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Abstract: Although the importance of T-cell immune responses is well appreciated in cancer, 
autoantibody responses are less well-characterized. Nevertheless, autoantibody responses are of 
great interest, as they may be concordant with T-cell responses to cancer antigens or predictive 
of response to cancer immunotherapies. We performed serum epitope repertoire analysis (SERA) 
on a total of 1,229 serum samples obtained from a cohort of 72 men with metastatic castration-
resistant prostate cancer (mCRPC) and 1,157 healthy control patients to characterize the 
autoantibody landscape of mCRPC. Using whole-genome sequencing results from paired solid-
tumor metastasis biopsies and germline specimens, we identified tumor-specific epitopes in 29 
mutant and 11 non-mutant proteins. Autoantibody enrichments for the top candidate autoantigen 
(NY-ESO-1) were validated using ELISA performed on the prostate cancer cohort and an 
independent cohort of 106 patients with melanoma. Our study recovers antigens of known 
importance and identifies novel tumor-specific epitopes of translational interest in advanced 
prostate cancer. 
 
Statement of significance: Autoantibodies have been shown to inform treatment response and 
candidate drug targets in various cancers. We present the first large-scale profiling of 
autoantibodies in advanced prostate cancer, utilizing a new next-generation sequencing-based 
approach to antibody profiling to reveal novel cancer-specific antigens and epitopes. 
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Background 
 
The role of adaptive immunity in cancer is of great translational interest given the recent 
development of novel, clinically effective immunotherapies that focus on generating T cell 
responses to tumor antigens. While the T-cell landscape of numerous cancer types has been 
explored in some depth, the role of humoral immunity in cancer is much less well-characterized. 
Several studies have demonstrated that a distinct antibody signature may be detectable in the 
serum of breast1, prostate2, and lung3 cancer patients and may thus be useful for cancer detection. 
Additionally, studies have demonstrated that B-cell infiltration into the tumor microenvironment 
is associated with prolonged patient survival and enhanced response to immunotherapy in 
melanomas, renal cell carcinomas, and sarcomas4–9, with several studies suggesting that B-cell 
autoantibodies may play a direct role in mounting an anti-tumor response10,11. In the setting of 
cancer vaccines, preclinical data indicate that IgG anti-tumor antibody responses to neoantigens 
in a mouse model of breast cancer can predict corresponding T cell responses to the same 
epitopes12. Furthermore, in a completed phase III trial that led to approval of the autologous 
cellular vaccine sipuleucel-T for mCRPC, which was one of the first immunotherapies approved 
by the FDA for solid tumors, productive antibody responses to the immunogen were correlated 
with longer overall survival in retrospective analysis13. Finally, anti-tumor immune responses 
can also be stimulated by proteins ectopically expressed outside of immune-privileged sites in 
somatic tumor tissues, the prototype of which is cancer-testis antigen NY-ESO-1. The prevalence 
of autoantibodies to the NY-ESO-1 peptide and putative conservation of B- and T-cell epitopes 
has led to over 30 NY-ESO-1 T-cell receptor immunotherapy clinical trials, at various stages of 
completion, in diverse cancer types14,15. Altogether, these findings support the notion that a 
patient’s antibody repertoire may reflect a specific immune response to the patient’s cancer and 
may have potential diagnostic and therapeutic implications. 
 
Tumor-associated antibodies detectable in patient serum are traditionally profiled using 
microarray-based methods16–18, phage-display approaches19–21, or techniques incorporating 
principles of the two22–24. One key limitation of candidate protein-based approaches is the 
throughput and subsequently limited number of antigens that can be profiled and the inability to 
detect patient- or tumor-specific sequence variants generated by mutation. The serum epitope 
repertoire analysis (SERA) tool leverages a randomized bacterial-display library paired with next 
generation sequencing (NGS) to identify peptides binding to serum antibodies25. By leveraging 
the randomized library, SERA is able to examine both wild type and mutant sequences without 
any modification to the experimental protocols.  Protein-based Immunome Wide Association 
Study (PIWAS) builds on top of the SERA assay to identify proteome-constrained antigenic 
signals from the SERA assay . PIWAS calculates, for each sample and protein, a smoothed log-
enrichment value across a window of overlapping kmers. By comparing PIWAS values between 
cohorts using the outlier sum, PIWAS has been shown to identify autoantigens against the 
human proteome26. 
 
While autoantibody enrichment has previously been demonstrated in prostate cancer, these 
studies were limited by smaller discovery cohorts27,28 or relatively restrictive peptide 
libraries29,30.  It also appears that autoantibody enrichment may be context-specific.  For example, 
one large study that leveraged a phage-display approach developed a signature for prostate 
cancer screening but found that this signature could be found only in a minority of patients with 
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castration-resistant disease2. Thus, the autoantibody landscape for patients with metastatic 
castration-resistant prostate cancer (mCRPC) has yet to be elucidated. 
 
