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Abstract
Motivation: Clustering of antigen-specific T cell receptor
repertoire (TCRR) sequences is challenging. The recently
published tool GLIPH aims to solve this problem. How-
ever, clustering large repertoires takes several days to weeks,
making its use impractical in larger studies. In addition, the
methodology used in GLIPH suffers from several shortcom-
ings, including non-determinism, potential loss of significant
antigen-specific sequences or inclusion of too many unspe-
cific sequences.
Results: We present an algorithm for clustering TCRR se-
quences that scales efficiently to large repertoires. We clus-
tered 26 real datasets with up to 62 000 unique CDR3β se-
quences using both GLIPH and an implementation of our
method called ting. While GLIPH required multiple weeks,
ting only needed about one hour for the same task. In ad-
dition, we found that in naïve repertoires, where no or very
few antigen-specific CDR3 sequences or clusters should ex-
ist, our method indeed selects fewer sequences.
Availability: Our method has been implemented in Python
as a tool called ting, using numpy and NetworkX. It is avail-
able on GitHub (https://github.com/FelixMoelder/ting) and
on PyPI under the MIT license.
Contact: felix.moelder@uni-due.de or sven.rahmann@uni-
due.de

Introduction
T cells are an essential part of the immune system of higher
vertebrates. Each T cell is endowed with its own particular
heterodimeric T cell receptor (TCR), which conveys the abil-
ity to bind to distinct antigenic peptides presented in the con-
text of the major histocompatibility complex. The hypervari-
able complementary-determining region 3 (CDR3) of both
TCR subunits is responsible for the antigen specificity (1, 2).
Understanding the relationship between the TCR CDR3 se-
quence and the antigen could have a major impact on di-
agnosis and tailor-made cancer immunotherapies. This has,
however, proven challenging due to the plasticity and cross-
reactivity of the TCRs (2). Recently, Glanville et al. (1) pro-
posed the method GLIPH that clusters TCR sequences shar-
ing the same antigen-specificity by global and local sequence

similarity.
When applying GLIPH to several thousand TCRβ sequences,
we observed that its method for identifying significantly en-
riched k-mers is a runtime intensive and non-deterministic
process yielding slightly varying k-mers in every run. Addi-
tionally, the local clustering step could take several days or
weeks to complete. We therefore devised an improved algo-
rithm for clustering TCR sequences by local similarity and
a more robust, deterministic method for the detection of sig-
nificantly enriched motifs. The improvement presented here
allows us to reduce the run time significantly from weeks to
just a few hours. We further found that GLIPH contained
an error that may incorrectly overlook some significantly en-
riched k-mers, in particular those that do not appear at all
in a control set. Moreover, evaluation of the resulting clus-
ters showed unexpectedly large cluster sizes on naïve TCR
repertoires (TCRRs). The method presented here produces
clusterings that conform better to expected cluster sizes on
naïve TCRRs.

Methods
The input to the TCR repertoire (TCRR) clustering problem
consists of a a set S of sample amino acid sequences (for
example CDR3β regions) and a control set N of correspond-
ing amino acid sequences from a naïve repertoire (or several
ones). The desired output is a partitioning of S, i.e. a set
C = {C1,C2, . . . ,Cz} such that each cluster Ci is a subset of
S, the Ci are pairwise disjoint (Ci ∩Cj = {} for all i 6= j),
and their union forms the whole set S =

⋃z
i=1 Ci.

As described by Glanville et al. (1), one expects CDR3 se-
quences to be joined in the same cluster that are specific to
the same antigen. So a naïve repertoire should mostly consist
of very small unspecific clusters, even singletons, while the
repertoire after an activated immune response should contain
larger antigen-specific clusters. Before we present our algo-
rithm, we give an overview of GLIPH’s approach (1).

