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Abstract  

Single cell/nucleus RNA sequencing (scRNAseq) is emerging as an essential tool to unravel the 

phenotypic heterogeneity of cells in complex biological systems. While computational methods 

for scRNAseq cell type clustering have advanced, the ability to integrate datasets to identify 

common and novel cell types across experiments remains a challenge.  Here, we introduce a 

cluster-to-cluster cell type matching method – FR-Match – that utilizes supervised feature 

selection for dimensionality reduction and incorporates shared information among cells to 

determine whether two cell type clusters share the same underlying multivariate gene 

expression distribution. FR-Match is benchmarked with existing cell-to-cell and cell-to-cluster 

cell type matching methods using both simulated and real scRNAseq data. FR-Match proved to 

be a stringent method that produced fewer erroneous matches of distinct cell subtypes and had 

the unique ability to identify novel cell phenotypes in new datasets. In silico validation 

demonstrated that the proposed workflow is the only self-contained algorithm that was robust to 

increasing numbers of true negatives (i.e. non-represented cell types). FR-Match was applied to 

two human brain scRNAseq datasets sampled from cortical layer 1 and full thickness middle 

temporal gyrus. When mapping cell types identified in specimens isolated from these 

overlapping human brain regions, FR-Match precisely recapitulated the laminar characteristics 

of matched cell type clusters, reflecting their distinct neuroanatomical distributions. An R 

package and Shiny application are provided at https://github.com/JCVenterInstitute/FRmatch for 

users to interactively explore and match scRNAseq cell type clusters with complementary 

visualization tools. 

Keywords: single cell RNA sequencing, data integration, feature selection, cell types, cellular 

neuroscience, non-parametric test
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Introduction 1 

Global collaborations, including the Human Cell Atlas [1] and the NIH BRAIN Initiative [2], are 2 

making rapid advances in the application of single cell/nucleus RNA sequencing (scRNAseq) to 3 

characterize the transcriptional profiles of cells in healthy and diseased tissues as the basis for 4 

understanding fundamental cellular processes and for diagnosing, monitoring, and treating 5 

human diseases. The standard workflow for processing and analysis of scRNAseq data 6 

includes steps for quality control to remove poor quality data based on quality metrics [3-5], 7 

sequence alignment to reference genomes/transcriptomes [6-8], and transcript assembly and 8 

quantification [8, 9] to produce a gene expression profile (transcriptome) for each individual cell. 9 

In most cases, these expression profiles are then clustered [10-13] to group together cells with 10 

similar gene expression phenotypes, representing either discrete cell types or distinct cell states. 11 

Once these cell phenotype clusters are defined, it is also useful to identify sensitive and specific 12 

marker genes for each cell phenotype cluster that could be used as targets for quantitative PCR, 13 

probes for in situ hybridization assays, and other purposes (e.g. semantic cell type 14 

representation where biomarkers can be used for defining cell types based on their necessary 15 

and sufficient characteristics [14, 15]). 16 

A major challenge emerging from the broad application of these scRNAseq technologies is the 17 

ability to compare transcriptional profiles across studies. In some cases, basic normalization [16, 18 

17] or batch correction [18, 19] methods have been used to combine multiple scRNAseq 19 

datasets with limited success. Recently, several computational methods have been developed 20 

to address this challenge more comprehensively [20-25]. General steps in these methods 21 

include feature selection/dimensionality reduction and quantitative learning for matching. Scmap 22 

[20] is a method that performs cell-to-cell (scmapCell) and cell-to-cluster (scmapCluster) 23 

matchings. The feature selection step is unsupervised and based on a combination of 24 
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expression levels and dropout rates, pooling genes from all clusters in the reference dataset. 25 

Matching is based on agreement of nearest neighbor searching using multiple similarity 26 

measures. Seurat (Version 3) [21, 22] provides a cell-to-cell matching method within its suite of 27 

scRNAseq analysis tools. Feature selection is unsupervised and selects highly variable features 28 

in the reference dataset to define the high-dimensional space. Both query and reference cells 29 

are aligned in a search space projected by PCA-based dimensionality reduction and canonical 30 

correlation analysis, to transfer cluster labels through “anchors”.  Among many others [23-25], 31 

these methods have focused on individual cell level strategies when comparing a query dataset 32 

to a reference dataset, not relying on clustering results to guide supervised feature selection or 33 

cluster-level matching. 34 

Here, we present a supervised cell phenotype matching strategy, called FR-Match, for cluster-35 

to-cluster cell transcriptome integration across scRNAseq experiments. Utilizing a priori learned 36 

cluster labels and computationally- or experimentally-derived marker genes, FR-Match uses the 37 

Friedman-Rafsky statistical test [26, 27] (FR test) to learn the multivariate distributional 38 

concordance between query and reference data clusters in a graphical model. In this 39 

manuscript, we first illustrate the matching properties of FR test in this scRNAseq adaptation 40 

using thorough simulation and validation studies in comparison with other popular matching 41 

methods. We then use FR-Match to match brain cell types defined in the full thickness of human 42 

middle temporal gyrus (MTG) neocortex with cell types defined in a Layer 1 dissection of MTG 43 

using public datasets from the Cell Types Database of the Allen Brain Map (www.brain-44 

map.org). We also report the cell types that are consistently matched between the two brain 45 

regions using multiple matching methods. An R-based implementation, user guide, and Shiny 46 

application for FR-Match are available in the open-source GitHub repository: 47 

https://github.com/JCVenterInstitute/FRmatch. 48 

Results 49 
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FR-Match: cluster-to-cluster mapping of cell type clusters 50 

FR-Match, is a novel application of the Friedman-Rafsky test [26, 27], a non-parametric 51 

statistical test for multivariate data comparison, tailored for single cell clustering results. FR-52 

Match takes clustered gene expression matrices from query and reference experiments and 53 

returns the FR statistic with p-value as evidence that the query and reference cell clusters being 54 

compared are matched or not, i.e. they share a common gene expression phenotype. The 55 

general steps of FR-Match (Figure 1a) include: i) select informative marker genes using, for 56 

example, the NS-Forest marker gene selection algorithm [14]; ii) construct minimum spanning 57 

trees for each pair of query and reference clusters (different colors); iii) remove all edges that 58 

connect a node from the query cluster with a node from the reference cluster, and iv) calculate 59 

FR statistics and p-values by counting the number of subgraphs remaining in the minimum 60 

spanning tree plots. Intuitively, the larger the FR statistic, the stronger the evidence that the cell 61 

clusters being compared represent the same cell transcriptional phenotype. 62 

[Figure 1 here] 63 

Supervised marker gene selection provides unique cell type clusters “barcodes”  64 

We adopted the NS-Forest algorithm [14] v2.0 (https://github.com/JCVenterInstitute/NSForest) 65 

to select informative marker genes for a given cell type cluster. Applying NS-Forest feature 66 

selection to the cortical Layer 1 and full thickness MTG datasets produced a collection of 34 and 67 

157 marker genes that, in combination, can distinguish the 16 cortical Layer 1 [28] and 75 full 68 