Given that metastatic castration-resistant prostate cancer (mCRPC) represents one of the leading 
causes of cancer-associated death in men, we sought to characterize the autoantibody landscape 
of this disease. Utilizing SERA, PIWAS, and IMUNE25,31, we performed an unbiased analysis of 
autoantibodies enriched in the serum of mCRPC patients compared to healthy controls. 
Specifically, we leveraged DNA-sequence level information from the assay to identify not only 
the proteins but also the specific epitopes (sub-peptides) within the full-length proteins that were 
putatively antigenic in mCRPC. We also integrated the serum antibody-profiling results with 
whole-genome sequencing performed on metastatic tumor biopsies and peripheral blood 
(germline) specimens from the same patients to assess the immunogenicity of antigens resulting 
from somatic mutations. We validated our top candidate antigen in NY-ESO-1, a known 
immunogenic tumor marker across cancer types, using an independent cohort of melanoma 
patients. We further validated the PIWAS-based seropositive results of our top motifs using 
ELISA experiments performed on the same serum specimens. In total, our study both recovered 
previously identified cancer antigens and identified novel, putative cancer-specific antigens in 
mCRPC. 
 

Materials and Methods 
 
Data acquisition and sample processing 
A prospective IRB-approved study (NCT02432001) was conducted by a multi-institutional 
consortium that obtained serum, peripheral blood, and fresh-frozen, image-guided biopsy 
samples of metastases from mCRPC patients. Serum samples for each patient were prospectively 
obtained at time of study enrollment, at three-month follow-up, and at time(s) of cancer 
progression, if applicable. Blood was drawn at start of therapy, 3 months into therapy, and at 
clinically determined disease progression in serum separator tubes of 6mL (BD #367815) or 
10mL (BD #367820). Tubes were spun within 90 minutes of collection (1500rcf for 10min), 
aliquoted into 2mL cryovials, and frozen on dry ice and shipped to a central lab at UCSF. Vials 
were stored upon arrival at -80°C until batch shipping on dry ice for processing at Serimmune. 
Solid-tumor metastases biopsies were sequenced using whole-genome sequencing and RNA-seq 
as previously described32,33. Serum samples from a control group consisting of 1,157 individuals 
without known history of cancer or other predicate disease were obtained from the Serimmune 
database of samples. A cohort of 106 melanoma patients was used for validation of specific 
antigens. The prospective IRB-approved study (11-003254) of these patients was conducted at 
University of California Los Angeles (UCLA) that obtained peripheral blood and biopsy samples 
for various analysis from patients treated for advanced melanoma malignancies. Plasma samples 
for each patient were prospectively obtained at time of study enrollment, at approximately three-
month follow-up and at further follow-up time(s) as prescribed. At baseline and after 
approximately 3 months of treatment, blood was collected in K3-EDTA lavender tubes of 9mL 
(Greiner Bio-One# 455036) and so forth. Tubes were spun within 24-hours after collection 
(1200rcf for 10 min, brake off), aliquoted at 500uL into 2mL cryovials for long term storage at -
80°C. A total of 106-subject aliquots were prepared as 120uL and overnight shipped on dry ice 
for processing at Serimmune. 
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Serum antibody-epitope profiling  
An E. coli bacterial-display library consisting of plasmids encoding random 12-mer peptides at a 
diversity of 8x109 was constructed and prepared as previously described25. Serum samples were 
screened on this library as previously described26. Briefly, serum samples, at a 1:25 dilution, 
were added to each well of a 96 well deep well plate containing 8x1010 (10-fold over-sampling) 
induced library cells and incubated with orbital shaking at 4°C for 1 hour. Cells were washed 
once with PBS containing 0.05% Tween-20 (PBST) and then incubated with Protein A/G Sera-
Mag SpeedBeads (GE Life Sciences, 17152104010350) for 1 hour at 4°C with orbital shaking. 
Cells displaying peptides bound to serum IgG antibodies were captured by magnetic separation 
and washed five times with PBST. Selected cells were grown overnight in LB supplemented 
with 34 μg/mL chloramphenicol and 0.2% wt/vol glucose at 37°C with shaking at 250 rpm. 
 
Amplicon preparation and NGS sequencing were performed as previously described26. Briefly, 
plasmids were isolated from selected library cells using the Montage Plasmid MiniprepHTS Kit 
(MilliPore, LSKP09604) on a MultiscreenHTS Vacuum Manifold (MilliPore, MSVMHTS00) 
following the manufacturer’s instructions. Next, DNA encoding the 12mer variable regions was 
amplified and barcoded by two rounds of PCR. Finally, after normalizing DNA concentrations, 
pooled samples were sequenced using a NextSeq 500 (Illumina) and a High Output v2, 75 cycle 
kit (Illumina, FC-404-2005) with PhiX Run Control (Illumina, FC-110-3001) at 40% of the final 
pool concentration. 
 