Summary of the GLIPH approach. First, the number of
occurrences of each peptide of length 2, 3 and 4, referred
to as motif, is counted separately in the sample set S and in
the control set N . A randomized resampling-based criterion
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is used to extract motifs that are significantly overrepresented
in S compared toN . This leads to a setM∗ of significant mo-
tifs. A local clustering of the sequences in S is performed by
placing any two sequences that have a common motif in M∗

into the same cluster. Furthermore, a global clustering step is
performed by placing any two sequences s,s′ from S in the
same cluster if they have a small Hamming distance (thresh-
old 2 if |S| ≤ 125, threshold 1 if |S|> 125). The result is the
desired output: a partitioning of the CDR3β sequences from
S into disjoint clusters.
In the following, we describe how each step of this approach
can be improved upon methodologically and executed more
efficiently.

Finding significant motifs. The approach in GLIPH is
based on resampling and empirical p-values. First, the ex-
act counts for the motifs MS (peptides of length 2, 3 and
4 contained in sequences in S) are obtained. This results
in a “counter” function CS : MS → N. It is assumed that
the naïve control repertoire N contains more sequences than
S. Then, for n rounds, |S| sequences are randomly sampled
from N , resulting in a sample set Rj , j = 1, . . . ,n, and the
motifs Mj in Rj are counted, resulting in a counter function
Cj : Mj → N. For each motif m ∈MS , it is determined in
which fraction of samples the motif appears at least as fre-
quently as in S: We call pm := 1

n · |{j : Cj(m) ≥ CS(m)}|
the empirical p-value of motifm (after n resampling rounds).
It is valid to compare the counts Cj(m) and CS(m) because
Rj and S are of the same size |S|. A motif m is then signifi-
cantly enriched if all of the following conditions are true:

1. The motif is seen at least 3 times in S, i.e., CS(m)≥ 3.

2. The observed-vs-expected fold change ρm of m
reaches a threshold T , where ρm is defined as the ra-
tio between CS(m) and the average count in the naïve
resamplings:

ρm := (n ·CS(m)) /
(∑n

j=1 Cj(m)
)
≥ T .

In GLIPH, T = 10 is used, unless CS(m) = 3, where
T = 100.

3. The empirical p-value is small, pm ≤ 0.001.

This methodology has the following disadvantages: First, the
approach only works for |N | ≥ |S| (which is often satisfied,
but there is no guarantee) because each re-sampling round
must produce a down-sampled version of N of size |S|. Sec-
ond, the results depend on the number n of re-sampling steps
(n= 1000 is used in GLIPH). Since a large number of rounds
is required for accurate estimates of pm and ρm, this ap-
proach is slow. Third, for any finite value of n, the result-
ing set of significantly enriched motifs is non-deterministic
and hence may vary with each execution. In addition, the
published version of GLIPH contains an error that skips each
motif m with

∑n
j=1 Cj(m) = 0, even if it satisfies all condi-

tions, apparently to circumvent a division by zero.

motif count number of sequences
sample set S CS(m) |S|
Control set N CN (m) |N |

Table 1. Contingency table for discovering significantly enriched motifs m with
Fisher’s exact test.

We therefore suggest two alternative methods of finding sig-
nificantly enriched motifs: First, we only correct the erro-
neous behavior but leave the method otherwise unchanged;
this is referred to as the bug-fixed method in the Results sec-
tion. This version inherits the other issues of the original
algorithm: the requirement that |N | ≥ |S|, slow speed due to
many resampling rounds, and non-deterministic behavior.
Therefore, we secondly present an entirely different test strat-
egy using Fisher’s exact test (3). Consider the contingency
table shown in Table 1 that relates the occurrence count of
motifm in the sets S andN to the sizes of these sets. Fisher’s
exact test accommodates different sizes |S| and |N | with-
out constraints or resampling and deterministically yields a
p-value for the null hypothesis that the rows (or columns) of
the contingency table are independent, which corresponds to
the statement that CS(m)

CN (m) = |S|
|N | or equivalently CS(m)

|S| =
CN (m)
|N | .

