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SUMMARY 

Epilepsy is increasingly conceptualized as a network disorder. In this cross-sectional mega-

analysis, we integrated neuroimaging and connectome analysis to identify network associations 

with atrophy patterns in 1,021 adults with epilepsy compared to 1,564 healthy controls from 19 

international sites. In temporal lobe epilepsy, areas of atrophy co-localized with highly 

interconnected cortical hub regions, whereas idiopathic generalized epilepsy showed preferential 

subcortical hub involvement. These morphological abnormalities were anchored to the 

connectivity profiles of distinct disease epicenters, pointing to temporo-limbic cortices in temporal 

lobe epilepsy and fronto-central cortices in idiopathic generalized epilepsy. Indices of progressive 

atrophy further revealed a strong influence of connectome architecture on disease progression in 

temporal lobe, but not idiopathic generalized, epilepsy. Our findings were reproduced across 

individual sites and single patients, and were robust across different analytical methods. Through 

worldwide collaboration in ENIGMA-Epilepsy, we provided novel insights into the macroscale 

features that shape the pathophysiology of common epilepsies.  
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INTRODUCTION 
Perpetual interactions among neuronal populations through the scaffold of axonal pathways 

promote interregional communication and shape the brain’s structural and functional network 

organization (Avena-Koenigsberger et al., 2017). This architecture facilitates efficient 

communication within the brain, and may therefore be profoundly affected by pathological 

perturbations (Fornito et al., 2015; Stam, 2014). Adopting network science can advance 

understanding of widespread pathophysiological effects in prevalent disorders and improve 

diagnostics and prognostication. 

The application of neuroimaging to study common epilepsy syndromes has paradigmatically 

shifted from a focus on individual regions to approaches highlighting network effects, exemplified 

by classically defined focal epilepsies, such as temporal lobe epilepsy (TLE; Bernhardt et al., 2015; 

Engel et al., 2013; Gleichgerrcht et al., 2015; Richardson, 2012; Rodriguez-Cruces et al., 2020; 

Tavakol et al., 2019). While initial work focused on the mesiotemporal lobe, histopathological and 

neuroimaging studies increasingly detail morphological, structural, and functional compromise 

beyond this region (Bernhardt et al., 2016; Blanc et al., 2011; Bonilha et al., 2015; Concha et al., 

2012; Keller and Roberts, 2008; Labate et al., 2010; Labate et al., 2008; McDonald et al., 2008; 

Rodriguez-Cruces et al., 2018; Sinjab et al., 2013), which becomes progressively more severe in 

patients with a longer disease duration (Bernhardt et al., 2009b; Caciagli et al., 2017; Coan et al., 

2009; Galovic et al., 2019). Conversely, idiopathic generalized epilepsy (IGE), also known as 

genetic generalized epilepsy (Scheffer et al., 2017), has been increasingly linked to subtle degrees 

of structural compromise, mainly in subcortico-cortical circuits (Bernhardt et al., 2009a; Caciagli 

et al., 2019; Nuyts et al., 2017; O'Muircheartaigh et al., 2012; Wandschneider et al., 2019; Wang 

et al., 2019). Support for a network perspective also comes from both experimental studies in 

animal models and electro-clinical observations in patients showing bursts of spike and slow-wave 

discharges occurring simultaneously over subcortical and cortical areas (Avoli and Gloor, 1982; 

Blumenfeld, 2003; Gotman et al., 2005). Complementing these observations, basal ganglia atrophy 

as well as functional changes of the caudate and putamen have been previously noted but warrant 

further investigation to solidify the understanding of network disruptions in IGE (Bartolini et al., 

2014; Keller et al., 2011; Moeller et al., 2008; Paz et al., 2005). 
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Initiatives such as the Human Connectome Project (HCP; Van Essen et al., 2012) provide 

normative structural and functional connectivity information from a large sample of healthy 

individuals. Studying network underpinnings of morphological abnormalities may elucidate brain-

wide mechanisms in focal and generalized epilepsies. Hub regions (i.e., nodes with many 

connections) are a cardinal feature of brain networks and serve as relays to efficiently process and 

integrate information (Bullmore and Sporns, 2009; van den Heuvel and Sporns, 2011, 2013; Zuo 

et al., 2012). Their high centrality, however, also makes them vulnerable to pathological 

processes—the so-called nodal stress hypothesis (Crossley et al., 2014; Fornito et al., 2015). 

Indeed, neurodegenerative and psychiatric research has demonstrated that hubs typically show 

greater atrophy than locally-connected peripheral nodes. This increased susceptibility to structural 

damage likely stems from their high metabolic activity and their association with multiple brain 

networks (Avena-Koenigsberger et al., 2017; Buckner et al., 2009; Crossley et al., 2014; Zhou et 

al., 2012). We anticipate that models of regional susceptibility can yield significant advances 

toward our understanding of how connectome architecture configures, to some extent, grey matter 

atrophy in the common epilepsies.  