Identifying mutation-specific epitopes 
Previously-published results of whole-genome sequencing performed on fresh-frozen metastasis 
biopsies and paired peripheral blood samples of the same patients32,34 was analyzed to identify 
somatic protein-coding point and frameshift mutations present in each patient’s tumor. Data from 
the SERA platform were broken into 5mers and 6mers for every sample and enrichments were 
calculated25. Using the same approach as PIWAS, these enrichments were tiled against both the 
wild type and mutated protein sequences26. The enrichment values for the wild type sequence 
were subtracted from the mutant sequence to identify differential signal. The maximum 
differential value was calculated for every mutated protein and the associated patient sample. 
The data were fit to an exponential distribution and the probability density function was used to 
estimate P-values for every protein. P-values were corrected for multiple hypothesis testing 
using the Benjamini-Hochberg procedure35.  
 
PIWAS approach 
Using the prostate cancer patients as cases and the individuals without known cancer as controls, 
we ran a PIWAS analysis against the human proteome26.  PIWAS was parameterized to have a 
window size of 5, the number of standard deviation approach, and the maximum peak signal. 
The outlier sum false discovery rate as defined previously was used to prioritize antigens26. The 
reference human proteome was downloaded from Uniprot on February 28, 2019.  
The validation PIWAS was run using the same parameterizations with the melanoma cohort as 
cases and the individuals without known cancers as controls.  
 
Panel score approach 
For top antigens NY-ESO-1 and HERV-K, additional steps were taken to develop a motif panel 
for these antigens. In both cases, the following approach was taken. First, prostate cancer 
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samples with an antigen PIWAS score >6 were identified. The positive prostate cancer samples 
and 30 random healthy controls were used as input to the IMUNE algorithm, which was 
parameterized with 20% sensitivity and 100% specificity25. Motifs that mapped linearly to the 
target antigen were retained. For each retained motif, the mean and standard deviation (SD) of 
enrichment scores was calculated using the 1,157 control specimens as a reference group. z-
scores were calculated for every cancer specimen. Then, for each cancer specimen, enrichment 
scores for each motif were z-scored (based on the enrichment score mean and SD of the control 
group) and summed to generate a composite score for each specimen. Thus, the final composite 
“panel score” was defined as the sum of motif z-scores for each specimen. Thresholds for 
positivity on the panel were set at a 99% specificity. 

ELISA 

Briefly, NY-ESO-1 recombinant protein (Origene) at 0.5 ug/ml, or control recombinant protein 
CENPA (Origene) at 0.5 ug/ml, or HERVK-5 recombinant protein (MyBiosource) at 1 ug/ml or 
control protein Bovine Serum Albumin (Sigma) at 1 ug/ml in PBS were coated onto flat bottom, 
96 well plates (Nunc MaxiSorp), 50 ul per well at 4°C overnight. Plates were washed with PBS 
containing 0.1% Tween 20 and blocked with 5% non-fat milk in PBS for 2 hours at room 
temperature. Plates were then incubated with 100 ul of patient serum diluted 1/200 or 1/2000 in 5% 
non-fat milk in PBS for 2 hours at room temperature. Following washing, plates were incubated 
with peroxidase conjugated goat anti-human IgG secondary (1/10,000 in 5% non-fat milk in PBS; 
Jackson ImmunoResearch) for 1 hour at room temperature. After a last wash step, the reaction 
was developed with 3,3',5,5'-tetramethylbenzidine substrate solution (ThermoFisher) for 1-10 
minutes and stopped with 1M hydrochloric acid. Absorbance at 450 nm was measured on a plate 
reader. ELISA values were calculated as the mean difference between the testing recombinant 
protein and the control protein. Due to reagent availability constraints, sera reactivity to HERVK-
5 was assessed in lieu of reactivity of HERVK-113 given the high sequence similarity of the 
HERVK-5 and HERVK-113 proteins (95.2% per BLAST analysis). 
 
Statistical methods and survival analysis 
Overall survival was measured from time of mCRPC diagnosis. Survival analyses were 
conducted using the Kaplan-Meier method with log-rank testing for significance. The χ2 test was 
performed to assess the relationship between ELISA and PIWAS antibody enrichment results. 
All independence and hypothesis tests were performed using a two-sided significance level of 
0.05. Multiple hypothesis testing correction was performed using the Benjamini-Hochberg 
procedure. 
 

Results 
 
Serum specimens were obtained from a cohort of 72 mCRPC patients with a mean age of 72 
years at time of mCRPC diagnosis (Table 1). The cohort was predominantly Caucasian (87%) 
with high-grade primary tumors in 54%.Visceral metastases were observed in 15 of 72 (21%) 
patients. Sera obtained at more than one timepoint were available for 79% of patients (Table S1). 
 