We call a motif significantly enriched if the following two
conditions are satisfied:

1. The fold change CS(m)
|S| /CN (m)

|N | exceeds a given
threshold T (by default set to T = 10)

2. The Fisher p-value falls below a given Bonferroni-
corrected threshold t∗ := t

|MS |
, where t is the uncor-

rected p-value threshold (typically t := 0.05). (The
correction is conservative and accounts for the total
number of tested motifs, resulting in a family-wise er-
ror rate of 5%.)

In contrast to the GLIPH criteria, we do not need a require-
ment on the absolute count CS(m) because motifs with low
counts are insignificant by Fisher’s test. The two remaining
criteria cover effect size (fold change) and statistical signifi-
cance. In the following, M∗ denotes the set of significantly
enriched motifs.

Local clustering. The goal of the clustering steps is to build
a graphG= (S,E), where the nodes are the CDR3 sequences
in the condition-specific repertoire S and the presence of an
edge {s,s′} ∈ E denotes global or local similarity between
s ∈ S and s′ ∈ S.
The local clustering step consists of placing sequences
from S that share a motif from M∗ in the same cluster, i.e.,
creating edges {s,s′} if s and s′ have a common substring
in M∗. The approach taken by GLIPH uses an inefficient
algorithm to do this: It compares every pair of sequences,
scanning each pair for each motif, leading to a running time
of O(|M | · |S|2), where typically |S| � |M |, yielding times
of days up to weeks for a single dataset.
We improve upon this as follows.
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1. We avoid redundancy among the motifs (recall that
they can be of different lengths, 2, 3, or 4) by selecting
short representatives.

2. We use a faster method to join sequences with common
motifs.

The first step creates a directed acyclic motif substring graph
G∗ = (M∗,E∗): An edge (m,m′) exists in G∗ if and only
if m is a substring of m′. We observe that only the motifs m
that have no incoming edge need to be further considered: If
there is an edge m→m′ and m′ occurs in a sequence s ∈ S,
thenm also occurs as a substring. In this way,M∗ is reduced.
The second step consists of joining sequence sets with com-
mon motifs (from the reduced M∗). This is done using a
disjoint-set (or union-find) data structure (4) that maintains a
partition of S. Clusters are implicitly defined by assigning a
representative sequence to each cluster. If S = {s1, . . . ,s|S|},
we let ri be the index of the representative sequence of the
cluster containing si. Initially, each sequence s ∈ S is in
a singleton cluster, so ri = i for all i = 1, . . . , |S|. We it-
erate over all motifs m ∈M∗ and consider the sets Im :=
{i : m is a substring of si}. We set the representatives of all
i ∈ Im to the representative of min(Im); thereby joining the
clusters containing a sequence with substring m into a single
cluster. Details about the union-find data structure and the
implementation of its operations can be found in the textbook
by Cormen et al. (5).
A final pass over the representatives (following each path i→
ri→ rri → ·· · up to its root where ri = i) yields the clusters.

Running time The initial motif clustering step takes time
O(|M2| · |M3| · |M4|), and the sequence clustering step takes
time O(|M ||S|α(|S|)), where α(·) denotes the inverse Ack-
ermann function and is a small constant in practice.

Global clustering. We did not change the global clustering
algorithm (pairwise Hamming distance computation; selec-
tion of pairs with distance below a threshold), but instead
make use of vectorized functions in Python’s numpy library
(6).

Results
We compare several methods on different samples in terms
of the number of significantly enriched motifs and running
times for motif identification and clustering. As the number
of identified motifs may differ between different methods, we
measure motif identification and clustering steps separately
and benchmark the clustering time using a fixed motif set.
The evaluation was performed on a local workstation with a
quadcore Intel(R) i7-3770 CPU at 3.40GHz and 16GB RAM.

Compared Methods. We compare the following methods:

1. GLIPH-original: the original GLIPH implementation

2. GLIPH-bugfixed: the bug-fixed version (without any
other improvements)
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Fig. 1. Time for identifying significant motifs applying GLIPH’s and ting’s algorithms
on data sets of different sizes. Note that both axes are logarithmically scaled.

