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Abstract

The Cox proportional hazard model is the most widely used method in modeling

time-to-event data in the health sciences. A common form of the loss function in

machine learning for survival data is also mainly based on Cox partial likelihood

function, due to its simplicity. However, the optimization problem becomes

intractable when more complicated regularization is employed with the Cox

loss function. In this paper, we show that a convex conjugate function of Cox

loss function based on Fenchel Duality exists, and this provides an alternative

framework to optimization based on the primal form. Furthermore, the dual

form suggests an efficient algorithm for solving the kernel learning problem with

censored survival outcomes. We illustrate the application of the derived duality

form of Cox partial likelihood loss in the multiple kernel learning setting

Keywords: Convex Conjugate; Cox model; Convex Optimization; Multiple

Kernel learning; Fenchel Dual; Survival data

1. Introduction

The two most widely utilized models for censored survival data are the Cox

proportional hazard (PH) model [1] and accelerated failure time (AFT), due
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to their flexibility and efficiency [2]. Cox PH models are the most widely used

model in health and clinical sciences, while the AFT model is more popular in5

areas like engineering. The Cox model is a semi-parametric regression method

where no assumptions imposed on the baseline hazard function. The para-

metric regression coefficients quantify the effect size of each covariate and the

exponential of the coefficient is interpreted as the unit increase of the hazard

ratio. The Cox model works well in practice because it can tolerate a modest10

deviation from the PH assumption. The partial likelihood in the Cox model is

defined as the probability that one individual will experience the event at a time

t among those who have survived longer than t. It was shown that maximizing

partial likelihood provides an asymptotically efficient estimation of regression

coefficients [3]. The Cox model has been successfully extended to various high-15

dimensional settings, where the number of features is more than the number of

samples. Additionally, the log partial likelihood (LPL) is differentiable and con-

vex. Thus the combination of Cox LPL, and l1 (lasso), l2 (ridge), or elastic net

penalties can be directly solved by standard Newton-Rapshon method. Li and

Luan [4] pioneered methods for kernel Cox regression in the framework the pe-20

nalization framework from the view of function estimation in reproducing kernel

Hilbert spaces. Furthermore, the convex combined loss function often guaran-

tees the convergence of efficient optimization algorithms including coordinate

descent [5], which is the core algorithm implemented in a popular R package for

penalized regression glmnet. The Cox LPL has also been adopted in many ma-25

chine learning approaches as a loss function to the survival setting. For example,

Ridgeway [6] adapted the gradient boosting method for the Cox model, which is

implemented in the R package gbm. Li and Luan [7] also considered a boosting

procedure using smoothing splines to estimate the proportional hazards models.

More recently, the application of neural network-based deep learning techniques30

to the Cox PH model has begun to receive attention [8]. These machine learning

techniques generalize the Cox model to include non-linear effects and to better

address heterogeneous effects.

In this paper, we derive the Fenchel dual form of Cox partial likelihood,
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which is a key step in the implementation of machine learning approaches for35

survival outcomes that can incorporate multiple high throughput data sources

. Duality approach is a basic tool in machine learning and is commonly used

in nonlinear programming and convex optimization to provide a lower bound

approximation for the primal problem. It is often easier to optimize the lower

bound via the dual form and it has fewer variables in the high dimensional40

setting. The main property of the resulting function, called Fenchel conjugate, is

always convex regardless of the convexity of the original function. Note that the

Lagrangian and Fenchel dual are defined under different contexts, even though

many Lagrangian duals can be derived from Fenchel conjugate functions and

in many cases, both of them are referred to as a "dual problem". Lagrangian45

duality form is defined within the context of the optimization problem (often

with constraints), while the Fenchel form is more general and is defined for a

function. Our work is motivated by the need to bridge the gap between modern

machine learning techniques and survival models. To apply methods like SVM,

survival data are often dichotomized with a cutoff time point. Such a method50

will yield biased results because censored data points are excluded from the

analysis, additionally, the results will be affected by different cutoff values.