Integrating serum antibody profiling results with whole-genome sequencing results, we first 
sought to assess whether somatic, protein-coding mutations were associated with an antibody 
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response specific to the mutant peptide in mCRPC. 29 of the 6,636 protein-coding somatic 
mutations observed in our cohort were associated with a significant enrichment (exponential 
FDR < 0.05) in antibodies specific to the mutated peptide (Figure 1A, Table S1). These 29 
mutations were approximately evenly distributed between frameshift and missense mutations 
(Figure S1A). These events constituted the minority of mutations (0.44%), consistent with 
literature that suggests that most protein-coding mutations do not elicit an immune response36. 
Each of the mutation-specific antibodies was enriched in only one patient. However, the somatic 
mutations that coded the epitopes were also private to individual patients. This suggested that the 
observed antibody response was specific to the individual in which the mutant antigen was 
available. In 11 of 20 mutant epitopes derived from patients with multiple serum specimens 
available, multiple independent serum samples obtained from the same individual at different 
timepoints confirmed the mutation-specific antibody enrichments (Table S2). We highlight one 
example of a patient with a point mutation and a patient with a frameshift mutation that 
demonstrated an enriched autoantibody response to the corresponding mutant epitope across 
multiple timepoints (Figures 1B, 1C). 
 
Next, to investigate cancer-specific autoantibodies resulting from non-mutant proteins, we 
performed a protein-based immunome-wide association study (PIWAS). We found 11 proteins to 
be significantly enriched for antibodies in mCRPC patients compared to healthy controls (Figure 
2, Table 2/S3). The top two candidates were cancer-testis antigens NY-ESO-1 and NY-ESO-2, 
with the dominant epitope occurring in a conserved region between the proteins. Eight of 72 
(11%) patients demonstrated PIWAS values > 6, all of which mapped to amino acids 11-30 of 
NY-ESO-1 (Figures 3A, S3A). PIWAS values for seven of these eight patients remained above 
the threshold at all timepoints (Figure S3B). Of note, this dominant B-cell epitope had been 
described in a previous study using a peptide approach and was found to be present in prostate 
cancer at a similar frequency37.  In order to identify additional NY-ESO-1 antigenic regions, we 
applied the previously described IMUNE algorithm to identify peptide motifs that were 
significantly enriched in prostate cancer patients relative to healthy controls25. For this analysis, 
eight NY-ESO-1 PIWAS positive samples were analyzed by IMUNE using 30 healthy patient 
samples as controls. A total of nine cancer-specific motifs were identified that mapped to NY-
ESO-1 (Figure 3B).  While seven of the nine motifs aligned to the same portion of NY-ESO-1 
identified by PIWAS, two of the motifs align to a new epitope around that 100th amino acid that 
is additionally present in samples without the PIWAS epitope. Samples with composite panel 
scores greater than 6.6 (based on a pre-defined 99% specificity threshold) were designated 
positive. Using this panel, nine of 72 patients (12.5%) including one patient without enrichment 
of the dominant epitope were positive for NY-ESO-1 at a specificity of 99% (Figures 3C, S3C).  
 
To validate this finding with an orthogonal serum profiling approach, the composite panel score 
results were benchmarked against a NY-ESO-1 ELISA experiment performed on the same 
prostate cancer serum samples. We found that the panel score and ELISA results were strongly 
associated (Cohen’s kappa = 0.57, Figure 3D). RNA-seq expression data revealed that NY-ESO-
1 was expressed in the metastases of six of nine patients demonstrating NY-ESO-1 antibody 
enrichment at time of initial metastatic tumor biopsy, confirming antigenic availability in these 
patients. Altogther, these findings demonstrated the high sensitivity and specificity of the joint 
PIWAS-IMUNE (PIWAS-I) approach in identifying disease-specific epitopes in prostate cancer. 
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While cancer-specific, the dominant NY-ESO-1 epitope was previously known to be a tumor 
marker in not only advanced prostate cancer but also other cancers including melanoma. 
Specifically, a prior study found autoantibodies to the dominant NY-ESO-1 epitope to be 
enriched in 12.5% of melanoma samples37.  To assess whether a similar finding would be 
observed using the PIWAS-I approach, we profiled the serum antibody repertoires of an 
independent cohort consisting of 106 melanoma patients. We observed the dominant NY-ESO-1 
epitope enriched in 8 of 106 (7.5%) samples (Figures 3A, 3C), consistent with the prior report. 
This finding further validated the robustness of the PIWAS-I approach. 
 
