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ABSTRACT2

At the crossroad between biology and mathematical modelling, computational systems biology3
can contribute to a mechanistic understanding of high-level biological phenomenon. But as4
knowledge accumulates, the size and complexity of mathematical models increase, calling for5
the development of efficient dynamical analysis methods. Here, we propose the use of two6
approaches for the development and analysis of complex cellular network models.7

A first approach, called ”model verification” and inspired by unitary testing in software8
development, enables the formalisation and automated verification of validation criteria for whole9
models or selected sub-parts. When combined with efficient analysis methods, this approach is10
suitable for continuous testing, thereby greatly facilitating model development.11

A second approach, called ”value propagation”, enables efficient analytical computation of12
the impact of specific environmental or genetic conditions on the dynamical behaviour of some13
models.14

We apply these two approaches to the delineation and the analysis of a comprehensive model15
for T cell activation, taking into account CTLA4 and PD-1 checkpoint inhibitory pathways. While16
model verification greatly eases the delineation of logical rules complying with a set of dynamical17
specifications, propagation provides interesting insights into the different potential of CTLA4 and18
PD-1 immunotherapies.19

Both methods are implemented and made available in the all-inclusive CoLoMoTo Docker image,20
while the different steps of the model analysis are fully reported in two companion interactive21
jupyter notebooks, thereby ensuring the reproduction of our results.22
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1 INTRODUCTION
Recent technical developments have allowed scientists to study immunology and health-related issues24
from a variety of angles. For many diseases, especially for cancer, the current trend consists in aggregating25
data coming from different sources to gain a global view of cell, tissue, or organ dysfunction. Over the26
last decades, diverse mathematical frameworks have been proposed to seize a multiplicity of biological27
questions (Le Novère, 2015), including in immunology (Kaufman et al., 1985, 1999; Eftimie et al., 2016;28
Chakraborty, 2017). However, the increasing complexity of biological questions implies the development29
of more sophisticated models, which in turn bring serious computational challenges.30

Among the mathematical approaches proposed for the modelling of cellular networks, the logical31
modelling framework is increasingly used. In particular, it has been successfully applied to immunology32
and cancer, leading to the creation of models encompassing dozens of components, some including many33
inputs components (Grieco et al., 2013; Abou-Jaoudé et al., 2014; Flobak et al., 2015; Oyeyemi et al.,34
2015). However, the large size of recent models hinders the complete exploration of their dynamical35
behaviour through simulation, especially in non-deterministic settings.36

To address these difficulties, we define and apply a model verification approach to systematically verify37
whether a model complies with a list of known properties (section 2). These properties are defined as38
model specifications, either at a local (i.e. for sub-models) or at a global level. This automated verification39
procedure fosters confidence during the development of a complex dynamical model and paves the way to40
the development of models with hundreds of nodes.41

We further outline and apply a value propagation method, which enables the assessment of the impact of42
environmental or genetic constraints on the dynamical behaviour of complex cellular networks (section 3).43

These two complementary approaches can be applied to the development and analysis of large dynamical44
models, as illustrated in Figure 1. Noteworthy, they have been implemented in a multi-platform Docker45
image combining various complementary logical modelling and analysis tools (Naldi et al., 2018b). We46
further illustrate the power of these methods through the analysis of an original model described in Section 4.47
The different steps of analysis are fully reported in two companion interactive jupyter notebooks, available48
with the model on the GINsim website (http://ginsim.org/model/tcell-checkpoint-inhibitors-tcla4-pd1),49
thereby ensuring their reproducibility.50

2 MODEL VERIFICATION
2.1 A software engineering framework for logical model building51

One of the main features determining the interest of a model is its ability to accurately recapitulate salient52
biological knowledge. More precisely, this knowledge can be used in two complementary ways during53
the model building process. On the one hand, it is used to define the model architecture, specifying which54
biological entities need to be included and which interactions between these entities need to be encoded. On55
the other hand, biological knowledge entails dynamical properties that must be achieved by the resulting56
model, whether transitory or asymptotic, to account for biological observations. These properties induce57
satisfaction criteria and must be clearly specified for rigorous model assessment or comparison with other58
models. Failures to reproduce such properties need to be carefully documented, thereby providing a basis59
for further model improvement.60

In the domain of logical modeling applied to cellular networks, various formal methods have already61
been proposed to verify dynamical properties. For example stable states (or textitfixed points, characterised62
by all components being steady at the same time) tentatively correspond to asymptotic properties that63
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can used to assess the reproduction of known persistent biological behaviour. More complex asymptotic64
behaviours include cyclic attractors, which can be approximate by the computation of so called trap spaces.65
Also called stable motifs, trap spaces are hypercubes in the state space such that all successors of all states66
in the hypercube also belong to it (for synchronous and asynchronous updatings, or any other updating).67
These hypercubes then provide an approximation of complex attractors. Trap spaces and stable states can68
be defined as results of a constraint solving system, enabling their efficient computation (Klarner et al.,69
2018). Their reachability however must be assessed separately, often using model checking or stochastic70
simulations, which requires longer computations.71