Complementing the nodal stress hypothesis, in which patterns of cortical atrophy and hub 

regions appear spatially concomitant, disease epicenter mapping can identify one or more specific 

regions—or epicenters—whose connectivity profile may play a central role in the whole-brain 

manifestation of focal and generalized epilepsies (Filippi et al., 2020; Raj et al., 2012; Shafiei et 

al., 2019; Zeighami et al., 2015; Zhou et al., 2012). Among common epilepsies, application of 

these models to TLE and IGE is justified as both syndromes have been associated with 

pathophysiological anomalies in mesiotemporal and subcortico-cortical networks and represent 

conceptual extremes of a focal to generalized continuum of epilepsy subtypes (Bernhardt et al., 

2013; Bernhardt et al., 2009a; Keller et al., 2014; O'Muircheartaigh et al., 2012; Weng et al., 2020). 

Disease epicenter mapping in TLE and IGE may therefore identify syndrome-specific network-

level substrates and provide novel insights into how epilepsy-related atrophy patterns are anchored 

to the connectivity of specific structural and functional subnetworks.   

The current work tested the hypothesis that brain network architecture governs whole-brain 

atrophy in temporal lobe and idiopathic generalized epilepsies. Cortical and subcortical grey matter 

atrophy patterns were mapped across 19 international sites via ENIGMA-Epilepsy. We also 
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leveraged the HCP dataset to derive high-resolution structural and functional normative brain 

networks. Two classes of network-based models tested whether, and how, healthy connectome 

architecture can predict regional susceptibility in the common epilepsies. Our evaluations 

included: (i) nodal stress models, which assessed whether there is a selective vulnerability of hub 

regions that parallels syndrome-specific atrophy patterns and (ii) disease epicenter mapping, which 

explored the influence of every brain region’s connectivity profile on the spatial distribution of 

grey matter atrophy in TLE and IGE. In both cases, we model fit was assessed against null models 

with similar spatial autocorrelation (Alexander-Bloch et al., 2018). To demonstrate clinical 

relevance, we investigated whether these network-level features could predict spatial patterns of 

disease progression, inferred here from cross-sectional analysis of disease duration and age 

interaction effects. We also formulated a patient-tailored adaptation of our network-based models 

to examine whether network-derived spatial predictors were translatable to individual patients.  

 

RESULTS 
Data samples 

We studied 1,021 adult epilepsy patients (440 males, mean age±SD=36.72±11.07 years) and 1,564 

healthy controls (695 males, mean age±SD=33.13±10.45 years) from 19 centres in the 

international Epilepsy Working Group of ENIGMA (Whelan et al., 2018). Our main analyses 

focused on two patient subcohorts with site-matched healthy controls: TLE with neuroradiological 

evidence of hippocampal sclerosis (nHC/TLE=1,418/732, 341 right-sided focus) and IGE 

(nHC/IGE=1,075/289). Details on subject inclusion and case-control subcohorts are provided in the 

METHODS and TABLE 1. Site-specific demographic information is provided in TABLE S1. All 

participants were aged between 18-70 years.  

 

Cortical and subcortical atrophy in the common epilepsies 

While the original ENIGMA-Epilepsy study performed a meta-analysis of statistical results 

submitted by the individual sites, the current study directly analyzed cortical surface and 

subcortical volume data in all patients and controls. Cortical thickness was measured across 68 

grey matter brain regions and volumetric measures were obtained from 12 subcortical grey matter 

regions and bilateral hippocampi based on the Desikan-Killiany anatomical atlas (Desikan et al., 

2006). Surface-based linear models compared atrophy profiles in patients relative to controls; 
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correcting for multiple comparisons using the false discovery rate (FDR) procedure (Benjamini 

and Hochberg, 1995).  

Mirroring ENIGMA-Epilepsy’s meta-analysis of summary statistics comparing neurologically 

healthy controls to patients with epilepsy, our mega-analysis also revealed widespread cortico-

subcortical atrophy patterns in temporal lobe and idiopathic generalized epilepsy syndromes. 

Specifically, patients with TLE showed profound atrophy in bilateral precentral (pFDR<2✕10–32), 

paracentral (pFDR<4✕10–30), and superior temporal (pFDR<5✕10–21) cortices as well as ipsilateral 

hippocampus (pFDR<2✕10–199) and thalamus (pFDR<5✕10–64, FIGURE 1A). In contrast, patients with 

IGE showed atrophy predominantly in bilateral precentral cortices (pFDR<9✕10–10) and the 

thalamus (pFDR<3✕10–6, FIGURE 1B).  

