2015**, *522* (7556), 270-273.
- 8. Overmann, J.; Abt, B.; Sikorski, J., Present and Future of Culturing Bacteria. *Annual Review of Microbiology, Vol 71* 2017, *71*, 711-730.
- 511 9. Steen, A. D.; Crits-Christoph, A.; Carini, P.; DeAngelis, K. M.; Fierer, N.; Lloyd,
- 512 K. G.; Thrash, J. C., High proportions of bacteria and archaea across most biomes remain 513 uncultured. *Isme Journal* **2019**, *13* (12), 3126-3130.
- 514 10. Martiny, A. C., The '1% culturability paradigm' needs to be carefully defined. *Isme* 515 *Journal* **2020**, *14* (1), 10-11.
- 516 11. Zengler, K.; Toledo, G.; Rappe, M.; Elkins, J.; Mathur, E. J.; Short, J. M.; Keller,
- 517 M., Cultivating the uncultured. Proceedings of the National Academy of Sciences of the
- 518 United States of America **2002**, 99 (24), 15681-15686.
- 519 12. Kaeberlein, T.; Lewis, K.; Epstein, S. S., Isolating "uncultivable" microorganisms in
- 520 pure culture in a simulated natural environment. *Science* **2002**, *296* (5570), 1127-1129.
- 521 13. Connon, S. A.; Giovannoni, S. J., High-throughput methods for culturing
- 522 microorganisms in very-low-nutrient media yield diverse new marine isolates. *Applied*
- 523 and Environmental Microbiology **2002**, 68 (8), 3878-3885.
- 524 14. Rappe, M. S.; Connon, S. A.; Vergin, K. L.; Giovannoni, S. J., Cultivation of the
- 525 ubiquitous SAR11 marine bacterioplankton clade. *Nature* **2002**, *418* (6898), 630-633.
- 526 15. Tuan Manh, N.; Seo, C.; Ji, M.; Paik, M.-J.; Myung, S.-W.; Kim, J., Effective Soil
- 527 Extraction Method for Cultivating Previously Uncultured Soil Bacteria. *Applied and*
- 528 Environmental Microbiology **2018**, 84 (24).
- 529 16. Henson, M. W.; Pitre, D. M.; Weckhorst, J. L.; Lanclos, V. C.; Webber, A. T.;
- 530 Thrash, J. C., Artificial Seawater Media Facilitate Cultivating Members of the Microbial
- 531 Majority from the Gulf of Mexico. *Msphere* **2016**, *1* (2).
- 532 17. Bartelme, R. P.; Custer, J. M.; Dupont, C.; Espinoza, J. L.; Torralba, M.; Khalili,
- 533 B.; Carini, P., The concentration of heterotrophic growth substrates in culture medium is
- a crucial determinant of the culturability of subsurface soil microbes. **2019**; Vol. bioRxiv
- 535 726661; doi: https://doi.org/10.1101/726661.

- 536 18. Wu, X.; Wu, L.; Liu, Y.; Zhang, P.; Li, Q.; Zhou, J.; Hess, N. J.; Hazen, T. C.;
- 537 Yang, W.; Chakraborty, R., Microbial Interactions With Dissolved Organic Matter Drive
- 538 Carbon Dynamics and Community Succession. *Frontiers in Microbiology* **2018**, *9*, <u>1234</u>.
- 539 19. Balch, W. E.; Fox, G. E.; Magrum, L. J.; Woese, C. R.; Wolfe, R. S.,
- 540 METHANOGENS RE-EVALUATION OF A UNIQUE BIOLOGICAL GROUP.
- 541 *Microbiological Reviews* **1979**, *43* (2), 260-296.
- 542 20. Coates, J. D.; Lonergan, D. J.; Philips, E. J. P.; Jenter, H.; Lovley, D. R.,
- 543 Desulfuromonas palmitatis sp nov, a marine dissimilatory Fe III reducer that can oxidize 544 long-chain fatty acids. *Archives of Microbiology* **1995**, *164* (6), 406-413.
- 545 21. Rossi-Tamisier, M.; Benamar, S.; Raoult, D.; Fournier, P. E., Cautionary tale of
- 546 using 16S rRNA gene sequence similarity values in identification of human-associated
- 547 bacterial species. International Journal of Systematic and Evolutionary Microbiology
- 548 **2015**, *65*, 1929-1934.
- 549 22. Stackebrandt, E.; Ebers, J., Taxonomic parameters revisited: tarnished gold standards.
- 550 *Microbiology Today* **2006**, *33*, 152-155.
- 551 23. Vartoukian, S. R.; Palmer, R. M.; Wade, W. G., Strategies for culture of
- ⁵⁵² 'unculturable' bacteria. *Fems Microbiology Letters* **2010**, *309* (1), 1-7.
- 553 24. Janssen, P. H.; Yates, P. S.; Grinton, B. E.; Taylor, P. M.; Sait, M., Improved
- 554 culturability of soil bacteria and isolation in pure culture of novel members of the
- divisions Acidobacteria, Actinobacteria, Proteobacteria, and Verrucomicrobia. *Applied and Environmental Microbiology* **2002**, *68* (5), 2391-2396.
- 557 25. Schoenborn, L.; Yates, P. S.; Grinton, B. E.; Hugenholtz, P.; Janssen, P. H., Liquid
- serial dilution is inferior to solid media for isolation of cultures representative of the
- 559 phylum-level diversity of soil bacteria. *Applied and Environmental Microbiology* **2004**,
- 560 70 (7), 4363-4366.
- 561 26. Nichols, D.; Cahoon, N.; Trakhtenberg, E. M.; Pham, L.; Mehta, A.; Belanger, A.;
- 562 Kanigan, T.; Lewis, K.; Epstein, S. S., Use of Ichip for High-Throughput In Situ
- 563 Cultivation of "Uncultivable" Microbial Species. Applied and Environmental
- 564 *Microbiology* **2010**, *76* (8), 2445-2450.
- 565 27. Bollmann, A.; Lewis, K.; Epstein, S. S., Incubation of environmental samples in a
- 566 diffusion chamber increases the diversity of recovered isolates. *Applied and*
- 567 *Environmental Microbiology* **2007**, *73* (20), 6386-6390.
- 568 28. Bollmann, A.; Palumbo, A. V.; Lewis, K.; Epstein, S. S., Isolation and Physiology
- of Bacteria from Contaminated Subsurface Sediments. *Applied and Environmental*
- 570 *Microbiology* **2010**, *76* (22), 7413-7419.
- 571 29. Janssen, P. H.; Schuhmann, A.; Morschel, E.; Rainey, F. A., Novel anaerobic
- 572 ultramicrobacteria belonging to the Verrucomicrobiales lineage of bacterial descent
- 573 isolated by dilution culture from anoxic rice paddy soil. Applied and Environmental
- 574 *Microbiology* **1997**, *63* (4), 1382-1388.
- 575 30. Joseph, S. J.; Hugenholtz, P.; Sangwan, P.; Osborne, C. A.; Janssen, P. H.,
- 576 Laboratory cultivation of widespread and previously uncultured soil bacteria. Applied
- 577 *and Environmental Microbiology* **2003**, *69* (12), 7210-7215.
- 578 31. Erikstad, H.-A.; Birkeland, N.-K., Draft Genome Sequence of "Candidatus
- 579 Methylacidiphilum kamchatkense" Strain Kam1, a Thermoacidophilic Methanotrophic
- 580 Verrucomicrobium. *Microbiology Resource Announcements* **2015**, *3* (2).