Model checking techniques have been successfully applied to specify and verify temporal constraints on72
a model behaviour (Monteiro and Chaouiya, 2012; Miskov-Zivanov et al., 2016; Traynard et al., 2016;73
Wang et al., 2016).74

In any case, whatever the formalism chosen, the building of a complex dynamical model is intrinsically75
iterative, as its establishment is usually incremental and requires continuous testing and adjustment with76
reference to a growing body of biological knowledge.77

In the field of software engineering, the similar need to repeatedly assess criteria of success or failure of a78
software program led to the development of powerful software verification techniques, and in particular79
to software testing (Myers, 1979), which main goal is to assess whether a software meets a series of80
well-defined requirements. More importantly, such assessments must be repeated as soon as a new piece of81
code or specification is added. Software testing aims to check whether newly introduced modification might82
break any of the previous performances. In particular, software verification includes the notion of unit83
testing, where suites of tests describe the expected behaviour associated with individual units composing a84
program. This idea can be transposed from computer science to model building and has been successfully85
applied in the context of other modeling frameworks (Hoops et al., 2006; Lopez et al., 2013; Sarma et al.,86
2016; Boutillier et al., 2018), but not yet to logical modeling.87

Here, we transpose the unit testing approach to integrate a comprehensive series of verifiable criteria,88
from the early stages of model conception, in order to fully automate the dynamical evaluation of logical89
models. The core idea is to split the biological knowledge on which a model is based into individual90
verifiable criteria that can be formalised as specifications (Figures 1 and 2). In this respect, individual units91
of knowledge, derived from the scientific literature or biological experiments, must be formulated into92
stable or dynamical properties. Each specification, coupling a property with an expected value, can serve93
as a basis to define a test case for a model. Testing such a specification amounts to compute an ”observed”94
value based on the model and compare this value to the expected one.95

In practice, the CoLoMoTo notebook environment (Naldi et al., 2018b) provides a Python API for96
several software tools, enabling the definition of a wide range of dynamical analysis for the computation of97
observed values. Individual test cases can be assembled into a library, also called testing suite. Existing98
tools and packages enabling software testing can then be applied to automatically assess whether a model99
satisfies (or not) a series of specifications. In this study, we used the python package ’unittest’, taking100
advantage of its seamless integration into the CoLoMoTo interactive notebook. This unit-testing package is101
integrated by default into the recent versions of the Python standard library (http://python.org).102

2.2 Local verification of sub-models can cope with sparsity of biological knowledge103

Biological knowledge reported in the scientific literature is often insufficient to evaluate a comprehensive104
model, which may encompass hundreds of nodes. In particular, observations regarding component activity105
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often relate to only a limited subset of nodes of the model. This greatly complicates the definition of106
specifications for the whole model.107

Given a comprehensive model and a set of components of interest, one can extract a sub-model containing108
these core components, along with their associated logical rules. Components which take part of these109
logical rules but are not part of the selected set are considered as external inputs of the sub-model (Figure 2).110
This functionality has been implemented in the ’submodel’ function of the Java bioLQM library (Naldi,111
2018) according to the following procedure.112

Let M = (V, f) be a model, where V is the set of components, and f the update function. For each113
c in V , fc is the logical function associated to the component c and R(c) is the set of its regulators (i.e.114
components that intervene in the logical rule). Given a list of selected components C ⊂ V :115

1. S = ∅116

2. for each component c ∈ C: S = S + {c}+R(c)117

3. create the sub-model M ′ = (S, f ′) such that for each component c in S: f ′c =

{
fc if R(c) ⊂ S

c otherwise
118

As shown in Section 4, the delineation of such sub-models can greatly facilitate the definition and119
verification of local specifications.120

3 VALUE PROPAGATION ENABLES THE EVALUATION OF THE IMPACT OF A
GIVEN CELLULAR ENVIRONMENT ON MODEL DYNAMICS

The core idea of value propagation is presented in Figure 3. Given a set of logical rules and a cellular121
context, an iterative algorithm enables the computation of the dynamical consequences of the cellular122
context on all the components of the model.123

First, the cellular context is formalised by assigning constant values to some components of the model.124
Next, we apply a recent model reduction technique reported by Saadatpour et al. (Saadatpour et al., 2013).125
Briefly, for each constant node, the corresponding value is inserted into the logical rule associated with126
each of its target nodes. Each logical rule is then simplified using Boolean algebra. If the rule simplifies to127
a constant, this fixed value is further propagated into the logical rules of downstream nodes. This process is128
iterated until no further propagation or simplification can be made on the logical rules of the model. In129
contrast with the approach of Saadatpopour et al., which aims at producing a reduced model, we focus130
principally on the outcome of the propagation of fixed values.131