The remainder of the paper is organized as follows. In Section 2, we review

the Cox proportional hazard model and Fenchel duality. In Section 3, we derive

a conjugate function for the Cox model. We perform simulations in Section 4 to55

demonstrate the usage of the derived form in the multiple kernel learning. We

analyze both Skin Cutaneous Melanoma (SKCM) gene and miRNA expression

data from The Cancer Genome Atlas (TCGA). Finally we conclude with a

discussion in Section 6.
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2. Methods60

2.1. Fenchel duality

Suppose we have function f (x) on Rn, then the Fenchel convex conjugate

of f (x) is defined in terms of the supremum by

f∗ (ρ) = sup
x∈Rn

(
ρTx− f (x)

)
.

The mapping from f(.) to f∗(.) defined above is also known as the Legendre-

Fenchel transform. The convex conjugate function measures the maximum

gap between line function ρTx and original function f (x), where each pair

of
(
ρ, fT (ρ)

)
corresponds to a tangent line of the original function f (x). The65

resulting function f∗ has the nice property to be always convex, because it is

the supremum of an affine function. Figure 1 illustrates how the conjugate dual

for a classic example f(x) = |x|. The conjugate function offers one important

option to build a dual problem that might be more tractable or computation-

ally efficient than the primal problem. Note in Figure 1A, when |ρ| > 1 that as70

x → ∞ then |ρ|x → ∞, thus supx{ρx − |x|} = ∞. Alternative, when |ρ| ≤ 1

that |ρ|x ≤ x for all x, hence the largest value for supx{ρx − |x|} = 0, when

x = 0. The complex conjugate is illustrated in Figure 1B, note that is a convex

function.

By Fenchel-Moreau theorem, f = f∗∗ if only and only if f is a convex and

and lower-semi continuous function which holds for Cox proportional hazards

model. Therefore, we can convert the problem into dual problem with f∗ to

obtain ρ̂ and map it back to our primal and obtain final solution. We define the

relative interior of a set C as

ri(C) = {x ∈ C| for all y ∈ C there exists λ > 1 such that λx+ (1− λ)y ∈ C},

in other words for an point x ∈ C there exists a ball that is entirety contained

in C. Additionally, using Fenchel duality theorem[9] (Theorem 31.1), we have

the following statement. If ri (dom (f)) ∩ ri (dom (g)) 6= ∅, and f (·) and g (·)
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are convex, we have

inf
x

(f (x) + g (x)) = sup
y

(−f∗ (y)− g∗ (−y)) ,

note that minimizing h(x) = f(x) + g(x) occurs when ∇h = ∇f + ∇g = 0 or

when ∇f = −∇g. Hence, Fenchel duality theorem shows us that minimizing the

summation of two convex function can be reduced to the problem of maximizing

the gap between their parallel tangent lines since it is the lower bound of primary

problem. In our case, both the Cox loss function and EN regularizer are both

convex, so we can apply this theorem that our target problem which reduces to

the following problem

max
(
−L∗ (−ρ)− δC

(
‖ρ‖Km

))
where L∗ and φ are the conjugate function of L, Km Hilbert space that is75

generated by the reporducing kernel Km, and φ.

2.2. Cox proportional hazard model and partial likelihood

The Cox PH model [1] relates the covariates to the hazard function of the

outcome at time t using the following equation,

hi(t) = h0(t) exp{〈xi,β〉},

where h0(t) is the baseline hazard function at time t and xi is the vector of

predictor variables for the ith subject. An appealing feature of the Cox model

is that, as shown in the partial likelihood

PL =
∏
i∈D

exp(〈xi,β〉)∑
l∈R exp(〈xl,β〉)

=
∏
i∈D

exp(〈xi,β〉)∑
l∈R I(tl ≥ tj) exp(〈xl,β〉)

, (2.1)

estimates of regression coefficients are obtained without parametric assumptions

about the baseline hazard function. Here D is the set of uncensored subjects

and R is the set of the observations at risk at time t. The PL can be understood

as constructing the conditional probability that the event occurs to a particular

subject at time t. Typically, we optimize the negative log of Cox PL 2.1,

L = − log(PL) = −
n∑
i=1

δi

(
〈xi,β〉 − log

∑
l∈R

exp (〈xl,β〉)

