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Abstract
Network approaches to disease use biological networks, which model functional
relationships between the molecules in a cell, to generate hypotheses about the genetics
of complex diseases. Several among them jointly consider gene scores, representing the
association between each gene and the disease, and the biological context of each gene,
modeled by a network. Here, we study six such network methods using gene scores from
GENESIS, a genome-wide association study (GWAS) on French women with non-BRCA
familial breast cancer. We provide a critical comparison of these six methods, discussing
the impact of their mathematical formulation and parameters. Using a biological
network yields more compelling results than standard GWAS analyses. Indeed, we find
significant overlaps between our solutions and the genes identified in the largest GWAS
on breast cancer susceptibility. We further propose to combine these solutions into a
consensus network, which brings further insights. The consensus network contains
COPS5, a gene related to multiple hallmarks of cancer, and 14 of its neighbors. The
main drawback of network methods is that they are not robust to small perturbations in
their inputs. Therefore, we propose a stable consensus solution, formed by the most
consistently selected genes in multiple subsamples of the data. In GENESIS, it is
composed of 68 genes, enriched in known breast cancer susceptibility genes (BLM,
CASP8, CASP10, DNAJC1, FGFR2, MRPS30, and SLC4A7, P-value = 3× 10−4) and
occupying more central positions in the network than most genes. The network is
organized around CUL3, which is involved in the regulation of several genes linked to
cancer progression. In conclusion, we showed how network methods help overcome the
lack of statistical power of GWAS and improve their interpretation. Project-agnostic
implementations of all methods are available at
https://github.com/hclimente/gwas-tools.
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Author summary
Genome-wide association studies (GWAS) scan thousands of genomes to identify 1

variants associated with a complex trait. Over the last 15 years, GWAS have advanced 2

our understanding of the genetics of complex diseases, and in particular of hereditary 3

cancers. However, they have led to an apparent paradox: the more we perform such 4

studies, the more it seems that the entire genome is involved in every disease. The 5

omnigenic model offers an appealing explanation: only a limited number of core genes 6

are directly involved in the disease, but gene functions are deeply interrelated, and so 7

many other genes can alter the function of the core genes. These interrelations are often 8

modeled as networks, and multiple algorithms have been proposed to use these networks 9

to identify the subset of core genes involved in a specific trait. This study applies and 10

compares six such network methods on GENESIS, a GWAS dataset for familial breast 11

cancer in the French population. Combining these approaches allows us to identify 12

potentially novel breast cancer susceptibility genes and provides a mechanistic 13

explanation for their role in the development of the disease. We provide ready-to-use 14

implementations of all the examined methods. 15

1 Introduction 16

In human health, genome-wide association studies (GWAS) aim at quantifying how 17

single-nucleotide polymorphisms (SNPs) predispose to complex diseases, like diabetes or 18

some forms of cancer [1]. To that end, in a typical GWAS, thousands of unrelated 19

samples are genotyped: the cases, suffering from the disease of interest, and the controls, 20

taken from the general population. Then, a statistical test of association (e.g., based on 21

logistic regression) is conducted between each SNP and the phenotype. Those SNPs 22

with a P-value lower than a conservative Bonferroni threshold are candidates to further 23

studies in an independent cohort. Once the risk SNPs have been discovered, they can be 24

used for risk assessment and deepening our understanding of the disease. 25

GWAS have successfully identified thousands of variants underlying many common 26

diseases [2]. However, this experimental setting also presents inherent challenges. Some 27

of them stem from the high dimensionality of the problem, as every GWAS to date 28

studies more variants than samples are genotyped. This limits the statistical power of 29

the experiment, as it can only detect variants with larger effects [3]. This is particularly 30

problematic since the prevailing view is that most genetic architectures involve many 31

variants with small effects [3]. Additionally, to avoid false positives, most GWAS apply 32

a conservative multiple test correction, typically the previously mentioned Bonferroni 33

correction. However, Bonferroni correction is overly conservative when the statistical 34

tests correlate, as happens in GWAS [4]. Another open issue is the interpretation of the 35

results, as the functional consequences of most common variants are unknown. On top 36

of that, recent large-sampled studies suggest that numerous loci spread all along the 37

genome contribute to a degree to any complex trait, in accordance with the infinitesimal 38

model [5]. The recently proposed omnigenic model [6] offers an explanation: genes are 39

strongly interrelated and influence each other’s function, which allows alterations in 40

most genes to impact the subset of “core” genes directly involved in the disease’s 41

mechanism. Hence, a comprehensive statistical framework that includes the structure of 42

biological data might help alleviate the issues above. 43

For this reason, many authors turn to network biology to handle the complex 44

interplay of biomolecules that lead to disease [7, 8]. As its name suggests, network 45

biology models biology as a network, where the biomolecules under study, often genes, 46

are nodes, and selected functional relationships are edges that link them. These 47

relationships come from evidence that the genes jointly contribute to a biological 48
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function; for instance, their expressions are correlated, or their products establish a 49

protein-protein interaction. Under this view, complex diseases are not the consequence 50

of a single altered gene, but of the interaction of multiple interdependent molecules [9]. 51

In fact, an examination of biological networks shows that disease genes have differential 52

properties [9, 10]: they tend to occupy central positions in the network (although not 53

the most central ones); disease genes for the same pathology tend to cluster in modules; 54

and often they are bottlenecks that interconnect modules. 55

Network-based discovery methods exploit the differential properties described above 56

to identify disease genes on GWAS data [11,12]. In essence, each gene receives a score 57

of association with the disease, computed from the GWAS data, and a set of biological 58

relationships, given by a network built on prior knowledge. Then, the problem becomes 59

finding a functionally-related set of highly-scoring genes. Multiple solutions have been 60

proposed to this problem, often stemming from different mathematical frameworks and 61

considerations of what the optimal solution looks like. For example, some methods 62

restrict the problem to specific types of subnetworks. Such is the case of LEAN [13], 63

which focuses on “star” subnetworks, i.e., instances where both a gene and its direct 64

interactors are associated with the disease. Other algorithms, like dmGWAS [14] and 65

heinz [15], do not impose such strong constraints and search for subnetworks 66

interconnecting genes with high association scores. However, they differ in their 67

tolerance to the inclusion of low-scoring nodes and the topology of the solution. Lastly, 68

other methods also consider the topology of the network, favoring groups of nodes that 69

are not only high-scoring but also densely interconnected; such is the case of 70

HotNet2 [16], SConES [17], and SigMod [18]. 71

In this work, we studied the relevance of network-based approaches to genetics by 72

applying these six network methods to GWAS data. They use different interpretations 73

of the omnigenic model and provide a representative view of the field. We worked on 74

the GENESIS dataset [19], a study on familial breast cancer conducted in the French 75

population. After a classical GWAS approach, we used these network methods to 76

identify additional breast cancer susceptibility genes. Lastly, we compared the solutions 77

obtained by the different methods and aggregated them to obtain consensus solutions of 78

predisposition to familial breast cancer that addressed their shortcomings. 79

2 Materials and methods 80

2.1 GENESIS dataset, preprocessing, and quality control 81

The GENE Sisters (GENESIS) study investigated risk factors for familial breast cancer 82

in the French population [19]. Index cases were patients with infiltrating mammary or 83

ductal adenocarcinoma, who had a sister with breast cancer, and tested negative for 84

BRCA1 and BRCA2 pathogenic variants. Controls were unaffected colleagues or friends 85

of the cases born around the year of birth of their corresponding case (± 3 years). We 86

focused on the 2 577 samples of European ancestry, of which 1 279 were controls, and 87

1 298 were cases. The genotyping platform was the iCOGS array, a custom Illumina 88

array designed to study the genetic susceptibility to hormone-related cancers [20]. It 89

contained 211 155 SNPs, including SNPs putatively associated with breast, ovarian, and 90

prostate cancers, SNPs associated with survival after diagnosis, and SNPs associated to 91

other cancer-related traits, as well as candidate functional variants in selected genes and 92

pathways. 93

We discarded SNPs with a minor allele frequency lower than 0.1%, those not in 94

Hardy–Weinberg equilibrium in controls (P-value < 0.001), and those with genotyping 95

data missing on more than 10% of the samples. We also removed a subset of 20 96

duplicated SNPs in FGFR2. We excluded the samples with more than 10% missing 97
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genotypes. After controlling for relatedness, we excluded 17 additional samples (6 for 98

sample identity error, 6 controls related to other samples, 2 cases related to an index 99

case, and 3 additional controls having a high relatedness score). Lastly, based on study 100

selection criteria, 11 other samples were removed (1 control having cancer, 4 index cases 101

with no affected sister, 3 half-sisters, 1 sister with lobular carcinoma in situ, 1 with a 102

BRCA1 or BRCA2 pathogenic variant detected in the family, 1 with unknown 103

molecular diagnosis). The final dataset included 1 271 controls and 1 280 cases, 104

genotyped over 197 083 SNPs. 105

We looked for population structure that could produce spurious associations. A 106

principal component analysis revealed no visual differential population structure 107

between cases and controls (S1 Fig). Independently, we did not find evidence of 108

genomic inflation (λ = 1.05) either, further confirming the absence of confounding 109

population structure. 110

2.2 SNP- and gene-based GWAS 111

To measure the association between genotype and susceptibility to breast cancer, we 112

performed a per-SNP 1 d.f. χ2 allelic test using PLINK v1.90 [21]. To obtain significant 113