 
FIGURE 1. Cortical thickness and subcortical volume in temporal lobe and idiopathic generalized epilepsies. a | Cortical 
thickness and subcortical volume reductions in temporal lobe epilepsy (TLE, n=732), compared to healthy controls (n=1,418), 
spanned bilateral precentral (pFDR<2✕10–32), paracentral (pFDR<4✕10–30), and superior temporal (pFDR<5✕10–21) cortices, as well 
as and ipsilateral hippocampus (pFDR<2✕10–199) and thalamus (pFDR<5✕10–64). b | In contrast, grey matter cortical and subcortical 
atrophy in idiopathic generalized epilepsy (IGE, n=289), relative to controls (n=1,075) was more subtle and affected predominantly 
bilateral precentral cortical regions (pFDR<9✕10–10) and the thalamus (pFDR<3✕10–6). Negative log10-transformed false discovery 
rate-corrected (FDR) p-values are shown. 
Nodal stress models predict regional susceptibility 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 5, 2020. ; https://doi.org/10.1101/2020.05.04.076836doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.04.076836
http://creativecommons.org/licenses/by-nc-nd/4.0/


Larivière et al.    
 

Atrophy modelling in the common epilepsies | 8 

Having established patterns of atrophy in TLE and IGE, we evaluated whether these abnormalities 

were associated with normative network organization. To this end, we obtained high-resolution 

structural (derived from diffusion-weighted tractography) and functional (derived from resting-

state fMRI) connectivity data from a cohort of unrelated healthy adults from the HCP dataset (Van 

Essen et al., 2012). Details on subject inclusion and matrix generation are provided in the 

METHODS. 

 
FIGURE 2. Epilepsy-related atrophy relates to hub organization. a | Normative functional and structural network organization, 
derived from the HCP dataset, was used to identify hubs (i.e., regions with greater degree centrality). b | A schematic of the figure 
layout is pictured in the middle. Grey matter atrophy related to node-level functional (left) and structural (right) maps of degree 
centrality, with greater atrophy in hub compared to non-hub regions. Stratifying findings across temporal lobe and idiopathic 
generalized epilepsies, we observed stronger associations between cortico-cortical functional hubs and cortical atrophy patterns in 
TLE (pspin<0.0001) and between subcortical volume loss and subcortico-cortical structural hubs in IGE (pspin<0.01).  
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Echoing established network centrality maps in healthy individuals (van den Heuvel and 

Sporns, 2013; Zuo et al., 2012), hub regions in the HCP dataset predominated in medial prefrontal, 

superior parietal, and angular regions (FIGURE 2A). Nodal stress models, in which spatial 

similarity between syndrome-related atrophy patterns and degree centrality was compared through 

correlation analysis (and statistically assessed via non-parametric spin permutation tests, see 

METHODS), revealed that cortical thinning in TLE implicated functional (r=0.71, pspin<0.0001) 

and structural (r=0.26, pspin=0.08) cortico-cortical hubs more strongly than non-hub regions 

(FIGURE 2B). In contrast, in IGE, stronger relationships were observed between subcortical 

volume decreases and functional (r=0.50, pspin=0.06) and structural (r=0.68, pspin<0.01) 

subcortico-cortical hubs (FIGURE 2B). To verify stability, we repeated the above correlations 

across several graph-based nodal metrics (including pagerank centrality and eigenvector 

centrality) and captured virtually identical associations between atrophy patterns and network 

centrality measures (FIGURES S1, S2). 

 

TLE and IGE have distinct disease epicenters  

Since hub regions are more susceptible to atrophy than non-hub regions, we next investigated 

whether these morphological abnormalities were anchored to the connectivity profile of one, or 

more, brain regions. To detect syndrome-specific disease epicenters, we systematically compared 

every region’s functional and structural connectivity profiles to whole-brain patterns of atrophy in 

TLE and IGE and assessed significance of rankings using spin permutation tests. Cortical and 

subcortical regions were ranked in descending order based on their correlation coefficients, with 

highly ranked—and statistically significant—regions being identified as disease epicenters 

(FIGURE 3A).  

In TLE, spatial correlations between atrophy maps and seed-based functional and structural 

connectivity profiles implicated ipsilateral temporo-limbic cortices (pspin<0.05) and several 

ipsilateral subcortical regions as disease epicenters (pspin<0.05, FIGURE 3B). Conversely, bilateral 

fronto-central cortices and the amygdala emerged as epicenters in IGE (pspin<0.05, FIGURE 3C). 