- 581 32. Spring, S.; Brinkmann, N.; Murrja, M.; Sproeer, C.; Reitner, J.; Klenk, H.-P., High
- 582 Diversity of Culturable Prokaryotes in a Lithifying Hypersaline Microbial Mat.
- 583 *Geomicrobiology Journal* **2015**, *32* (3-4), 332-346.
- 584 33. Matsuzawa, H.; Tanaka, Y.; Tamaki, H.; Kamagata, Y.; Mori, K., Culture-
- 585 Dependent and Independent Analyses of the Microbial Communities Inhabiting the Giant
- 586 Duckweed (Spirodela polyrrhiza) Rhizoplane and Isolation of a Variety of Rarely
- 587 Cultivated Organisms within the Phylum Verrucomicrobia. *Microbes and Environments*
- **2010**, *25* (4), 302-308.
- 589 34. Bergmann, G. T.; Bates, S. T.; Eilers, K. G.; Lauber, C. L.; Caporaso, J. G.;
- 590 Walters, W. A.; Knight, R.; Fierer, N., The under-recognized dominance of
- Verrucomicrobia in soil bacterial communities. Soil Biology & Biochemistry 2011, 43
 (7), 1450-1455.
- 593 35. Freitas, S.; Hatosy, S.; Fuhrman, J. A.; Huse, S. M.; Welch, D. B. M.; Sogin, M.
- L.; Martiny, A. C., Global distribution and diversity of marine Verrucomicrobia. *Isme*
- *Journal* **2012**, *6* (8), 1499-1505.
- 596 36. Lage, O. M.; Bondoso, J., Bringing Planctomycetes into pure culture. *Frontiers in* 597 *Microbiology* 2012, 3.
- 598 37. Tamaki, H.; Tanaka, Y.; Matsuzawa, H.; Muramatsu, M.; Meng, X. Y.; Hanada,
- 599 S.; Mori, K.; Kamagata, Y., Armatimonas rosea gen. nov., sp nov., of a novel bacterial
- 600 phylum, Armatimonadetes phyl. nov., formally called the candidate phylum OP10.
- 601 International Journal of Systematic and Evolutionary Microbiology **2011**, *61*, 1442-1447.
- 602 38. Lee, K. C. Y.; Dunfield, P. F.; Morgan, X. C.; Crowe, M. A.; Houghton, K. M.;
- 603 Vyssotski, M.; Ryan, J. L. J.; Lagutin, K.; McDonald, I. R.; Stott, M. B.,
- 604 Chthonomonas calidirosea gen. nov., sp nov., an aerobic, pigmented, thermophilic micro-
- organism of a novel bacterial class, Chthonomonadetes classis nov., of the newly
- 606 described phylum Armatimonadetes originally designated candidate division OP10.
- 607 International Journal of Systematic and Evolutionary Microbiology **2011**, *61*, 2482-2490.
- 608 39. Im, W. T.; Hu, Z. Y.; Kim, K. H.; Rhee, S. K.; Meng, H.; Lee, S. T.; Quan, Z. X.,
- 609 Description of Fimbriimonas ginsengisoli gen. nov., sp nov within the Fimbriimonadia
- 610 class nov., of the phylum Armatimonadetes. *Antonie Van Leeuwenhoek International*
- 611 Journal of General and Molecular Microbiology 2012, 102 (2), 307-317.
- 612 40. Li, J.; Kudo, C.; Tonouchi, A., Capsulimonas corticalis gen. nov., sp. nov., an
- 613 aerobic capsulated bacterium, of a novel bacterial order, Capsulimonadales ord. nov., of
- 614 the class Armatimonadia of the phylum Armatimonadetes. *International Journal of*
- 615 *Systematic and Evolutionary Microbiology* **2019**, *69* (1), 220-226.
- 616 41. Barbieri, E.; Potenza, L.; Rossi, I.; Sisti, D.; Giomaro, G.; Rossetti, S.; Beimfohr,
- 617 C.; Stocchi, V., Phylogenetic characterization and in situ detection of a Cytophaga-
- 618 Flexibacter-Bacteroides phylogroup bacterium in Tuber borchii Vittad, ectomycorrhizal
- 619 mycelium. Applied and Environmental Microbiology **2000**, 66 (11), 5035-+.
- 620 42. Field, E. K.; D'Imperio, S.; Miller, A. R.; VanEngelen, M. R.; Gerlach, R.; Lee, B.
- D.; Apel, W. A.; Peyton, B. M., Application of Molecular Techniques To Elucidate the
- 622 Influence of Cellulosic Waste on the Bacterial Community Structure at a Simulated Low-
- 623 Level-Radioactive-Waste Site. *Applied and Environmental Microbiology* **2010**, *76* (10),
- 624 3106-3115.