In addition to NY-ESO-1, the HERV (HML-2) family of proteins were also found by PIWAS to 
be significantly enriched for autoantibodies in mCRPC. 9 of 72 (12.5%) patients demonstrated 
significant enrichment of autoantibodies to HERVK-113, with recurrent epitopes identified near 
the 155th amino acid and C-terminus of the protein (Figures 4A, S4A). The presence of 
autoantibody enrichment to HERVK-113 was consistent across different timepoints in patients 
with multiple independently sampled serum specimens (Figure S4B). A motif panel for 
HERVK-113 was generated as described above using 9 PIWAS positive samples for IMUNE-
based motif discovery (Figure 4B). The panel scores were enriched in 16 of 72 (22.2%) patients 
(Figures 4C, S4C). The panel scores were highly concordant with confirmatory ELISA testing 
(Cohen’s kappa = 0.91, Figure 4D). Additionally, RNA-seq expression of HERVK-113 was 
observed in all patients panel-score positive for HERVK-113, suggesting antigenic availability.  
 
Additional mCRPC-specific epitopes were identified using the PIWAS approach. These included 
epitopes in the protein products of SART3, RIPK3, ST8SIA5, IGLV1-47, TRBV25-1, and SLC2A5 
(Figure 2, Table S3). Seven of 72 (9.7%) patients demonstrated significant enrichment of 
autoantibodies to SART3, 6 of 72 (8.3%) demonstrated enrichment of autoantibodies to RIPK3, 5 
of 72 (6.9%) demonstrated enrichment of autoantibodies to ST8SIA5, and 4 of 72 (5.6%) 
demonstrated enrichment of autoantibodies to IGLV1-47 (Figure S2). To assess autoantibody co-
enrichment patterns, we assessed pairwise correlation between autoantibody enrichment scores 
of the eleven putative mCRPC-specific epitopes using our cohort of 72 patients (Figure S2A-B). 
Enrichment of autoantibodies to NY-ESO-1 and HERVK-113 was mutually exclusive on 
PIWAS analysis, as no patients demonstrated significant antibody enrichment to both NY-ESO-1 
and HERVK-113 (Figure S2A). Presence of autoantibody enrichment to epitopes in NY-ESO-1 
or HERVK-113 were not prognostic of overall survival (Figures S3D, S4D). 
 

Discussion 
 
Herein, we have characterized the autoantibody landscape of metastatic castration-resistant 
prostate cancer. We observed cancer-specific enrichment of antibodies to mutant peptides in 
select genes and to non-mutant peptides in the NY-ESO-1 and HERVK-113 proteins among 
others. 
 
Previous reports demonstrated that disease-specific neoepitopes may include defective gene 
products resulting from somatic alterations such as mutations38 and errors in protein translation39. 
The extension of this principle to cancer is supported by prior studies in lung and colorectal 
cancers, which found that tumors with missense mutations in TP53 and frameshift mutations in 
select genes were associated with autoantibodies to the mutant protein products40,41. We 
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performed the first comprehensive assessment of cancer-specific B cell neoantigens to date and 
observed several examples of this phenomenon in genes such as SLC35G4 and P4HB. However, 
the majority (99.6%) of somatic mutations did not result in antibody-specific epitopes in our 
cohort. This finding is consistent with prior T-cell studies, which found that only a minority of 
mutations stimulate a specific T-cell response36,42. In the present study, mutations generating the 
strongest detected responses were approximately equally distributed between missense and 
frameshift mutations. 
 
The mutations that were observed to be associated with an epitope-specific humoral immune 
response tended to be private to individual patients rather than shared among multiple 
individuals. This observation too is consistent with a prior report in colorectal cancer42 and may 
be due to the fact that somatic mutations themselves (and hence the resulting aberrant mutant 
protein) tend not to be recurrent across mCRPC patients. Nevertheless, we observed that the 
autoantibodies to mutant peptides were often present in multiple serum specimens collected 
independently from the same patient. These data validate the specificity of the epitope profiling 
and PIWAS approaches and support the notion that select mutations may induce a humoral 
immune response in mCRPC.  
 
We observed enrichment of autoantibodies to not only mutant but also wild-type epitopes. This 
is supported by prior studies which suggest that cancer-specific overexpression of non-mutant 
antigens may comprise the majority of tumor-associated antigens43–46. NY-ESO-1, or cancer testis 
antigen 1B (CTGAG1B), has been well-characterized as an antigen that elicits humoral immune 
responses in various cancers including melanoma and breast, lung, bladder, ovarian, and prostate 
cancers47–49. Additionally, given its cancer-specific expression pattern outside of the testes49–52, 
NY-ESO-1 has shown great promise as a potential target for T-cell immunotherapies in various 
cancers47. In our unbiased approach to identifying immunogenic antigens, we found that NY-
ESO-1 was the top candidate. Moreover, by experimental design, we were able to identify the 
specific recurrent motif that has been previously demonstrated to be immunogenic in multiple 
cancer types37,53. By leveraging the PIWAS-I approach, we were additionally able to identify 
motifs which do not contain continuous matches to the protein sequence, improving both 
sensitivity and specificity. These findings, along with empiric validation via the ELISA approach, 
support the notion that PIWAS-I can be used to reliably recover immunogenic motifs in cancer. 
 