Notably, highest ranked functional and structural disease epicenters in TLE and IGE were 

significantly connected to hub regions (range of spatial correlations between epicenter-based 

connectivity and maps of degree centrality: rfunctional=0.68–0.77, pspin<0.0001; rstructural=0.27–0.37, 

pspin<0.05).  
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FIGURE 3. Syndrome-specific disease epicenters. a | Disease epicenter mapping schema. Spatial correlations between cortical 
atrophy patterns and seed-based cortico- and subcortico-cortical connectivity were used to identify disease epicenters in TLE and 
IGE. Epicenters are regions whose connectivity profiles significantly correlated with the syndrome-specific atrophy map; statistical 
significance was assessed using spin permutation tests. This procedure was repeated systematically to assess the epicenter value of 
every cortical and subcortical region, as well as in both functional and structural connectivity matrices. b and c | Correlation 
coefficients indexing spatial similarity between TLE- and IGE-specific atrophy and seed-based functional (left) and structural 
(right) connectivity measures for every cortical and subcortical region. Regions with significant associations were ranked in 
descending order based on their correlation coefficients, with the first five regions identified as disease epicenters (white outline). 
In TLE, ipsilateral temporo-limbic cortices (functional: pspin<0.05, structural: pspin<0.1) and subcortical areas, including ipsilateral 
amygdala (functional: pspin<0.05), thalamus (functional: pspin<0.05, structural: pspin<0.01), pallidum (functional: pspin<0.05), 
putamen (functional: pspin<0.05), and hippocampus (functional: pspin<0.1), emerged as disease epicenters. In IGE, highest ranked 
disease epicenters were located in bilateral fronto-central cortices, including postcentral gyri (functional: pspin<0.05, structural: 
pspin<0.05), left (functional: pspin<0.005, structural: pspin<0.1) and right amygdala (functional: pspin<0.005), and left pallidum 
(structural: pspin<0.1). *=pspin<0.1, n.s.=non-significant. 
 

Cross-sectional indices of disease progression 

We adapted the above-described nodal stress and epicenter mapping models to disentangle 

network factors that contribute to cross-sectional indices of disease progression. Using linear 

models, we examined effects of age and disease duration on morphological measures within each 

patient subcohort, paralleling approaches from earlier work (Caciagli et al., 2017).  
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FIGURE 4. Effects of disease progression on cortical thickness subcortical volume in TLE. a | Significant age-related differences 
on grey matter atrophy between individuals with TLE and healthy controls for all cortical and subcortical regions. Patients with 
TLE showed a negative effect of aging on cortical thickness in bilateral temporo-parietal (pFDR<0.005) and sensorimotor 
(pFDR<0.01) cortices, and on subcortical volume in ipsilateral hippocampus (pFDR<5✕10–7) and bilateral thalamus (pFDR<0.05). 
Negative log10-transformed FDR-corrected p-values are shown. b | A schematic of the figure layout is provided in the middle panel. 
Scatter plots depict relationships between the age-related effects and functional (red) and structural (blue) maps of degree centrality 
(left) and disease epicenter (right). Significant associations were observed between age-related effects and every hub and epicenter 
measures, with the exception of structural subcortical degree centrality, suggesting a role of connectome organization on disease 
progression in TLE.  

 

Patients with TLE showed a negative effect of aging on cortical thickness primarily in bilateral 

temporo-parietal (pFDR<0.005) and sensorimotor cortices (pFDR<0.01), and on subcortical volume 

mainly in ipsilateral hippocampus (pFDR<5✕10–7) and bilateral thalamus (pFDR<0.05, FIGURE 4A). 

Comparing these patterns to structural and functional degree centrality and epicenter maps, 

strongest correlations were seen with functional cortico- and subcortico-cortical hubs (rs=0.64–
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0.65, pspin<0.05), as well as with functional and structural cortical disease epicenters (rs=0.41–

0.67, pspin<0.05, FIGURE 4B). The main effect of disease duration on atrophy patterns co-localized 

with regions emerging from the group ✕ age interaction (e.g., bilateral superior parietal cortex, 

contralateral postcentral gyrus, and ipsilateral hippocampus and thalamus, pFDR<0.01, FIGURE 

S3A). While duration effects also showed tendencies for positive correlations with normative 

network centrality and epicenter values, effects were not significant (FIGURE S3B).  

In IGE, there were no significant effects of aging (FIGURE S4A) or disease duration (FIGURE 

S5A) on cortical and subcortical atrophy measures, nor of correlations with degree centrality and 

epicentral maps (FIGURES S4B, S5B). There was a trend towards negative effects of aging and 

duration of illness on grey matter atrophy, particularly affecting bilateral temporo-parietal and 

fronto-central cortices (puncorr<0.05), as well as right amygdala (puncorr<0.1). Exploring the effects 

of age at onset on morphological abnormalities yielded virtually identical findings in TLE (FIGURE 

S6A) and IGE (FIGURE S6B), independently. 

 

Patient-tailored atrophy modelling 

We adjusted our network-based models to assess whether normative connectivity organization 

configures atrophy patterns in individual patients. To do so, we first correlated patient-specific 

grey matter atrophy maps with normative centrality metrics. We subsequently identified each 

patient’s structural and functional disease epicenters by keeping brain regions whose healthy 

connectivity profiles significantly correlated with the patient’s atrophy map.  