SNPs, we performed a Bonferroni correction to keep the family-wise error rate below 114

5%. The threshold used was 0.05
197083 = 2.54× 10−7. 115

Then, we used VEGAS2 [22] to compute the gene-level association score from the 116

P-values of the SNPs mapped to them. More specifically, we mapped SNPs to genes 117

through their genomic coordinates: all SNPs located within the boundaries of a gene, 118

±50 kb, were mapped to that gene. We computed VEGAS2 scores for each gene using 119

only the 10% of SNPs with the lowest P-values among all those mapped to it. We used 120

the 62 193 genes described in GENCODE 31 [23], although only 54 612 mapped to at 121

least one SNP. Out of those, we focused exclusively on the 32 767 that had a gene 122

symbol. Out of the 197 083 SNPs remaining after quality control, 164 037 mapped to at 123

least one of these genes. We also performed a Bonferroni correction to obtain significant 124

genes; in this case, the threshold of significance was 0.05
32767 = 1.53× 10−6. 125

2.3 Network methods 126

2.3.1 Mathematical notations 127

In this article, we used undirected, vertex-weighted networks, or graphs, G = (V,E,w). 128

V = {v1, . . . , vn} refers to the vertices, with weights w : V → R. Equivalently, 129

E ⊆ {{x, y}|x, y ∈ V ∧ x 6= y} refers to the edges. When referring to a subnetwork S, 130

VS is the set of nodes in S and ES is the set of edges in S. A special case of subgraphs 131

are connected subgraphs, which occur when every node in the subgraph can be reached 132

from any other node. 133

Nodes can be described by properties provided by the topology of the graph. We 134

focused on two of those: degree centrality and betweenness centrality. The degree 135

centrality, or simply emphdegree, is the number of edges that a node has. The 136

betweenness centrality, or betweenness, is the number of times a node participates in 137

shortest paths between two other nodes. 138

We also used two matrices that describe two different properties of a graph. Both 139

matrices are square and have as many rows and columns as nodes are in the network. 140

The element (i, j) hence represents a relationship between vi and vj . The adjacency 141

matrix WG contains a 1 when the corresponding nodes are connected, and 0 otherwise; 142

its diagonal is zero. The degree matrix DG is a diagonal matrix that contains the degree 143

of the different nodes. 144
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2.3.2 Networks 145

Gene network The mathematical formulations of the different network methods are 146

compatible with any type of biological network (e.g., from protein interactions or gene 147

co-expression). Here, we used protein-protein interaction networks (PPIN) for all 148

network methods except SConES, as PPINs are interpretable, well-characterized, and 149

the methods were designed to run efficiently on them. We built our PPIN from both 150

binary and co-complex interactions stored in the HINT database (release April 151

2019) [24]. Unless otherwise specified, we used only interactions coming from 152

high-throughput experiments, leaving out targeted studies that might bias the topology 153

of the PPIN. Out of the 146 722 interactions from high-throughput experiments that 154

HINT stores, we could map 142 541 to a pair of gene symbols, involving 13 619 genes. 155

12 880 of those mapped to a genotyped SNP after quality control, involving 127 604 156

interactions. The scoring function for the nodes changed from method to method 157

(Section 2.3.3). 158

Additionally, we compared the results obtained on this PPIN with those obtained on 159

a PPIN built using interactions coming from both high-throughput and targeted studies. 160

In that case, out of the 179 332 interactions in HINT, 173 797 mapped to a pair of gene 161

symbols. Out of those, 13 735 mapped to a genotyped SNP after quality control, 162

involving 156 190 interactions. 163

SNP networks SConES [17] was the only network method designed to handle SNP 164

networks. As in gene networks, two SNPs were connected in a SNP network when there 165

was evidence of shared functionality between them. Azencott et al. [17] proposed three 166

ways of building such networks: connecting the SNPs consecutive in the genomic 167

sequence (“GS network”); interconnecting all the SNPs mapped to the same gene, on top 168

of GS (“GM network”); and interconnecting all SNPs mapped to two genes for which a 169

protein-protein interaction exists, on top of GM (“GI network”). We focused on the GI 170

network using the PPIN described above, as it fitted the scope of this work better. 171

However, at different stages, we also compared GI to GS and GM to understand how 172

including the PPIN affects SConES’ output. For the GM network, we used the mapping 173

described in Section 2.3.5. In all three, we scored the nodes using the 1 d.f. χ2 statistic 174

of association. The properties of these three subnetworks are available in S1 Table. 175

2.3.3 High-score subnetwork search algorithms 176

Genes that contribute to the same function are nearby in the PPIN and can be 177

topologically related to each other in diverse ways (densely interconnected modules, 178

nodes around a hub, a path, etc.). Several aspects have to be considered when 179

developing a network method: how to score the nodes, whether the affected mechanisms 180

form a single connected component or several, how to frame the problem in a 181

computationally efficient fashion, which network to use, etc. Unsurprisingly, multiple 182

solutions have been proposed. We examined six of them: five that explore the PPIN, 183

and one which explores SNP networks. We selected open-source methods that had an 184

implementation available and accessible documentation. We summarize their main 185

differences in Table 1. We scored both SNPs and genes with the P-values (or 186

transformations) computed in Section 2.2. 187

dmGWAS dmGWAS seeks the subgraph with the highest local density in low 188

P-values [14]. To that end, it searches candidate solutions using a greedy, “seed 189

and extend”, heuristic: 190

1. Select a seed node i and form the subnetwork Si = {i}. 191
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Table 1. Summary of the differences between the network methods.
Method Field Nodes Exhaustive Solution Comp. Input Scoring Ref.
dmGWAS GWAS Genes No - 1 Summary -log10(P) [14]
heinz Omics Genes Yes - 1 Summary BUM [15]
HotNet2 Omics Genes Yes Module ≥ 1 Summary Local FDR [16]
LEAN Omics Genes Yes Star ≥ 1 Summary -log10(P) [13]
SConES GWAS SNPs Yes Module ≥ 1 Genotypes 1 d.f. χ2 [17]
SigMod GWAS Genes Yes Module ≥ 1 Summary Φ-1(1 - P) [18]

Field: field in which the algorithm was developed. Nodes: the type of nodes in the network, either genes (PPIN) or SNPs.
Exhaustive: whether the method explores all the possible solutions given the selected parameters. Solution: additional
properties enforced on the solution, other than containing high scoring, connected nodes. Comp.: number of connected
components in the solution. Input: genotype data or GWAS summary statistics. Scoring: how SNP/gene P-values were
transformed into node scores. In the case of heinz, BUM stands for beta-uniform model; for SigMod, Φ-1 represents the
inverse of the cumulative distribution function of the standard Normal distribution. Ref.: original publication featuring the
algorithm.

2. Compute Stouffer’s Z-score Zm for Si as 192

Zm = 1√
k

∑
j∈Si

zj , (1)

where k is the number of genes in Si, zj is the Z score of gene j, computed as 193

φ-1(1 - P-valuej), and φ-1 is the inverse normal distribution function. 194

3. Identify neighboring nodes of Si, i.e., nodes at distance ≤ d. 195

4. Add the neighboring nodes whose inclusion increases Zm+1 by more than a 196

threshold Zm × (1 + r). 197

5. Repeat 2-4 until no further enlargement is possible. 198

6. Add Si to the list of subnetworks to return. Normalize its Z-score as 199

ZN = Zm −mean (Zm(π))
SD (Zm(π)) , (2)

where Zm(π) represents a vector containing 100 000 random subsets of the 200

same number of genes. 201

DmGWAS carries out this process on every gene in the PPIN. We used the 202

implementation of dmGWAS in the dmGWAS 3.0 R package [25]. Unless 203

otherwise specified, we used the suggested parameters d = 2 and r = 0.1. We used 204

the function simpleChoose to select the solution, which aggregates the top 1% 205

subnetworks. 206

heinz The goal of heinz is to identify the highest-scored connected subnetwork [15]. 207

The authors proposed a transformation of the genes’ P-value into a score that is 208

negative under weak association with the phenotype, and positive under a strong 209

one. This transformation is achieved by modeling the distribution of P-values by a 210

beta-uniform model (BUM) parameterized by the desired false discovery rate 211

(FDR). Thus formulated, the problem is NP-complete, and hence solving it would 212

require a prohibitively long computational time. To solve it efficiently, it is re-cast 213

as the Prize-Collecting Steiner Tree Problem, which seeks to select the connected 214

subnetwork S that maximizes the profit p(S), defined as: 215
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p(S) =
∑

v∈VS

p(v)−
∑

e∈ES

c(e). (3)

were p(v) = w(v)− w′ is the profit of adding a node, c(e) = w′ is the cost of 216

adding an edge, and w′ = minv∈VG
w(v) is the smallest node weight of G. All 217

three are positive quantities. Heinz implements the algorithm from Ljubić et 218

al. [26] which, in practice, is often fast and optimal, although neither is 219

guaranteed. We used BioNet’s implementation of heinz [27,28]. 220

HotNet2 HotNet2 was developed to find connected subgraphs of genes frequently 221

mutated in cancer [16]. To that end, it considers both the local topology of the 222