)
,
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Figure 1: “Visual derivation" of the complex conjugate function is computed. (A)-(C) Shows

the properties of ρx−f(x), where f(x) = |x| for particular values for ρ = 2, 1, 0.5. Notice that

the difference between ρx and f(x) remains less than infinity only when |ρ| ≤ 1, while when

ρ > 0, ρx increases faster than f(x). The final form of the conplex conjugate is displayed in

(D).
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where δ is the event indicator. It can be shown that L is convex and thus ob-

taining the regression coefficients that minimize L can be conducted by using

gradient based methods. This framework can be extended to penalized regres-80

sion by adding a regularization term to L. For example, the lasso solution of

regression coefficients corresponds to β̂ = argminβ(L(β) + R(β)), where R(β)

denotes the regularization terms applied to constrain coefficients, such as the

l1/l2 or group lasso penalty terms [10].

2.3. Multiple Kernel Learning85

In the traditional Cox regression framework, we assume a linear relationship

between our predictors and survival time. However, in reality, the relationship

is far more complex. Meanwhile, nonlinear models are often hard to analyze and

interpret. Kernel methods are non-parametric methods that utilize reproducing

kernel Hilbert space (RKHS) [11, 12], and provide a useful alternative to linear90

or nonlinear models. Kernel functions map a predictor matrix from n×p to n×n.

This allows us to focus on the similarity between subjects dramatically reducing

the complexity of the predictor space to finding a linear relationship between a

similarity measure. For instance, using polynomial kernel, we can map a circle

boundary problem to a linear boundary problem, which dramatically reduces95

our computation cost.

The exact relationships between predictions and outcomes are unknown,

hence selecting an optimal kernel function presents a challenge. There are no

clear rules for selecting a single optimal kernel, but cross-validation is usually

implemented[13, 14, 15]. An interesting property of kernels is that a linear com-100

bination of two kernel functions results in another kernel function [11]. There

have been many works that utilize this fact and have shown that convex com-

binations of multiple kernels can provide more accurate classifiers than single

kernels[13, 16, 17]. Learning the optimal kernel weights is referred to as multiple

kernel learning (MKL).105

Under the MKL framework, we can denote our target problem as follow

argmin
α

(
L
(
K̄α
)

+ φC (α)
)

(2.2)

7
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where L (·) is the loss function of Cox proportional hazards model, K̄ = (K1, · · · ,KM )

are a set of kernels, α is the coefficient matrix for each kernels, and φC (·) is the

regularized term for coefficients matrix. In this paper we used elastic net (EN)

penalty which can be written as

φC (α) =
M∑
m=1

φ
(m)
C (αm) = C

M∑
m=1

[
(1− λ) ‖αm‖Km

+
λ

2
‖αm‖2Km

]
. (2.3)

where λ ∈ [0, 1] defines the amount of weight is assigned to the l2 and l1

regularizer, and C is a multiplier that changes the impact prediction error on

the objective function in 2.2.The EN penalty allows us strike a balance between

the l1 and l2 regularization. In other words, it allows for sparse selection that

the coefficients for non-informative kernels will be shrunk to zeros, and the110

coefficients for similar kernels tend to be close, so called group property, which

returns us a consistent result [18, 17]. The elastic net penalty is non-smooth, we

can use the theory of Moreau’s envelope function obtain the approach to solve

this problem.

2.4. Moreau Envelope and Elastic Net115

The Moreau envelope function allows us to approximate a non-smooth func-

tion with a smooth function leading to simpler optimization task. Let g : Rn →

R̄ be a function, for every γ > 0 we define the Moreau envelope as

eγg(x) = inf
y

{
g(y) +

1

2γ
||x− y||2

}
. (2.4)

The Moreau envelope strikes a balance between function approximation and

smoothness through the parameter γ. Note that Moreau envelope of g(y) =

−ρT y is the negative of the convex conjugate of f(x) = 1
2γ ||x−y||

2. Additionally,

if eγg is smooth derivative given by

∇eγg = prox (y|g) = argmin
y

{
g(y) +

1

2γ
||x− y||2

}
(2.5)

A simple example of the Moreau envelope is shown in Figure 2A. Note that as

γ increases the approximation of the function becomes worse and the shape of

the function around x = 0 is increasingly rounded.
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Figure 2: Moreau envelope for lasso regularizer g(x) = |x| for several values of smoothing

parameter γ, and elastic net regularizer g(x) = 1/2|x|+1/2x2. Notice that as the value for γ

increases we obtain a function that is more smooth, but a worse approximation of g(x).