The result of value propagation can be very informative by itself. Indeed, the resulting stabilised values132
provide insights into the impact of a given (single or multiple) perturbation on the model, revealing which133
elements are consequently constrained to become activated or inactivated, versus which elements keep134
some degree of freedom. Furthermore, this method greatly eases the comparison of the impacts of different135
biological contexts on network dynamics by performing a differential analysis of the corresponding lists136
and target values of fixed components. This method has multiple advantages when applied to complex137
networks, as it can be used efficiently on models with large numbers of components. It further simplifies138
the computation of attractors (stable states or even simple or complex cycles). Interestingly, Saadatpour139
and collaborators showed that this method conserves the stable states and complex attractors under the140
fully asynchronous updating assumption (Saadatpour et al., 2013).141
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This method was extended to multilevel models and implemented into the Java bioLQM library (Naldi,142
2018). In this implementation, the fixed components are conserved during value propagation, enabling a143
direct comparison of the propagated effects of alternative perturbations.144

The power of this approach is demonstrated on a concrete example in the following section.145

4 APPLICATION: ASSESSING THE EFFECT OF CHECKPOINT BLOCKADE
THERAPIES ON T CELL ACTIVATION

4.1 Biological background146

Over the last decades, immunotherapies have been the subject of intense studies and led to great advances147
in the field of cancer treatment. Through the years, it has then been recognised that T cells often display148
a reduced ability to eliminate cancer cells, and that expression of co-inhibitory receptors at their surface149
accounts for this compromised function. Receptors like Cytotoxic T-lymphocyte protein 4 (CTLA4, also150
known as CD152) (Walunas et al., 1994; Leach et al., 1996) and Programmed cell death protein 1 (PD-1,151
also known as PDCD1 or CD279) (Ishida et al., 1992) have been particularly studied in that context.152
Antibodies blocking the pathways downstream of these co-inhibitors (checkpoint blockade therapies) have153
become standard treatment for metastatic melanoma (Robert et al., 2011; Simpson et al., 2013) and other154
cancers (Ribas and Wolchok, 2018), including non-small cell lung cancer, renal cell carcinoma, Hodgkin’s155
lymphoma, Merkel cell carcinoma and many others. The successes of these studies led to an increasing156
interest in T cell co-inhibitory receptors.157

Nevertheless, a clear understanding of the mechanisms at work inside T cells remains elusive. Therapies158
targeting CTLA4 or PD-1 show different immune adverse effects (June et al., 2017), while the corresponding159
intra-cellular mechanisms remain to be clarified. Moreover, a rationale for the educated development of160
new immunotherapies focusing on other receptors or combinations of receptors is clearly needed. Co-161
inhibitory receptors are legions at the surface of T cells (Brownlie and Zamoyska, 2013) and biology of162
T cell activation or tolerance involves activation or repression of highly interconnected and complicated163
pathways (Baumeister et al., 2016).164

Given the central role of T cells in many medical contexts, several mathematical frameworks have165
been applied to model T cell activation. Recent examples include rule-based approaches (Chylek et al.,166
2014), ordinary differential equations (Perley et al., 2014), and logical models (Oyeyemi et al., 2015;167
Rodrı́guez-Jorge et al., 2019; Sánchez-Villanueva et al., 2019), considering different biomedical contexts168
as diverse as HIV infection or neonate vaccination. To our knowledge, none of them specifically focused169
on the impact of co-inhibitory receptors on T cell activation or tolerance.170

In this study, we applied the logical framework to integrate current data on CTLA4 and PD-1 pathways171
and assess their impact on T cell activation. Our goal was triple. First, we wanted to create a comprehensive172
model building upon extensive knowledge encoded into a molecular map (see next section). Second, using173
model verification and a specific unit test suite, we aimed to firmly anchor the model at both the global and174
local scale into the collected biological knowledge. Third, using value propagation, we aimed to provide a175
tool for the comparative analysis of intra-cellular consequences when targeting CTLA4 versus PD-1 T-cell176
co-receptors.177

4.2 Comprehensive molecular mapping of T Cell activation network178

Prior to mathematical modelling, knowledge about biological entities involved in T Cell activation was179
collected from available pathway databases, including Reactome (Fabregat et al., 2016), PantherDB (Mi180
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et al., 2013), ACSN (Kuperstein et al., 2015) and WikiPathways (Slenter et al., 2018). Moreover, the181
scientific literature indexed in the PubMed database was further explored and carefully curated. Using182
the software CellDesigner (version 4.3.1) (Funahashi et al., 2008), this knowledge was encoded in a183
molecular map describing reactions between biological entities (either proteins, RNAs, genes, complexes or184
metabolites). Each biological entity included in the map was annotated with a series of standard identifiers,185
including UniProtKB accession number, recommended and alternative names, gene name and synonyms,186
and cross-references to unique HGNC identifiers and approved symbols. The annotations also reference187
relevant scientific articles, including PubMed identifier, first and last authors, year of publication, and a list188
of observations extracted from these publications.189