PPIN and the nodes’ scores. An insulated heat diffusion process captures the 223

former: at initialization, the score of the node determines its initial heat; 224

iteratively each node yields heat to its “colder” neighbors and receives heat from 225

its “hotter” neighbors while retaining part of its own (hence, insulated). This 226

process continues until a stationary state is reached, in which the temperature of 227

the nodes does not change anymore, and results in a diffusion matrix F . F is used 228

to compute the similarity matrix E that models exchanged heat as 229

E = F diag(w(V )), (4)

where diag(w(V )) is a diagonal matrix with the node scores in its diagonal. For 230

any two nodes i and j, Eij models the amount of heat that diffuses from node j 231

to node i. Hence, Eij can be interpreted as a (non-symmetric) similarity between 232

those two nodes. To obtain densely connected solutions, HotNet2 prunes E, only 233

preserving edges such that w(E) > δ. Lastly, HotNet2 evaluates the statistical 234

significance of the solutions by comparing their size to the size of PPINs obtained 235

by permuting the node scores. We assigned the initial node scores as in Nakka et 236

al. [29], giving a 0 to the genes with a VEGAS2 P-values of association with the 237

disease, and -log10(P-value) to those likely to be. In the GENESIS dataset, the 238

threshold separating both was a P-value of 0.125, which we obtained using a local 239

FDR approach [30]. HotNet2 has two parameters: the restart probability β, and 240

the threshold heat δ. Both parameters are set automatically by the algorithm, 241

which is robust to their values [16]. HotNet2 is implemented in Python [31]. 242

LEAN LEAN searches altered “star” subnetworks, that is, subnetworks composed of 243

one central node and all its interactors [13]. By imposing this restriction, LEAN 244

can exhaustively test all such subnetworks (one per node). For a particular star 245

subnetwork of size m LEAN performs three steps: 246

1. Rank the P-values of the involved nodes as p1 ≤ . . . ≤ pm. 247

2. Conduct k binomial tests to compute the probability of having k out of m 248

P-values lower or equal to pk under the null hypothesis. The minimum of 249

these k P-values is the score of the subnetwork. 250

3. Transform this score into a P-value through an empirical distribution 251

obtained via a subsampling scheme, where gene sets of the same size are 252

selected randomly, and their score computed. 253

We adjust these P-values for multiple testing through a Benjamini-Hochberg 254

correction. We used the implementation of LEAN from the LEANR R package [32]. 255
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SConES SConES searches the minimal, modular, and maximally associated 256

subnetwork in a SNP graph [17]. Specifically, it solves the problem 257

arg max
S⊆G

∑
v∈VS

w(v)︸ ︷︷ ︸
association

−λ
∑

v∈VS

∑
u 6∈VS

Wvu︸ ︷︷ ︸
connectivity

− η|VS |︸ ︷︷ ︸
sparsity

, (5)

where λ and η are parameters that control the sparsity and the connectivity of the 258

model. The connectivity term penalizes disconnected solutions, with many edges 259

between selected and unselected nodes. Given a λ and an η, Eq 5 has a unique 260

solution that SConES finds using a graph min-cut procedure. As in Azencott et 261

al. [17], we selected λ and η by cross-validation, choosing the values that produce 262

the most stable solution across folds. In this case, the selected parameters were 263

η = 3.51, λ = 210.29 for SConES GS; η = 3.51, λ = 97.61 for SConES GM; and 264

η = 3.51, λ = 45.31 for SConES GI. We used the version on SConES implemented 265

in the R package martini [33]. 266

SigMod SigMod searches the highest-scoring, most densely connected subnetwork [18]. 267

It addresses an optimization problem similar to that of SConES (Eq 5), but with 268

a different connectivity term that favors solutions containing many edges: 269

arg max
S∈G

∑
v∈VS

w(v)︸ ︷︷ ︸
association

+λ
∑

v∈VS

∑
u∈VS

Wvu︸ ︷︷ ︸
connectivity

− η|VS |︸ ︷︷ ︸
sparsity

. (6)

As for SConES, this optimization problem can also be solved by a graph min-cut 270

approach. 271

SigMod presents three important differences with SConES. First, it was designed 272

for PPINs. Second, it favors solutions containing many edges between the selected 273

nodes. SConES, instead, penalizes connections between selected and unselected 274

nodes. Third, it explores the grid of parameters differently, and processes their 275

respective solutions. Specifically, for the range of λ = λmin, . . . , λmax for the same 276

η, it prioritizes the solution with the largest change in size from λn to λn+1. 277

Additionally, that change needs to be larger than a user-specified threshold 278

maxjump. Such a large change implies that the network is densely interconnected. 279

This results in one candidate solution for each η, which is processed by removing 280

any node not connected to any other. A score is assigned to each candidate 281

solution by summing their node scores and normalizing by size. Finally, SigMod 282

chooses the candidate solution with the highest standardized score, and that is not 283

larger than a user-specified threshold (nmax). We used the default parameters 284

maxjump = 10 and nmax = 300. SigMod is implemented in an R package [34]. 285

Consensus We built a consensus solution by retaining the genes selected by at least 286

two of the six methods (using SConES GI for SConES). It includes any edge 287

between the selected genes in the PPIN. 288

We performed all the computations in the cluster described in Section 2.8. 289
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2.3.4 Parameter space 290

We used the network methods with the parameters recommended by their authors, or 291

with the default parameters in their absence. Additionally, we explored the parameter 292

space of the different methods to study how they alter the output. 293

dmGWAS We tested multiple values for r (0.0001, 0.001, 0.01, 0.05, 0.1, 0.25, 0.5, 294

and 1) and d (1, 2, and 3). 295

heinz We tested multiple FDR thresholds (0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 296

0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1). 297

HotNet2 We tested different thresholds to decide which genes would receive a score of 298

0 and which ones a score of −log10(P-value): 0.001, 0.01, 0.05, 0.125, 0.25, and 0.5. 299

LEAN We used the following significance cutoffs for LEAN’s P-values (0.05, 0.1, 0.15, 300

0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, and 301

1). 302

SConES We used the values of λ and η that martini explores by default (35.54, 5.40, 303

0.82, 0.12, 0.02, 0.01, 4.39e-4, 6.68e-5, 1.02e-5, and 1.55e-6 in both cases) 304

SigMod We tested multiple values for the parameters nmax (10, 50, 100, 300, 700, 305

1000, and 10 000) and maxjump (5, 10, 20, 30, and 50). 306

2.3.5 Comparing SNP-methods to gene-methods and vice versa 307

In multiple steps of this article, we compared the outcome of a method that works on 308

genes with the outcome of one that works on SNPs. For this purpose, we used the 309

SNP-gene correspondence described in Section 2.2. To convert a list of SNPs into a list 310

of genes, we included all the genes mapped to any of those SNPs. Conversely, to convert 311

a list of genes into a list of SNPs, we included all the SNPs mapped to any of those 312

genes. 313

2.4 Pathway enrichment analysis 314

We searched for pathways enriched in the gene solutions produced by the above 315

methods. We conducted a hypergeometric test on pathways from Reactome [35] using 316

the function enrichPathway from the ReactomePA R package [36]. The universe of 317

genes included any gene that we could map to a SNP in the iCOGS array (Section 2.2). 318

We adjusted the P-values for multiple testing as in Benjamini and Hochberg [37] (BH): 319

pathways with a BH adjusted P-value < 0.05 were deemed significant. 320

2.5 Benchmark of methods 321

We evaluated multiple properties of the different methods (described in Sections 2.5.1 322

and 2.5.2) through a 5-fold subsampling setting. We applied each method to 5 random 323

subsets of the original GENESIS dataset containing 80% of the samples (train set). 324

When pertinent, we evaluated the solution on the remaining 20% (test set). We used 325

the 5 repetitions to estimate the average and the standard deviation of the different 326

measures. Every method and repetition ran in the same computational settings 327

(Section 2.8). 328
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2.5.1 Properties of the solution 329

We compared the runtime, the number of selected features (genes or SNPs), and the 330

stability (sensitivity to the choice of train set) of the different network methods. 331

Nogueira and Brown [38] proposed quantifying a method’s stability using the Pearson 332

correlation between the genes selected on different subsamples. This correlation was 333

calculated between vectors with the length of the total number of features, containing a 334

0 at position i if feature i was not selected and a 1 if it was. 335

2.5.2 Classification accuracy of selected SNPs 336

A desirable solution offers good predictive power on the unseen test samples. We 337

evaluated the predicting power of the SNPs selected by the different methods through 338

the performance of an L1-penalized logistic regression classifier, which searches for a 339

small subset of SNPs that provides good classification accuracy at predicting the 340

outcome (case/control). The L1 penalty helps to account for linkage disequilibrium by 341

reducing the number of SNPs included in the model (active set). The active set was a 342

plausible, more sparse solution with comparable predictive power to the original 343

solution. The L1 penalty was set by cross-validation, choosing the value that minimized 344

misclassification error. 345

We applied each network method to each train set. Then, we trained the classifier on 346

the same train set using only the selected SNPs. When the method retrieved a list of 347

genes, we proceeded as explained in Section 2.3.5. Lastly we evaluated the sensitivity 348

and the specificity of the classifier on the test set. To obtain a baseline, we also trained 349

the classifier on all the SNPs of the train set. 350

We did not expect a linear model on selected SNPs to separate cases from controls 351

well. Indeed, the lifetime cumulative incidence of breast cancer among women with a 352

family history of breast or ovarian cancer, and no BRCA1/2 mutations, is only 3.9 353

times more than in the general population [39]. However, classification accuracy may be 354

one additional informative criterion on which to evaluate solutions. 355

2.6 Comparison to state-of-the-art 356

An alternative way to evaluate the methods is by comparing their solutions to an 357

external dataset. For that purpose, we used the 153 genes associated to familial breast 358

cancer on DisGeNET [40]. Across this article, we refer to these genes as breast cancer 359

susceptibility genes. 360

Additionally, we used the summary statistics from the Breast Cancer Association 361