The PIWAS-I approach also identified epitopes in HERVK-113. Human endogenous retroviruses 
(HERVs) comprise a family of retroviruses whose genetic material has previously been 
integrated into the human germline and whose gene products have been implicated in cancer 
pathogenesis54,55. HERVs have been previously described as being transcriptionally activated 
and potentially antigenic in the context of cancer: prior studies of renal cancers and seminomas 
identified a cancer-specific IgG response to ERVK-1022,56,57. Humoral responses to HERVs  have 
similarly been reported in melanomas58 and ovarian59, breast60,61, and prostate  cancers. 
Additionally, the gene product of HERV-K may be not only a biomarker of disease but also a 
therapeutic target, as a preclinical model demonstrated that monoclonal antibodies against the 
HERV-K env protein was associated with inhibition of tumor growth in breast cancer63. In 
prostate cancer particularly, detection of autoantibodies to the HERV-K gag protein has been 
shown to be enriched in advanced prostate cancer relative to early prostate cancer (21% vs. 1.4%) 
and associated with poor survival outcomes64. We observed a similar prevalence of 22% for 
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HERV-K antibody enrichment in our cohort of advanced prostate cancer patients. However, we 
observed no significant difference in overall survival (OS) between mCRPC patients with and 
without HERV-K antibody enrichment. In contrast to the previously studied cohort, our cohort 
was comprised exclusively of advanced prostate cancer patients. Thus, our findings suggest that 
autoantibodies to the HERV-K protein may be associated with disease burden but may not be 
prognostic of OS amongst patients with advanced disease. Additional prospective studies are 
needed to explore the prognostic value of HERV-K antibody enrichment in greater detail.  
 
Additional antigens identified through the PIWAS-I approach included SART3 and RIPK3. Both 
of these genes have been previously implicated as biomarkers or potential regulators of cancer 
progression. SART3 is a cancer testis antigen that is expressed specifically in various cancer 
tissues (excluding normal testis)65,66. SART3 has been shown to induce both a humoral and 
cellular adaptive immune response in a vaccination study of patients with advanced colorectal 
cancer67.  RIPK3 is a tumor suppressor whose downregulation has been associated with 
tumorigenesis, immunomodulation, and poor clinical prognosis in colorectal cancer68,69, although 
its exact role in the adaptive immunity is still under investigation. While confirmatory studies are 
needed, the present study in conjunction with supporting studies in other cancer types nominates 
potential immune biomarkers and therapeutic targets in mCRPC. 
 
In addition to recovering known and novel epitopes of interest in mCRPC, the findings of the 
present study highlight potentially conserved B- and T-cell cancer-specific epitopes and a 
combined B- and T-cell response to cancer. NY-ESO-1 has been found to elicit a high-titer IgG 
humoral response as well as a cellular immune response in patients with melanoma47,70. SART3, 
or “Squamous cell carcinoma antigen recognized by T-cells 3,” was initially discovered as a T-
cell epitope and was later found to also stimulate a correlated IgG response65,67. More generally, 
cancer vaccination studies have demonstrated how the humoral immune response to cancer-
associated antigens may provide insights into targets of the endogenous cellular immune 
system12,67. Future work may further elucidate the frequency of epitopes on shared antigens 
among the humoral and cellular immune systems in mCRPC and the extent to which each 
contributes to antitumor activity. 
 
In summary, we leveraged recently published epitope profiling techniques to characterize the 
autoantibody landscape of mCRPC and identify cancer-specific antigens and epitopes. By 
pairing patient serum profiling with whole-genome sequencing results of paired solid-tumor 
biopsies, we identified 29 novel epitopes to mutant peptides generated by patient-specific 
somatic mutations. We also identified 11 conserved protein antigens, with several supported by 
prior reports in other cancer cohorts. Our findings and the presented next generation sequencing-
based approach to autoantibody profiling provide insight into immune biomarkers and potential 
therapeutic targets in advanced prostate cancer. 
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Table 1: Patient clinicopathologic characteristics 
Characteristic Num. patients (N=72) 
Age – years (SD) 72 (8.4) 
Race   
  Asian 4 (5.9) 
  Black or African American 5 (7.4) 
  White 59 (86.8) 
  Missing 4 (5.9) 
Gleason score at diagnosis  
  8+ 35 (53.8) 
  < 8 30 (46.2) 
  Missing 7 (10.8) 
Metastatic sites at time of biopsy  
  Liver 7 (9.7) 
  Visceral metastases (non-liver) 8 (11.1) 
  Bone +/- lymph node 51 (70.8) 
  Lymph node only 6 (8.3) 
 
Note: all clinicopathologic variables were measured at time of first solid-tumor biopsy and are 
presented as “Number (%)." 
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Table 2. Top epitopes from prostate cancer PIWAS. 