3. ting-gliph: the bug-fixed version with our fast local
clustering

4. ting-fisher: using Fisher’s exact test with fast local
clustering

We observed that GLIPH omits input sequences that do not
begin with cystein. This may unintentionally remove many
sequences in some datasets. For our comparison, we patched
GLIPH with an option to include these sequences, and added
an option to ting allowing to filter CDR3β sequences start-
ing with cysteine and ending with penhylalanine, as defined
by IGMT1. To achieve comparable results, filtering was com-
pletely turned off during the comparison.

Samples and controls. For validating motif identification
and measuring running time, we used three sets of samples.
The first set holds 14 (antigen-)specific T cell samples, each
containing between 673 and 2 836 unique CDR3β sequences.
The second set consists of six large naïve samples (31 529 to
62 446 unique CDR3β sequences), while the third set con-
tains six samples of unknown specificity with 5 778 to 38 574
sequences.
For each sample, the repertoire of CDR3β sequences, was
created using IMSEQ (7). As control set N , we used a set
of naive sequences provided by GLIPH that contains 314 863
sequences2.

Running times. We separately compare the times required
for motif discovery (significant k-mers) and clustering.
Figure 1 shows the running time of ting’s and GLIPH’s al-
gorithms for motif identification in minutes. As expected,
GLIPH’s original and big-fixed implementation mostly re-
quire the same time for samples, with small stochastic dif-
ferences due to the non-deterministic nature of the sampling
method. For a few samples, the bug-fixed implementation is
observably slower because more significant motifs are dis-
covered.

1http://www.imgt.org/FAQ/#question34
2https://github.com/immunoengineer/gliph/raw/master/gliph-1.0.tgz
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Fig. 2. Time for clustering using GLIPH and ting on data sets of different sizes.
Note that both axes are logarithmically scaled.

The ting implementation of GLIPH’s algorithm is faster by a
factor of up to 75×. While GLIPH is able to process smaller
samples within a few minutes, it already takes more than 40
minutes for samples with more than 6 000 sequences and up
to about 22 hours for the biggest sample. In comparison, ting
is able to perform motif identification for the biggest sample
of 62 446 sequences in about 23 minutes. In addition, we
find that the deterministic approach using Fisher’s exact test
is even faster. It is able to identify significant k-mers in less
than 10 seconds even for the biggest sample. In addition,
while the runtime of GLIPH’s algorithm may vary for every
run due to its random resampling, the test-based algorithm
has consistent running times.
Figure 2 shows the clustering runtimes required by GLIPH
and ting for the different samples. As both tools used the
same motif sets for clustering the calculated clusters are iden-
tical. Since clustering applying GLIPH is time consuming
we were not able to obtain results for samples with more
than 20 000 sequences. Even for 19 789 sequences GLIPH
required 6.3 days, taking more than 1 000 times longer than
ting. In comparison, ting is able to obtain the results in a
few seconds for smaller samples and in below 2 hours for the
largest one.
Even though we focused on improving the local clustering
we included global clustering, as it is not possible to run the
local clustering without performing global clustering steps by
GLIPH.

Identified enriched k-mer motifs. In order to investi-
gate how the three motif identification algorithms differ,
we compared the number of identified significant motifs
from GLIPH-original, GLIPH-bugfixed (same results as ting-
gliph) and ting-fisher. Figure 3 compares the number of
identified motifs in all samples for each pair of algorithms.
Antigen-specific samples are represented by dots, naïve sam-
ples by diamonds (we should expect almost no significant
k-mers), and samples of unknown specificity are represented
by stars.
Figure 3a shows that the number of motifs in specific sam-
ples, identified by GLIPH’s original and bug-fixed algorithm