Consortium (BCAC), a meta-analysis of case-control studies conducted in multiple 362

countries. BCAC included 13 250 641 SNPs genotyped or imputed on 228 951 women of 363

European ancestry, mostly from the general population [41]. Through imputation, 364

BCAC includes more SNPs than the iCOGS array used for GENESIS (Section 2.1). 365

However, in all the comparisons in this paper we focused on the SNPs that passed 366

quality control in GENESIS. Hence, we used the same Bonferroni threshold as in 367

Section 2.2 to determine the significant SNPs in BCAC. We also computed gene-scores 368

in the BCAC data using VEGAS2, as in Section 2.1. In this case, we did use the 369

summary statistics of all 13 250 641 available SNPs and the genotypes from European 370

samples from the 1000 Genomes Project [42] to compute the LD patterns. Since these 371

genotypes did not include chromosome X, we excluded it from this analysis. All 372

comparisons included only the genes in common between GENESIS and BCAC, so we 373

used a different Bonferroni threshold (1.66× 10−6) to call gene significance. 374
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2.7 Network rewirings 375

Rewiring the PPIN while preserving the number of edges of each gene allowed to study 376

the impact of the topology on the output of network methods. Indeed, the edges lose 377

their biological meaning while the topology of the network is conserved. We produced 378

100 such rewirings by randomly swapping edges in the PPIN. We still scored the genes 379

as described in Section 2.3.3. We only applied only four methods on the rewirings: 380

heinz, dmGWAS, LEAN, and SigMod. We excluded HotNet2 and SConES since they 381

took notably longer to run. 382

2.8 Computational resources 383

We ran all the computations on a Slurm cluster, running Ubuntu 16.04.2 on the nodes. 384

The CPU models on the nodes were Intel Xeon CPU E5-2450 v2 at 2.50GHz and Intel 385

Xeon E5-2440 at 2.40GHz. The nodes running heinz and HotNet2 had 20GB of 386

memory; the ones running dmGWAS, LEAN, SConES, and SigMod, 60GB. For the 387

benchmark (Section 2.5), we ran each of the methods on the same Ubuntu 16.04.2 node, 388

with a CPU Intel Xeon E5-2450 v2 at 2.50GHz, and 60GB of memory. 389

2.9 Code and data availability 390

We developed computational pipelines for several steps of GWAS analyses, such as 391

physically mapping SNPs to genes, computing gene scores, and running six different 392

network methods. We created a pipeline with a clear interface that should work on any 393

GWAS dataset for each of those processes. They are compiled in 394

https://github.com/hclimente/gwas-tools. The code that applies them to 395

GENESIS, as well as the code that reproduces all the analyses in this article are 396

available at https://github.com/hclimente/genewa. We deposited all the produced 397

gene solutions on NDEx (http://www.ndexbio.org), under the UUID 398

e9b0e22a-e9b0-11e9-bb65-0ac135e8bacf. 399

Summary statistics for SNPs and genes are available 400

at https://github.com/hclimente/genewa. We cannot share genotype data publicly 401

for confidentiality reasons, but are available from GENESIS. Interested researchers can 402

contact nadine.andrieu(at)curie.fr. 403

3 Results 404

3.1 Conventional SNP- and gene-based analyses retrieve the 405

FGFR2 locus in the GENESIS dataset 406

We conducted association analyses in the GENESIS dataset (Section 2.1) at both SNP 407

and gene levels (Section 2.2). At the SNP level, two genomic regions had a P-value 408

lower than the Bonferroni threshold on chromosomes 10 and 16 (S2 FigA). The former 409

overlaps with the gene FGFR2, the latter with CASC16 and the protein-coding gene 410

TOX3. Variants in both FGFR2 and TOX3 have been repeatedly associated with 411

breast cancer susceptibility in other case-control studies [41], BRCA1 and BRCA2 412

carrier studies [43], and hereditary breast and ovarian cancer families negative for 413

mutations in BRCA1 and BRCA2 [44]. At the gene level, only FGFR2 was 414

significantly associated with breast cancer (S2 FigB). 415

Closer examination revealed two other regions (3p24 and 8q24) having low, albeit 416

not genome-wide significant, P-values. Both of them have been associated with breast 417

cancer susceptibility in the past [45, 46]. We applied an L1-penalized logistic regression 418

using all GENESIS genotypes as input and the phenotype (cancer/healthy) as the 419
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outcome (Section 2.5.2). The algorithm selected 100 SNPs, both from all regions 420

mentioned above and new ones (S2 FigC). However, it was unclear why those SNPs 421

were selected, as emphasized by the high P-value of some of them, which further 422

complicates the biological interpretation. Moreover, and in opposition to what would be 423

expected under the omnigenic model, the genes to which these SNPs map 424

(Section 2.3.5) were not interconnected in the protein-protein interaction network 425

(PPIN, Section 2.3.2). Moreover, the classification performance of the model was low 426

(sensitivity = 55%, specificity = 55%, Section 2.5). Together, these issues motivated 427

exploring network methods, which consider not only statistical association but also the 428

location of each gene in a PPIN to find susceptibility genes. 429

3.2 Network methods successfully identify genes associated 430

with breast cancer 431

We applied six network methods to the GENESIS dataset (Section 2.3.3). As none of 432

the networks examined by LEAN was significant (Benjamini-Hochberg [BH] correction 433

adjusted P-value < 0.05), we obtained five solutions (Fig 1): one for each of the 434

remaining four gene-based methods, and one for SConES GI (which works at the SNP 435

level). 436

These solutions differed in many aspects, making it hard to draw joint conclusions. 437

For starters, the overlap between the genes featured in each solution was relatively small 438

(Fig 1A). However, the methods tended to agree on the genes with the strongest signal: 439

genes selected by more methods tended to have lower P-value of association (Fig 1B). 440

Another major difference was the solution size: the largest solution, produced by 441

HotNet2, contained 440 genes, while heinz’s contained only 4 genes. While SConES GI 442

did not recover any protein coding gene, working with SNP networks rather than gene 443

networks allowed it to retrieve four subnetworks in intergenic regions and another 444

subnetwork overlapping an RNA gene (RNU6-420P). 445

The topologies of the five solutions differed as well (Fig 1C), as measured by the 446

median centrality and the number of connected components (Table 2). Three methods 447

yielded more than one connected component: SConES, as described above, SigMod, and 448

HotNet2. HotNet2 produced 135 subnetworks, 115 of which have fewer than five genes. 449

The second largest subnetwork (13 nodes) contained the two breast cancer susceptibility 450

genes CASP8 and BLM (Section 2.6). 451

Table 2. Summary statistics on the solutions of multiple network methods on the PPIN. The first row
contains the summary statistics on the whole PPIN.

Network # genes # edges # components Betweenness P̂gene # genes in consensus
HINT HT 13 619 142 541 15 16 706 0.46 93/93
dmGWAS 194 450 1 49 115 0.19 55/93
heinz 4 3 1 113 633 0.001 4/93
HotNet2 440 374 130 7 739 0.048 63/93
LEAN 0 0 0 - - 0/93
SConES GI 0 (1) 0 0 - - 0/93
SigMod 142 249 11 92 603 0.008 84/93
Consensus 93 186 21 50 737 0.006 93/93
Stable consensus 68 49 32 94 854 0.005 43/93

# genes: number of genes selected out of those that are part of the PPIN; for SConES GI, the total number of genes,
including RNA genes, was added in parentheses. # components: number of connected components. Betweenness: median
betweenness of the selected genes in the PPIN. P̂gene: median VEGAS2 P-value of the selected genes. # genes in
consensus: number of genes in common between the method’s solution and the 93 genes in the consensus solution.
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Fig 1. Overview of the solutions produced by the different network
methods (Section 2.3.3) on the GENESIS dataset. As LEAN did not produce
any significant solution (BH adjusted P-value < 0.05), it is not shown. Unless indicated
otherwise, results refer to SNPs for SConES GI, and to genes for the other methods.
(A) Overlap between the genes selected by each method, measured by Pearson
correlation between indicator vectors (Sections 2.5.1 and 2.3.5). (B) Distribution of
VEGAS2 P-values of the genes in the PPIN not selected by any network method
(12 213), and of those selected by 1 (575), 2 (73), or 3 (20) methods. (C) Solution
networks produced by the different methods. (D) Manhattan plots of SNPs/genes; in
black, the method’s solution. The red line indicates the Bonferroni threshold
(2.54 × 10-7 for SNPs, 1.53 × 10-6 for genes).