Although this was expected to result in lower sensitivity due to the increased heterogeneity in 

atrophy patterns, we observed similar associations between individualized atrophy maps and 

cortical degree centrality as seen in the group-level analysis. Notably, most stable associations in 

patients with TLE were seen between cortical hubs and cortical atrophy, whereas most stable 

relations in patients with IGE were observed between subcortico-cortical hubs and subcortical 

atrophy (FIGURE 5A). Findings were robust across both functional and structural connectivity data. 

Similarly, epicenter results were consistently seen in individual patients, with ipsilateral temporo-

limbic and subcortical regions most often emerging as epicenters in TLE, whereas bilateral fronto-

central regions, including sensorimotor cortices, were most often identified as epicenters in IGE 

(FIGURE 5B). 
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FIGURE 5. Patient-tailored atrophy modelling. a | Patient-specific associations between degree centrality (denoting hub 
distribution) and individualized atrophy maps showed high stability between cortico- and subcortico-cortical hubs and atrophy in 
TLE and high stability between subcortico-cortical hubs and subcortical volume reductions in IGE. b | We identified patient-
specific structural and functional disease epicenters by keeping brain regions whose connectivity profiles significantly correlated 
with the patient’s atrophy map (pspin<0.05). In TLE, ipsilateral temporo-limbic regions and subcortical areas (including the 
hippocampus) were most often identified as epicenters of grey matter atrophy, whereas in IGE, bilateral fronto-central (including 
sensorimotor cortices) and subcortical areas most often emerged as disease epicenters. Disease epicenters in individual patients 
strongly resembled those seen across the group as a whole. 
 

Findings were robust across sites 

Syndrome-specific cortical and subcortical atrophy maps were consistent across sites and similar 

to those obtained from the multi-site aggregation for both TLE (FIGURE S7A) and IGE (FIGURE 

S7B). Highest stability in TLE was observed for correlations of atrophy with functional cortico- 
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and subcortico-cortical degree centrality (mean±SD: r=0.33±0.24 and mean±SD: r=0.43±0.26, 

respectively; FIGURE S7C). Conversely, stability in IGE was highest for correlations with 

structural subcortico-cortical degree centrality (mean±SD: r=0.28±0.22, FIGURE S7D). As 

observed in the multi-site findings, site-specific ipsilateral temporo-limbic regions and subcortical 

areas were most often identified as disease epicenters in TLE (FIGURE S7E), whereas bilateral 

fronto-central cortices, amygdala, and thalamus most frequently emerged as disease epicenters in 

IGE (FIGURE S7F). 
 

DISCUSSION 
Capitalizing on the largest multi-site epilepsy neuroimaging dataset to date, we tested the 

hypothesis that grey matter atrophy patterns in temporal lobe and idiopathic generalized epilepsies 

are related to the brain’s connectome architecture. First, we found that hub regions were overall 

more susceptible to epilepsy-related atrophy in both TLE and IGE, with cortical hubs most affected 

in TLE and subcortico-cortical hubs most vulnerable in IGE. These morphological abnormalities 

were anchored to the connectivity profiles of distinct regions, pointing to temporo-limbic disease 

epicenters in TLE and fronto-central cortices epicenters in IGE. Assessing markers of disease 

progression further revealed a dichotomy between TLE and IGE, with a stronger influence of 

connectome architecture on how the disease unfolds in TLE. Using a patient-tailored adaptation 

of our network-based models, we confirmed that relationships between atrophy and normative 

connectivity organization were translatable to individual patients. Findings were highly consistent 

across sites and methodologies, suggesting robustness and generalizability.  

Our study extends prior research by revealing shared and distinct network descriptors of atrophy 

seen in temporal lobe and idiopathic generalized epilepsies (Whelan et al., 2018). Using a mega-

analytic approach, we showed that TLE patients presented with multi-lobar atrophy, affecting 

fronto-parietal cortices, the hippocampus, and the thalamus, whereas IGE patients presented with 

more subtle atrophy in precentral regions and the thalamus, despite having ‘normal’ clinical MRIs 

(Whelan et al., 2018; Woermann et al., 1998). While prior work in histology, electrophysiology, 

and neuroimaging have provided qualitative descriptions of disease, here we developed network-

based models to systematically examine the selective vulnerability of brain regions in the common 

epilepsies. This approach revealed that epilepsy-related atrophy patterns could be predicted from 
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connectome-derived information, suggesting a vulnerability of cortical hubs to more pronounced 

atrophy in TLE and an increased susceptibility of subcortical hubs in IGE. This implies that TLE 

and IGE—despite showing syndrome-specific atrophy patterns—may share common 

pathophysiological features that result greater atrophy severity in hub regions. Irrespective of 

cortical or subcortical involvement, the vulnerability of hub regions to grey matter atrophy can be 

partly ascribed to their disproportionate number of connections and diffuse effect on structural and 

functional networks (Fornito et al., 2015). Thus, a targeted hub attack, as in the case of epilepsy-

related atrophy, may fragment and segregate the network, favoring recurrent seizure activity in 

temporal lobe and idiopathic generalized epilepsies (Albert et al., 2000; Lariviere et al., 2019b; 

Larivière et al., 2019). 