Protein Outlier 
Sum 
FDR 

Top epitopes 

Cancer/testis antigen 2 2.3E-12 GIPDGPGGNAG, PDGPGGNAGGP, 
SPMEAELVRRI 

Cancer/testis antigen 1 5.7E-11 GIPDGPGGNAG, PDGPGGNAGGP, PPSGQRR 

Immunoglobulin lambda 
variable 1-47 

4.1E-05 YWYQQLPGTAP 

Endogenous retrovirus group K 
member 113 Gag polyprotein 

0.0033 NDWAIIKAALE, VIYPETLKLEG, 
IQPFVPQGFQG, QGFQGQQPPLS, 
GFQGQQPPLSQ, PLSQVFQGISQ 

 Uncharacterized protein  0.0043 YDPKEYDPFYM, FYMSKKDPNFL, 
SKKDPNFLKVT, ISNSRHFITPN 

Solute carrier family 2, 
facilitated glucose transporter 
member 5 

0.0074 DQSMKEGRLTL, PLVNKFGRKGA, 
FFPESPRYLLI, VAEIRQEDEAE, 
AIYYYADQIYL, YYADQIYLSAG, 
IEINQIFTKMN 

Receptor-interacting 
serine/threonine-protein kinase 
3 

0.02 HPPPVGSQEGP 

Alpha-2,8-sialyltransferase 8E 0.02 GPFEYNSTRCL, QEIFRMFPKDM 

T cell receptor beta variable 25-
1 

0.03 YQQDPGMELHL 

Squamous cell carcinoma 
antigen recognized by T-cells 3 

0.03 MGPAWDQQEEG, DVEPPSKQKEK, 
MDGMTIKENII 

Endogenous retrovirus group K 
member 24 Gag polyprotein 

0.033 PEQGTLDLKDW, NDWAIIKAALE, 
VIYPETLKLEG, QGFQGQQPPLS, 
GFQGQQPPLSQ, PLSQVFQGISQ 
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Figure 1. Analysis of mutation-specific epitopes in the prostate cancer patients. (A) Enrichments 
were calculated for every mutated protein in the affected patients (n mutations = 6,636; n patients 
= 72). An exponential distribution (indicated by the line) was fit to the data to calculate 
significance of each mutation. Difference between enrichment values in the mutant sequence and 
the wild type sequence in that patient are shown along the x-axis. Distributions based on 
mutation type are shown in Figure S1. (B) A high scoring point mutation in SLC35G4 is shown 
for patient DTB-129. (C) A high scoring frameshift mutation in P4HB is shown for patient DTB-
102. (BL, baseline; 3mo, 3months after enrollment in study; Pro, disease progression) 
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Figure 2. Manhattan plot of protein-based immunome wide association study (PIWAS) results 
highlighting antigens significantly enriched in prostate cancer compared to healthy control 
patients. Outlier sum FDRs are shown for every protein in the human proteome. Labels are 
shown for all proteins with an FDR < 0.05. Co-positivity of proteins with FDR < 0.05 are shown 
in Figure S2. 
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Figure 3. Discovery and validation of NY-ESO-1 antigenic signal. (A) Manhattan plot 
visualizing PIWAS values for NY-ESO-1, with one point per patient being shown and colored by 
patient subgroup (purple = prostate cancer (discovery, n=72), orange = melanoma (validation, n 
=218), (grey = controls without known disease (n=1,157)). (B) Prostate cancer samples that are 
positive by PIWAS are compared to healthy controls using IMUNE motif discovery algorithm. 
Motifs which map linearly to NY-ESO-1 are retained. A panel score is calculated by summing 
enrichment z-scores across all motifs. (C) Dot plot of panel score for serum specimens stratified 
by patient subgroup. (D) Scatterplot demonstrating concordance between NY-ESO-1 panel score 
and ELISA results, assessed using the Chi-square test of independence. Points are colored based 
on patient subgroup. Additional results provided in Figure S3. 
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Figure 4. Discovery and validation of HERVK-113 antigenic signal. (A) Manhattan plot 
visualizing antibody-enrichment scores for HERVK-113. Epitopes associated with samples with 
a PIWAS value greater than 6 are labeled. (B) Prostate cancer samples that are positive by 
PIWAS are compared to healthy controls using IMUNE motif discovery algorithm. Motifs which 
map linearly to HERVK-113 are retained. A panel score is calculated by summing enrichment z-
scores across all motifs.  (C) Dot plot of panel scores for prostate cancer patients compared to 
healthy controls. (D) Scatterplot of HERVK-113 panel score vs. HERVK-5 ELISA titer score. 
Additional results provided in Figure S4. 
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Supplementary Materials 
 