MTG [29] cell type clusters, respectively. These markers include well known neuronal marker 69 

genes like SATB2, LHX6, VIP, NDNF, NTNG1, etc. (Supplementary Figure 1). The selected 70 

marker genes display on-off binary expression patterns producing, in combination, a unique 71 

gene expression “barcode” for each cell cluster (Figure 1b). In addition to producing marker 72 

genes for each of the individual cell type clusters, this composite barcode serves as an effective 73 
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dimensionality reduction strategy that captures gene features that are informative for every cell 74 

type cluster. The collection of informative marker genes effectively creates an essential 75 

subspace that reflects the composite cell cluster phenotype structure in the single cell gene 76 

expression data. Thus, supervised feature selection by NS-Forest was used as the 77 

dimensionality reduction step for the FR-Match method in this study. Although NS-Forest was 78 

used for marker gene selection here, FR-Match is compatible with any feature 79 

selection/dimensionality reduction approach that selects informative cluster classification 80 

features. 81 

Matching performance in cross-validation and simulation studies 82 

To assess the performance of FR-Match in comparison with other matching methods, we 83 

generated cross-validation datasets utilizing the cortical Layer 1 data and its known 15 cell type 84 

clusters for validation studies (excluding the smallest cluster in the original studies with too few 85 

cells). Matching was performed using six implementations of the three core methods: FR-Match 86 

(using NS-Forest genes), FR-Match incorporating p-value adjustment (FR-Match adj.), scmap 87 

(scmapCluster) with default gene selection (500 genes based on dropout proportions), scmap 88 

with NS-Forest marker genes (scmap+NSF), scmap with extended NS-Forest marker genes 89 

(scmap+NSF.ext) (see Methods section), and Seurat with default gene selection (top 2000 90 

highly variable genes). (Seurat with NS-Forest marker genes was not reported since the results 91 

were similar to the results obtained using default marker genes.) 92 

Cross-validation assessment of 1-to-1 positive matches 93 

In the two-fold cross-validation study, half of the cells serve as the query dataset and the other 94 

half as the reference dataset. Exactly one 1-to-1 true positive match should be identified for 95 

each cluster. Figure 2a displays the average matching rate over the cross-validation iterations, 96 

where true positives are expected to lay along the diagonal. Four implementations, FR-Match, 97 
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FR-Match adj., scmap+NSF.ext, and Seurat had excellent performance with 0.93~1 true 98 

positive rates (TPR) calculated as the grand average of the diagonal entries. Scmap using its 99 

default gene selection approach performed sub-optimally, especially for glial cell types. This is 100 

likely due to the fact that informative marker genes for these cell types were not selected using 101 

the dropout rate-based feature selection criterion (Supplementary Figure 2). However, using 102 

NS-Forest marker genes (scmap+NSF) instead of its default genes resulted in a significant 103 

improvement in scmap performance, suggesting that supervised feature selection is 104 

advantageous for cell type matching in general. FR-Match implementations had median 105 

matching accuracies approaching 0.98 and above, while the next tier performers, 106 

scmap+NSF.ext and Seurat, had median accuracies around 0.95 (Figure 2b). Sensitivity and 107 

specificity metrics further break down the accuracy measure and indicate the balance between 108 

the diagonal (true positive, a.k.a. sensitivity) and off-diagonal (true negative, a.k.a. specificity) 109 

matching performance. FR-Match after p-value adjustment is the only algorithm that identified 110 

all positive matches. Most methods had very high specificities, whereas FR-Match adj. had 111 

somewhat lower specificity due to slightly more false positives. 112 

[Figure 2 here] 113 

Cross-validation assessment of 1-to-0 negative matches 114 

Leave-K-cluster-out cross-validation was used to test the performance of these methods under 115 

circumstances where one or more cell phenotypes is missing from the reference datasets, i.e. a 116 

situation where a novel cell type has been discovered. The left-out cluster(s) should have 1-to-0 117 

match(s) and should be unassigned. While FR-Match implementations clearly identified the left-118 

out cluster as unassigned, other methods produced inappropriate matching when query cell 119 

types were missing from the reference dataset (Figure 3). Figure 3a shows results for when the 120 

i5 cluster was left out; Supplementary Figures 3-8 show results for when other cluster were left-121 
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out in turn. Both FR-Match implementations easily identified the true negative match and 122 

correctly labeled the query i5 cluster as unassigned. Other methods partially or primarily mis-123 

matched the query cluster (i5) to a similar yet distinct cluster (i1), as seen in the UMAP 124 

embedding where the query i5 nuclei are nearest neighbors to the reference i1 nuclei 125 

(Supplementary Figure 9). The accuracy measure for leave-1-cluster-out cross-validation again 126 

suggests that the FR-Match method is the best performer with median accuracies approaching 127 

0.99 (Figure 3b). Furthermore, as we removed more and more reference clusters, the FR-Match 128 

method showed robust precision-recall curve that consistently outperformed default 129 

implementations of scmap and Seurat in ROC analysis (Figure 3c). Seurat’s curve deteriorated 130 

because its current implementation lacks an option for unassigned matches; therefore, all cells 131 

in the query dataset were forced to map somewhere in the reference dataset. Interestingly, 132 

scmap implementations with NS-Forest selected features also had robust precision-recall 133 

curves with respect to the increasing number of true negatives. 134 

[Figure 3 here] 135 

The leave-K-cluster-out cross-validation has important implications for the capability of each 136 

matching method to detect novel cell types in new data sets that are not present in the 137 

reference datasets when integrating single cell experiments. In this important use case, the FR-138 

Match method exhibits desirable properties for novel cell phenotype discovery.  139 

Simulation of under- and over-partitioning during upstream clustering 140 

Accurate cell type determination from scRNAseq analysis is dependent on accurate partitioning 141 

of the cellular transcriptomes into clusters based on their similarity.  Existing neuroscientific 142 

knowledge [28] suggests that the 15 cortical Layer 1 cell clusters are the current “optimal” 143 

clustering of the human brain upper cortical layer scRNAseq data. By combining and splitting 144 

these optimal cell type clusters, we simulated under- and over-partitioning scenarios of the 145 
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upstream clustering analysis. Figure 4a summarizes five cluster partitions ranging from 3 to 18 146 

clusters with F-measure scores indicating the classification power of partition-specific marker 147 

genes. The “Top nodes” under-partitioning combines clusters into the three top-level broad cell 148 

type classes: inhibitory neurons, excitatory neurons, and non-neuronal cells, producing well 149 

known GABAergic, glutamatergic, and neuroglia markers with high F-measure score. The “Mid 150 

nodes” under-partitioning combines three groups of closely related GABAergic clusters – i1 + i5, 151 

i3 + i4, and i6 + i8 + i9 – resulting in 11 clusters. Over-partitioning of either one (e1) or three (i1, 152 

i2, and i3) clusters was performed by running k-means clustering with k = 2 independently for 153 

each cluster to simulate real over-partitioning scenarios. 154 

[Figure 4 here] 155 

It is important to note that over- and under-partitioning will also have an effect on the gene 156 

selection step; it would be predicted that marker gene selection algorithms would have difficulty 157 

finding maker genes specific for over-partitioned clusters, which would be reflected in the drop 158 

in F-measure scores. Indeed, particularly low F-measure scores may be a good indication of 159 

cluster over-partitioning. Figure 4b describes the expected effects on marker gene identification 160 

and FR-Match performance after p-value adjustment when clusters are under-, optimally-, and 161 

over-partitioned. The types of marker genes that would be selected with different reference 162 

cluster partitioning scenarios would impact their ability to effectively drive cluster matching. 163 