To elucidate how grey matter atrophy targets hub regions in TLE and IGE, we tested the 

hypothesis that the underlying connectivity of specific regions—or epicenters—constrains 

syndrome-specific patterns of atrophy. Other neuroimaging studies of psychiatric and 

neurodegenerative diseases have employed epicenter mapping techniques to track and predict the 

spread of atrophy in individual patients (Brown et al., 2019) and disease cohorts (Raj et al., 2012; 

Shafiei et al., 2019; Zhou et al., 2012). Critically, each epilepsy syndrome harbored distinct 

epicenters and reflected its own pathophysiology: temporo-limbic cortical regions, ipsilateral to 

the seizure focus, emerged as epicenters of atrophy in TLE, while fronto-central cortices were 

identified as disease epicenters in IGE. Syndrome-specific epicenters were functionally and 

structurally connected to hub regions, suggesting differential mechanisms through which atrophy 

may spread to hub regions in TLE and IGE.  

Taking advantage of large patient cohorts with heterogeneous duration of epilepsy and a wide 

age range, we could infer the effect of duration of illness on grey matter atrophy and separate out 

epilepsy-related progression from normal aging. In TLE, progressive atrophy affected temporo-

parietal and sensorimotor cortices, as well as the ipsilateral hippocampus and thalamus, as has 

been previously noted (Bernhardt et al., 2009b; Caciagli et al., 2017; Coan et al., 2009; Galovic et 

al., 2019; Zhang et al., 2017). Our findings suggest that progressive pathophysiological processes 

follow the spatial distribution of hub and epicentral regions in temporal lobe, but not idiopathic 

generalized, epilepsy. We thus speculate that connectome architecture exerts a strong influence on 

the progression and spread of epilepsy-related cortical damage in patients with TLE. Mechanisms 
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underlying progressive atrophy in TLE remain incompletely understood but may relate to a 

combination of factors, including seizure-related excitotoxicity and interictal epileptic activity 

(Bernasconi et al., 2003; Bernhardt et al., 2009a), adverse effects from antiepileptic drugs (Pardoe 

et al., 2013), and psychosocial impairments (Cascino, 2009). Progressive atrophy findings in 

IGE—and links to network centrality measures and disease epicenters—were less conclusive. 

More subtle effects on brain structure in IGE may reflect a less severe disease trajectory compared 

to focal epilepsy syndromes, and may also arise from the intrinsic heterogeneity across generalized 

syndromes. It is also possible that generalized epileptiform discharges and seizures diffuse the 

negative consequences of recurrent pathophysiological activity, and that no single neuronal 

population bears the brunt of this activity. 

Several sensitivity analyses suggested that our findings were not affected by differences in 

scanners or sites, or graph theoretical metrics. Site and scanner effects were mitigated for the most 

part using ComBat, a post-acquisition statistical batch normalization process employed to 

harmonize between-site and between-protocol morphological variations (Fortin et al., 2018). 

Associations between normative network features and morphological abnormalities, as well as the 

identification of disease epicenters, were also rather consistently observed in each site 

independently. Repeating our analyses across a range of graph theoretical metrics yielded virtually 

identical findings, indicating method invariance of our results. While our ‘big data’ effort was 

predominantly based on group-level analyses, findings were replicated using patient-specific 

atrophy maps. Further developed, patient-tailored atrophy models may justify optimism in 

translating insights from large-scale inference to individual patients, with potential to improve 

personalized prognostics, treatment monitoring, and epilepsy surgery planning.  

We wish to emphasize that our work was made possible by open-access consortia such as the 

ENIGMA Epilepsy Working Group (Whelan et al., 2018) and the HCP (Van Essen et al., 2012). 

Although HCP provides a benchmark dataset for structural and functional connectomes in healthy 

adults, connectivity patterns obtained from this dataset may misrepresent the altered networked 

architecture typically observed in individuals with epilepsy (Caciagli et al., 2014; Morgan et al., 

2011; Wang et al., 2019). Exploiting individualized structural and functional connectome 

information in patients therefore seems to be the logical next step to improve patient-tailored 

atrophy models, and ongoing as well as future initiatives to share epilepsy connectome data may 
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facilitate this work. Lastly, the cross-sectional nature of these datasets limited the investigation of 

effects of disease progression to between-subject effects. Whether within-patient changes in 

cortical and subcortical atrophy are similarly conditioned by network organization remains an 

exciting open question and awaits further investigation, ideally in prospective and large-scale 

collaborative follow-up studies across the spectrum of common epilepsies (Caciagli et al., 2017). 

