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Abstract 
Responses of bacteria to antibiotic treatments depend on their environments. Differences 
between ​in vitro​ testing conditions and the physiological environments inside patients have 
resulted in poor antibiotic susceptibility predictions, contributing to treatment failures in the clinic. 
Here, we investigate how media composition affects antibiotic susceptibility in the laboratory 
strain ​E. coli​ K-12 MG1655, and contextualize these changes through machine learning of 
transcriptomics data. We show that complex transcriptional changes induced by different media 
or antibiotic treatment can be traced back to a few key regulators. Integration of results from 
machine learning with biochemical knowledge reveals fundamental shifts in respiration and iron 
availability that may explain media-dependent differential susceptibility to antibiotics. The data 
generation and analytical workflow used here can interrogate the regulatory state of a pathogen 
under any condition, and can be extended to additional strains and organisms for which data is 
available. 

Introduction 
Antibiotic activities are highly dependent on environmental conditions. Factors such as 

metabolites, buffering systems, immune components, and the presence of other antibiotics can 
drastically alter their activities against bacteria, as measured by changes in their minimum 
inhibitory concentrations (MIC) ​(Dorschner et al., 2006; Ersoy et al., 2017; Farha et al., 2018; 
Kudrin et al., 2017; Meylan et al., 2018)​. Despite these dependencies, standardized antibiotic 
susceptibility testing (AST) is performed in bacteriological media such as Cation-Adjusted 
Mueller Hinton Broth (CA-MHB), which poorly recapitulates the ​in vivo​ conditions of the host 
(Ersoy et al., 2017)​. AST in tissue culture media, such as RPMI 1640 or DMEM, more closely 
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mimics physiological conditions and may be a better predictor of ​in vivo​ efficacy ​(Ersoy et al., 
2017; Lin et al., 2015)​. Using transcriptomic data, we sought to understand the drivers of 
differential antibiotic susceptibility in these media conditions. 
 

Prior studies have demonstrated that systems analysis of omics measurements can 
elucidate global metabolic responses to antibiotic treatment ​(Yang et al., 2019; Zampieri et al., 
2017)​. Previously, we published a high-quality transcriptomic compendium for ​Escherichia coli​, 
named PRECISE, containing 278 expression profiles ​(Sastry et al., 2019)​. Using independent 
component analysis (ICA), a machine learning method developed to separate mixed signals, we 
decomposed PRECISE into 92 independently modulated groups of genes, or i-modulons. Since 
most i-modulons exhibited high overlap with previously reported regulons, we named the 
i-modulons after their common regulator(s). ICA simultaneously computes activities for each 
i-modulon across every condition in the expression compendium, which predictably reflect the 
activity state of the enriched regulators. 
 

I-modulon activities have been used to infer the cellular state beyond the transcriptome. 
In one case, adaptive laboratory evolution of ​E. coli​ in excess iron conditions resulted in multiple 
mutations in the oxidative stress response regulator OxyR ​(Anand et al., 2019)​. In each of these 
strains the SOS-response regulator LexA was no longer activated by hydrogen peroxide 
treatment, indicating that the mutations reduced DNA damage from reactive oxygen species 
through constitutive activation of OxyR. I-modulons have also been successfully extracted for 
additional species, disentangling the transcriptional trajectory of a ​Bacillus subtilis​ sporulation 
time-course ​(Rychel et al., 2020)​, and identifying media-specific transcriptional responses in 
Staphylococcus aureus​ ​(Poudel et al., 2020)​. 
 

