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Abstract

Cancer transcriptomes are shaped by genetic and epigenetic features, such as DNA methylation and

copy number aberrations. Knowledge of the relationships between gene expression and such features

is fundamental to understanding the basis of tumor phenotypes. Here, we present a pan-cancer atlas

of transcriptional dependence on DNA methylation and copy number aberrations (PANORAMA).

Our analyses suggest that copy number alterations are a central driver of inter-tumor heterogeneity,

while the majority of expression-methylation associations found in cancer are a reflection of cell-

of-origin and normal cell admixture. The atlas is made available through an online tool at https:

//pancancer.app.

Main

The phenotype of a tumor is encoded in its transcriptome, which in turn is shaped by the tumor’s

genome and epigenome. Changes in DNA methylation and copy number are frequently assumed to

have a phenotypic effect. However, there is major variation, between genes and tumor types, in how

strongly these features affect transcription, and consequently, their functional significance1,2,3. The

relationship between genetic factors and gene expression is essential to understanding transcriptomic

regulation and heterogeneity in cancer, yet it is not well characterized at the whole-genome or pan-

cancer level. Methods for interrogating these relationships are not yet adequately developed and

large datasets are required. In this study, we develop tools for probing expression-methylation (E-

M) and expression-copy number (E-C) associations, which we use to generate a pan-cancer atlas of

transcriptional dependence on DNA methylation and copy number aberrations (Fig. 1a). The atlas

is made available through a web application and is used to uncover distinct patterns of transcriptional

regulation across genes and tumor types.

In order to investigate the interplay between gene expression, methylation and copy number, all

data levels first needed to be numerically represented in forms suitable for statistical modeling. The

expression and copy number of a gene can be represented as scalars (i.e. a single numeric value;

alternative RNA splicing and copy number breakpoints within coding regions are not considered

here). In contrast, the methylation state of numerous CpGs may be relevant to the expression of

a gene. To reduce the dimensionality of methylation data, and to achieve consistency across genes,

we applied principal components analysis (PCA) to all CpGs within a window centered around each

gene’s coding region. In the reported analyses, this window starts and ends 50,000 bases upstream
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and downstream of the respective genes coding region, thereby creating a broad representation of

each gene’s cis methylation status. Across 23 tumor types in The Cancer Genome Atlas (TCGA)4,

a median of 41% of all per-gene variation in methylation could be captured by the first principal

component, and a median of 78% of variation could be captured with five principal components

(Fig. 1b, Supplementary Fig. 1, Supplementary Data 1). Based on the variation captured, five

principal components were selected as an appropriate trade-off between dimensionality reduction

and information loss when modeling E-M associations. Methylation data transformed by PCA are

onwards referred to as Methylation Signatures (MethSigs).

We next aimed to establish the dynamics of E-M and E-C associations in cancer. For this pur-

pose, we considered both untransformed and log-transformed covariates, and linear and non-linear

(non-parametric)5 functional relationships. To identify the optimal model, we applied the Akaike

Information Criterion (AIC) which quantifies the goodness-of-fit to the data while penalizing for

high model complexity. Here, a model was considered significantly better than another if there

was a difference in AIC of three or greater6. Our analyses revealed a considerable improvement in

modeling of E-M associations when allowing for non-linear relationships, but there was no improve-

ment from log-transformation of MethSigs (Fig 1c, Supplementary Fig. 2a, Supplementary Data

2). Inspection of selected genes with strong E-M association showed varied, linear and non-linear

relationships (Fig. 1d). In contrast, inclusion of non-linear terms in E-C models did in most cases

not markedly improve the model fit, provided the copy number data were log-transformed (Fig. 1e,

Supplementary Fig. 2b). Inspection of E-C associations in individual genes confirmed that rela-

tionships were mostly linear (Fig. 1f). A minority of E-C associations showed improved fit from

inclusion of non-linear terms (e.g. CDKN2B in PAAD, Fig. 1f), however it is challenging to as-

certain at genome-wide scale whether such non-intuitive relationships are spurious (i.e. overfitting)

or representative of genuine biological features. Finally, we generated a combined model of gene

expression as a function of copy number and methylation (E-CM). The combined model confirmed

the necessity of non-linear methylation terms and that linear terms were adequate for copy number

data if log-transformed (Fig. 1g, Supplementary Fig. 2c). These models illustrate a threshold effect

whereby methylation correlates with transcription only within a relatively limited dynamic range.