Our T cell activation map currently encompasses 726 biological entities, in different states (active/inactive,190
with or without post-translational modifications), and 539 reactions involving these entities (Supplementary191
Figure 1 and File 1). Globally, the map currently integrates information from 123 scientific articles, which192
are cited in the annotations of the entities and reactions of the map.193

4.3 Logical modelling of T Cell activation194

Using the logical modelling software GINsim (version 3.0.0b) (Naldi et al., 2018a), we then manually195
derived a regulatory graph encompassing 216 nodes and 451 arcs (Figure 4) from the content of the196
molecular map. One by one, biological entities represented in the molecular map were re-created as197
components of the logical model. In most of the cases, the representation of entities having different states198
was further compressed into a single component summarizing their activity in the TCR signalling cascade.199
Furthermore, to obtain a dynamical logical model, a specific logical rule must be assigned to each node.200
In many cases, this can be achieved rather easily based on published data. For more complex situations,201
a default generic logical rule was initially considered, where all activators are needed for the activation202
of a component (using the AND operator) and where only one inhibitor is sufficient to repress it (using203
the OR and NOT operators), which served as a basis for further rule refinement. In some cases, however,204
in particular when a component is the target of various regulatory interactions or when metabolites are205
involved, finding direct support for a specific rule may be tricky or impossible. Hence, the delineation of206
consistent logical rules for a complex model is often the result of an iterative process, starting with generic207
rules and progressively correcting them based on the results of various analyses.208

Hereafter, we demonstrate how we can take advantage of the methods presented in the previous sections to209
ease rule refinement by model verification. We first defined a series of properties expected for the model (see210
examples in Table 1). Next, stable states and/or trap spaces were computed and automatically compared with211
these properties (cf. first Jupyter notebook provided on the model web page at http://ginsim.org/model/tcell-212
checkpoint-inhibitors-tcla4-pd1). After some iterative runs of the notebook, manual refinements lead us to213
a set of rules complying with all the tests.214

For example, the Endoplasmic Reticulum (ER) serves as a reservoir for calcium ions. This reservoir can be215
emptied through activation of the Inositol 1,4,5-trisphosphate receptor (IP3R1). When empty, this reservoir216
can be filled through activation of the Sarcoplasmic/endoplasmic reticulum calcium ATPase 2 (SERCA)217
pumps. A default logical rule for a node representing the presence of this Calcium quantity (Calcium ER)218
is then ’SERCA AND NOT IP3R1’. To check the behaviour of the corresponding logical sub-model, we219
defined a test checking whether whenever Calcium ER was evaluated to TRUE, SERCA was evaluated220
to FALSE (see test ’test calc tp rest ER1 SERCA0’). However, consecutive model verification failed,221
allowing us to notice that the default rule implied that SERCA should be always TRUE for Calcium ER to222
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be TRUE. The rule was then corrected to take into account the fact that Calcium ER should stay TRUE223
whenever it would reach this value in absence of IP3R1.224

In the first Jupyter notebook provided as supplementary material, we include all the code enabling the225
verification of our final model, which encompasses 36 unit tests split in four test suites. On a MacBook Pro226
using macOS 10.13 High Sierra, with a 2.3 GHz Intel Core i7 and 16GB 1600 MHz DDR3, all the tests227
were run in 87s.228

The four test suites cover the most complex parts of the model, some of them particularly difficult to229
define. These suites use sub-models, whose delineation was guided by known pathways and practical230
knowledge gained by the modeler during the assembly of the molecular map. The Calcium module test231
suite covers a sub-model related to the fluxes of Calcium ions between different cellular compartments,232
namely the endoplasmic reticulum, the cytoplasm and the extracellular region. The LCK module test233
suite is centered on the Tyrosine-protein kinase Lck (LCK). This kinase is known to have multiple sites234
of phosphorylation, whose collective status determines the tridimensional conformation and thus the235
activity of the enzyme (Ventimiglia and Alonso, 2013). The Cytoskeleton module test suite covers the236
cytoskeleton remodelling events occuring during T cell activation, and has strong connections with the237
Calcium sub-model. Finally, the Anergy/activation/differentiation module covers a less documented module238
encompassing the nucleus compartment and gene transcription.239

4.4 Comparison of the impacts of CTLA4 and PD-1 co-inhibitory receptors through240
value percolation241

Based on the model described in the preceding section, a comparative propagation analysis was performed242
to visualise the respective effects of CTLA4 and PD-1 receptor activation on model dynamics. Figure 5243
displays the value propagation for each condition on a single regulatory graph, using a color code to244
distinguish the different situations (component inhibition/activation in one or both conditions). The value245
propagation for the two conditions are further shown separately in the second companion notebook246
(available at http://ginsim.org/model/tcell-checkpoint-inhibitors-tcla4-pd1). This analysis reveals that247
the activation of the CTLA4 receptor impacts most pathways of the model, impeding in particular the248
remodeling of the cytoskeleton and the metabolic switch associated with bona fide T cell activation. In249
contrast, the activation of the PD-1 receptor leads to more limited effects, predominantly freezing the250
components of the NF-κB pathway.251