Now we apply the concept of the Moreau envelope to the EN. We set x = αm,

y = α′m, and γ = 1 from 2.5 resulting in

prox
(
αm|φ(m)

C

)
= argmin

α′
m∈RN

(
Cg

(∥∥∥α′

m

∥∥∥2
Km

)
+

1

2

∥∥∥α′

m − αm
∥∥∥2
Km

)
, (2.6)

where g (x) = (1− λ)
√
x+ λ

2x.

Using Cauchy-Schwarz inequality we have

g̃C

(∥∥∥α′

m

∥∥∥
Km

)
+

1

2

∥∥∥α′

m − αm
∥∥∥2
Km

≥ g̃C
(∥∥∥α′

m

∥∥∥
Km

)
+

1

2

(∥∥∥α′

m

∥∥∥
Km

− ‖αm‖Km

)2

.

Therefore, we can obtain the minimum solution that∥∥∥α′

m

∥∥∥
Km

= argmin
x≥0

(
g̃C (x) +

1

2

(
x− ‖αm‖Km

)2)

= prox
(
‖αm‖Km

|g̃C
)

=

0 ‖αm‖Km
≤ C (1− λ)

‖αm‖Km
−C(1−λ)

(Cλ+1)‖αm‖Km

αm else,

where prox (·) is known as the soft operator, see 2B.120
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3. SpicyMKL algorithm for Cox Proportional Hazard

SpicyMKL was introduced as an efficient implementation of MKL what could

learn the best convex combination of potentially 1000 candidate kernels. In or-

der to accomplish this the MKL problem was reformulated using the Moreau

envelope and the convex conjugate to ensure that the sum of the loss and reg-125

ularization penalties is a smooth and convex function [17]. SpicyMKL was

introduced for multiple loss function and regularization function, but was not

extended to the survival setting.

In our problem, we denote L∗ (·) as the conjugate function of the Cox loss

function

L∗ (−ρ) = sup
z∈Rn

(
(−ρ)

T
z − L (z)

)

=



ρi < δi, i = 1, . . . , n, and

h(ρ)
∑n
j=i ρj < 0, i = 2, . . . , n, and∑i
j=1 ρj = 0

+∞ else,

where

h(ρ) =

n∑
i=1

(δi − ρi) log (δi − ρi)−
n−1∑
i=1

ρi log

∏n
j=i+1

(
δj −

∑n
k=j ρk

)
∏n
j=i+1

(
−
∑n
k=j ρk

)


−
n∑
i=1

δi log

δi − n∑
j=i

ρj

 ,

and gC =
∑M
m=1 g

(m)
C is the conjugate function of the soft operator of the

regularizer,

g
(m)
C

(
‖ρ‖Km

)
=

0 ‖ρ‖Km
≤ C (1− λ)

[‖ρ‖Km
−C(1−λ)]

2

2Cλ else.

A full derivation of the results can be found in the supplemental materials. We
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can see that both L∗and δC are secondarily differentiable, we can use Newton130

method to solve above questions.

The conjugate function of L is secondarily differentiable where the first

derivative is given by

L∗
′

i =


log

( ∏n
j=i+1(−

∑n
k=j ρk)

(δi−ρi)
∏n

j=i+1(δj−(
∑n

k=j ρk))

)
i < n

− log (δn − ρn) i = n

. (3.1)

We can see that if j < i, the derivation respected to the ith component does not

contain j, so the L∗
′

ij = 0. If j > i, L∗
′

ij = L∗
′

ji = 0. Hence the Hessian matrix

of the conjugate function is diagonal matrix, then we can obtain by taking the

second derivative,

L∗
′′

ij =


1

δi−ρi j = i

0 j 6= i.