In contrast, there was no evidence of saturation effects in E-C associations at higher copy number

levels (although copy number observations are here, to an extent, limited by SNP-array technology

and data analysis methods7).

We wished to generate a pan-cancer atlas of E-M/E-C associations allowing comparisons across

tumor types. To handle the highly variable samples sizes across tumor types in TCGA4, we randomly

downsampled to 100 tumors per tumor type, modeled associations, and repeated this process 100

times. The median model statistics from these repeated runs were used as the estimate for the tumor

type. Tumor types with less than 100 samples were removed from consideration (Supplementary

Figure 3).

The pan-cancer atlas of transcriptional dependence on DNA methylation and copy number aber-

rations is made available through a web application at https://pancancer.app. PANORAMA

provides, for each gene, an overview of transcriptional associations pan-cancer, while also enabling

detailed analyses in individual tumor types or in a tissue-agnostic manner (Fig. 1a, 1d and 1f).

Analyses can be fully customized, including whether or not non-linearities are allowed when model-

ing, the number of MethSigs to use, and the size and location of the CpG window (thereby enabling

trans analyses). PANORAMA generates publication-ready vector graphics, and provides raw and

processed data for further analysis.
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A survey of the pan-cancer atlas (Supplementary Data 3) revealed marked differences between

tumor types in degree of transcriptional association to methylation and copy number. Genome-

wide transcriptional association to copy number ranged from 2% in THCA to 14% in LUSC (Fig.

2a, Supplementary Data 2). There was a strong correlation between mean genomic instability

index in a tumor type and mean E-C association (R2 = 0.64, P < 0.001, linear regression; Fig.

2b). Similarly, mean gene-centric copy number variance in a tumor type (an alternate measure for

the aggregate burden of copy number aberration) was closely correlated to mean E-C association

(R2 = 0.88, P < 0.001, linear regression; Supplementary Figure 4a). There was also a positive

correlation between copy number variance and E-C association in individual genes (Supplementary

Fig. 5). This correlation was, however, modest and genes with high copy number variance, but low

E-C association abounded. These trends indicate that, at the whole-genome level, the burden of

copy number aberration captures the extent to which a tumor transcriptome is copy number-driven

reasonably well. At a single gene level though, there is considerable variation in transcriptional

response to copy number aberration, illustrating the importance of analyzing copy number in the

context of gene expression, e.g. with PANORAMA. Finally, there was significant correlation between

mean gene expression variance in a tumor type and mean E-C association (R2 = 0.39, P = 0.002,

linear regression; Supplementary Fig. 4b), and between mean copy number variance and mean

gene expression variance (R2 = 0.49, P < 0.001, linear regression; Supplementary Fig. 4c). In

sum, these correlations implicate copy number aberration as an important driver of transcriptional

heterogeneity within tumor types.

Genome-wide transcriptional association to methylation ranged from 11% in LAML to 39% in

TGCT (Fig. 2c, Supplementary Data 2). TGCT, THYM and PAAD stood out as tumor types with

exceptionally strong E-M associations, while the remaining tumor types showed relatively limited

differences in mean E-M association. One explanation for these strong E-M associations might

be extensive, systematic differences in methylation within certain tumor types, as exemplified by

the divide between seminoma (globally hypomethylated) and non-seminoma in TGCT8. However,

mean variance in MethSigs only correlated weakly with mean E-M association (R2 = 0.21, P =

0.027, linear regression; Supplementary Fig. 4d), and this correlation was entirely driven by one

tumor type (TGCT). THYM and PAAD showed below-average MethSig variance. At a per-gene

level, there were positive, but minor correlations between MethSig variance and E-M association