Supplementary Figures 10-15 show the matching results of all considered matching methods in 164 

various partitioning scenarios. The FR-Match and Seurat methods showed good quality and 165 

expected matching results in most partitioning scenarios; scmap had the same problem with the 166 

unmatched glial clusters. Seurat showed excellent performance when reference clusters were 167 

under-partitioned, but poor performance when query clusters were under-partitioned. Overall, 168 

the FR-Match method had stable matching performance in the cluster partitioning simulations. 169 
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Indeed, 1-to-many and many-to-1 matching results using FR-Match could possibly indicate 170 

under- or over-partitioning of the upstream clustering step in scRNAseq data analysis.  171 

Simulation of scenarios in which imperfect marker genes are included 172 

Though we recommend using the NS-Forest algorithm to select the minimum set of informative 173 

marker genes, users may also want to use their own feature list as the input to FR-Match. There 174 

may be other cases where non-informative marker genes have been included. In order to 175 

assess the performance of FR-Match with respect to less than ideal marker gene lists, we use 176 

simulation to evaluate the matching performance in two scenarios: i) when there are non-177 

informative (i.e. noisy) genes in the features selected, and ii) when some informative marker 178 

genes are missing from the feature list with or without non-informative genes. Throughout this 179 

simulation study, the FR-Match adj. implementation was used. 180 

To simulate scenario (i), we used the 32 NS-Forest marker genes associated with the 15 cell 181 

types in the Layer 1 data, together with randomly selected genes from the 16,497 available 182 

genes in the dataset. In this scenario, the barcoding pattern of the informative marker genes 183 

were preserved, whereas the random genes showed more noisy and non-specific expression 184 

patterns in the “barcode” plots (Supplementary Figure 16a). In the simulations, we increased the 185 

number of extra genes added from 1 to 15; FR-Match was very robust to noisy genes in each 186 

simulated case with true positive rate staying close to 1 (Supplementary Figure 16b). Other 187 

performance measures – accuracy, sensitivity (true positive rate), and specificity (true negative 188 

rate) – all stayed well-above 0.9, suggesting that the overall performance of FR-Match was 189 

stable and robust, even when the marker gene list contained up to 30% non-informative genes 190 

(15 extra genes) (Supplementary Figure 16c). Increasing the number of non-informative genes 191 

may slightly impact the specificity due to more false positives (off-diagonal intensities in 192 
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Supplementary Figure 16b) and therefore leads to the slight downward trend of the overall 193 

accuracy. 194 

For simulation scenario (ii), we generated two subcases to illustrate the impact of interfering 195 

with different combinations of marker genes on the matching performance. In the first subcase, 196 

we removed marker genes for three very distinct cell types: an excitatory cell type (e1), a glial 197 

cell type (g1), and an inhibitory cell type (i1); and used the remaining NS-Forest marker genes 198 

to match all cell types in the Layer 1 dataset. Surprisingly, each cell type was matched correctly 199 

most of the time with an overall true positive rate of 0.98 (Supplementary Figure 17a). We also 200 

replaced the removed marker genes with the same number of random genes; the matching 201 

performance was also very good, and the impact of the changes in the marker gene list was 202 

insignificant (Supplementary Figure 17a). In the second subcase, we considered 203 

removing/replacing the marker genes for two related inhibitory cell types: i1 and i2. Without 204 

marker genes that distinguish these similar cell types, FR-Match matched the i1 and i2 cell 205 

types to each other (i.e. a many-to-many match) while maintaining the distinction from other cell 206 

types with informative classification markers (Supplementary Figure 17b). The “barcode” plots 207 

for i1 and i2 became generally non-selective with random expression of some other inhibitory 208 

markers in the background (Supplementary Figure 17c). Such indistinct “barcode” plots may be 209 

an effecting warning for many-to-many matches.  The absence of good classification markers is 210 

most harmful to specificity (due to false positives), while sensitivity (true positive rate) remains 211 

high (Supplementary Figure 17d).   212 

In summary, as long as informative marker genes with good classification power are selected, 213 

FR-Match is robust to other non-informative genes included in the feature list. Many-to-many 214 

matching results by FR-Match may be a good indicator of the absence of informative marker 215 

genes between the mis-matched cell types. 216 
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Cell type mapping between cortical Layer 1 and full MTG 217 

We next extended the validation testing to a more realistic real-world scenario where a new 218 

dataset has been generated in the same tissue region using slightly different experimental and 219 

computational platforms. We tested FR-Match with p-value adjustment using two single nucleus 220 

RNA sequencing datasets from overlapping human brain regions – the single apical layer of the 221 

MTG cerebral cortex (cortical Layer 1), in which 16 discrete cell types were identified [28], and 222 

the full laminar depth of the MTG cerebral cortex, in which 75 distinct cell types were identified 223 

[29]. We selected NS-Forest combinatorial marker genes separately for each dataset. The 224 

marker gene sets may contain overlapping genes for some cell types, e.g. CUX2 is a useful 225 

marker gene for more than one layer 2-3 cell types in combination with other marker genes; 226 

classification power of these combinatorial marker genes are evaluated in detail in another 227 

study [30]. 228 

Matching results were assessed from two perspectives: i) agreement with prior knowledge such 229 

as layer metadata from the design of these experiments [28, 29], and ii) agreement with other 230 

matching methods. Since these datasets targeted the same cortical region with overlapping 231 

laminar sampling, we expect that matching algorithm should find 1-to-1 matches of each cell 232 

types in the cortical Layer 1 data to one cell type in layers 1-2 from the full MTG data. The final 233 

matching results were concluded from two matching directions: Layer 1 query to MTG reference 234 

with MTG markers, and MTG query to Layer 1 reference with Layer 1 markers. The two-way 235 

matching approach was applied to all comparable matching algorithms.   236 

FR-Match uniquely maps cell types reflecting the overlapping anatomic regions 237 

Using FR-Match, we mapped each of the 13 Layer 1 cell types uniquely to one MTG cell type 238 

(Figure 5a), i.e. 1-to-1 two-way matches. These matches precisely reflect the overlapping 239 

anatomic regions in these two independent experiments in that the matched MTG cell types all 240 
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have an “L1” layer indicator in their nomenclature. The one exception for the Layer 1 e1 cluster 241 

likely reflects the incidental capture of upper cortical layer 2 excitatory neurons in the original 242 

Layer 1 experiment [28]. And while most of the SST cell subtypes are located in deeper cortical 243 

layers, FR-Match specifically selected the small number of L1 SST clusters as top matches. The 244 

same was true for VIP and LAMP5 cell subtypes. The minimum spanning tree plots produced by 245 

FR-Match provide a clear visualization of matched and unmatched cell clusters (Figure 5b). 246 