A more refined comparative analysis of value propagation from these two receptor activations entails the252
observation that the set of nodes frozen by the propagation of PD-1 activation is completely included inside253
the set of nodes frozen by the propagation of CTLA4 activation (see Table 2). Furthermore, the values of254
the components frozen in both propagation studies are the same. Interestingly, a set of nodes related to255
calcium influx from and to the endoplasmic reticulum remain unfixed by any of the propagation analyses.256
This could be an artefact of the positive feedback loops added on the nodes representing the Calcium ion257
levels in different compartments and would need to be further investigated. A more detailed biological258
interpretation of these results is proposed in the following section.259

5 CONCLUSIONS AND PROSPECTS
In this study, we have implemented and applied two complementary methods enabling a specification-260
oriented model building approach, thereby easing the delineation and analysis of highly complex logical261
models. In this respect, the building of a knowledge base, e.g. in terms of a molecular map, is an important262
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first step. In the molecular map (provided as the supplementary File 1), we have integrated the most relevant263
biological references available on T cell activation and inhibition pathways.264

This map is clearly due to evolve, in particular thanks to the generation and analysis of novel high-265
throughput data (see e.g. the recent extensive analysis of the TCR signalosome (Voisinne et al., 2019)). But266
any modification needs to be manually propagated to the dynamical model. To date, methods to derive267
proper dynamical models from such molecular maps are still in their infancy. In the particular case of the268
Boolean framework, only one automated approach has been recently proposed (Aghamiri et al., 2020).269
However, a limitation of this approach is the generation of generic logical rules based on static knowledge.270
Hence, the methods presented here could be used to advantageously refine these rules, taking into account271
additional biological knowledge about the behaviour of the system under study.272

We used the information gathered in our T cell activation map to build a dynamical logical model273
encompassing over 200 components and 450 interactions. For such a complex model, defining the274
logical rules in concordance with biological knowledge is a difficult and error-prone process, usually275
involving iterative trial simulations, where failures are identified to suggest potential improvements. Hence,276
listing comprehensive and consistent model specifications is a crucial step for model construction. These277
specifications can be revised as the modeller deepens his understanding of the biological processes under278
study. Noteworthy, such systematic testing procures a sense of confidence during the development process.279

In the unit tests developed for our model, the definition of sub-models was guided by biological knowledge280
and pathway definitions, while relying partly on the modeller intuition. This step could be improved by281
community analyses of the regulatory graph to improve their definition.282

Model checking techniques have been previously applied to assess model behaviour through systematic283
cycles of model refinements (see e.g. Traynard et al. (2016) and reference therein). Model verification, as284
defined here, is a generalisation of this approach, as it can rely on any available analysis as long as its result285
can be compared to an expected outcome. In our hands, in the course of model building, the unit testing286
approach, strongly anchored to available knowledge, proved to be very efficient to assess and improve287
model consistency with respect to a list of biological specifications, without the need of time-consuming288
and costly simulations. Implemented in the CoLoMoTo Interactive notebook framework (Naldi et al.,289
2018b), this approach enabled us to define a model recapitulating the most salient properties observed in290
response to T cell activation, including quiescence, anergy and differentiation.291

The use of model checking techniques could be further extended to assess the sensitivity of model292
behaviour to the choice of specific logical rules. Such extension is hindered by the exponential increase of293
the number of possible logical rule, as the number of regulators increases. We would thus need a rationale294
to explore the space of logical rules. A first step in this direction can be found in Abou-Jaoudé and Monteiro295
(2019).296

The approach presented here could also be improved by taking into account and tracking uncertainty297
during model conception (Thobe et al., 2018), or yet by taking advantage of computational repairing298
methods (Gebser et al., 2010) to identify more precisely remaining inconsistencies with biological data.299
Furthermore, other software engineering techniques, such as code coverage, could be borrowed to further300
improve model building and verification. As code coverage computes how much of a program’s code is301
covered by unit tests, one could design a method computing the fraction of the components of a model that302
is effectively covered by specifications.303

Value propagation analysis of our large and complex regulatory graph proved to be biologically insightful.304
Indeed, this straightforward approach enabled us to clearly contrast the respective impacts of CTLA4 and305
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PD-1 on T cell activation in our model, providing some rationale for their differential effects in current306
therapeutic studies. Indeed, anti-CTLA4 immunotherapies are known for their strong adverse effects related307
to autoimmunity and immunotoxicity (June et al., 2017). Anti-CTLA4 immunotherapies are currently308
combined with anti-PD-1 immunotherapy, known for its milder impact on the immune system.309