Table S1: Number of serum sample timepoints available for mCRPC cohort 
 
Timepoints Number of patients (%) 
1 15 (21) 

2 31 (43) 
3 24 (33) 
4 2 (3) 
 
Table S2: Protein and patient pairs with a significant (FDR < 0.05) difference between the wild-
type and mutated sequence enrichment values. In addition, the total number of timepoints from 
this patient is shown alongside the number of samples from that patient that also achieve the 
FDR < 0.05 threshold. 
Protein Name Patient ID Maximum Difference: 

Wild-type vs Mutant 
FDR Number of 

Timepoints 
Number of Positive 

Timepoints 
ZMYM3 PRCDV059 293 5.56E-19 1 1 
ZNF316 PRCDV067 150 1.52E-08 3 3 
CAPN15 PRCDV056 113 5.28E-06 2 1 
SLC35G4 PRCDV045 113 5.28E-06 3 2 
APC2 PRCDV027 109 6.38E-06 2 2 
P4HB PRCDV037 110 6.38E-06 2 2 
RUSC1 PRCDV056 107 8.24E-06 2 1 
RFPL4A PRCDV004 104 1.12E-05 1 1 
NTN3 PRCDV030 103 1.34E-05 2 2 
NOL6 PRCDV022 95.6 4.06E-05 1 1 
C17orf53 PRCDV057 91.5 7.52E-05 3 3 
CNTLN PRCDV068 87.1 1.48E-04 2 2 
BIRC7 PRCDV030 86.4 1.54E-04 2 2 
ZNF681 PRCDV063 76.3 8.3E-04 4 1 
CCDC178 PRCDV067 75.3 9.24E-04 3 1 
RBMXL1 PRCDV069 70.1 0.00212 2 1 
DNAH12 PRCDV067 67.9 0.00292 3 2 
HMOX2 PRCDV017 65.9 0.0039 3 2 
SSPO PRCDV030 64 0.0052 2 2 
RBMXL1 PRCDV060 63.4 0.00547 1 1 
ADAMTS2 PRCDV026 60.4 0.00872 1 1 
CAMK2B PRCDV026 60.1 0.00878 1 1 
PRRT4 PRCDV046 55.5 0.0186 2 1 
GTF3C4 PRCDV018 54.4 0.0218 1 1 
ZNF189 PRCDV006 53.1 0.0262 1 1 
EPB41L3 PRCDV034 52.5 0.0277 2 1 
RBMX PRCDV029 51.3 0.0329 3 1 
FRG1 PRCDV013 50.2 0.0386 2 1 
DPCR1 PRCDV018 49.4 0.0428 1 1 
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Table S3: Number of PIWAS significant samples per protein in the prostate cohort 
 
Short name Full Name Number of significant 

samples (PIWAS value > 6) 
HERVK-113 Endogenous retrovirus group K 

member 113 Gag polyprotein 
9 

HERVK-24 Endogenous retrovirus group K 
member 24 Gag polyprotein 

9 

CTAG1 / NY-ESO-1 Cancer/testis antigen 1 8 
CTAG2A / NY-ESO-2 Cancer/testis antigen 2 8 
SART3 Squamous cell carcinoma antigen 

recognized by T-cells 3 
7 

RIPK3 Receptor-interacting serine/threonine-
protein kinase 3 

6 

ST8SIA5 Alpha-2,8-sialyltransferase 8E 5 
IGLV1 Immunoglobulin lambda variable 1-47 4 
TRBV25 T cell receptor beta variable 25-1  2 
A0A087X0T9 Uncharacterized protein 2 
SLC2A5 Solute carrier family 2, facilitated 

glucose transporter member 5 
 

1 
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Figure S1. Enrichment differences in mutant vs. wild-type sequences by type of mutation. 
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Figure S2. (A) PIWAS scores for all 72 prostate cancer patients. Orange indicates a PIWAS 
value greater than 6. Rows and columns are both clustered. (B) Correlations of PIWAS values 
across the prostate cancer samples.  
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Figure S3. Additional findings for NY-ESO-1. (A) Complete tiling data for NY-ESO-1 for every 
protein included in the PIWAS analysis. (B) PIWAS values across time for NY-ESO-1. One line 
is shown per patient. (C) Correlation between PIWAS value and panel score. (D) Survival 
analysis segregated by panel score, where a panel score > 6 indicates “nyesoPos=TRUE” and <6 
indicates “nyesoPos=FALSE”.    
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Figure S4. Additional findings for HERVK-113. (A) Complete tiling data for HERVK-113 for 
every protein included in the PIWAS analysis. (B) PIWAS values across time for HERVK-113. 
One line is shown per patient. (C) Correlation between PIWAS value and panel score. (D) 
Survival analysis segregated by panel score, where a panel score > 6 indicates “nyesoPos=TRUE” 
and <6 indicates “nyesoPos=FALSE”.   
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