We hope that our study lays a foundation for future longitudinal studies to model the predictive 

path of atrophy in newly diagnosed patients, and further results in network-based clinical tools that 

can help to understand the pathophysiology of common epilepsies. 
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METHODS 
ENIGMA participants 

We studied 1,021 adult with epilepsy (440 males, mean age±SD=36.72±11.07 years) and 1,564 

healthy controls (695 males, mean age±SD=33.13±10.45 years) obtained from the Epilepsy 

Working Group of ENIGMA (Whelan et al., 2018). Epilepsy specialists at each center diagnosed 

patients according to the seizure and syndrome classifications of the International League Against 

Epilepsy (ILAE). Inclusion of adults with TLE was based on the combination of the typical 

electroclinical features (Berg et al., 2010) and MRI findings typically associated with underlying 

hippocampal sclerosis. Inclusion of adults with IGE was based on the presence of tonic-clonic, 

absence, or myoclonic seizures with generalized spike-wave discharges on EEG. No patient had a 

progressive disease (e.g., Rasmussen’s encephalitis), malformations of cortical development, (e.g., 

tumors), or underwent prior neurosurgery. Local institutional review boards and ethics committees 

approved each included cohort study, and written informed consent provided according to local 

requirements.  

  

Mega-analysis of cortical thickness and subcortical volumetric data 

All participants underwent structural T1-weighted MRI scans at each of the 19 participating 

centers, with scanner descriptions and acquisition protocols detailed elsewhere (Whelan et al., 

2018). Images were independently processed by each center using the standard ENIGMA 

workflow. In brief, models of cortical and subcortical surface morphology were generated with 

FreeSurfer 5.3.0 (Dale et al., 1999). Based on the Desikan-Killiany anatomical atlas (Desikan et 

al., 2006), cortical thickness was measured across 68 grey matter brain regions and volumetric 

measures were obtained from 12 subcortical grey matter regions (bilateral amygdala, caudate, 

nucleus accumbens, pallidum, putamen, thalamus) as well as bilateral hippocampi. Data were 

harmonized across scanners and sites, and statistically corrected for age, sex, and intracranial 

volume using ComBat—a batch-effect correction tool that uses a Bayesian framework to improve 

the stability of the parameter estimates (Fortin et al., 2018; Johnson et al., 2007). 

 Cortical thickness and volumetric measures were z-scored relative to site-matched pooled 

controls and sorted into ipsilateral/contralateral to the focus (TLE only; Liu et al., 2016). As in 

previous work (Bernhardt et al., 2010; Lariviere et al., 2019a), surface-based linear models 
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compared atrophy profiles in patients relative to controls using SurfStat (Worsley et al., 2009), 

available at http://mica-mni.github.io/surfstat. Findings were corrected for multiple comparisons 

using the false discovery rate (FDR) procedure (Benjamini and Hochberg, 1995).  

 

Spatial permutation tests 

The intrinsic spatial smoothness in two given brain maps may inflate the significance of their 

spatial correlation (Alexander-Bloch et al., 2018). We thus assessed statistical significance of these 

spatial correlations using spin permutation tests. This framework generates null models of overlap 

between cortical maps by projecting the spatial coordinates of cortical data onto the surface 

spheres, applying randomly sampled rotations (10,000 repetitions), and reassigning connectivity 

values (Alexander-Bloch et al., 2018). The original correlation coefficients are then compared 

against the empirical distribution determined by the ensemble of spatially permuted correlation 

coefficients. To compare spatial overlap between subcortical maps, we employed a similar 

approach with the exception that subcortical labels were randomly shuffled as opposed to being 

projected onto spheres. 

 

HCP participants and connectivity matrix generation 

We selected a group of unrelated healthy adults (n=207, 83 males, mean age±SD=28.73±3.73 

years, range=22-36 years) from the HCP dataset (Van Essen et al., 2012). As with the ENIGMA-

Epilepsy dataset, high-resolution structural and functional data were parcellated according to the 

Desikan-Killiany atlas (Desikan et al., 2006). Normative functional connectivity matrices were 

generated by computing pairwise correlations between the time series (obtained from preprocessed 

resting-state functional MRI data) of all 68 cortical regions, and between all subcortical and 

cortical regions. Subject-specific connectivity matrices were then z-transformed and aggregated 

across participants to construct a group-average functional connectome. Moreover, whole-brain 

streamline tractography (obtained from preprocessed diffusion MRI data) were mapped onto the 

68 cortical and 14 subcortical (including hippocampus) brain regions to produce subject-specific 

structural connectivity matrices. The group-average normative structural connectome was defined 

using a distance-dependent thresholding, which preserved the edge length distribution in 

individual patients (Betzel et al., 2019), and was log transformed to reduce connectivity strength 
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variance (Fornito et al., 2016). Details about data collection, scanning parameters, and MRI 

processing are presented elsewhere (Glasser et al., 2013).  

 

Nodal stress models 

Nodal stress models were derived from spatial correlation analyses between cortical and 

subcortical syndrome-specific atrophy profiles and normative weighted degree centrality maps. 