Interestingly, the state of the node representing the Interleukin 2 (IL2) cytokine activation illustrates the310
differences of action of these receptors. Activation of the IL2 gene depends mainly on the activation of311
three transcription factors: the Nuclear Factor of Activated T cells (NFAT), the AP1 complex, and the312
Nuclear factor NF-kappa-B (NF-κB) (Smith-Garvin et al., 2009). When NFAT and AP1 are both active,313
they form a complex and together bind a regulatory region of the IL2 gene. In absence of AP1, NFAT314
induces a different program leading to cellular anergy (Macian, 2005; Smith-Garvin et al., 2009): activation315
of Diacylglycerol Kinase (DGK) prevents DAG-mediated activation of RasGRP1, which regulates the316
threshold for T cell activation (Roose et al., 2007; Das et al., 2009).317

Our comparative propagation analysis reveals that while the activation of the CTLA4 receptor leads318
to a general inactivation of the three transcription factors regulating IL2 production, activation of the319
PD-1 receptor leads only to the inactivation of NF-κB and FOS (a member of the AP1 complex), thereby320
preventing the formation of the NFAT/AP1 complex, but enabling the activation of DGK. This observation is321
consistent with the proposal to target DGK isoforms as a complement of checkpoint immunotherapy (Riese322
et al., 2016; Jung et al., 2018).323

As a next step, new co-inhibitory receptors recently under study, such as the Hepatitis A virus cellular324
receptor 2 (also known as TIM3) or the Lymphocyte activation gene 3 protein (LAG-3) (Anderson et al.,325
2016), could be easily added to the model described here, provided sufficient information could be326
gathered regarding their interacting partners. Applying propagation analysis in this context would be327
greatly insightful for future therapy developments.328
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cells in humans/mouse. The cytoplasmic membrane and attached receptor proteins are placed at the top,340
while the cell nucleus is located at the bottom. Reactions represent current knowledge of various pathways341
related to cytoskeletal remodelling, calcium fluxes, metabolism, cell cycle or IL2 production, and are342
encoded using the CellDesigner software (Funahashi et al., 2008) (the CellDesigner file is provided as343
Supplementary File 1).344

Supplementary File 1: Molecular map in CellDesigner/XML format (Funahashi et al., 2008).345

DATA AVAILABILITY STATEMENT
In addition, the original model (GINsim format - zginml) can be downloaded from the GINsim346
website (http://ginsim.org/model/tcell-checkpoint-inhibitors-tcla4-pd1), together with previews of the two347
interactive notebooks enabling the reproduction of all the analyses and results reported in this study, using348
the tools integrated in the most recent CoLoMoTo Docker image (https://github.com/colomoto/colomoto-349
docker). A SBML-qual export of the logical model is also available on the GINsim model repository page,350
which will be further deposited into the database BioModels (https://www.ebi.ac.uk/biomodels/) upon351
publication.352
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Traynard, P., Fauré, A., Fages, F., and Thieffry, D. (2016). Logical model specification aided by model-484
checking techniques: application to the mammalian cell cycle regulation. Bioinformatics (Oxford,485
England) 32, i772–i780. doi:10.1093/bioinformatics/btw457486

Ventimiglia, L. N. and Alonso, M. a. (2013). The role of membrane rafts in Lck transport, regulation and487
signalling in T-cells. The Biochemical journal 454, 169–79. doi:10.1042/BJ20130468488

Voisinne, G., Kersse, K., Chaoui, K., Lu, L., Chaix, J., Zhang, L., et al. (2019). Quantitative interactomics489
in primary T cells unveils TCR signal diversification extent and dynamics. Nature Immunology 20,490
1530–1541. doi:10.1038/s41590-019-0489-8491

Walunas, T. L., Lenschow, D. J., Bakker, C. Y., Linsley, P. S., Freeman, G. J., Green, J. M., et al.492
(1994). CTLA-4 can function as a negative regulator of T cell activation. Immunity 1, 405–13.493
doi:10.1016/1074-7613(94)90071-x494

Wang, Q., Miskov-Zivanov, N., Liu, B., Faeder, J. R., Lotze, M., and Clarke, E. M. (2016). Formal495
Modeling and Analysis of Pancreatic Cancer Microenvironment. In Computational Methods in Systems496
Biology, eds. E. Bartocci, P. Lio, and N. Paoletti (Springer International Publishing), 289–305497

Frontiers 13

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 18, 2020. ; https://doi.org/10.1101/2020.05.01.073379doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.01.073379


Hernandez et al. Model verification

FIGURES

Model	analysis	

Molecular	map	

Scientific	literature	

Model	verification	Logical	model	

Expected	

Observed	

✔

✖	

Unit	test	

?	