(3.2)

We can calculate gradient and Hessian matrix of δ(m)
C using (3.1) and (3.2) which

are given by

g
(m)′

C

(
‖ρ‖Km

)
=

0 ‖ρ‖Km
≤ C (1− λ)

‖ρ‖Km
−C(1−λ)
Cλ else.

g
(m)′′

C

(
‖ρ‖Km

)
=

0 ‖ρ‖Km
≤ C (1− λ)

1
Cλ else.

We can see that the conjugate function is feasible if λ > 0, which means

we can only use the smooth dual form for elastic net but not block one norm

penalty. The block one norm penalty is a kernelized version of group lasso

[19, 20].135
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From derivation of the SpicyMKL algorithm, we have

∇ρφ∗
(
‖ρ‖Km

)
=

Kmρ

‖ρ‖Km

g
(m)′

C

(
‖ρ‖Km

)
∇∇

′

ρφ
∗ (‖ρ‖Km

)
=

(
Km

‖ρ‖Km

− Kmρρ
′
Km

‖ρ‖3Km

)
g
(m)′

C

(
‖ρ‖Km

)
+
Kmρρ

′
Km

‖ρ‖2Km

g
(m)′′

C

(
‖ρ‖Km

)
.

Using Newton algorithm we can obtain the optimal ρ̂. As shown in the sup-

plemental material, the step size of Newton update is given by the size that

will not make the update of ρ goes beyond the domain of L∗. To satisfy the∑n
i=1 ρi = 0 constraint for L∗, we added a penalty function 105

2

(
1

′
ρ
)2

. Using

Rockafellar[9] (Theorem 31.3), we have

Kα̂ = −∇ρL∗ (−ρ̂) . (3.3)

Under Karush–Kuhn–Tucker (KKT) condition.

∇L∗ (−ρ) = −
M∑
m=1

∇ρg(m)
C

(
‖ρ̂‖Km

)
= −

M∑
m=1

Kmρ̂

‖ρ̂‖Km

g
(m)′

C

(
‖ρ̂‖Km

)
,

and the solution to (3.3) is

⇒ α̂m =
ρ̂

‖ρ̂‖Km

g
(m)′

C

(
‖ρ̂‖Km

)
4. Simulation Data

To evaluate the performance of Multiple Kernel Cox regression (MKCox),

we simulate data that are generated with different relationships between the

feature and the hazard function. Our simulations were inspired by Katzman

[8]. We simplify these simulations we conducted to benchmark and explore

the properties of MKCox. We simulate the features from a bivariate normal

distribution, X = [X1, X2], with µ = 0, and σX1 = σX2 = 1 and a range of
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values of correlation, and we consider the following hazard function:

h(X) = X1 + 2 ∗X2, and (4.1)

h(X) = log(λ) exp

(
−
(
X2

1 +X2
2

)
2 ∗ r2

)
(4.2)

where λ = 5, and r = 1/2. Then the survival times are generated by:

T = − log(u)

exp(h(X))
, where u ∼ U(0, 1),

a censoring time is established, so that approximately 50% of patients have ob-

served an event. We used two kernels in for our illustration K1 is the radial

basis function with hyperparameter σ = 2, and K2 is a linear kernel. We com-

pare MKCox to the following methods random survival forest ([21]) (RF) imple-140

mented in randomForestSRC (2.9.0), and stochastic gradient boosted ([22]) Cox

regression (GBM) implemented in gbm (2.1.5). All our analyses were performed

in R (3.6.0).

We aim to obtain a good estimate of the hazard function, as well as, main-

tain a good prediction of survival time. In Figures 3 and 4, we see that all145

methods can capture the structure of the hazard function when the underlying

relationship is linear. Additionally, MKCox can recover the underlying patterns

in the hazard function better than Cox regression and GBM, while both RSF

and MKCox both capture the nonlinear pattern for accurately. To evaluate the

performance of MKCox will compute popular metrics for survival models such as150

the concordance index. These results are shown in Table 1. Notice in the linear

case that all methods provide similar concordance indices, while in the nonlinear

case Cox performs substantially worse and MKCox slightly better than other

machine learning methods. These simulations illustrate that MKCox can pro-

duce similar or better results under different underlying relationships between155

the hazard ratio and the features.