[Figure 5 here] 247 

To validate further, we compared the matching results to the hierarchical taxonomy of MTG cell 248 

types [29], which reflects cell type relatedness (left side of Figure 5a). First, the block of one-249 

way matches in Box A precisely corresponds to a specific sub-clade of VIP-expressing cells with 250 

close lineage relationships, suggesting that one-way FR-Match results are evidence of closely 251 

related cell types. Second, FR-Match correctly identified excitatory neurons that were 252 

incidentally captured from upper Layer 2 in the cortical Layer 1 experiment in Box B, 253 

corresponding to L2/3 excitatory neurons in the full MTG dataset. Third, Box C suggests under-254 

partitioning of the Layer 1 astrocyte cluster as multiple two-way matches were found for the 255 

same cluster.  256 

Directional one-way matching results are shown in Supplementary Figure 18. Though different 257 

matching patterns are observed from each direction, they reflect the fact that these datasets are 258 

measuring different cell types. There are some cases where the difference might be due to the 259 

cell complexity in the datasets, e.g. the VIP or SST types, and this might be leading to the 260 

dynamic range and skewness of p-value distributions for each query cluster. 261 

Cell type mapping using other existing approaches 262 
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In mapping cell types between cortical Layer 1 and the full MTG, both FR-Match and Seurat 263 

produced similar unique two-way matches (Figure 6). Examining all matching results and all 264 

matching algorithms, FR-Match produced the most “conservative” mapping of cell types. The 265 

other matching algorithms produced matching results that had more sparsely-distributed VIP 266 

types (Box A), and were not laminar specific (Box B). Among all approaches, glial cell types 267 

were mapped somewhat differently (Box C), probably due to their overall lower sampling and 268 

distinct phenotypes compared to the majority of GABAergic and glutamatergic neurons.   269 

[Figure 6 here] 270 

FR-Match shows three advantages over the alternative methods. First, by using supervised 271 

feature selection for each cell type, major and minor cell populations are equally represented in 272 

the reduced-dimensional space for cell type matching. This strategy would also benefit other 273 

matching methods with sub-optimal feature selection/dimensionality reduction. Second, FR-274 

Match clearly excludes the matching of cell types that are only present in one of the datasets. 275 

Third, FR-Match allows one-to-multiple and unassigned matches, which allows for detecting 276 

potential cluster partitioning issues and the discovery of novel cell types. 277 

The other existing cell-level matching approaches naturally provide the probabilistic cluster-level 278 

matching of cell types as the percentage of matched cells in query cluster (Supplementary 279 

Figures 19-22); a deterministic cluster-level match would depend on the selection of an ad-hoc 280 

cutoff of the probabilistic matching. Thus, deterministic cell type mapping or discovery of novel 281 

cell types would be difficult as i) individual cells may be alike in the same broad cell class even if 282 

the specific cell type may not be present in the reference dataset, and ii) the probabilistic cutoff 283 

may be subjective. Therefore, both scmap and Seurat identified many more non-specific one-284 

way matches than FR-Match, which uses an objective p-value cutoff.  285 
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Combining all results, we finally report 15 high-confidence ensemble matches between Layer 1 286 

and full MTG cell types in Supplementary Table 1. 287 

The effects of alternative gene selection and cell clustering methods on matching 288 

performance  289 

To further elucidate the impact of alternative gene selection or cell clustering choices on cluster 290 

matching, we performed the following analyses. 291 

In the two brain datasets, cell types are defined and characterized by a domain knowledge-292 

guided iterative clustering [13] and transcriptomically-derived markers [28, 29]. The 293 

nomenclature used to describe these cell types consists of the broad cell class (inhibitory, 294 

excitatory, and glial cells), layering information (for the MTG dataset), one marker gene for the 295 

subclass node in the taxonomy tree (e.g. VIP, SST, etc.), and one marker gene for the leaf node 296 

cluster. For example, the “Inh_L1_2_PAX6_CDH12” from the MTG dataset means the inhibitory 297 

neurons located in layer 1-2 within the PAX6-subclass/subbranch expressing CDH12. The leaf 298 

node marker genes are preferentially selected by a binary scoring scheme [29] different from 299 

the one used by NS-Forest. Thus, the “cell type naming genes” provide an alternative 300 

informative marker gene set.  301 

To assess matching performance using a different set of informative marker genes, we replaced 302 

the NS-Forest marker genes by these cell type naming genes for both datasets, followed by the 303 

same matching approaches. 26 and 87 naming genes were defined for the Layer 1 and full 304 

MTG datasets, respectively, out of which, 9 and 18 genes are in common between the naming 305 

genes and the NS-Forest marker genes, respectively. Using cell type naming genes, FR-Match, 306 

scmap, and Seurat all performed slightly differently with less ideal matching patterns 307 

(Supplementary Figure 23). Overall fewer matches were identified; and the identified matches 308 

were less specific (i.e. mapping to neighboring cell types). This is probably because using only 309 
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one leaf node marker gene may not be enough to fully capture the differences between those 310 

closely related leaf node cell types. From these matching results, we may conclude that NS-311 

Forest selects better sets of informative markers than the other approach in this example, which 312 

has an impact on all three matching methods; less optimal feature selection will negatively 313 

impact matching regardless of the matching methods. 314 

In another analysis, we compared the matching performance of FR-Match, scmap, and Seurat 315 

with respect to a different clustering method. The community detection Louvain method [10] is 316 

one of the most commonly used clustering methods for scRNAseq analysis. We applied Louvain 317 

clustering (implemented in the Seurat R package, with resolution = 1) to the full MTG dataset, 318 

which resulted in 26 reasonably segregated clusters in the UMAP low-dimensional embedding 319 

space (Supplementary Figure 24a). Matching results with the Louvain clusters are shown in 320 

Supplementary Figure 24b. FR-Match produced similar matching results regardless of the 321 

clustering methods: each Layer 1 cluster is strongly matched (two-way match) to some Louvain 322 

cluster of the full MTG dataset. Many-to-one and one-to-many matches are observed since the 323 

generic Louvain method appears to have under-partitioned the data in comparison with the 324 

original expert-curated iterative clusters, which agrees with the matching patterns we observed 325 

in our simulations. Matching by scmap and Seurat with the Louvain clusters shows the same 326 

problems as with the original clusters, i.e. excessive unassigned matches (scmap), and non-327 

specific matches of the Layer 1 excitatory cluster (scmap and Seurat). Using different clustering 328 

methods will lead to different matching results depending on the clustering quality. As long as 329 

the clusters are reasonably good, FR-Match is able to detect high quality matches regardless of 330 

the clustering methods. 331 

Cell type matching using batch integration 332 
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To date, there are more than 10 methods that have been proposed to correct the batch effects 333 

of scRNAseq data; among them, Harmony [31], LIGER [32], and Seurat 3 [21] are the 334 

recommended algorithms for batch integration [33]. Only Seurat is an end-to-end pipeline that 335 

inputs multiple scRNAseq data batches and outputs cell-to-cell alignment between batches. By 336 

summarizing the cell-level batch integration with prior cluster memberships of the cells, we 337 

compared the performance of Seurat for cell type matching with FR-Match in previous 338 

subsections. In this subsection, we implemented a workaround for Harmony and LIGER to 339 

transfer the batch integration outputs to produce putative cell type matches. 340 

We applied Harmony (Supplementary Figure 25-26) and LIGER (Supplementary Figure 27-28) 341 

individually to integrate the Layer 1 and MTG datasets; both methods showed effective “batch-342 

effect” removal in the UMAP (Supplementary Figure 25b-c) or tSNE (Supplementary Figure 343 

27b-c) low-dimensional embedding. For both Harmony and LIGER, the outputs from the 344 

algorithms are the integrated cells in some dimensionally reduced spaces; joint clustering can 345 

then be conducted on the integrated data spaces (Supplementary Figure 25d, Supplementary 346 