strongly correlates and that there is almost no difference.
However, there is a strong difference in the number of iden-
tified motifs in the naïve samples showing that the bug-fixed
algorithm identifies much more significant motifs than the
original implementation. This can be explained by the nature
of the bug occurring in GLIPH omitting all motifs that exist
in the input sample set but not (at all) in the control set.
Comparing the results of ting-fisher to GLIPH-bugfixed
(which is equivalent to ting-gliph, Figure 3b shows that naïve
and specific samples are separated into two classes. While
ting classifies the same amount of k-mer motifs as significant
as GLIPH in the specific samples, the number of significant
motifs identified in the naïve samples is much lower than the
amount identified by GLIPH. This appears reasonable as we
would expect only very few specific k-mers in naive samples
by the definition of naive. Figure 3c shows that the ratio of
identified k-mers between ting and the bug-fixed version of
GLIPH only gets worse, where GLIPH identifies up to 7×
more significant k-mers in naive sample sets.

Cluster sizes. Figure 4 shows the size of the largest cluster
in relation to the whole number of sequences in each sample
after using different clustering methods: Clusters were calcu-
lated separately by local clustering based on the k-mers iden-
tified by Fisher’s exact test and GLIPH’s algorithm, global
clustering and a combination of global and local clustering
using Fisher’s k-mers. Naive, unknown and specific samples
were separately colored.
After local clustering using GLIPH or Fisher’s exact test, the
size of the largest cluster is comparable. Also, the largest
clusters in naive samples are relatively small, taking 2% of
the whole sample at most. In contrast, the largest cluster in
antigen-specific samples ranges from more than 20% to over
90%. Largest cluster sizes in samples with unknown speci-
ficity range between the sizes of naive and specific samples.
Figure 3 shows that ting-fisher identifies fewer significant k-
mers in naive samples than GLIPH-bugfixed. Therefore, one
would expect that local naive clusters created by ting-fisher
are smaller than clusters identified by GLIPH-bugfixed; yet
this is not visible in Figure 4, which shows only the size of
the largest cluster of each sample. Considering all clusters,
GLIPH-bugfixed identifies a higher number of large clusters
than ting (see supplementary results3). Thus cluster sizes
found by toolname-fisher are in better agreement with expec-
tations than cluster sizes identified by GLIPH-bugfixed.
Looking at the largest cluster created by global clustering
draws a different picture. While global clustering builds
smaller clusters than local clustering within specific samples,
the clusters in naive samples are much larger. Combining lo-
cal and global clustering shows, that while cluster sizes in
specific samples are not much bigger compared to clusters
created by local clustering only, clustsers in naive samples
increase size and take up to 40% of the sample.
This leads to the impression that global clustering is not able
to distinguish between naive and specific sequences and tends
to cluster false positive sequences not sharing any specificity.

3cluster_sizes.tar.gz
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(c) GLIPH-bugfixed vs ting-fisher

Fig. 3. Number of significant k-mers identified by ting vs. GLIPH
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Fig. 4. Share of largest cluster in each sample, in per cent, for different local/global
clustering algorithms. Clustering was performed, from left to right, locally by Fisher’s
exact test, locally by GLIPH’s bug-fixed implementation, by a combination of global
and local clustering using Fisher’s exact test, and by global clustering only.

Even if the global clustering criteria cluster some sequences
with shared specificity, it does not mean that it finds many
connections that have been missed by the local criteria. It in-
stead appears to mostly impact the false positive rate in naive
samples. For this reason it seems preferable to use local clus-
tering only.

Conclusion
We presented ting, a similarity clustering tool for CDR3β se-
quences that implements the GLIPH method of Glanville et
al., but is faster by orders of magnitude, reducing running
times from potentially weeks to a few hours. This improve-
ment enables users to analyse large datasets of tens to hun-
dreds of thousands of sequences in reasonable time on a lo-
cal PC without the need of a compute cluster, enabling many
smaller labs to analyse large CDR3β datasets. Additionally,
ting comes with a robust deterministic algorithm for iden-
tifying significant enriched k-mers based on Fisher’s exact
test as default. Comparing local and global clustering cri-
teria on antigen-specific and naive repertoires suggests that
global clustering is unnecessary for antigen-specific samples
and harmful for naive samples.
Our implementation “ting” is available on PyPI and at
https://github.com/FelixMoelder/ting.
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