Sub-model	
extraction	

i_pMHCII_binding i_pMHCII_agonist i_pMHCII_dose i_pMHCII_affinity

TCRalphabeta

pTCR

i_CD80 i_CD86

CD28

CTLA4

IDO_DC

i_ICOSLG

ICOS

i_CD5
i_ALCAM

CD6

i_CD274 i_PDCD1LG2

PDCD1

i_TNFRSF14

BTLA

i_LGALS9

TIM3

i_OX40L

OX40

i_cAMP
PKA

CD4

f_MAL

f_UNC119

f_RAB11A

f_PTPRJ

f_14_3_3

f_PRKDC

f_MDM2

f_NCKAP1L

f_NCKAP1

f_BAIAP2

f_CYFIP1

f_BRK1

f_WASF2

f_ABI1

f_ABI2

f_ACTR2

f_ACTR3

f_PRDX1

f_CRACR2A

f_ROS

f_RCAN1

f_CABIN1

f_AKAP5

f_BBC3

f_APAF1

f_DEPTOR

f_RICTOR

f_MLST8

f_MTOR

f_Glucose

MAP2K6

f_DUSP2

f_DUSP4

DUSP5

f_DUSP6 f_DUSP10

f_DUSP22

f_Axin1

f_SMAD3

f_Th1

f_BAT3

INF2

LCK

pY505LCK

pY394LCK

pS59LCK

LCK_activity

CSK
PAG1

LIME1

PTPN6

PTPN22

PTPRC

PTPN11

PP2A

CBL

CBLB

INPP5D

FYN

ZAP70

LAT

GRB2

SOS GAB2

GRAP2

GRAP

LCP2

ITK

SHB

TXK

MAP4K1

MAP4K3

PLCG1_binding

PTEN

PI3K

PIP2

IP3

DAG

PIP3

PDPK1

AKT1

FOXO1

GSK3A

GSK3B

TP53
CDKN1A

CDKN1B

Quiescence

PCNA

CTNNB1

CCND1
MYC

Proliferation

PRKCQ

CARD11

BCL10

MALT1

MAP3K7

MAP3K3

CHUK
IKBKG

IKBKB

NFKBIA

NF_KB

CREBBP

FOXP3

CTLA4_out Treg

BAD

BCL2L1
VDAC1

CYCS

Caspase9

Survival Apoptosis

RPTOR

GYS1

Glycogenesis

mTORC2

mTORC1

RPS6KA1

RPS6KB1

TSC1_TSC2
RHEB

GrowthTriglyceride_synthesis Protein_synthesis

NCK1

CDC42

WAS

RAC1

WAVE_cplx

ARP2_3

PAK1
LIMK1

CFL1

HCLS1

VAV1

SH3BP2

ABL1

Actin_polymerisation

RHOAROCK1MLCP_contraction_migration

FYB
Adhesion_Integrin

IP3R1

Calcium_ER

Calcium_cyt

SERCA

STIM1

ORAI1

PMCA

Mitochondria

Calmodulin

Calcineurin

CAMK4

CAMK2G

NFAT_nuc

PDCD1_out

DGKA

Anergy

RASGRP1

HRAS

RAF1

MAP2K1

MAPK3

MAPK1

ELK1

FOS

MAP3K1

MAP3K11

MAP2K4

MAP2K7

JNK

JUN

GADD45AATF2
p38

RPS6KA4

RPS6KA5

CREB1

DUSP1

IL2

Differentiation

Th2

PLCG1

Reproducible	testing	

Value	propagation	
Intended	for	large	and	

complex	regulatory	graphs	

Graphical	
result	

Figure 1. Description of the proposed workflow for the development and analysis of dynamical logical
models. The novel methods described in this article are emphasized with blue fonts. Starting with the
delineation of a molecular map integrating the available scientific knowledge, we derive a regulatory
graph and logical rules to generate a logical model, and induce dynamical specifications serving as test
cases to verify the model. Moreover, when the available knowledge is specific to a smaller part of the
regulatory graph, a sub-model us extracted to perform local tests. We further implemented an analysis
and visualisation method, called Value propagation, to assess the impact of environmental and genetic
perturbations. Figure 3 zooms into this part of the workflow and describes it in more details. The use
of model verification, sub-model extraction and value propagation is illustrated in two reproducible and
editable Jupyter notebooks, taking advantage of the CoLoMoTo Interactive notebook framework (Naldi
et al., 2018b). This framework is available inside the CoLoMoTo Docker image together with packaged
libraries for the analysis of dynamical logical models of biological networks.
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�”IP3	diffuses	through	the	cytosol	and	binds	to	IP3	receptors	located	
on	 the	 endoplasmic	 reticulum	 (ER)	membrane,	 which	 results	 in	 a	
rapid	 release	 of	 intracellular	 calcium	 stores.	 This	 moderate	 and	
transient	 rise	 in	 the	 intra-cellular	 calcium	 concentration	 activates	
store-operated	 calciumentry	 (SOCE)	 channels	 in	 the	 plasma	
membrane	 to	 induce	 sustained	 elevations	 of	 intracellular	 calcium	
required	for	optimal	 �TCR-induced	signal	transduction.”	Baine	et	al.	
2009	Immun.	Rev.	
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Figure 2. Sub-model extraction for local model verification. When the available knowledge is fragmentary
and covers the behaviour of only a subset of components, verification becomes difficult at the global
scale of the model. Based on this partial information, a series of specifications can still be defined for a
sub-model which, after extraction using bioLQM’s submodel() function, can then be rigorously tested.
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D:	1	