- 43. Shi, P.; Jia, S. Y.; Zhang, X. X.; Zhang, T.; Cheng, S. P.; Li, A. M., Metagenomic
- 626 insights into chlorination effects on microbial antibiotic resistance in drinking water.
 627 Water Research 2013, 47 (1), 111-120.
- 628 44. Geissler, A.; Selenska-Pobell, S., Addition of U(VI) to a uranium mining waste
- sample and resulting changes in the indigenous bacterial community. *Geobiology* 2005, 3(4), 275-285.
- 45. Sheu, S. Y.; Chen, T. Y.; Young, C. C.; Chen, W. M., Stagnimonas aquatica gen.
- nov., sp. nov., a new member of the family Nevskiaceae isolated from a freshwater
- 633 mesocosm. International Journal of Systematic and Evolutionary Microbiology 2019, 69
- 634 (6), 1606-1612.
- 635 46. Wang, X. F.; Cho, K. S.; Son, A., Ultrasonication as a rapid and high yield DNA
- extraction method for bacterial gene quantification by NanoGene assay. *Biotechnology and Bioprocess Engineering* 2015, 20 (6), 1133-1140.
- 47. Simmon, K. E.; Steadman, D. D.; Durkin, S.; Baldwin, A.; Jeffrey, W. H.;
- 639 Sheridan, P.; Horton, R.; Shields, M. S., Autoclave method for rapid preparation of
- 640 bacterial PCR-template DNA. Journal of Microbiological Methods 2004, 56 (2), 143-
- 641 149.
- 642 48. Caporaso, J. G.; Kuczynski, J.; Stombaugh, J.; Bittinger, K.; Bushman, F. D.;
- 643 Costello, E. K.; Fierer, N.; Pena, A. G.; Goodrich, J. K.; Gordon, J. I.; Huttley, G. A.;
- 644 Kelley, S. T.; Knights, D.; Koenig, J. E.; Ley, R. E.; Lozupone, C. A.; McDonald, D.;
- 645 Muegge, B. D.; Pirrung, M.; Reeder, J.; Sevinsky, J. R.; Tumbaugh, P. J.; Walters, W.
- A.; Widmann, J.; Yatsunenko, T.; Zaneveld, J.; Knight, R., QIIME allows analysis of
- high-throughput community sequencing data. *Nature Methods* **2010**, *7*(5), 335-336.
- 648 49. Wang, Q.; Garrity, G. M.; Tiedje, J. M.; Cole, J. R., Naive Bayesian classifier for
- 649 rapid assignment of rRNA sequences into the new bacterial taxonomy. *Applied and*
- 650 Environmental Microbiology 2007, 73 (16), 5261-5267.
- 651 652

653 Figure legends:

654

Figure 1. Non-metric multidimensional scaling (NMDS) based on Bray-Curtisdissimilarities of bacterial community composition.

657

658 Figure 2. Diverse bacteria enriched with complex natural organic C sources. (A) Box and 659 whisker plots illustrating the relative diversity of bacterial community in enrichments 660 amended with different C sources as compared to the unamended control. Relative 661 diversity is calculated as H_i'/H_0' . H_i' is Shannon's diversity index of individual sample, 662 H_0 ' is the average Shannon's diversity index of unamended control at corresponding sampling time point. Significant differences between C-amended group and unamended 663 control is indicated by *** when p < 0.001, ** when p < 0.01, and * when p < 0.05. (B) 664 665 Temporal community structures of each C-amended group reported as relative abundance 666 of taxonomic phyla over 3 timepoints (Days 10, 20, and 30).