Lastly, a pathway enrichment analysis (Section 2.4) also showed similarities and 452

differences between the methods’ solutions. It linked different parts of SigMod’s 453
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solution to four processes (S2 Table): protein translation (including mitochondrial), 454

mRNA splicing, protein misfolding, and keratinization (BH adjusted P-values < 0.03). 455

Interestingly, the dmGWAS solution (S3 Table) was also related to protein misfolding 456

(attenuation phase, BH adjusted P-value = 0.01). However, it additionally included 457

submodules of proteins related to mitosis, DNA damage, and regulation of TP53 (BH 458

adjusted P-values < 0.05), which match previously known mechanisms of breast cancer 459

susceptibility [47]. As with SigMod, the genes in HotNet2’s solution (S4 Table) were 460

involved in mitochondrial translation (BH adjusted P-value = 1.87 × 10-4), but also in 461

glycogen metabolism and transcription of nuclear receptors (BH adjusted 462

P-value < 0.04). 463

Despite their differences, there were additional common themes. All obtained 464

solutions had lower association P-values than the whole PPIN (median VEGAS2 465

P-value � 0.46, Table 2), despite containing genes with higher P-values as well 466

(Fig 1D). This illustrates the trade-off between controlling for type I error and biological 467

relevance. However, there are nuances between solutions in this regard: heinz strongly 468

favored genes with lower P-values, while dmGWAS was less conservative (median 469

VEGAS2 P-values 0.0012 and 0.19, respectively); SConES tended to select whole 470

LD-blocks; and HotNet2 and SigMod were less likely to select low scoring genes. 471

Additionally, the solutions presented other desirable properties. First, four of them 472

were enriched in known breast cancer susceptibility genes (dmGWAS, heinz, HotNet2, 473

and SigMod, Fisher’s exact test one-sided P-value < 0.03). Second, the genes in three 474

solutions displayed, on average, a significantly higher betweenness centrality than the 475

rest of the genes (dmGWAS, HotNet2, and SigMod, Wilcoxon rank-sum test 476

P-value < 1.4 × 10-21). This agrees with the notion that disease genes are more central 477

than other non-essential genes [48], an observation that holds in breast cancer 478

(one-tailed Wilcoxon rank-sum test P-value = 2.64 × 10-5 when comparing the 479

betweenness of known susceptibility genes versus the rest). Interestingly, the SNPs in 480

SConES’ solution were also more central than the average SNP (S1 Table), suggesting 481

that causal SNPs are also more central than non-associated SNPs. 482

3.3 A case study: the consensus solution 483

Despite their shared properties, the differences between the solutions suggested that 484

each of them captured different aspects of cancer susceptibility. Indeed, out of the 668 485

genes that were selected by at least one method, only 93 were selected by at least two, 486

20 by three, and none by four or more. Encouragingly, the more methods selected a 487

gene, the higher its association score to the phenotype (Fig 1B), a relationship that 488

plateaued at 2. Hence, to leverage their strengths and compensate for their respective 489

weaknesses, we built a consensus solution using the genes shared among at least two 490

solutions (Section 2.3.3). This solution (Fig 2) contained 93 genes and exhibited the 491

aforementioned properties of the individual solutions: enrichment in breast cancer 492

susceptibility genes and higher betweenness centrality than the rest of the genes. 493

A pathway enrichment analysis of the genes in the consensus solution also showed 494

similar pathways as the individual solutions (S5 Table). We found two involved 495

mechanisms: mitochondrial translation and attenuation phase. The former is supported 496

by genes like MRPS30 (VEGAS2 P-value = 0.001), which encode a mitochondrial 497

ribosomal protein and was also linked to breast cancer susceptibility [49]. Interestingly, 498

increased mitochondrial translation has been found in cancer cells [50], and its 499

inhibition was proposed as a therapeutic target. With regards to the attenuation phase 500

of heat shock response, it involved three Hsp70 chaperones: HSPA1A, HSPA1B, and 501

HSPA1L. The genes encoding these proteins are all near each other at 6p21, in the 502

region known as HLA. In fact, out of the 22 SNPs mapped to any of these three genes, 9 503

mapped to all three, and 4 to two, which made it hard to disentangle their effects. 504
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Fig 2. Consensus solution on GENESIS (Section 2.3.3). (A) Manhattan plot
of genes; in black, the ones in the consensus solution. The red line indicates the
Bonferroni threshold (1.53 × 10-6 for genes). (B) Consensus network. Each gene is
represented by a pie chart, which shows the methods that selected it. We enlarged the
two most central genes (COPS5 and OFD1 ), the known breast cancer susceptibility
genes, and the BCAC-significant genes (Section 2.6). (C) The nodes are in the same
disposition as in panel B, but we indicated every gene name. We colored in pink the
names of known breast cancer susceptibility genes and BCAC-significant genes.

HSPA1A was the most strongly associated gene (VEGAS2 P-value = 8.37 × 10-4). 505

Topologically, the consensus consisted of a connected component composed of 49 506

genes and multiple smaller subnetworks (Fig 2B and C). Among the latter, 19 genes 507

were in subnetworks containing a single gene or two connected nodes. This implied that 508

they did not have a consistently altered neighborhood but were strongly associated 509
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themselves and hence picked by at least two methods. The large connected component 510

contained genes that are highly central in the PPIN. This property weakly 511

anticorrelated with the P-value of association to the disease (Pearson correlation 512

coefficient = -0.26, S3 Fig). This anticorrelation suggested that these genes were 513

selected because they were on the shortest path between two high scoring genes. 514

Because of this, we hypothesize that highly central genes might contribute to the 515

heritability through alterations of their neighborhood, consistent with the omnigenic 516

model of disease [6]. For instance, the most central node in the consensus solution was 517

COPS5, a component of the COP9 signalosome that regulates multiple signaling 518

pathways. COPS5 is related to multiple hallmarks of cancer and is overexpressed in 519

multiple tumors, including breast and ovarian cancer [51]. Despite its lack of association 520

in GENESIS or in studies conducted by the Breast Cancer Association Consortium 521

(BCAC) [41] (VEGAS2 P-value of 0.22 and 0.14, respectively), its neighbors in the 522

consensus solution had consistently low P-values (median VEGAS2 P-value = 0.006). 523

3.4 Network methods boost discovery 524

We compared the results obtained with different network methods to the European 525

sample of BCAC, the largest GWAS to date on breast cancer (Section 2.6). Although 526

BCAC case-control studies do not necessarily target cases with a familial history of 527

breast cancer like GENESIS does, this comparison is pertinent since we expect a shared 528

genetic architecture at the gene level, at which most network methods operate. 529

Together with BCAC’s scale (90 times more samples than GENESIS), this shared 530

genetic architecture provided a reasonable counterfactual of what we would expect if 531

GENESIS had a larger sample size. We computed a gene association score on BCAC 532

(Section 2.6). The solutions provided by the different network methods overlapped 533

significantly with BCAC hits (Fisher’s exact test P-value < 0.019). The gene-based 534

methods achieved comparable precision (2%-25%) and recall (1.3-12.1%) at recovering 535

BCAC-significant genes (S4 FigA). Interestingly, while SConES GI achieved a similar 536

recall at the SNP-level (8.6%), it showed a much higher precision (47.3%). 537

3.5 Network methods share limitations 538

We compared the six network methods in a 5-fold subsampling setting (Section 2.5). In 539

this comparison we measured properties (Fig 3 and S4 Fig): the size of the solution; the 540

sensitivity and the specificity of an L1-penalized logistic regression classifier on the 541

selected SNPs; the stability of the methods; and their computational runtime. The 542

solution size varies greatly between the different methods (Fig 3A). Heinz produced the 543

smallest solutions, with an average of 182 selected SNPs (Section 2.3.5) while the largest 544

ones came from SConES GI (6 256.6 SNPs) and dmGWAS (4 255.0 SNPs). LEAN did 545

not produce any solution in any of the subsamples. 546

To determine whether the selected SNPs could predict cancer susceptibility, we 547

computed the classifiers’ performances on test sets (S4 FigB). The different classifiers 548

displayed similarly low sensitivities and specificities, all in the 0.52 – 0.56 range. 549

Interestingly, the classifier trained on all the SNPs had a similar performance, despite 550

being the only method aiming to minimize prediction error. Of course, although these 551

performances were low, we did not expect to separate cases from controls well using 552

exclusively genetic data [52]. 553

Another desirable quality of a selection algorithm is the stability of the solution with 554

respect to small changes in the input (Section 2.5.1). Heinz was highly stable in our 555

benchmark, while the other methods displayed similarly low stabilities (Fig 3B). 556

In terms of computational runtime, the fastest method was heinz (Fig 3C), which 557

returned a solution in a few seconds. HotNet2 was the slowest (3 days and 14 hours on 558
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and B. (A) Number of SNPs selected by each method and number of SNPs in the
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solutions produced by different methods. A Pearson correlation of 1 means the two
solutions are the same. (C) Runtime of the evaluated methods, by type of network used
(PPIN or SNP). For gene-based methods, inverted triangles represent the runtime of the
algorithm alone, and circles the total time, which includes the algorithm themselves and
the additional 119 980 seconds (1 day and 9.33 hours) that VEGAS2 took on average to
compute the gene scores from SNP summary statistics. (D) True positive rate and true
negative rate of the methods, obtained using different parameter combinations
(Section 3.7). We used as true positives BCAC-significant SNPs (for SConES and χ2 +
Bonferroni) and genes (for the remaining methods, Section 2.6). We used the whole
dataset in this panel.