Figure 27d); and cell type matching can be inferred from the “river” plots (Supplementary Figure 347 

26a, Supplementary Figure 28a) between the input batches through the common joint clusters. 348 

We transferred the river plot to a one-to-one correspondent cell type matching heatmap, with 349 

each match indicating there exists a path between the two cell types in the river plot. Note that 350 

the heatmap is non-directional for a given set of edges of the river plot. Through such a 351 

workaround, we obtained cell type matching results for Harmony (Supplementary Figure 26b) 352 

and LIGER (Supplementary Figure 28b) in a similar format as FR-Match. It is clear that the 353 

batch integration approaches produce matches in blocks (i.e. many-to-many matches), and do 354 

not effectively yield the specific matches within these blocks if multiple related cell subtypes are 355 

presented. These batch integration methods were not originally designed for the task of cell type 356 

integration; therefore, it is not surprising that they produce sub-optimal results.  357 
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Discussion 358 

FR-Match offers a cluster-level approach for mapping cell phenotypes identified in scRNAseq 359 

experiments. It extends the current cell-level matching algorithms by: i) borrowing information 360 

from all the cells in the same cluster using a statistical test that provides both probabilistic 361 

matching in p-values and objective p-value thresholds for deterministic matching, and ii) 362 

providing simple visualization of cell type data clouds in the minimum spanning tree graphical 363 

representation. Matching results of FR-Match are relatively conservative yielding highly specific 364 

matches, which can confirm cell type equivalence, lead to novel cell type discovery, and 365 

diagnose upstream clustering problems. Among many other scRNAseq data integration 366 

strategies, this approach combines informative feature selection and cluster-level integration of 367 

the NS-Forest and FR-Match software suites, producing intuitive results with high interpretability, 368 

including useful intermediate results such as binary marker genes and minimum spanning tree 369 

graphs for users to monitor and gain meaningful insights from the mapping solutions. 370 

Based on the computational and statistical investigation of both simulated and real datasets, we 371 

conclude that: i) the FR-Match and Seurat methods show excellent performance in mapping 372 

neuronal and glial cell types using snRNAseq data from human brain; and ii) supervised feature 373 

selection, such as the NS-Forest algorithm, appears to produce excellent marker gene 374 

combinations that can be used as an effective feature selection/dimensionality reduction 375 

technique for cell type mapping with multiple methods, including FR-Match and scmap. Scmap 376 

is a consensus method that requires at least two of the three association metrics – cosine 377 

similarity, Pearson and Spearman correlations – to be in agreement as the last step to 378 

determine a match, thus the comparative analysis results of the matching methods reported 379 

here may also serve as a reference guide for matching performance using those association 380 

metrics. 381 
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One of the biggest challenges in scRNAseq alignment at the moment seems to be the proper 382 

assignment of cells from a cell type found in only one dataset. These cells are often matched to 383 

a closely related cell type in a second dataset. In this regard, FR-Match appears to be superior 384 

in being able to determine which cell types from two datasets are not matched, for novel cell 385 

type discovery.  386 

For all compared methods in this study, it's interesting to note that under-partitioning the query 387 

clusters leads to degraded performance, except if the reference clusters are also under-388 

partitioned. This suggests that a useful strategy would be to map to reference types in a 389 

hierarchical manner by first mapping to broad classes of references types and then moving 390 

down the tree to finer types until ambiguous matches appear. The negative effect of under-391 

partitioned clusters also applies to the nested classes of heterogeneous cell types. 392 

Automated cell type integration of independent scRNAseq datasets remains challenging.  393 

Creating an unbiased, high-resolution and comprehensive cell type reference would be a critical 394 

task for the whole single cell research community. Consensus mapping schemes that survey 395 

both cell-level and cluster-level matchings will be useful for establishing such a reference data 396 

atlas. We believe that final mapping of the brain cell types agreed upon by the type of bi-397 

directionally and multi-level matchings reported here represents the best-practice for 398 

computational cell type mapping, requiring minimal expert intervention. 399 

Single cell evaluation is a fast-evolving field. Although not fully explored here, we expect FR-400 

Match to be applicable to cross-platform, cross-specimen, cross-anatomy, and cross-species 401 

matching of scRNAseq clustered data. The effect of dropouts and the dynamic range of single 402 

cell sequencing data from protocols other than the Smart-seq [34] protocol stand out as key 403 

challenges to be overcome. To address these challenges, we are now developing add-on 404 

features to the core FR-Match algorithm, including imputation techniques [35] for the relatively 405 
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high dropout rates in 10X Genomics droplet-based protocols [36], and moment-based 406 

normalization options [37] for the discrete and dispersed values produced in single cell spatial 407 

in-situ hybridization protocols [38-40]. Preliminary results of mapping Smart-seq cell clusters to 408 

10X cell clusters suggest that FR-Match will be useful for cross-platform cell type matching 409 

when appropriate dropout imputation and data normalization upstream steps are included in the 410 

computational pipeline (data not shown). While these emerging technologies will produce more 411 

complicated data integration challenges, the adaptation of methods like FR-Match are poised to 412 

play an essential role in the broad integration of scRNAseq cell phenotyping experiments. 413 

Methods 414 

The cell type matching problem 415 

Consider two single cell RNA sequencing experiments – one query/new experiment and one 416 

reference experiment. A cell-by-gene expression matrix for each experiment is obtained by 417 

standard scRNAseq data processing and analysis workflows, including quality control, reference 418 

alignment, sequence assembly, and transcript quantification. Cell cluster labels are also 419 

obtained from clustering analysis using, for example, the community detection Louvain 420 

algorithm [10], and/or other domain specific knowledge. These cell clusters represent 421 

transcriptionally-distinct cellular phenotypes within each experiment. The cell type matching 422 

problem is whether a pair of query and reference cell clusters identified in related but 423 

independent experiments are instances of the same or different transcriptionally-defined cell 424 

phenotypes. 425 

We propose a computational solution to the cell type matching problem – FR-Match – an 426 

adaptation the Friedman-Rafsky statistical test for scRNAseq data, which takes two input 427 

datasets (query and reference) each with a gene expression matrix and cell cluster membership 428 

labels (Figure 1a).  Importantly, FR-Match uses a set of informative marker genes that 429 
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characterize the reference cell type clusters. Dimensionality reduction is done by imposing the 430 

same set of marker genes on the query dataset, to select the most informative features shared 431 

with the reference dataset. For each pair of cross-dataset clusters, we perform cluster-to-cluster 432 

matching via the Friedman-Rafsky statistical test. As a result, FR-Match outputs the following 433 

types of match (format: query-to-reference): 1-to-0 or unassigned (indicative of a novel cell type), 434 

1-to-1 (indicative of a uniquely matched cell type), 1-to-many (indicative of an under-partitioned 435 

query cluster or over-partitioned reference cluster), many-to-1 (indicative of an over-partitioned 436 

query cluster or an under-partitioned reference cluster). 437 

Necessary and sufficient marker gene identification by random forest 438 

In order to perform dimensionality reduction, random forest machine learning as implemented in 439 

the NS-Forest algorithm [14, 15, 30] (v2.0 at https://github.com/JCVenterInstitute/NSForest)  440 

was used to select necessary and sufficient marker genes for each reference cell type cluster. 441 