5. Case Study

The Cancer Genome Atlas (TCGA) project is a large initiative to study

the multiomics effect of gene expression RNAseq and stem loop expression on

13
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Figure 3: ((A) The values of the linear hazard function used in (4.1), h(x1, x2) = x1 + 2x2.

(B) Predicted hazard values by Cox proportional hazard, and the three machine learning

techniques.

patients’ survival time[23, 24]. We downloaded the data from Genomic Data160

Commons (GDC) Data Portal. The latest survival data were downloaded using

the TCGAbiolinks ([25]) package in R. The gene expression and miRNA expres-

sion data were downloaded from University of California at Santa Cruz (UCSC)

Xena ([26]) (https://xena.ucsc.edu/) database. For gene expression, we used

the fragments per kilobase of transcript per million mapped reads upper quartile165

(FPKM-UQ) with log2 (x+ 1) transformation on mRNA via high-throughput

sequencing (HTseq) ([27]) technique with gencode v22, while for stem loop ex-

pression, we used the per million mapped reads (RPM) with log2 (x+ 1) trans-

formation via miRNA expression quantification technique aligned to GRCh38.

In total, we have 235 dead and 215 alive (450 in total) patients.170

Since we have two features sources (gene expression and stem loop expres-

14
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Figure 4: IA) The values of the nonlinear hazard function used in (4.1), h(x1, x2) = 5 ∗

exp((x21 + x22)/2). (B) Predicted hazard values by Cox proportional hazard, and the three

machine learning techniques.

sion), we kernelized the two feature sources separately using pathway kernels

with Ki = XiL
−1
i Xi where Ki, Xi and Li are the kernel matrix, feature matrix

and standardized Laplacian matrix for each feature source, respectively. So our

model can be written as

l

(
survival time,

2∑
i=1

Kiαi

)
+ C

(
(1− λ)

2∑
i=1

‖αi‖Ki
+
λ

2

2∑
i=1

‖αi‖2Ki

)
which is equivalent to a linear grouped network regularized model

l

(
survival time,

2∑
i=1

Xiβi

)
+ C

′

((
1− λ

′
) 2∑
i=1

‖βi‖Li
+
λ

′

2

2∑
i=1

‖βi‖2Li

)
where βi = L−1i αi so that we can obtain the coefficient of feature i using this

transformation. In this case the kernel learning method has strong interpretabil-

ity. The Laplacian matrices were estimated empirically by neighbor network and

coexpression network method proposed by [28].
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Dataset Cox MKL RF GBM

Simulated Linear Data 0.886 0.884 0.878 0.887

Simulated Non-linear Data 0.511 0.653 0.599 0.634

SKCM 0.640 0.606 0.536

Table 1: Concordance Index for Each Model

To evaluate the performance we split that data into 301 training and 149175

test samples, stratified by survival status (dead versus alive). The models we

compared were all trained on training data and the results were obtained on test

data. The parameters for our MKL model and GBM models were tuned by 5-

fold cross-validation. From Table 1 we can see that our proposed multiple kernel

learning using network kernels worked the best. Though it was a linear model, it180

achieved a higher concordance index than nonlinear tree-based models like the

random forest or stochastic gradient boosting machine. Due to the flexibility

and efficiency of MKCox can incorporate many pathways under different kernel

representations.

6. Conclusion185

In this paper, we derived an efficient multiple kernel learning algorithm for

survival prediction models and the convex conjugate function for Cox propor-

tional hazards loss function. A challenge of deriving efficient algorithms for

proportional hazard models is that the Hessian is not a diagonal matrix. How-

ever, through the convex conjugate function we can utilize the diagonal property190

to achieve a time competitive algorithm. Therefore, the Cox proportional haz-

ards loss function can be more easily implemented than other machine learning

methods.

Both the simulation and case study in our paper showed a robust perfor-

mance of our proposed method in likelihood function estimation and out of data195

prediction, even compared to tree-based methods which often showed a strong

predictive power. As we can see that MKL method was shown to have superior
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performance in cancer genomic studies ([29]). Future studies include extending

the model to other more complex survival problems including competing risks.
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