average). Including the time required to compute the gene scores, however, slowed down 559

considerably gene-based methods; on this benchmark, that step took on average 1 day 560

and 9.33 hours. Including this first step, it took 5 days on average for HotNet2 to 561

produce a result. 562
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Using different combinations of parameters (Section 2.3.4), we computed how good 563

each of the methods was at recovering the results of a conventional GWAS on BCAC 564

(Section 2.6, Fig 3D). SConES exhibits the largest area under the curve since, when 565

λ = 0 (i.e., network topology is disregarded), it is equivalent to a Bonferroni correction. 566

The remaining network methods have similar areas under the curve, with heinz having 567

the largest one. 568

3.6 Network topology and association scores matter and might 569

lead to ambiguous results 570

As shown above, and despite their similarities, the different ways of modeling the 571

problem led to remarkably different solutions. Importantly, understanding which 572

assumptions the methods made allowed us to understand the results more in depth. For 573

instance, the fact that LEAN did not return any gene implied that there was no gene 574

such that both itself and its environment were, on average, strongly associated with the 575

disease. 576

In the GENESIS dataset, heinz’s solution was very conservative, providing a small 577

solution with the lowest median P-value (Table 2). By repeatedly selecting this compact 578

solution, heinz was the most stable method (Fig 3B). Its conservativeness stemmed from 579

its preprocessing step, which modeled the gene P-values as a mixture model of a beta 580

distribution and a uniform distribution, controlled by an FDR parameter. Due to the 581

limited signal at the gene level in this dataset (S2 FigB), only 36 genes retained a 582

positive score after that transformation. However, this small solution did not provide 583

much insight into the susceptibility mechanisms to cancer. Importantly, it ignored genes 584

that were associated with cancer in this dataset, like FGFR2. 585

On the other end of the spectrum, dmGWAS, HotNet2, and SigMod produced large 586

solutions. DmGWAS’ solution was the lowest scoring solution on average because of its 587

greedy framework, which is biased towards larger solutions [53]. It considered all nodes 588

at distance 2 of the examined subnetwork and accepted a weakly associated gene if it 589

was linked to another, high scoring one. Aggregating the results of successive greedy 590

searches exacerbates this bias, leading to a large, tightly connected cluster of 591

unassociated genes (Fig 4A). This relatively low signal-to-noise ratio combined with the 592

large solution requires additional analyses to draw conclusions, such as enrichment 593

analyses. In the same line, HotNet2’s solution was even harder to interpret, being 594

composed of 440 genes divided into 135 subnetworks. Lastly, SigMod missed some of the 595

highest scoring breast cancer susceptibility genes in the dataset, like FGFR2 and TOX3. 596

Another peculiarity of network methods was their relationship to degree centrality. 597

We studied random rewirings of the PPIN that preserved node centrality (Section 2.7). 598

In this setting, network methods favored central genes (Fig 4B) even though highly 599

central genes often had no association to breast cancer susceptibility (Fig 4C). We found 600

this bias especially in SigMod (S6 Fig), which selected three highly central, unassociated 601

genes in both the PPIN and in many of the random rewirings: COPS5, CUL3, and FN1. 602

However, as we showed in Section 3.3 and will show in 3.8, there is evidence in the 603

literature of the contribution of the first two to breast cancer susceptibility. With 604

regards to FN1, it encodes a fibronectin, a protein of the extracellular matrix involved 605

in cell adhesion and migration. Overexpression of FN1 has been observed in breast 606

cancer [54], and it anticorrelates with poor prognosis in other cancer types [55,56]. 607

By using a SNP subnetwork, SConES analyzed each SNP in its functional context. 608

Therefore, it could select SNPs located in genes not included in the PPIN and in 609

non-coding regions. We compared the solution of SConES in the GI network (using 610

PPIN information), to the one using only positional information (GS network) and to 611

the one using positional and gene annotations (GM network). Importantly, SConES 612
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Fig 4. Drawbacks encountered when using network methods. (A) DmGWAS
solution, with the genes colored according to the -log10 of their P-value. (B) Number of
times a gene was selected by either dmGWAS, heinz, LEAN, or SigMod in 100 rewirings
of the PPIN (Section 2.4) and its centrality degree. (C) Centrality degree and -log10 of
the VEGAS2 P-value in BCAC for each of the nodes in the PPIN. We highlighted the
genes selected by each method and the ones selected by more than one (“Consensus”).
We labeled the three most central genes that were picked by any method. (D) Overlap
between the solutions of SConES GS, GM, or GI. Barplots are colored based on whether
the SNPs map to a gene or not (Section 2.3.5).

produced similar results on the GS and GM networks (S5 Fig). While the solutions on 613

those two considerably overlap with SConES GI’s, they contained additional 614

gene-coding segments (Fig 4C). In fact, both SConES GS and GM selected chromosome 615

regions related to breast cancer, like 3p24 (SLC4A7/NEK10 [57]), 5p12 (FGF10, 616

MRPS30 [49]), 10q26 (FGFR2 ), and 16q12 (TOX3 ). In addition to those, SConES GS 617

selected region 8q24, also linked to breast cancer (POU5F1B [58]). 618

3.7 Different parameters produce similarly-sized solutions 619

We explored methods’ parameter space by running them under different combinations of 620

parameters (Section 2.3.4). In agreement with their formulations (Section 2.3.3), larger 621

values of specific parameters produced less stringent solutions (S7 FigA): for HotNet2 622

and heinz, this is the threshold above which genes receive a positive score; for 623

dmGWAS, it is the d parameter, which controls how far neighbors could be added; for 624

SigMod, it is nmax, which specifies the maximum size of the solution; and for LEAN, it 625
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is the P-value threshold to consider a solution significant. Two parameters had the 626

opposite effect (the larger, the more stringent): SigMod’s maxjump, which sets the 627

threshold to consider an increment in λ “large enough”; and SConES’ η, where higher 628

values produce smaller solutions. However, two of the parameters did not have the 629

expected effect: dmGWAS’ r, which controls the minimum increment in the score 630

required to add a gene; and SigMod’s maxjump, which sets the threshold to consider an 631

increment in λ “large enough”. In both cases, the size of the solution was very similar 632

across the different values. Despite the differences in size, the solutions’ size was 633

relatively robust to the choice of parameters (S7 FigB). 634

We computed the Pearson correlation between the different solutions as in 635

Section 2.5.1 to study how the parameters affected which genes and SNPs were selected 636

(S8 Fig). This analysis showed that dmGWAS and SigMod were robust to two 637

parameters: the parameter d determined dmGWAS’ output more than r; for SigMod, it 638

was nmax rather than maxjump. 639

SConES presented an interesting case in terms of feature selection: most of the 640

explored combinations of parameters led to trivial solutions (they included either all the 641

SNPs or none of them) (S8 Fig). To explore a more meaningful parameter space, we 642

selected the parameters in two rounds in our experiments. First, we explored the whole 643

sample space. Then, we focused on a range of η and λ 1.5 orders of magnitude above 644

and below the best parameters, respectively. This second parameter space was more 645

diverse, which allowed to find more interesting solutions. 646

3.8 Building a stable consensus network preserves global 647

network properties 648

Most network methods, including the consensus, were highly unstable (Fig 3B), raising 649

questions about the results’ reliability. We built a new, stable consensus solution using 650

the genes selected most often across the 30 solutions obtained by running the 6 methods 651

on 5 different splits of the data (Section 2.5). Such a network should capture the 652

subnetworks more often found altered, and hence should be more resistant to noise. We 653

used only genes selected in at least 7 solutions, which corresponded to 1% of all genes 654

selected at least once. The resulting stability-based consensus was composed of 68 genes 655

(Fig 5). This network shared most of the properties of the consensus: breast cancer 656

susceptibility genes were overrepresented (P-value = 3 × 10-4), as well as genes involved 657

in mitochondrial translation and the attenuation phase (adjusted P-values 0.001 and 3 × 658

10-5 respectively); the selected genes were more central than average (P-value = 1.1 × 659

10-14); and a considerable number of nodes (19) were isolated (Fig 5B and C). 660

Despite these similarities, the consensus and the stable consensus included different 661

genes. In the stable consensus network, the most central gene was CUL3, which was 662

absent from the previous consensus solution and had a low association score in both 663

GENESIS and BCAC (P-values of 0.04 and 0.26, respectively). This gene was a 664

component of Cullin-RING ubiquitin ligases. Encouragingly, it impacts the protein 665

levels of multiple genes relevant for cancer progression [59], and its overexpression was 666

also linked to increased sensitivity to carcinogens [60]. 667

4 Discussion 668

In recent years, the GWAS’ ability to unravel the mechanisms leading to complex 669

diseases has been called into question [6]. First, the omnigenic model proposes that gene 670

functions are interwoven in a dense co-function network. The practical consequence is 671

that larger and larger GWAS will lead to discovering an uninformative wide-spread 672

pleiotropy. Second, its conservative statistical framework hinders GWAS discovery. 673
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Fig 5. Stable consensus solution on GENESIS (Section 3.8). (A) Manhattan
plot of genes; in black, the ones in the stable consensus solution. The red line indicates
the Bonferroni threshold (1.53 × 10-6 for genes). (B) Stable consensus network. Each
gene is represented by a pie chart, which shows the methods that selected it. We
enlarged the most central gene (CUL3 ), the known breast cancer susceptibility genes,
and the BCAC-significant genes (Section 2.6). (C) The nodes are in the same
disposition as in panel B, but we indicated every gene name. We colored in pink the
names of known breast cancer susceptibility genes and BCAC-significant genes.