(Supplementary Fig. 6). There was no association between mean gene expression variance in a tumor

type and mean E-M association (P = 0.92, linear regression; Supplementary Fig. 4e). If aberrant

methylation is a causal driver of gross transcriptional dysregulation within tumor types, one might

expect mean E-M association to show some correlation with mean gene expression variance. There

was, however, a positive correlation between mean MethSig variance and mean gene expression

variance (R2 = 0.43, P < 0.001, linear regression; Supplementary Fig. 4f). Viewed together with

aforementioned trends (Supplementary Figs. 4d and 4e), it is uncertain whether this is indicative of a

causal relationship, or underlying confounding factors. Others have, for example, noted associations

between methylation changes, structural variations9, and copy number aberrations2,10 (a trend also

suggested here, Supplementary Fig. 4g). Taken together, these correlations raise questions about

whether methylation drives genome-wide transcriptional dysregulation in cancer (as appears to be

the case for copy number aberrations), fine-tunes transcriptional patterns at a smaller scale, or mostly

plays a passive role in maintaining transcriptional states2,11. Interestingly, GO-term analyses12,13,14

revealed considerable enrichment of immune-related processes in the 20% most highly methylation-

associated genes in most tumor types (Supplementary Data 4). The bulk of E-M associations in
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cancer may therefore essentially be a reflection of cell-of-origin and non-tumor cell infiltration, rather

than a reflection of cancer-specific and etiologically relevant features. It is well-documented that

aberrant methylation may have an oncogenic effect mediated by epigenetic silencing of certain genes

(e.g. MLH1, BRCA1 ) and by effects related to genomic instability15,10; aberrant methylation does,

however, not seem to be a direct mechanism causing gross transcriptional dysregulation. The direct

oncogenic effect of aberrant methylation might then be conceptually more analogous to the effects

of mutations in individual genes than the genome-wide effects caused by copy number aberrations.

There was no correlation between mean E-M and mean E-C association across tumor types

(P = 0.82, linear regression; Fig. 2d). Note that the relative strengths of E-M and E-C associations

are not directly comparable as they are based on different models.

Using the combined model (E-CM), mean transcriptional association to methylation and copy

number ranged from 15% in LAML to 44% in TGCT (Figure 2e, Supplementary Data 2). The

distribution of E-CM associations showed similarity to the distribution of E-M associations, likely

due to the overweight of methylation covariates relative to copy number covariates in the E-CM

model.

When the strengths of E-M and E-C associations in individual genes were compared, a sta-

tistically significant anti-correlation between the two associations emerged in most tumor types

(P < 0.05, Fisher’s exact test at an 80th percentile cut-off; Fig. 2f, g, Supplementary Fig. 7). There

were differences between tumor types, with, e.g. SKCM, BLCA and LIHC showing high degrees of

mutual exclusivity between strong E-M and strong E-C association (cut-off above/below the 80th

percentile; onward referred to as E-MHigh/E-CHigh and E-MLow/E-CLow). One exception was LGG,

in which E-MHigh and E-CHigh genes tended to coincide (i.e. were mutually inclusive). Significant

correlations between E-M and E-C association, in individual genes, were not observed in TGCT and

THYM.

In light of these trends, we returned to the correlation between MethSig/copy number variance

and strength of E-M/E-C association in individual genes, and stratified the analyses according

to the strength of the opposite association (i.e. the correlation between copy number variance

and strength of E-C association was determined separately for E-MHigh and E-MLow genes, and

vice versa; Fig 2h, Supplementary Figs. 5 and 6). In general, higher copy number variance was

correlated with stronger E-C association, irrespective of strength of E-M association (although E-

MLow genes tended to have slightly stronger E-C association than E-MHigh genes, except in LGG;

Supplementary Fig. 5). In contrast, higher MethSig variance was, in most tumor types, correlated

with stronger E-M association in E-CLow genes, but not in E-CHigh genes (Supplementary Fig.

6). Several tumor types did, however, not show this trend, including LGG, THYM and PCPG.