667

668 **Figure 3.** Selected bacterial species (one-way ANOVA with Dunnett's multiple

669 comparison adjustment, *p*-value < 0.01) that are promoted to grow by simple C sources

670 (glucose, acetate, benzoate, and oleic acid) and complex natural organic C sources

671 (bacterial cell lysate and sediment NOM) in enrichment cultures as compared to the

unamended control. (A) Phylogenetic tree (constructed with RAxML) of 'promoted'
OTUs. OTU labels are highlighted according to their phylum. Bold OTU labels designate

674 OTUs for which we isolated representative species (99-100% identity). Markers

surrounding the tree denote the day (10 - square, 20 - circle, or 30 - star) and C substrate
in which the OTU is significantly enriched. (B) The number of OTUs that are promoted
exclusively by simple C sources, exclusively by complex natural organic C sources, and

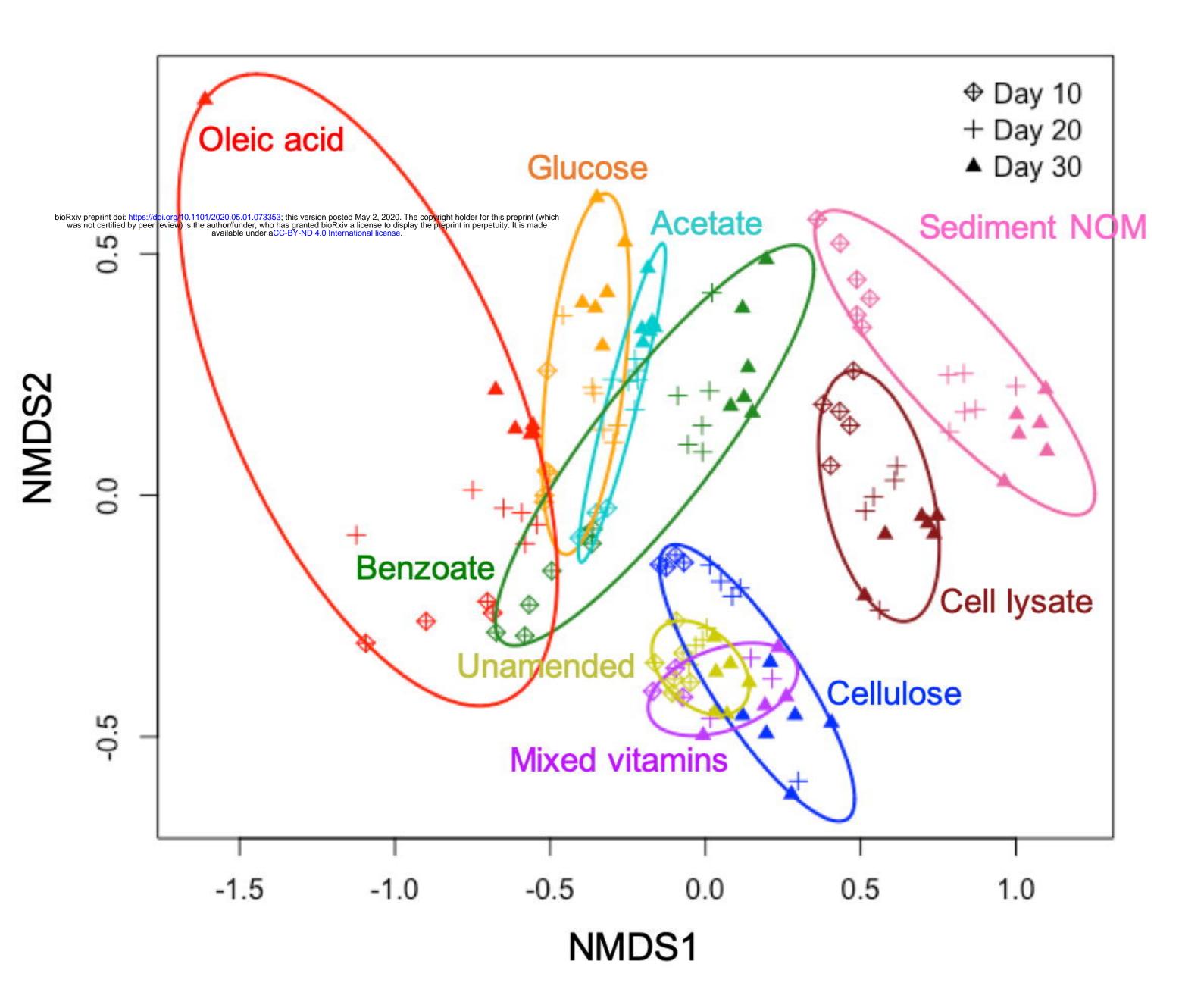
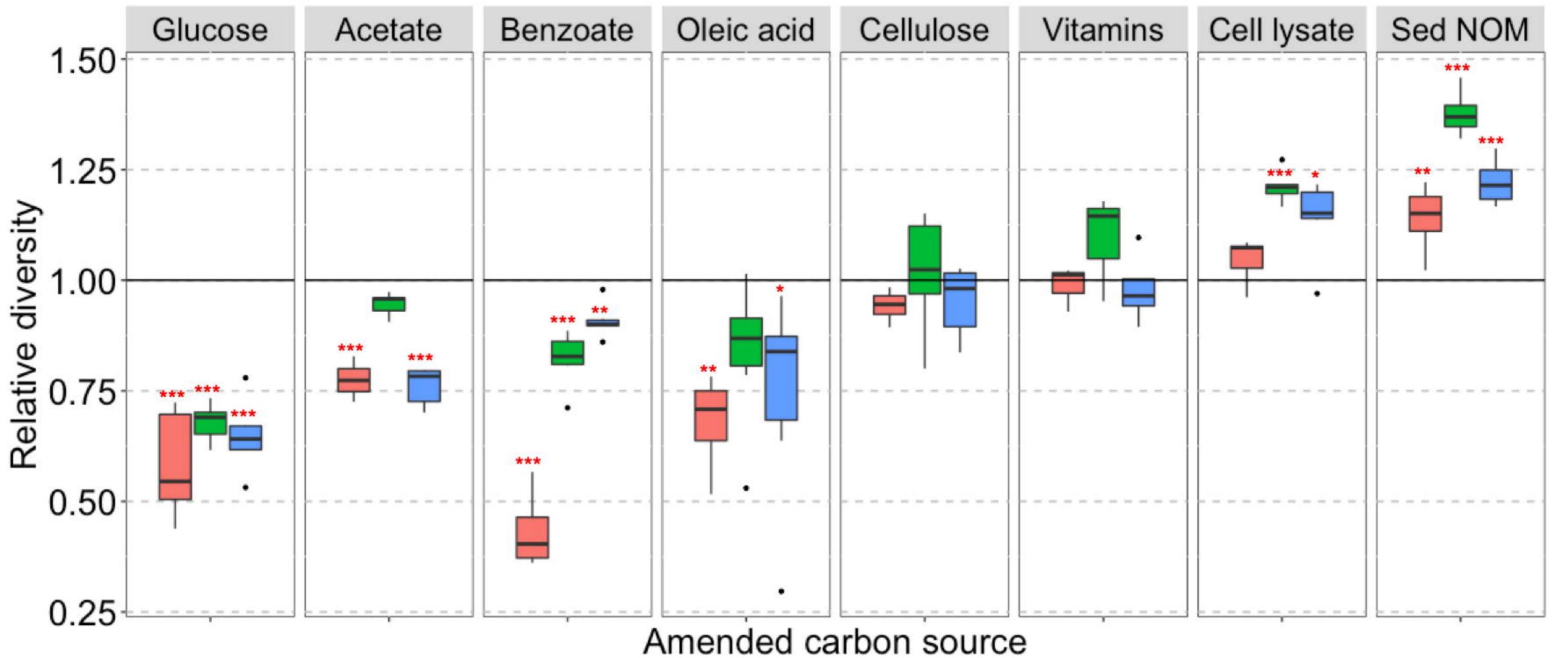
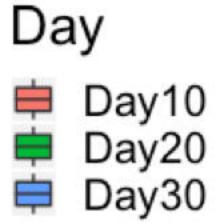
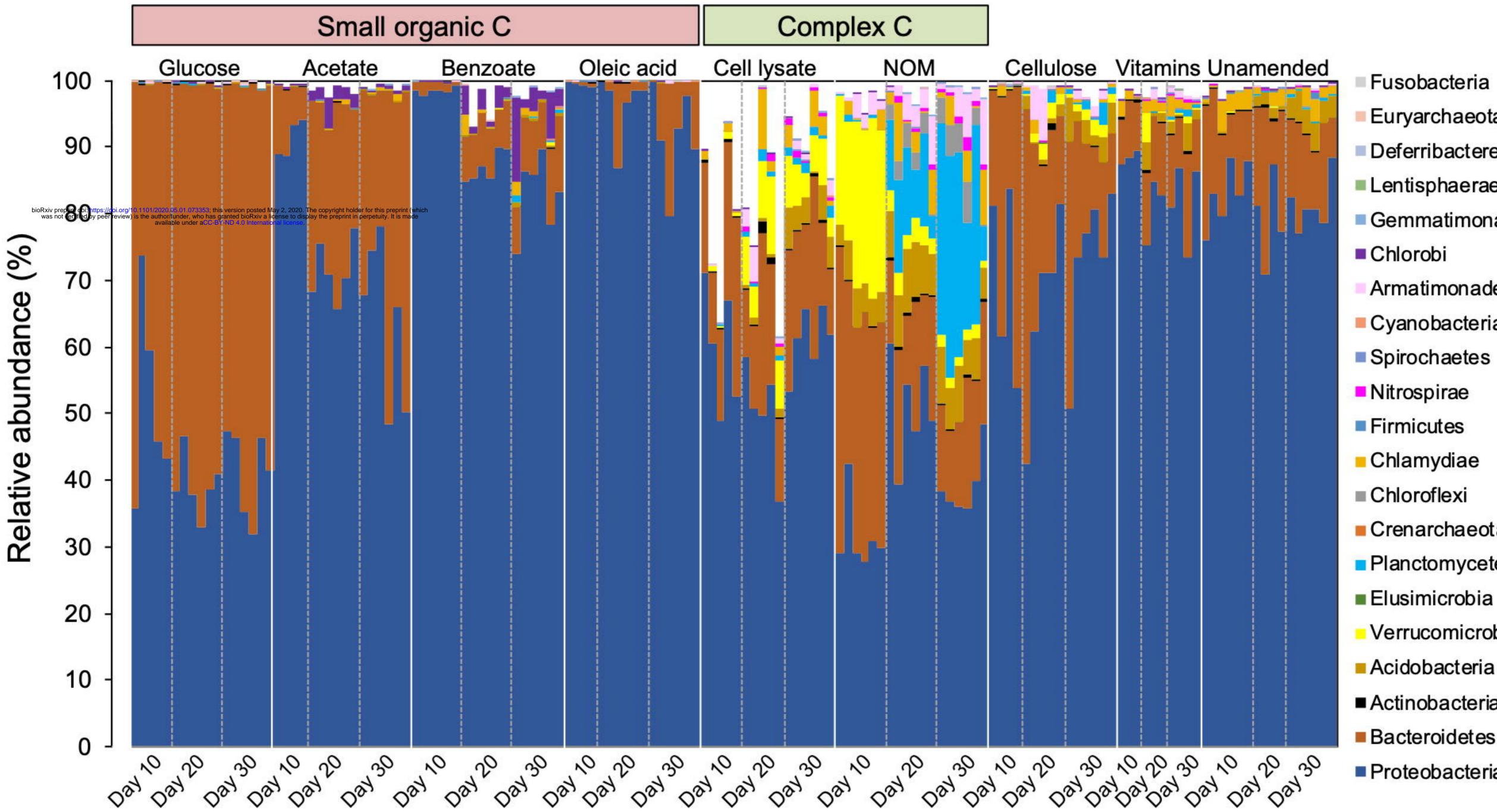
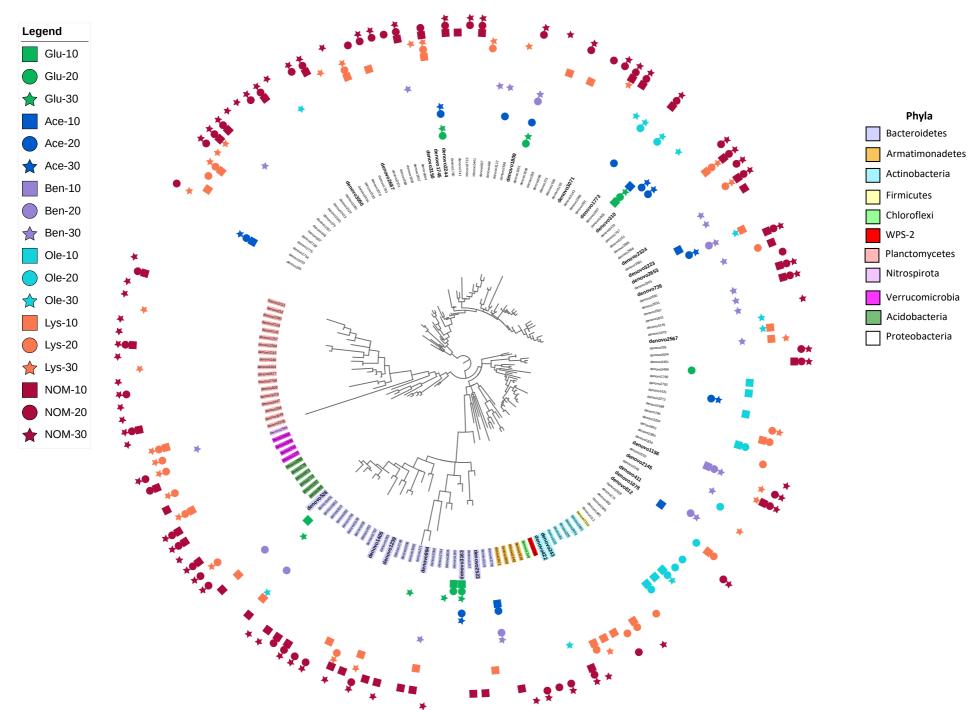