Network methods elegantly address these two issues by using both association scores 674

and an interaction network to consider the biological context of each of the genes and 675

SNPs. Based on what could be considered diverse interpretations of the omnigenic 676

model, several methods for network-guided discovery have been proposed in recent years. 677

In this article we evaluated six of these methods (Section 2.3.3) by applying them to the 678

GENESIS study, a GWAS dataset on familial breast cancer (Section 2.1). 679

DmGWAS, Heinz, HotNet2, SConES, and SigMod all yielded compelling solutions, 680

which include (but are not limited to) known breast cancer susceptibility genes 681

(Section 3.2). In general, the selected genes and SNPs were more central than most 682
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other genes and SNPs, agreeing with the observation that disease genes are more 683

central [48]. However, very central nodes are also more likely to be connecting any given 684

random pair of nodes, making them more likely to be selected by network methods 685

(Section 3.6). However, we found support in the literature for the involvement of the 686

selected highly central genes (COPS5, FN1, and CUL3 ) in breast cancer susceptibility 687

(Sections 3.3, 3.6, and 3.8). Despite these similarities, the methods’ solutions were 688

notably different. At one end of the spectrum, SConES and heinz preferred high scoring 689

solutions, which were also small and hence did not shed much light on the disease’s 690

etiology. On the other end, dmGWAS, HotNet2 and SigMod gravitated towards lower 691

scoring but larger solutions, which provided a wide overview of the biological context. 692

While this deepened our understanding of breast cancer susceptibility and provided 693

biological hypotheses, they required further analyses. For instance, we examined the 694

centrality of the selected genes to understand how much that property was driving their 695

selection (Section 3.6). However, all solutions shared two drawbacks. First, they were 696

all equally bad at discriminating cases from controls. However, the classification 697

accuracy of network methods was similar to that of a classifier trained on the entire 698

genome (Section 3.5), which suggests that cases and controls are difficult to separate in 699

the GENESIS dataset. This may be due to limited statistical power, which reduces the 700

ability to identify relevant SNPs. However, in any event, we do not expect to separate 701

people who have or will develop cancer from others on the sole basis of their genomes, 702

ignoring all environmental factors and chance events. Hence, network methods were 703

preferable to the logistic regression classifier since they did “no worse” at classification 704

while providing an interpretable solution. Second, all methods were remarkably 705

unstable, yielding different solutions for slightly different inputs. This might partly have 706

been caused by the instability of the P-values themselves in low statistical power 707

settings [61]. Hence, heinz’s conservative transformation of P-values, which favored only 708

the most extreme ones, led to improved stability. Another source of instability might 709

have been the redundancy inherent to biological networks, a consequence of an 710

evolutionary pressure to avoid single points of failure [62]. Hence, biological networks 711

will often have multiple paths connecting two high-scoring nodes. 712

To overcome these limitations while exploiting the each method’s strengths, we 713

proposed combining them into a consensus solution. We used the straightforward 714

strategy of including any node that was recovered by at least two methods. We thus 715

proposed two solutions (Sections 3.3 and 3.8): a consensus solution, which addressed the 716

heterogeneity of the solutions, and a stable consensus solution, which addresseded the 717

instability of the methods. They both included the majority of the strongly associated 718

smaller solutions and captured genes and broader mechanisms related to cancer, thus 719

synthesizing the mechanisms altered in breast cancer cases. Thanks to their smaller size 720

and network structure, they provided compelling hypotheses on genes like COPS5 and 721

CUL3, which lack genome-wide association with the disease but are related to cancer at 722

the expression level and consistently interact with high scoring genes. Notably, while 723

the consensus approach was as unstable as the individual network-guided methods, the 724

stable consensus network retained the ability to provide compelling hypotheses and had 725

better stability. This supported that redundant but equivalent mechanisms might cause 726

instability and supported the conclusions obtained on the individual solutions. 727

In this work, we have compared our results to significant genes and SNPs in the 728

BCAC study [41]. Network methods showed modest precision but much higher recall at 729

recovering BCAC hits (Section 3.4). While precision might be desirable when a subset 730

of useful markers is required (for instance, for diagnosis), higher recall is desirable in 731

exploratory settings. Nonetheless, BCAC was not an ideal ground truth. First, the 732

studied populations are not entirely overlapping: BCAC focused on a pan-European 733

cohort, while GENESIS targeted the French population. Second, the study designs 734
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differed: a high proportion of breast cancer cases investigated in BCAC were sporadic 735

(not selected according to family history), while GENESIS was a homogeneous dataset 736

not included in BCAC focused on the French high-risk population attending the family 737

cancer clinics. Finally, and this is indeed the motivation for this study, GWAS are 738

unlikely to identify all genes relevant for the disease: some might only show up in 739

rare-variant studies; others might have too small effect sizes. Network methods account 740

for this by including genes with low association scores but with relevant topological 741

properties. Hence, network methods and GWAS, even when well-powered, are unlikely 742

to capture exactly the same sets of genes. This might partly excuse the low precisions 743

displayed in Section 3.4 and the low AUC displayed in Section 3.5. 744

As not all PPIN databases compiled the same interactions, the choice of the PPIN 745

determines the final output. In this work, we used only interactions from HINT from 746

high-throughput experiments (Section 2.3.2). This responded to concerns about adding 747

interactions identified in targeted studies and falling into “rich getting richer” problems: 748

since popular genes have a higher proportion of their interactions described [10,24], they 749

might bias discovery towards themselves by reducing the average shortest path length 750

between two random nodes. On the other hand, Huang et al. [12] found that larger 751

networks were more useful than smaller networks to identify disease genes. This would 752

support using the largest networks in our experiments. However, when we compared the 753

impact of using a larger PPIN containing interactions from both high-throughput 754

experiments and the literature (Section 2.3.2), for most of the methods it did not 755

change much the size or the stability of the solution, the classification accuracy, or the 756

runtime (S10 Fig). This supports using only interactions from high-throughput 757

experiments, which produced similar solutions and avoided falling into “circular 758

reasonings”, where the best-known genes were artificially pushed into the solutions, as 759

we observed in Section 3.6. 760

The strength of network-based analyses comes from leveraging prior knowledge to 761

boost discovery. In consequence, they show their shortcomings on understudied genes, 762

especially those not in the network. Out of the 32 767 genes to which we mapped the 763

genotyped SNPs, 60.7% (19 887) were not in the PPIN. The majority of those (14 660) 764

are non-coding genes, mainly lncRNA, miRNA, and snRNA (S9 Fig). Nevertheless, 765

RNA genes like CASC16 were associated to breast cancer (Section 3.1), reminding us of 766

the importance of using networks beyond coding genes. Besides, even protein-coding 767

genes linked to breast cancer susceptibility [57], like NEK10 (P-value 1.6 × 10-5, 768

overlapping with SLC4A7 ) or POU5F1B, were absent from the PPIN. However, on 769

average protein-coding genes absent from the PPIN were less associated with breast 770

cancer susceptibility (Wilcoxon rank-sum P-value = 2.79 × 10-8, median P-values of 771

0.43 and 0.47). This could not be due to well-known genes having more known 772

interactions because we only used interactions from high-throughput experiments. As 773

disease genes tend to be more central [48], we hypothesize that it was due to 774

interactions between central genes being more likely. It is worth noting that network 775

methods that do not use PPIs, like SConES GS and GM, recovered SNPs in NEK10 776

and CASC16. Moreover, both SConES GM and GI recovered intergenic regions, which 777

might contain key regulatory elements [63], but are excluded from gene-centric 778

approaches. This shows the potential of SNP networks, in which SNPs are linked when 779

there is evidence of co-function, to perform network-guided GWAS even in the absence 780

of gene-level interactions. Lastly, all the methods are heavily affected by how SNPs are 781

mapped to genes, and other strategies (e.g., eQTLs, SNPs associated to gene expression) 782

might lead to different results. 783

A crucial step for the gene-based methods is the computation of gene scores. In this 784

work, we used VEGAS2 [22] due to the flexibility it offers to use user-specified gene 785

annotations. However, it presents known problems: selection of an appropriate 786
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percentage of top SNPs, long runtimes and P-value precision limited to the number of 787

permutations [29]). Additionally, other algorithms like PEGASUS [29], SKAT [64] or 788

COMBAT [65] might have more statistical power. 789

How to handle linkage disequilibrium (LD) is often a concern among GWAS 790

practitioners. Often, the question is whether an LD-based pruning of the genotypes will 791

improve the results. VEGAS2 accounts for LD patterns, and hence an LD pruning step 792

would not impact gene-based network methods, although it would speed up VEGAS2’s 793

computation time. In Section 3.3 we highlighted ambiguities that appear when genes 794

overlap or are in LD. The presented case is paradigmatic since all three genes are in the 795