These trends indicate that the mutual exclusivity in E-M and E-C associations may partially be

explained by copy number aberrations being able to override modulating effects of methylation on

gene expression. This would be in agreement with findings from Sun et al.2 in which they arrive

at similar conclusions based on analyses of conditional independence in expression, methylation

and copy number. The trend of mutual exclusivity should also be viewed in light of the earlier

discussion, in which we questioned the role of E-M associations in driving genome wide transcriptomic

variation within tumor types (Supplementary Fig. 4) and the observation that E-MHigh genes are

frequently immune-related (Supplementary Data 4). The mutual exclusivity might then be explained

by E-CHigh genes primarily being those selected for in a cancer-associated evolutionary process16

(Supplementary Data 5), whereas E-MHigh genes are the result of distinct processes (e.g. normal-

cell infiltration). It is therefore interesting to note there is a paucity of immune-related GO-terms

4

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 5, 2020. ; https://doi.org/10.1101/2020.05.04.076901doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.04.076901
http://creativecommons.org/licenses/by/4.0/


enriched in E-MHigh genes in LGG (Supplementary Data 4), indicating unique processes molding

E-M associations in that tumor type (perhaps associated with hypermethylator phenotypes caused

by IDH-mutations17).

In sum, we have here generated novel methods and tools for investigating the origins of transcrip-

tomic dysregulation in cancer. These tools were applied to a dataset of over seven thousand tumors,

across 23 types of cancer, yielding significant insights into the interplay between methylation, copy

number and gene expression.

Materials and Methods

Cohorts

The TCGA pan-cancer cohort was used in this study (n = 8213)4. Only tumors with data available

for all three data levels (gene expression, copy number, and methylation as measured by Illumina

HumanMethylation450 arrays) were included. The various tumor types had the following sample

sizes: Acute Myeloid Leukemia (LAML; n = 111), Adrenocortical Carcinoma (ACC; n = 76),

Bladder Urothelial Carcinoma (BLCA; n = 398), Brain Lower Grade Glioma (LGG; n = 511),

Breast Invasive Carcinoma (BRCA; n = 750), Cervical Squamous Cell Carcinoma and Endocervical

Adenocarcinoma (CESC; n = 293), Cholangiocarcinoma (CHOL; n = 36), Colon Adenocarcinoma

(COAD; n = 266), Esophageal Carcinoma (ESCA; n = 162), Glioblastoma Multiforme (GBM;

n = 54), Head and Neck Squamous Cell Carcinoma (HNSC; n = 492), Kidney Chromophobe Renal

Cell Carcinoma (KICH; n = 61), Kidney Renal Clear Cell Carcinoma (KIRC; n = 239), Kidney

Renal Papillary Cell Carcinoma (KIRP; n = 257), Liver Hepatocellular Carcinoma (LIHC; n =

356), Lung Adenocarcinoma (LUAD; n = 428), Lung Squamous Cell Carcinoma (LUSC; n = 350),

Diffuse Large B-cell Lymphoma (DLBC; n = 47), Mesothelioma (MESO; n = 83), Pancreatic

Adenocarcinoma (PAAD; n = 169), Pheochromocytoma and Paraganglioma (PCPG; n = 164),

Prostate Adenocarcinoma (PRAD; n = 486), Rectum Adenocarcinoma (READ; n = 87), Sarcoma

(SARC; n = 246), Skin Cutaneous Melanoma (SKCM; n = 462), Stomach Adenocarcinoma (STAD;

n = 364), Testicular Germ Cell Tumors (TGCT; n = 138), Thymoma (THYM; n = 119), Thyroid

Carcinoma (THCA; n = 471) Uterine Carcinosarcoma (UCS; n = 56), Uterine Corpus Endometrial

Carcinoma (UCEC; n = 387) and Uveal Melanoma (UVM; n = 80). In described analyses, only

the 23 tumor types with at least one hundred samples were included. All tumor types, irrespective

of sample size, can be analyzed through the PANORAMA web application (with the exception of

Ovarian Serous Cystadenocarcinoma, for which there were Illumina HumanMethylation450 array

data available for only ten samples).

Gene Expression

Gene expression data, pre-processed as previously described4, were retrieved from the TCGA Pancan

Atlas publication page (see Data availability). In brief, data were generated by RNA-sequencing,

and RSEM data were upper quartile normalized and batch corrected. Data were transformed to

log2(ReadCount+ 1). The standard deviation of each gene (calculated across all tumor types) was

visualized as a density plot, and the distribution of standard deviations was found to be bimodal.