NS-Forest includes steps for: i) feature selection, ii) feature ranking, and iii) minimum feature 442 

determination. Let � be an � � � dimensional cell-by-gene matrix, where � is the number of 443 

cells and � is the number of genes. Let � be an � � 1 vector of cluster labels. In step (i), 444 

random forest models, with 10,000 decision trees each, are built for input data � and each 445 

cluster label in � under a binary classification scheme. From each random forest model, the 446 

average information gain based on the Gini index for each gene is extracted, which is then used 447 

as a measure of feature importance to rank the gene features. In step (ii), for the top 15 ranked 448 

genes, a binary expression score for gene � in cluster � is calculated as 449 

Score�,� �
∑ �������,��

����,�
�
�

	
��
�

	�� , 450 

where ����,� is the median expression level of gene � in cluster �, � is the total number of 451 

clusters, and ���
 defines the non-negative value of the equation. The binary expression score 452 
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ranges from 0 to 1, where 1 indicates absolute binaryness, i.e. the gene exclusively expressed 453 

in the target cluster and not at all in non-target clusters. In step (iii), the top 6 genes from step (ii) 454 

are selected and all combinations are evaluated by the F-beta score. F-beta is an F-measure 455 

weighted by � such that  456 

�� � �1 � ��� �
���������������

�����������
������ . 457 

� � 0.5 was set to weight precision more than recall, which compensates the effect of false 458 

negatives dropouts due to technical artifacts in scRNAseq experiments. The output from step (iii) 459 

is a minimum set of marker genes for each cell type cluster (usually 1 – 4), whose expression in 460 

combination is sufficient to discriminate the target cell type cluster from the rest of the cells. In 461 

addition to the minimum set of NS-Forest marker genes, the algorithm also provides an 462 

extended list of binary marker genes as a supplementary output from step (ii), which may 463 

achieve higher discriminative power under certain circumstances. The top 15 NS-Forest genes 464 

for each cell type formed an NS-Forest extended gene list as an alternative feature selection 465 

option for matching algorithms. For a more detailed discussion of the choice of the number of 466 

top genes used in NS-Forest v2.0, see Aevermann et al. [30] 467 

Friedman-Rafsky test 468 

The Friedman-Rafsky (FR) test [26] is a multivariate generalization of the non-parametric two-469 

sample comparison problem. This classical statistical test is distribution free. Consider two 470 

general distributions �� and �� for samples ���, � , ��� and ���, � , ��� in a �-dimensional space, 471 

respectively. (In the context of FR-Match, the �’s and �’s denote the expression profiles of each 472 

cell in the query and reference clusters; � and � are the number of cells in each cluster; � is 473 

determined by the number of informative marker genes from the reference dataset). Under the 474 

hypothesis testing framework, the original FR test is designed for testing 475 
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��: �� � ��  versus  ��: �� ! ��, 476 

in which the null hypothesis states that the cells from both query and reference clusters are from 477 

the same transcriptional distribution; the alternative hypothesis states that the two cell 478 

populations are from different transcriptional distributions. Thus, the cell type matching problem 479 

becomes a statistical test to detect comparisons for which �� is true. 480 

The underlying model of the FR test is a graphical model based on the minimum spanning tree 481 

of pooled samples (Figure 1a). In the multi-dimensional informative marker gene space, cells 482 

from different clusters (indicated by colors) are pooled and form a mixture of data points. A 483 

complete graph can be constructed, which connects all cells to each other and uses the edge 484 

length to preserve the pairwise Euclidean distance between cells in the original space. Next, the 485 

complete graph is trimmed to a tree graph that connects all cells with the minimum total length 486 

of edges, i.e. the minimum spanning tree. Edges that connect cells of different clusters are then 487 

removed and the number of disjoint subtrees is counted. Intuitively, if there are a large number 488 

of subtrees, it implies that the pooled cells are closely interspersed and therefore more likely to 489 

be from the same multivariate gene expression distribution. 490 

Formally, let " be the total number of subtrees – “multivariate runs” in the FR test framework, 491 

with mean #�"� and variance Var�"� directly derived from graph theory. The FR statistic is 492 

defined as 493 

& �
����� 

!���� �/� . 494 

Friedman and Rafsky showed that the asymptotic distribution of & follows a standard normal 495 

distribution for large sample sizes: 496 

 & ' (�0,1� as �, � ) ∞ with �/� bounded away from 0 and ∞. (1) 497 
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For the hypothesis testing purpose, �� is rejected for small values of &, i.e. p-value is one-498 

sided such that , � Pr�& . /�. Note that, in the cell type matching application, we determine a 499 

match if , 0 0.05, but other p-value thresholds could also be used. 500 

FR-Match method 501 

Extending from the classical statistical test, FR-Match is a novel application of FR test to 502 

approach the cell type matching problem with scRNAseq data. The full FR-Match algorithm not 503 

only implements the basic testing procedure, but also adapts modifications for specific issues 504 

pertaining to the scRNAseq application. A major issue is that two cell clusters to be compared 505 

may have very different cluster sizes, such as a dozen cells versus hundreds of cells 506 

(Supplementary Figure 29). The unbalanced cluster sizes will often cause two problems: i) 507 

unstable statistical power as the ratio of cluster sizes deviates from the asymptotic condition, 508 

and ii) exponentially long computational time needed for constructing minimum spanning tree for 509 

large number of cells. To address these problems, an iterative subsampling scheme was 510 

implemented, which repeatedly performs sampling without replacement of 1 cells, or all cells if 511 

1 > cluster size, from each cell cluster for 2 times. Default values of 1 and 2 are 10 and 1000, 512 

respectively, but are tunable. The median p-value of all iterations is outputted. Other 513 

modifications include filtering small clusters with less than 3 cells each, and p-value adjustment 514 

for multiple hypothesis testing correction. Empirically, 3 � 10 was chosen for defining a cell type 515 

cluster with high confidence since it appeared to provide enough cell instances to be 516 

representative. It is suggested to set 1 � 3, but it is not a necessary condition for the algorithm. 517 

A disproportionate ratio of 1 to 3 would adversely affect the underlying statistical assumptions 518 

due to the unmet asymptotic condition in Equation (1).  519 

As an alternative to the asymptotic theory, permutation testing is a widely-accepted practical 520 

choice for approximating the null distribution of the FR statistic in a hypothesis testing 521 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 29, 2020. ; https://doi.org/10.1101/2020.05.01.073445doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.01.073445
http://creativecommons.org/licenses/by-nc-nd/4.0/


 25

framework [41]. We designed a simple technical simulation to compare the statistical properties 522 

of the FR test, FR permutation test, and FR test with subsampling scheme, with respect to the 523 

major pragmatic concern of imbalanced cluster sizes that specifically pertains to the cell type 524 

matching problem. We generated multivariate data from a Multivariate Normal (MVN) 525 

distribution (� � 40 dimensions). Random samples were drawn from ��� , � , ��� ' 56(�7 �526 

0, Σ � 9� and ��� , � , ��� ' 56(�7 � 0 � :, Σ � 9�, where 9 is the identity matrix. Under the null, 527 

: � 0, i.e. no location difference between the �- and �-samples; under the alternative, we set 528 