HLA region, the most gene-dense region of the genome [66]. Network methods are prone 796

to selecting such genes when they are functionally related, and hence interconnected in 797

the PPIN. But the opposite case is also true: when genes are not functionally related 798

(and hence disconnected in the PPIN), network methods might disregard them even if 799

they have high association scores. With regards to SConES, fewer SNPs would lead to 800

simpler SNP networks and, possibly, shorter runtimes. However, LD patterns also affect 801

SConES’ in other ways, since its formulation penalizes selecting a SNP and not its 802

neighbors, via a nonzero parameter η in Eq 5. Due to LD, nearby SNPs’ P-values 803

correlate; since positional information determines SNP networks, nearby SNPs are likely 804

to be connected. Hence, SConES tends to select LD-blocks formed by low P-value SNPs. 805

This might explain why SConES produced similar results on the GS and GM networks, 806

heavily affected by LD (Section 3.6). However, this same behavior raises the burden of 807

proof required to select SNPs with many interactions, like those mapped to hub genes in 808

the PPIN. For this reason, SConES GI did not select any protein coding gene. This 809

could be caused by the absence of joint association of a gene and most of its neighbors, 810

a hypothesis supported by LEAN’s lack of results. Yet, a different combination of 811

parameters could lead to a more informative SConES’ solution (e.g., a lower λ in Eq 5), 812

although it is unclear how to find it. In addition, due to the design of the iCOGS array 813

(Section 2.1), the genome of GENESIS participants has not been unbiasedly surveyed: 814

some regions are fine-mapped — which might distort gene structure in GM and GI 815

networks — while others are understudied — hindering the accuracy with which the GS 816

network captures the genome structure. A strong LD pruning might address such 817

problems. 818

To produce the two consensus solutions, we faced practical challenges due to the 819

differences in interfaces, preprocessing steps, and unexpected behaviors of the various 820

methods. To make it easier for others to apply these methods to new datasets and 821

aggregate their solutions, we built six nextflow pipelines [67] with a consistent 822

interface and, whenever possible, parallelized computation. They are available on 823

GitHub: hclimente/gwas-tools (Section 2.9). Importantly, we compiled those methods 824

with a permissive license into a Docker image for easier use, available on Docker Hub 825

hclimente/gwas-tools. 826

5 Supporting information 827

S1 Table. Summary statistics on the results of SConES on the three SNP 828

networks (Section 2.3.2). The first row within each block contains the summary 829

statistics on the whole network. 830

S2 Table. Pathway enrichment analyses of the genes in SigMod’s solution. 831

S3 Table. Pathway enrichment analyses of the genes in dmGWAS’ 832

solution. 833
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S4 Table. Pathway enrichment analyses of the genes in HotNet2’s 834

solution. 835

S5 Table. Pathway enrichment analyses of the genes in the consensus’ 836

solution. 837

S1 Fig. GENESIS shows no differential population structure between 838

cases and controls. (A,B,C,D) Eight main principal components, computed on the 839

genotypes of GENESIS. Cases are colored in green, controls in orange. 840

S2 Fig. Association in GENESIS. The red lines represent the Bonferroni 841

thresholds. (A) SNP association, measured from the outcome of a 1 d.f. χ2 allelic 842

test (Section 2.2). Significant SNPs within a coding gene, or within 50 kilobases of its 843

boundaries, are annotated. The Bonferroni threshold is 2.54 × 10-7. (B) Gene 844

association, measured by P-value of VEGAS2 [22] using the 10% of SNPs with the 845

lowest P-values (Section 2.2). The Bonferroni threshold is 1.53 × 10-6. (C) SNP 846

association as in panel (A). The SNPs in black were selected by an L1-penalized logistic 847

regression (Section 2.5.2, λ = 0.03). 848

S3 Fig. Relationship between the log10 of the betweenness centrality and 849

the -log10 of the VEGAS2 P-value of the genes in the consensus solution. 850

The blue line represents a fitted generalized linear model. 851

S4 Fig. Additional benchmarks of the network methods. (A) Precision and 852

recall of the evaluated methods with respect to Bonferroni-significant SNPs/genes in 853

BCAC. For reference, we added a gray line with a slope of 1. This panel is identical to 854

Fig 2. (B) Sensitivity and specificity on the test set of the L1-penalized logistic 855

regression trained on the features selected by each of the methods. The performance of 856

the classifier trained on all SNPs is also displayed. Points are the average over the 5 857

runs; the error bars represent the standard error of the mean. 858

S5 Fig. Pearson correlation between the different solutions. (A) Correlation 859

between selected SNPs. (B) Correlation between selected genes. In general, the 860

solutions display a very low overlap. 861

S6 Fig. Number of times a gene was selected by either dmGWAS, heinz, 862

LEAN, or SigMod in 100 rewirings of the PPIN (Section 2.7) and its 863

centrality degree. This figure is equivalent to Fig 4B, split by method. 864

S7 Fig. Size of the solutions obtained under different parameters. (A) Size 865

of the solution produced by different parameter values, expressed as a percentage of the 866

maximum solution size for the method, or the highest tested value for the parameter, 867

respectively. The size of the solution is the median among all the solution sizes for the 868

same parameter. (B) Boxplot of the solution sizes of the methods under the explored 869

parameters (Section 2.3.4). 870

S8 Fig. Pearson correlation between the solutions obtained under 871

different parameters, computed as in Section 2.5.1. Grey tiles represent the 872

cases where we could not compute the Pearson correlation because the two vectors were 873

either all ones (all genes/SNPs were selected) or zeros (no genes/SNPs were selected). 874
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S9 Fig. Biotypes of genes from the annotation that are not present in the 875

HINT PPIN. 876

S10 Fig. Comparison of the benchmark on high-throughput (HT) 877

interactions to the benchmark on both high-throughput and literature 878

curated interactions (HT+LC). Grey lines represent no change in the statistic 879

between the benchmarks (1 for ratios mean(HT) / mean(HT + LC), 0 for differences 880

mean(HT) - mean(HT + LC)). (A) Ratios of the selected features between both 881

benchmarks and of the active set (Section 2.5.2). (B) Shifts in sensitivity and 882

specificity. (C) Shift in Pearson correlation between benchmarks. (D) Ratio between 883

the runtimes of the benchmarks. For gene-based methods, inverted triangles represent 884

the ratio of runtimes of the algorithms themselves, and circles the total time, which 885

includes the algorithm themselves and the additional 119 980 seconds (1 day and 9.33 886

hours) that VEGAS2 took on average to compute the gene scores from SNP summary 887

statistics. In general, adding additional interactions slightly improved the stability of 888

the solution. However, it increased the solution size and the required runtime, and had 889

mixed effects on the sensitivity and specificity. 890

S11 Fig. Overview of the solutions produced by the SConES on the GS 891

and GM networks (Section 2.3.2) on the GENESIS dataset. (A) Manhattan 892

plots of SNPs (Section 2.2); in black, the method’s solution. The red line indicates the 893

Bonferroni threshold (2.54 × 10-7). (B) Precision and recall of the evaluated methods 894

with respect to Bonferroni-significant SNPs (SConES) or genes (other methods) in 895

BCAC. For reference, we added a gray line with a slope of 1. (C) Solution networks. 896
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Azencott. 949

Validation Christine Lonjou, Fabienne Lesueur. 950
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26. Ljubić I, Weiskircher R, Pferschy U, Klau GW, Mutzel P, Fischetti M. An
Algorithmic Framework for the Exact Solution of the Prize-Collecting Steiner
Tree Problem. Mathematical Programming. 2006;105(2-3):427–449.
doi:10.1007/s10107-005-0660-x.

27. Beisser D, Klau GW, Dandekar T, Muller T, Dittrich MT. BioNet: an R-Package
for the functional analysis of biological networks. Bioinformatics.
2010;26(8):1129–1130. doi:10.1093/bioinformatics/btq089.

28. Dittrich M, Beisser D. BioNet; 2008.
https://bioconductor.org/packages/BioNet/.

29. Nakka P, Raphael BJ, Ramachandran S. Gene and Network Analysis of Common
Variants Reveals Novel Associations in Multiple Complex Diseases. Genetics.
2016;204(2):783–798. doi:10.1534/genetics.116.188391.

30. Scheid S, Spang R. twilight; a Bioconductor package for estimating the local false
discovery rate. Bioinformatics. 2005;21(12):2921–2922.
doi:10.1093/bioinformatics/bti436.

31. Leiserson MDM, Vandin F, Wu HT, Dobson JR, Eldridge JV, Thomas JL, et al..
HotNet2; 2018. https://github.com/raphael-group/hotnet2.

October 27, 2020 29/32

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 27, 2020. ; https://doi.org/10.1101/2020.05.04.076661doi: bioRxiv preprint 

https://bioinfo.uth.edu/dmGWAS/
https://bioconductor.org/packages/BioNet/
https://github.com/raphael-group/hotnet2
https://doi.org/10.1101/2020.05.04.076661


32. Gwinner F. LEANR; 2016.
https://cran.r-project.org/web/packages/LEANR/.
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