D:	A	or	not	B	or	1	

D:	A	or	not	B	or	C	

F	C:1	B	A	

E:	not	F	

E:	1	and	not	F	

E:	D	and	not	F	

Figure 3. The principle of logical value propagation analysis is illustrated with a simple example involving
two core nodes, D and E, and four input nodes, A, B, C and F. The value 1 is assigned to the node C and
then propagated through the model. The assignment C:1 implies the evaluation of D to 1. Consequently,
the function assigned to node E becomes ’not F’. In other words, assigning the value 1 to node C activates
node D independently from the value of its other inputs, while node E becomes completely dependent on
the value of node F.
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Figure 4. Regulatory graph of the T cell activation model. The global layout is similar to the molecular
map (cf. supplementary Figure 1 and supplementary File 1), with ligands/receptors and proximal signalling
at the top, and the nucleus-related events at the bottom of the graph. In between, the model encompasses
interconnected pathways and signalling cascades related to cytoskeleton remodelling, the MAPK network,
calcium fluxes, metabolic shifts, and NF-κB, to name a few. Boolean components are denoted by ellipsoids
whereas rectangles denote ternary components. Green arcs denote activation events, red blunt arcs denotes
inhibitions, while blue arcs denote dual regulations. The grey arcs represent interactions created during the
translation of the molecular map into the regulatory graph, but that are not yet integrated at the dynamical
level (i.e. not taken into account in the logical rule).
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Figure 5. Visualisation of the results of the propagation analyses for CTLA4 versus PD-1 activation.
Grey nodes correspond to inputs. Nodes in yellow are frozen OFF upon any of CTLA4 or PD-1 (PDCD1)
activation. Nodes in orange are frozen ON (i.e. with level 1 or 2) for each of these conditions. Nodes in light
blue are frozen OFF only for CTLA4 activation (i.e. they remain free upon PD-1 activation). Nodes in dark
blue are frozen ON (i.e. with level 1 or 2) only upon CTLA4 activation (i.e. they remain free upon PD-1
activation). Upon PD-1 activation, the corresponding node (PDCD1) is the only one that gets specifically
frozen (ON, shown in dark green). Nodes in white remain free for both conditions.
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Context Expected behaviour (active or inactive components)

Global specifications

No stimulation Active: Quiescence, Glycogenesis

Non-optimal stimulation
(antagonist or low/high
dosage/affinity)

Active: Anergy (DGKA), Quiescence, Glycogenesis

Optimal stimulation Active: Differentiation, IL2, Proliferation, Growth, Actin
polymerisation, Actin contraction

CTLA4 stimulation Active: Quiescence

PD-1 stimulation Active: Quiescence

Local specifications for the calcium module

Absence of IP3R stimulation,
Calcium in ER

Active: Calcium ER;
Inactive: IP3R1

Absence of IP3R stimulation,
Calcium in the cytoplasm

Active: Calcium ER;
Inactive: IP3R1

IP3R stimulation,
Calcium in ER

Active: IP3R1, Calcineurin;
Inactive: Calcium ER

Table 1. Global specifications used to assess the T cell activation model and example of local specifications
for the calcium signaling module (cf Figure 2). After verification, named components should have a value
of 0 if specified as inactive, while active components should have a value of 1 or 2. Verification of local
specifications requires the extraction of a sub-model from the global model. These verifications and
literature references are detailed in the companion CoLoMoTo notebooks. ER: Endoplasmic Reticulum.

Impact of value propagation CTLA4 ON PD-1 ON Intersection

Frozen inactive nodes 105 47 47

Frozen active nodes 28 13 12

Free nodes 29 102 28

Table 2. Quantification of the model nodes impacted by the propagation of CTLA4 or PD-1 persistent
activation. After propagation, the nodes of the model can remain free (not fixed) or become frozen inactive
(value 0) or frozen active (value 1, or potentially higher in the case of multilevel components). The model
encompasses a total of 216 nodes, including 14 inputs and 40 nodes not affected by CTLA4 or PD-1
activation. Interestingly, PD-1 itself is the only single node specifically frozen by its activation (and not by
the activation of CTLA4). Furthermore, each of 59 nodes affected by the two perturbations is frozen to the
same value in both cases. Details of the computation method can be found in the companion CoLoMoTo
notebooks.
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