Abstract
Intra-host evolved tumor virus variants have provided insights into the risk, pathogenesis and treatment responses of associated cancers. However, the intra-host variability of Kaposi sarcoma-associated herpesvirus (KSHV), the etiologic agent of Kaposi sarcoma (KS), has not been explored at the whole viral genome level. An accurate and detailed description of KSHV intra-host diversity in whole KSHV genomes from matching tumors and oral swabs from Ugandan adults with HIV-associated KS was obtained by deep, short read sequencing, using duplex unique molecular identifiers (dUMI) – random double-stranded oligonucleotides that barcode individual DNA molecules before library amplification. This allowed suppression of PCR and sequencing errors down to ∼10−9/base. KSHV genomes were assembled de novo, and identified rearrangements were confirmed by PCR. 131-kb KSHV genome sequences, excluding major repeat regions and averaging 2.3 × 104 reads/base, were successfully obtained from 23 specimens from 9 individuals, including 7 tumor-oral pairs. Sampling more than 100 viral genomes in at least one specimen per individual showed that KSHV genomes were virtually homogeneous within samples and within individuals at the point mutational level. Heterogeneity, if present, was due to point mutations and genomic rearrangements in tumors. In 2 individuals, the same mutations were found in distinct KS tumors. The K8.1 gene was inactivated in tumors from 3 individuals, and all KSHV genomic aberrations retained the region surrounding the first major internal repeat (IR1). These findings suggest that lytic gene alterations may contribute to KS tumorigenesis or persistence.
Author summary Kaposi sarcoma (KS) is a leading cancer in sub-Saharan Africa and in those with HIV co-infection. Infection by Kaposi sarcoma-associated herpesvirus (KSHV) is necessary for KS, yet why only few KSHV infections develop into KS is largely unknown. While strain differences or mutations in other tumor viruses are known to affect the risk and progression of their associated cancers, whether KSHV genetic variation is important to the natural history of KS is unclear. Most studies of KSHV diversity have characterized only ∼4% of its 165-kb genome and may have been impacted by PCR or cloning artifacts. Here, we performed highly sensitive, single-molecule sequencing of whole KSHV genomes in paired KS tumors and oral swabs from 9 individuals with KS. We found that KSHV genomes were virtually identical within individuals, with no evidence of quasispecies formation nor multistrain infection. However, KSHV genome aberrations and inactivating mutations appeared to be a common, tumor-associated phenomenon, with some mutations shared by distinct tumors within an individual. Certain regions of the KSHV genome featured prominently among tumor-associated mutations, suggesting that they are important contributors to the pathogenesis or persistence of KS.