Weighted degree centrality was used here to identify structural and functional hub regions by 

computing the sum of all weighted connections for every region (higher degree centrality denotes 

a hub region). Because different centrality measures can describe different topological roles in 

brain networks (Wang et al., 2018), we replicated the spatial similarity analyses across other nodal 

metrics, including (i) pagerank centrality (proportional to the number of steps (or time) spent at 

each node), and (ii) eigenvector centrality (multiple of the sum of adjacent centralities; i.e., takes 

into account nodes that are connected to other highly central nodes). To avoid bias in choosing an 

arbitrary threshold and zeroing potentially useful information, these analyses were carried out on 

unthresholded connectivity matrices.  

 

Mapping disease epicenters  

Syndrome-specific epicenters were identified by spatially correlating every region’s healthy 

functional and structural connectivity profiles to whole-brain patterns of cortical atrophy in TLE 

and IGE (i.e., group-level atrophy maps obtained from surface-based linear models comparing 

these patient cohorts to controls). This approach was repeated systematically across the whole 

brain, assessing the statistical significance of the spatial similarity of every region’s functional and 

structural connectivity profiles to syndrome-specific atrophy maps with spatial permutation tests. 

Cortical and subcortical epicenter regions were then identified if their connectivity profiles 

significantly correlated with the disease-specific atrophy map; regions with significant 

associations were ranked in descending order based on their correlation coefficients, with highly 

ranked regions representing disease epicenters. As with the nodal stress models, we eliminated 

matrix thresholding to ensure that connectivity to every brain region was accounted for, thus 

allowing detection of disease epicenters in areas with subthreshold atrophy. A schematic of the 

cortical and subcortical disease epicenter mapping approach is displayed in FIGURE 3A.  
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To relate disease epicenter findings to the nodal stress model, we performed spatial correlations 

between epicenter-based connectivity profiles (i.e., whole-brain connectivity seeding from the 

epicenter region) and maps of cortical degree centrality (showing the spatial distribution of hub 

regions); strong correlations indicated that disease epicenters were functionally and structurally 

connected to cortical hub regions. This analysis was individually performed on the two highest 

ranked functional and structural disease epicenters in TLE and IGE. 

 

Age- and duration-related effects 

To study the effects of cross-sectional indices of disease progression on grey matter atrophy 

profiles, we first built linear models that included a group and age main effect term as well as a 

group ✕ age interaction term (Bernhardt et al., 2010; Bernhardt et al., 2009b). We then evaluated 

age-related differences on cortical thickness and subcortical volume between patients and controls 

by testing the significance of the interaction term. Linear models independently assessed the 

effects of duration of epilepsy and age of onset on cortical thickness and subcortical volume 

measurements in each patient cohort. To investigate the relationship between the effects of disease 

progression and healthy connectome organization, we compared these age- and duration-related 

effect maps to normative centrality measures and disease epicenter profiles. 

 

Patient-tailored atrophy modelling 

Cortical thickness and subcortical volume data in patients were z-scored relative to healthy controls 

to generate individualized atrophy maps and were subsequently compared to normative network 

centrality metrics as in the above analysis. Patient-specific atrophy maps were also used to identify 

each patient’s structural and functional disease epicenters by keeping the cortical and subcortical 

regions whose normative connectivity profiles significantly correlated with the patient’s atrophy 

map. Significance testing for patient-specific epicenters were computed with spin permutation 

tests with 1,000 repetitions. 

  

Reproducibility and sensitivity analyses 

To address reproducibility of our findings across different sites, we repeated the nodal stress 

models and disease epicenter analyses in each individual site that provided at least 5 participants 

per diagnostic group (nTLE/HC=16 sites, nGE/HC=10 sites).  
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TABLE 1. ENIGMA Epilepsy Working Group demographics. Demographic breakdown of patient-specific 
subcohorts with site-matched controls, including age (in years), age at onset of epilepsy (in years), sex, side of seizure 
focus (TLE patients only), and mean duration of illness (in years). Healthy controls from sites that did not have TLE 
(or IGE) patients were excluded from analyses comparing TLE (or IGE) to controls. 

 
Case-control 
subcohorts 

 

Age 
(mean±SD) 

Age at onset 
(mean±SD) 

Sex 
(male/female) 

Side of focus 
(L/R) 

Duration 
of illness 

(mean±SD) 

TLE  
(n=732) 38.56±10.61 16.07±12.27* 329/403 391/341 22.74±14.06a 

HC 
(n=1,418) 33.76±10.54 – 643/775 – – 

IGE 
(n=289) 32.06±10.85 16.84±11.25* 111/178 – 15.09±11.70a 

HC 
(n=1,075) 31.41±9.59 – 454/621 – – 

aInformation available in 695/732 TLE patients and 250/289 IGE patients.  
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