: � 0.4 for moderate location shift in their distributions. To simulate the imbalanced cluster sizes, 529 

we fixed one cluster size � � 10 and varied the other cluster size � � 10, 20, 100, 200. The ROC 530 

analysis (Supplementary Figure 30) confirm that the permutation test is a very good 531 

approximation of the FR test based on asymptotic theory; however, both tests show 532 

deteriorating ROC curves when the sample sizes were very imbalanced (� � 200, blue curve). 533 

In contrast, FR test with subsampling shows the most ideal property – better ROC curve and 534 

larger AUC value – as sample size (i.e. cluster size in this context) increases. Therefore, the 535 

iteratively subsampling scheme was adopted in the FR-Match algorithm. 536 

Though the subsampling parameter 1 was initially chosen based on practical considerations, we 537 

also provide more simulation results for guiding the choice of 1 here. Based on the same 538 

simulation design as above, we evaluated the AUC values for FR subsampling tests with 539 

1 � 10, 20, 30, and benchmarked with the FR test (Supplementary Figure 31). When both input 540 

cluster sizes � and � vary from 10 to 200, the FR subsampling test with 1 � 10 outperforms all 541 

other choices with the FR test showing the highest AUC values in all simulated cases with � 542 

and �. This is potentially due to the expectation that the choice of 1 should embrace the right 543 

balance between gathering enough samples to represent the whole cluster and avoiding local 544 

structures in the cluster (i.e. large subtrees of the same color in an MST). We believe this might 545 

be related to the “effective” dimensionality of the data space characterized by Σ and other 546 
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distributional properties, which will be an interesting topic for future statistical research. In this 547 

manuscript, the choice of 1 is supported by empirical evidence; readers should use their own 548 

judgement on the choice of 1 for their own datasets. 549 

In the Layer 1 and full MTG matching analysis reported in this manuscript, tunable parameters 550 

were set at the default values described above. When a sequence of FR-Match p-values were 551 

computed for each pair of Layer 1 cell type and MTG cell type, Benjamini & Yekutieli [42] p-552 

value adjustment was applied for multiple hypothesis testing correction before the final 553 

determination of a cell type match. 554 

Determining cluster-level match for the cell-level matching methods 555 

In comparison with other popular matching methods, a voting rule was adopted after obtaining 556 

the cell-level matching results from algorithms scmap (cell-to-cluster) and Seurat (cell-to-cell). 557 

Scmap provides a map: query cell ) reference cluster. We calculate the % of reference cluster 558 

labels grouped by the query cell labels, and thereby obtain a quantitative measure ranging from 559 

0 to 1 that indicates the probability of being the same cell type between the query and reference 560 

cell clusters. Similarly, the Seurat alignment is extended to query cell ) reference cell ) 561 

reference cluster, and calculate the cluster-to-cluster matching measure in the same way. For a 562 

specific query cluster, its cluster-level match is determined by the votes of its member cells for 563 

their mapped reference cluster labels. An ad-hoc threshold at 30% was used for defining a 564 

deterministic match, which accounts for both the detection of a substantial proportion of query 565 

cells matched to one reference cluster and the possibility that some query clusters might be 566 

matched to multiple reference clusters. If the 30%-criterion is not met, then the query cluster is 567 

defined as unassigned in the matching results. The cluster-level matching results may change 568 

depending on the ad-hoc threshold used. For example, if changing the threshold to 40%, Seurat 569 

would identify the same set of two-way matches, but with three fewer one-way matches 570 
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(Supplementary Figure 32). A data-driven decision on such a threshold can be guided by the 571 

distribution of % of matched cells in Supplementary Figures 19-22. 572 

Cross-validation and simulation design 573 

Data generation for the cross-validation and simulation studies were from the cortical Layer 1 574 

data with 15 cell clusters [28] (excluding one cluster, i11, with too few cells). All cross-validation 575 

designs  were two-fold by evenly splitting data into training and testing in proportion to the 576 

original cluster sizes. All cross-validations were repeated 20 times each design. 577 

Real data-guided simulations were used to mimic under-/over-partitioned scenarios (Figure 4). 578 

“Top nodes” under-partitions are cells merged into three broad classes: GABAergic inhibitory 579 

neurons, glutamatergic excitatory neurons, and neuroglial cells. “Mid nodes” under-partitions are 580 

cells merged into similar inhibitory neurons according to the constellation diagram of cluster 581 

network from the original study [28]; for the purpose of simulation, i1 and i5, i3 and i4, and i6, i8, 582 

and i9 were merged. For over-partitions, large cell clusters were split by running k-means 583 

clustering with k = 2 independently for each over-partitioned cluster. “Split e1” divided the 584 

excitatory cluster into two sub-clusters of sizes 180 and 119 cells, resulting in 16 (= 15 + 1) 585 

over-partitioned clusters. “Split i1, i2, i3” divided each of the inhibitory clusters into two sub-586 

clusters of sizes 56 and 34, 39 and 38, 32 and 24 cells, respectively, resulting in 18 (= 15 + 3) 587 

over-partitioned clusters in total. NS-Forest marker genes were identified for each of the 588 

simulated datasets. Matching performances of the under-/over-partitioned datasets were 589 

evaluated through two-fold cross-validation repeated 20 times. 590 

Data availability 591 

Two published single-nucleus RNA-seq datasets from the Allen Institute of Brain Science of 592 

human brain were used: i) cortical Layer 1 of middle temporal gyrus (MTG) [28] and ii) full 593 
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thickness MTG [29] (https://portal.brain-map.org/atlases-and-data/rnaseq/human-mtg-smart-594 

seq). The Layer 1 dataset contains expression data from 871 intact nuclei that form 16 cell type 595 

clusters, including four non-neuronal type clusters, one excitatory neuron type cluster, and 11 596 

inhibitory neuron type clusters. The MTG dataset contains filtered expression data from 15,603 597 

nuclei that form 75 cell type clusters, subdivided into six non-neuronal type clusters, 24 598 

excitatory neuron type clusters, and 45 inhibitory neuron type clusters. These cell type clusters 599 

are regarded as transcriptionally distinct cell types with nomenclature asserted after iterative 600 

clustering analysis [13]. Gene-level read count values were preprocessed to log-CPM (counts 601 

per million) values for all nuclei. 602 

The same high level data processing steps were used for both datasets, although the details 603 

varied slightly: 604 

1. Whole postmortem brain specimens or neurosurgical tissue samples were collected from 605 

adult male and female donors with ‘control’ condition (i.e. non-disease).  606 

2. Nuclei were isolated from microdissected tissue pieces to avoid damage to neurons [43], 607 

and single nuclei were sorted using FACS instruments. The gating strategy included 608 

doublet detection gates and gates on neuronal marker NeuN signal. 609 

3. RNA sequencing was performed using the SMART-Seq platform and multiplex library 610 

preparation.  611 

4. STAR alignment of raw reads to human genome sequence, and sequence quantification 612 

using standard Bioconductor packages were performed. Gene expression levels were 613 

reported as counts per million (CPM) of exon and intron reads. 614 

5. Nuclei passing quality control criteria were included for clustering analysis. 615 

6. Iterative clustering procedure based on community detection were performed to group 616 

nuclei into transcriptomic cell types [13]. Dropouts were accounted for while selecting 617 

differentially expressed genes, and PCA was used for dimensionality reduction. 618 
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7. Clusters identified as donor-specific were flagged as outliers, and manually inspected for 619 

cluster-level QC before exclusion. 620 

Key Points 621 

• Feature selection plays a key role in scRNAseq data integration of cell type clusters; 622 

using supervised feature selection instead of approaches based on dropout rates 623 

significantly improves the performance of existing cell type matching methods, e.g. 624 