Genes with standard deviation less than 0.195 were filtered out.
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Copy number

Per-gene copy number data, pre-processed as previously described4, were retrieved from the TCGA

Pancan Atlas publication page (see Data availability). In brief, copy number profiles were generated

using Affymetrix SNP 6.0 arrays, segmented using circular binary segmentation18, and made gene-

centric using Ziggurat Deconstruction in GISTIC2.07. Log-transformed copy number data were

analyzed and visualized in the form of log2(CopyNumber/2). Due to known non-linear saturation

effects in array probes and limitations of analytical methods, a cap was set at a maximum copy

number of ∼25 (log2(CopyNumber/2) = 3.657)7. In order to break ties when modeling, jitter was

added to the smallest and largest possible data points.

To calculate genomic instability index, the number of nucleotides in copy number aberrant seg-

ments was divided by the total number of nucleotides in all segments. Segments were defined as copy

number aberrant if their nearest integer copy number state deviated from their ploidy (calculated

using ABSOLUTE19). In tumors for which an ABSOLUTE solution was not available, ploidy was

set to two.

Methylation

Methylation data from Illumina HumanMethylation450 arrays, pre-processed as previously de-

scribed4, were retrieved from the TCGA Pancan atlas publication page (see Data availability).

Missing values were imputed for each tumor type separately using the 10 nearest neighbors20. Prin-

cipal Component Analysis (PCA) was performed for each gene using zero-centered β-values for all

CpGs within a window starting 50 000 base pairs upstream from the start of the coding region to

50 000 base pairs downstream from the end of the coding region. This window size was selected as

a reasonable compromise between sensitivity and specificity, while window size and location can be

freely selected in the accompanying web application. PCA was performed separately for each tumor

type. The first five principal components (MethSigs) were used for E-M and E-CM modeling. Genes

with fewer than five associated CpG probes were excluded from analyses in order to ensure that all

models had the same number of covariates.

Models

To investigate the relation between gene expression and methylation and copy number, a range of

different regression models of varying complexity were employed. For a given gene and cancer type,

let M1, ...,M5 denote MethSig values (log-transformed or not), C copy number (log-transformed or

not), and E log-transformed gene expression. Linear regression was used to fit E as a function of

M1, ...,M5, as a function of C, and as a function of both M1, ...,M5 and C. The linear terms for

M1, ...,M5 and/or C were subsequently replaced by smooth non-parametric terms to form additive

models5 that allowed for non-linear effects of M1, ...,M5, or of C, or of both. Linear models were

fitted using the function lm in R, while additive models were fitted using the function gam in the R

package mgcv 21. Each smooth term was modeled as a regression spline with k = 4, corresponding to

at most three effective degrees of freedom (EDF). The actual EDF per smooth term is determined

by model selection using the restricted maximum likelihood (REML) method, which is implemented

in the gam function. To facilitate comparison of results across cancer types with highly variable

sample sizes, we employed a strategy of repeated downsampling within each cancer type. For each

gene, cancer type and choice of model (as described above) we fitted the model to 100 randomly

chosen samples and computed model statistics. This procedure was repeated 100 times and median
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values for model statistics were used in further analyses. If more than 80% of the randomly chosen

samples in a run had identical expression values for a gene, no model was generated for that gene

in the given run. Negative adjusted R2 values were set to zero. Only protein coding genes with

available data from all three data levels were analyzed. The Akaike Information Criterion (AIC) was

used to evaluate the fit of each model, and for two models with a difference in AIC <3, the model

with the smallest AIC value is considered to be substantially better6. GO term enrichment analyses

for biological processes were carried out using PANTHER12,13,14. Enrichment was tested for using

Fisher’s exact test with FDR correction (terms with FDR P < 0.05 listed in Supplementary Data 4

and 5).