- 678 by both simple and complex C sources.
- 679

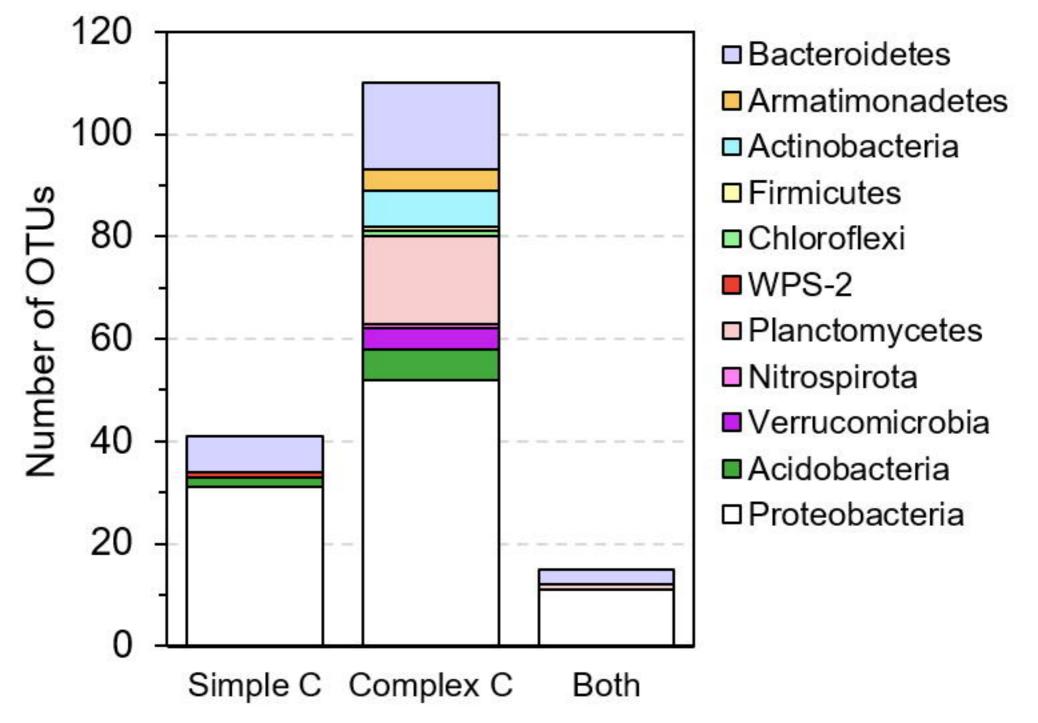
Figure 4. Phylogenetic tree of representative bacterial isolates representing 54 distinct
species. The tree is constructed from near full-length 16S rRNA gene sequences.
Undescribed species (black), novel candidate species (blue), and novel candidate genus
members (red) are shown by dot colors. The class and order of the representative isolates
are listed on the right.

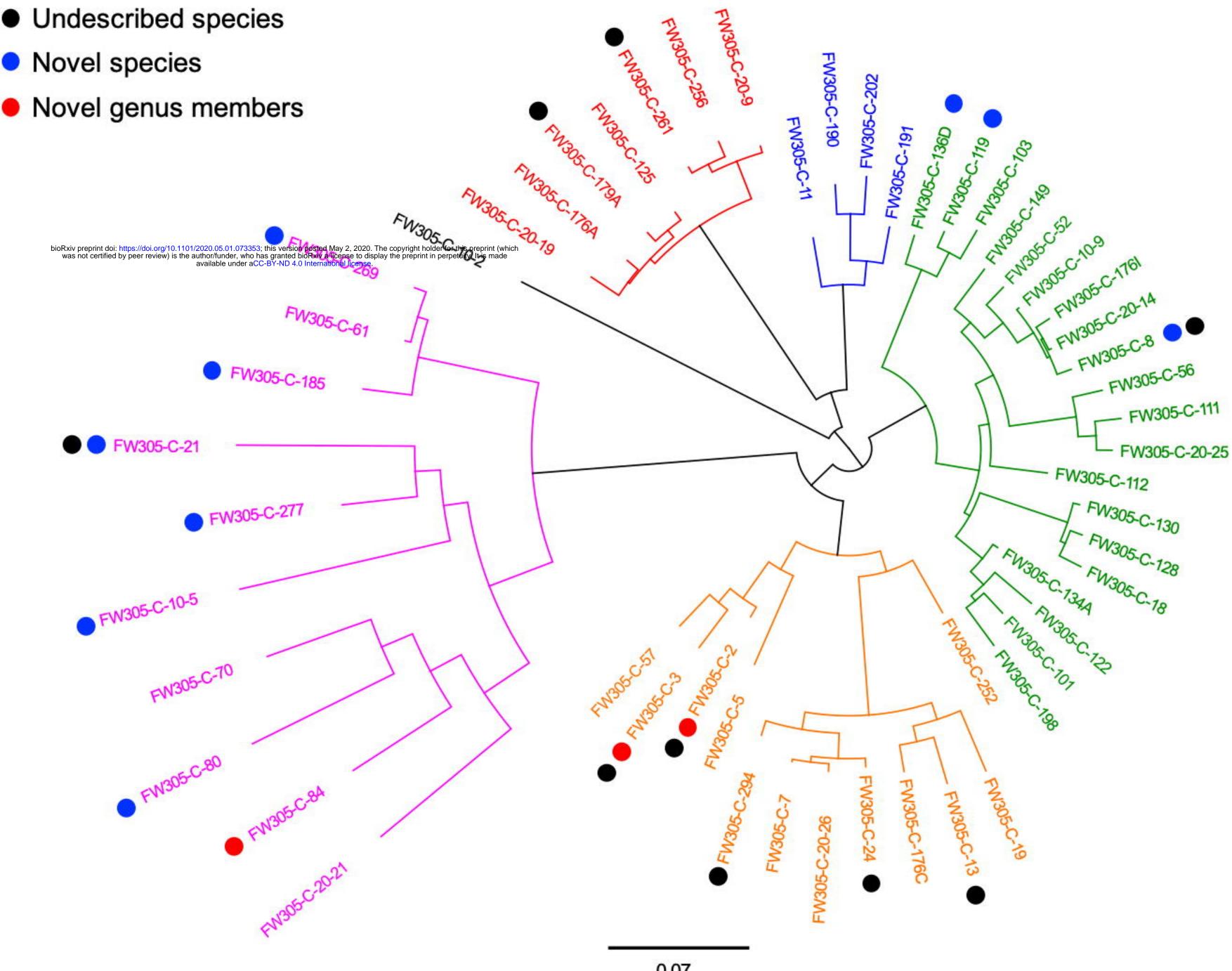

685


Figure 5. Phylogenetic tree of FW305-C-21 and the most similar bacteria based on 16S rRNA genes. Scale bar indicates a change of 0.02 per nucleotide. The 16S rRNA gene sequences were aligned using SINA against the SILVA alignment and the maximum likelihood tree was calculated using RAxML. The top five organisms are as far cultured organisms within this family.