‘scmap’. 625 

• The random forest-based ‘NS-Forest’ marker gene selection algorithm is an effective 626 

dimensionality reduction tool that produces an informative set of necessary and sufficient 627 

genes for characterizing reference cell types. 628 

• The cluster-level cell type matching method ‘FR-Match’, which builds upon a non-629 

parametric multivariate statistical test, shows robustness against missing reference cell 630 

types, i.e. novel query cell types. 631 

• FR-Match precisely matched common cell types from two independent scRNAseq 632 

experiments that reflect the laminar characteristics of the two anatomically overlapping 633 

brain regions. 634 

• FR-Match software provides barcode plots and minimum spanning tree graphs for the 635 

query and reference cell type clusters, which are user-friendly visualization tools for 636 

insightful data exploration of scRNAseq data clusters. 637 
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Figure Legends 659 

Figure 1. FR-Match schematic and marker gene “barcodes”. (a) FR-Match cluster-to-cluster 660 

matching schematic diagram. Input data: query/new and reference datasets, each with cell-by-661 

gene expression matrix and cell cluster membership labels. Step I: dimensionality reduction by 662 

selecting expression data of reference cell type marker genes from the query dataset. Here, we 663 
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use the NS-Forest marker genes selected for the reference cell types. Step II: Cluster-to-cluster 664 

matching through the Friedman-Rafsky (FR) test. From left to right: multivariate data points of 665 

cell transcriptional profiles (colored by cell cluster labels) in a reduced dimensional (reference 666 

marker gene expression) space; construct a complete graph by connecting each pair of vertices 667 

(i.e. cells); find the minimum spanning tree that connects all vertices with minimal summed edge 668 

lengths; remove the edges that connect vertices from different clusters; count the number of 669 

disjoint subgraphs, termed “multivariate runs” and denoted as "; calculate the FR statistic &, 670 

which has asymptotically a standard normal distribution. (b) “Barcodes” of the cortical Layer 1 671 

NS-Forest marker genes in four Layer 1 clusters. Heatmaps show marker gene expression 672 

levels of 30 randomly selected cells in each cell cluster. The “Marker” column indicates if the 673 

gene is a marker gene of the cluster or not (1=yes, 0=no). 674 

 675 

Figure 2. Cross-validation results. Two-fold cross-validation were repeated 20 times on the 676 

cortical Layer 1 data with all clusters. Training (reference) and testing (query) data were evenly 677 

split in proportion to the cluster sizes. Cluster-level matching results for the cell-level matching 678 

methods were summarized as the most mapped cluster labels beyond a defined threshold (see 679 

Methods section). Matching output: 1 if a match; 0 otherwise. If a query cluster is not matched to 680 

any reference cluster, then it is unassigned. (a) Heatmaps show the average matching result for 681 

each matching method. True positive rate (TPR) is calculated as the average of the diagonal 682 

matching rates, i.e. true positives. (b) Median, interquartile range, and full range of accuracy, 683 

sensitivity, and specificity of all cluster-matching results in cross-validation for each matching 684 

method is shown.  685 

 686 
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Figure 3. Leave-K-cluster-out cross-validation results. The same cross-validation settings 687 

as in Figure 2 were used. After data split, K ≥ 1 reference clusters were held-out to simulate the 688 

situation in which the query dataset contains one or more novel cell type clusters.  (a) Heatmaps 689 

show the average matching result for each matching method when the i5 “rosehip” cluster was 690 

left out. (b)  Accuracy, sensitivity, and specificity of the leave-1-cluster-out cross-validation 691 

performance for each matching method is shown. Each cluster was left out in turn, and 692 

performance was evaluated across all turns. (c) Precision-Recall Curves of the leave-K-cluster-693 

out cross-validation performance for K = 1, 3, 5, and 7 are shown and Area-Under-the-Curves 694 

(AUC) statistics are calculated. Performance was evaluated across 20 iterations of randomly 695 

selected K clusters. Curves for the FR-Match with and without p-value adjustment have the 696 

same shape since the adjustment preserves the order of p-values. Note that the Seurat 697 

package by default does not provide for unassigned cells/clusters as a direct output. 698 

 699 

Figure 4. Design of the under-, optimally-, and over-partitioned cluster simulations and 700 

their matching properties. (a) A schematic of simulating cluster partitions. The optimal 701 

partitioning produced nodes where cells were consistently co-clustered across 100 bootstrap 702 

iterations for clustering and curated by domain expert knowledge [13, 28]. Connectivity (edge 703 

width) between nodes are measured by the number of intermediate cells/nuclei shared by 704 

similar nodes. Two under-partition scenarios, “Mid nodes” and “Top nodes”, were simulated by 705 

merging similar/hierarchically-connected nodes (e.g. i1 + i5 clusters and all inhibitory clusters, 706 

respectively). Two over-partition scenarios, split e1 and split i1, i2, and i3, were simulated by 707 

splitting those large size clusters by k-means clustering with k = 2. Median F-measure of the 708 

NS-Forest marker genes for each partition are reported in the table. (b) FR-Match properties 709 

and expected marker gene types with respect to under-, optimally-, and over-partitioned 710 

reference and query cluster scenarios, summarized from the simulation results (Supplementary 711 
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Figure 11). Green blocks in the table are cases with high true positive rate (TPR); red blocks are 712 

warning cases with low TPR. 713 

 714 

Figure 5. FR-Match results for cell type matching between the cortical Layer 1 and full 715 

MTG datasets. (a) Two-way matching results are shown in three colors: red indicates that a 716 

pair of clusters are matched in both directions (Layer 1 query to MTG reference with MTG 717 

markers, and MTG query to Layer 1 reference with Layer 1 markers); yellow indicates that a pair 718 

of clusters are matched in only one direction; and blue indicates that a pair of clusters are not 719 

matched. The hierarchical taxonomy of the full MTG clusters is from the original study [29]. FR-720 

Match produced 13 unique, and two non-unique two-way matches between the two datasets. 721 

Box A shows densely located one-way matches in the subclade of VIP-expressing clusters. Box 722 

B shows incidentally captured cells from upper cortical Layer 2 mixed in the Layer 1 e1 cluster. 723 

Box C shows the non-unique two-way matches of astrocyte clusters. (b) Examples of matched 724 

and unmatched minimum spanning tree plots from the FR-Match graphical tool. Top row: 725 

examples of two-way matched inhibitory clusters. Middle row: examples of two-way matched 726 

non-neuronal clusters. Bottom row: examples of unmatched excitatory clusters from different 727 

layers. Legend: cluster name (cluster size). 728 

 729 

Figure 6. Cell type matching results between the cortical Layer 1 and full MTG datasets 730 

using other matching methods.  Two-way cluster-level matching results for the cell-level 731 

matching methods were summarized as the most mapped cluster labels beyond a defined 732 

threshold (see Methods section). Box A shows matches in the VIP-expressing subclade. Box B 733 

shows matches spanning multiple layers among the MTG clusters. Box C shows matches of 734 

glial clusters. 735 
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