Code availability

All code used in the described analyses is available at:

https://github.com/clfougner/PANORAMA

Code for the PANORAMA web application is available at:

https://github.com/clfougner/PANORAMA_app

Data availability

Data from the TCGA pan-cancer cohort4 were queried from:

https://gdc.cancer.gov/about-data/publications/PanCan-CellOfOrigin

and:

https://gdc.cancer.gov/about-data/publications/PanCan-Clinical-2018

The following files were used in the study:

Gene expression:

EBPlusPlusAdjustPANCAN_IlluminaHiSeq_RNASeqV2.geneExp.tsv

Methylation:

jhu-usc.edu_PANCAN_HumanMethylation450.betaValue_whitelisted.tsv

Per-gene copy number data:

ISAR_GISTIC.all_data_by_genes.txt

Copy number segments:

ISAR_corrected.PANCAN_Genome_Wide_SNP_6_whitelisted.seg

Ploidy:

TCGA_mastercalls.abs_tables_JSedit.fixed.txt

Clinical data:

TCGA-CDR-SupplementalTableS1.xlsx

Data from selected models are available in Supplementary Data 3. Full data from all generated

models are available at:

https://github.com/clfougner/PANORAMA/Output/AllModels.zip
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Figure 1: A framework for modeling the effect of differential DNA methylation and copy

number on the cancer transcriptome. a Schematic of the analytical pipeline. PANORAMA is a pan-

cancer atlas of expression-methylation and expression-copy number associations, integrated in an online tool

for customized analyses. Analyses are based on The Cancer Genome Atlas pan-cancer dataset4. b Median

cumulative variance captured by principal components (MethSigs) 1-10 across 23 tumor types. Boxplot

elements: center line = median, box limits = upper and lower quartiles, whiskers = 1.5 × interquartile

range. c - e Gene expression modeled as a function of methylation. c Number of genes either modeled best

using the given model (i.e. the model with the lowest AIC) or not modelled significantly worse than the

best model (i.e. ∆AIC <3). Numbers inside the bars represent mean adjusted R2 for the model. d E-M

association in selected genes, revealing diverse linear and non-linear dynamics. e - f Gene expression modeled

as a function of copy number. e Number of genes with ∆AIC <3, and mean adjusted R2. e E-C association

in selected genes, mainly revealing linear dynamics and occasional, potentially spurious, non-linear dynamics

(e.g. CDKN2B in PAAD). Visualized with log-transformed copy number data. g Number of genes with

∆AIC <3, and mean adjusted R2, for gene expression modeled as a combined function of methylation and

copy number. Linear methylation terms in E-CM models were also explored, but were excluded from the

visualization. All Non-linear models were generated using splines with k = 4 basis functions in generalized

additive models. Linear models generated using linear regression. c, e, g BRCA shown as a representative

tumor type. Pan-cancer results shown in Supplementary Fig. 2. Models shown in red text were used onward.
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Figure 2: Pan-cancer patterns of transcriptomic association to DNA methylation and copy

number. a Violin plots showing distribution of adjusted R2 for E-C associations across the genomes of

23 tumor types (ordered by mean adjusted R2, represented by white dots). b Correlation between mean

genomic instability index (GII) in a tumor type and mean adjusted R2 for E-C associations (R2 = 0.64,

P < 0.001, linear regression; R2 = 0.84, P < 0.001 if TGCT is treated as an outlier). Shaded dark grey area

represents 95% confidence interval. c Violin plots showing distribution of adjusted R2 for E-M associations.

d Correlation between mean adjusted R2 for E-C association and mean adjusted R2 for E-M association

(P = 0.82, linear regression). e Violin plots showing distribution of adjusted R2 for E-CM associations. f

2D histograms (50 × 50 bins) showing adjusted R2 for E-C and E-M relationships in individual genes, in

selected tumor types. In many tumor types, there appeared to be an anti-correlation between E-M and E-C

association in individual genes. g Odds ratio for high E-C association and high E-M association in individual

genes. Odds ratio was derived by separating genes into 2 × 2 contingency tables for genes with adjusted R2

above/below the 80th percentile for E-M and E-C association. In most tumor types, there was a significant

mutual exclusivity in whether genes showed high E-M or high E-C association (P < 0.05, Fisher’s exact test).