- 691
- 692
- 693
- 694







- Fusobacteria
- Euryarchaeota
- Deferribacteres
- Lentisphaerae
- Gemmatimonadetes
- Armatimonadetes
- Cyanobacteria
- Crenarchaeota
- Planctomycetes
- Elusimicrobia
- Verrucomicrobia
- Acidobacteria
- Actinobacteria
- Bacteroidetes
- Proteobacteria

Tree scale: 0.1 ⊣

Actinobacteria

Micrococcales .

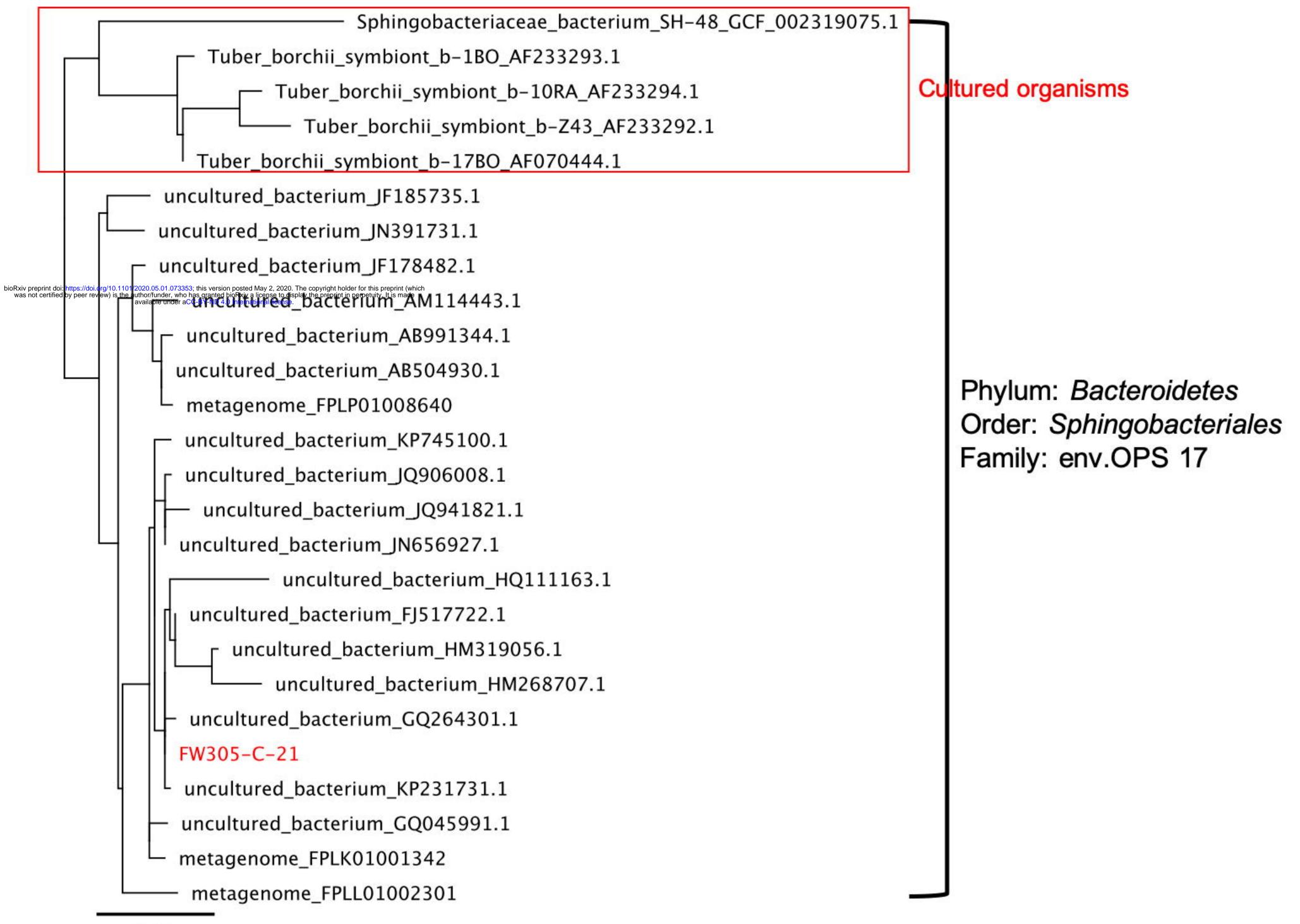
Bacilli

- Bacillales ٠
- Brevibacillales •

Bacteroidia

- Chitinophagales
- Cytophagales .
- Flavobacteriales •
- Sphingobacteriales .

Deinococci


Deinococcales ٠

Alphaproteobacteria

- Acetobacterales .
- Caulobacterales .
- Rhizobiales .
- Sphingomonadales ٠

Gammaproteobacteria

- **Burkholderiales**
- Pseudomonadales
- Salinisphaerales
- Xanthomonadales .