Different percentile cut-offs are shown in Supplementary Figure 7. h Linear regresssion of adjusted R2 for

E-C association correlated to copy number variance (left), and adjusted R2 for E-M association correlated to

MethSig variance (right), in individual genes in selected tumor types. Linear regression was performed for all

genes, and separately for genes stratified by E-M association above/below the 80th percentile (E-Mhigh/E-

Mlow, left) and stratified by E-C association above/below the 80th percentile (E-Chigh/E-Clow, right). Full

figures, including regression statistics, for all tumor types provided in Supplementary Figs. 5 and 6.
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Supplementary Figure 1: Dimensionality reduction of gene-centric methylation data using

Principal Component Analysis (PCA). Boxplots of cumulative variance captured by PCA in gene-

centric methylation data. PCA was performed on β-values for all CpGs within a window starting 50 kilobases

upstream of the start of the coding region of a gene to 50 kilobases downstream of the end of the coding

region. PCA was performed individually for each tumor type. Data points in the bottom right panel

represent the median variances captured in the 23 tumor types in the TCGA pan-cancer dataset with at

least 100 tumors (also shown in Fig. 1b). Boxplot elements: center line = median, box limits = upper and

lower quartiles, whiskers = 1.5 × interquartile range; outliers only shown for the bottom right panel.
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Supplementary Figure 2: Modeling gene expression as a function of methylation and copy

number. a Heatmap showing the number of genes with ∆AIC <3 for each E-M model. Gene expression

modeled as a function of methylation showed marked improvement when non-linear spline terms were used,

but no improvement was seen from log-transformation of MethSigs. b Heatmap showing the number of genes

with ∆AIC <3 for each E-C model. Gene expression modeled as a function of copy number only showed

minor, and potentially spurious, improvement from the addition of non-linear spline terms, provided copy

number data were log-transformed. c Heatmap showing the number of genes with ∆AIC <3 for each E-CM

model. The combined model confirmed that methylation data required non-linear spline terms for optimal

modeling and that copy number was adequately described by linear terms if log-transformed.

14

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 5, 2020. ; https://doi.org/10.1101/2020.05.04.076901doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.04.076901
http://creativecommons.org/licenses/by/4.0/


0 200 400 600 800

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0 200 400 600 800

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0 200 400 600 800

0.00

0.05

0.10

0.15

0 200 400 600 800

0.00

0.05

0.10

0.15

0 200 400 600 800

0.0

0.1

0.2

0.3

0.4

0 200 400 600 800

0.0

0.1

0.2

0.3

0.4

Sample size

BLCA
BRCA
CESC
COAD

ESCA
HNSC
KIRC
KIRP

LAML
LGG
LIHC
LUAD

LUSC
PAAD
PCPG
PRAD

SARC
SKCM
STAD
TGCT

THCA
THYM
UCEC
ACC

CHOL
DLBC
GBM
KICH

MESO
READ
UCS
UVM

E-
C

: M
ea

n 
R
Ad
ju
st
ed

2
E-

M
: M

ea
n 
R
Ad
ju
st
ed

2
E-

C
M

: M
ea

n 
R
Ad
ju
st
ed

2

a b

c d

e f

Supplementary Figure 3: Mitigating sample size as a confounding factor. a - b Mean adjusted

R2 for expression-methylation (E-M) associations before (a) and after (b) correction for samples size. c -

d Mean adjusted R2 for expression-copy number (E-C) associations before (c) and after (d) correction for

samples size. e - f Mean adjusted R2 for combined models (E-CM) before (e) and after (f) correction for

samples size. All Sample size was corrected for by downsampling tumor types to one hundred samples,

modeling transcriptional associations, then repeating downsampling and modeling one hundred times. The

median model statistics from repetitions were used for further analyses. Sample size correction necessitated

the exclusion of tumor types with fewer than one hundred samples.
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Supplementary Figure 4: Importance of genome-wide variance in expression, copy number

and methylation. a Correlation between mean variance in log-transformed, gene-centric copy number and

mean adjusted R2 for E-C associations (R2 = 0.88, P < 0.001, linear regression). b Correlation between

mean variance in log-transformed gene expression and mean adjusted R2 for E-C associations (R2 = 0.39,

P = 0.002, linear regression). c Correlation between mean variance in log-transformed gene-centric copy

number and mean variance in log-transformed gene expression (R2 = 0.49, P < 0.001, linear regression).

d Correlation between mean MethSig variance (mean of MethSigs 1-5) and mean adjusted R2 for E-M

associations. There was a positive correlation between the degree of variance in methylation in a tumor type

and mean E-M association (R2 = 0.21, P = 0.027, linear regression), however this correlation is non-existent

if TGCT is treated as an outlier (P = 0.74, linear regression, grey text). e Correlation between mean variance

in log-scaled gene expression and mean adjusted R2 for E-M relationships (P = 0.92, linear regression). f

Correlation between mean MethSig variance and mean variance in log-transformed gene expression. There

was a positive correlation between the degree of variance in methylation and the degree of variance in gene

expression (R2 = 0.43, P < 0.001, linear regression). This correlation is strengthened if TGCT is treated

as an outlier (R2 = 0.73, P < 0.001, linear regression, grey text). g Correlation between mean MethSig

variance and mean variance in log-transformed, gene-centric copy number. There was a positive, but non-

significant correlation between the degree of variance in methylation and the degree of variance in copy

number (R2 = 0.13, P = 0.091, linear regression, grey text). This correlation is significant if TGCT is

treated as an outlier (R2 = 0.25, P = 0.011, linear regression, grey text). All Shaded, dark grey areas

represent 95% confidence intervals.
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Supplementary Figure 5: Importance of per-gene variance in copy number. Variance in copy

number data plotted against E-C association at a per-gene level in 23 tumor types and pan-cancer. Lin-

ear regression was performed for all genes (black), and stratified by whether genes had E-M association

above/below the 80th percentile (green and purple, respectively). The pan-cancer plot represents the ag-

gregate of the other 23 panels, and displays E-C association and copy number variance derived individually

in each tumor type. The 80th percentiles of E-M association used in the pan-cancer plot are identified

individually for each tumor type.
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Supplementary Figure 6: Importance of per-gene variance in MethSigs. Variance in MethSigs

(mean of MethSigs 1-5) plotted against E-M association at a per-gene level in 23 tumor types and pan-cancer.

Linear regression was performed for all genes (black), and stratified by whether genes had E-C association

above/below the 80th percentile (blue and purple, respectively). The pan-cancer plot represents the aggregate

of the other 23 panels, and displays E-M association and MethSig variance derived individually in each tumor

type. The 80th percentiles of E-C association used in the pan-cancer plot are identified individually for each

tumor type.
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Mutually exclusive, P < 0.05
Mutually inclusive, P < 0.05
Not significant, P > 0.05
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Supplementary Figure 7: Mutual exclusivity in E-M and E-C association. Odds ratio for high

level of E-M versus E-C association, defined at 50th (a), 55th (b), 60th (c), 65th (d), 70th (e), 75th (f),

80th (g), 85th (h) and 90th (i) percentile cut-offs. All Odds ratio identified using 2 × 2 contingency tables

of genes with adjusted R2 above/below the cut-off for E-M/E-C association. Significance derived using

Fisher’s exact test. In most tumor types, genes with high level of one form of transcriptional association

(E-M/E-C) showed significantly lower likelihood of high level of the other form of transcriptional association

(E-C/E-M), i.e. the two associations were mutually exclusive. LGG was one exception in which E-M and

E-C associations were mutually inclusive.
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Supplementary Data 1: Median cumulative variance captured by principal components (Meth-

Sigs) 1-10 in 23 tumor types (.xlsx).

Supplementary Data 2: Number of genes with ∆AIC <3, and mean adjusted R2, for tested

models across 23 tumor types (.xlsx).

Supplementary Data 3: Genome-wide, pan-cancer model statistics for the 23 tumor types in-

cluded in the pan-cancer atlas. (.xlsx).

Supplementary Data 4: Enriched GO-terms in the 20% most highly methylation-associated genes

(E-MHigh) for each tumor type. (.xlsx).

Supplementary Data 5: Enriched GO-terms in the 20% most highly copy number-associated

genes (E-CHigh) for each tumor type. (.xlsx).
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