In the present study, we demonstrate the utility of an ICA-based workflow in 
decomposing the transcriptomic responses to antibiotics in the ​E. coli ​K-12 laboratory strain 
MG1655. First, we show that ​E. coli ​ exhibits a differing responses to antibiotics across three 
media compositions: (1) glucose M9 minimal media, a standard media for scientific discovery; 
(2) cation adjusted mueller hinton broth, the standard rich media for antibiotic susceptibility 
testing, and (3) RPMI 1640 with 10% LB, a rich media that mimics physiological conditions. We 
then measured the expression profiles of ​E. coli​ on the three media and identified key 
transcriptomic differences in metabolism and stress responses using ICA. Finally, we examined 
the expression profiles of ​E. coli​ after treatment with subinhibitory concentrations of antibiotics 
and observed that subinhibitory antibiotic treatment in rich media resulted in decelerated 
respiration. Overall, this work provides a roadmap for interrogating the effects of antibiotic 
treatment in different environmental conditions. 

Results 
Antibiotic activities vary across media compositions 
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We measured the minimum inhibitory concentrations (MICs) of three antibiotics, ranging in drug 
class and mechanism of action, on glucose M9 minimal media (M9), RPMI 1640 + 10% LB 
(R10LB) and cation-adjusted Mueller Hinton Broth (CA-MHB) (Table 1). We then selected four 
antibiotics to further investigate. Ceftriaxone (CEF) and trimethoprim-sulfamethoxazole (T/S) 
had identical MICs in the rich media (CA-MHB and R10LB) and a lower MIC in M9. However, ​E. 
coli​ was most susceptible to ciprofloxacin (CIP) in R10LB least susceptible in CA-MHB, and 
meropenem (MER) exhibited an opposing susceptibility trend. 
 
MICs were measured in 96-well plates using an inoculum density of 1*10 ​5​ CFU/mL, as 
recommended by the Clinical and Laboratory Standards Institute (CLSI). However, we required 
a significantly higher cell density (~2.5*10 ​7​ CFU/mL) to collect enough mRNA for sequencing. 
Since antibiotic activity can be diluted at higher cell densities, we determined the minimum 
bactericidal concentration (MBC) in each media type for the targeted antibiotics at the same 
culture density that was used for the mRNA isolations (Figure 1a). In all conditions, the MBC 
was higher than the selected MICs. We therefore measured the change in MIC at RNA-seq 
densities, and found that the MICs were increased up to 8-fold at higher densities (Figure 1b). 
 
Table 1: MIC of nine antibiotics on three media 

 Drug Information MIC 
 Drug 

Class 
Target 

Process 
M9 

(μg/mL) 
R10LB 
(μg/mL) 

CA-MHB 
(μg/mL) 

Ampicillin (AMP) Penicillin Cell Wall >16 256 64 
Ceftriaxone (CEF)* Cephalosporin Cell Wall 0.016 0.25 0.25 
Ciprofloxacin (CIP)* Quinolone DNA Gyrase 0.0078 0.004 0.016 
Fosfomycin (FOS) Fosfomycin Cell Wall 64 >64 16 

Meropenem (MER)* Carbapenem Cell Wall 0.031 0.13 0.016 
Nitrofurantoin (NIT) Furan Multiple 128 >512 256 
Plazomicin (PLZ) Aminoglycoside 30S inhibitor 0.13 0.13 0.25 
Rifampicin (RIF) Rifampin Transcription 8 NA 16 
Trimethoprim- 

sulfamethoxazole (TMS)* 
Pyrimidine/Sulfa Folate 

Synthesis 0.13 1 1 

* Selected for further analysis 
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Figure 1: (a) MBC measurements of four antibiotics across three media compositions at gene 
expression conditions. White bars designate the concentration of antibiotics used in RNA-seq 
cultures (i.e. MIC in relevant media) (b) Changes in MIC between low (~10 ​5​ CFU/mL) and high 
(~10 ​7​ CFU/mL) cell densities. 
 
A few mechanisms can explain large transcriptomic perturbations 
We first performed RNA-seq on the untreated strains grown in M9, R10LB, and CA-MHB to 
understand how ​E. coli​ responds to different media without antibiotic treatment. Pairwise 
differential expression analysis of the three growth conditions identified up to 1145 differentially 
expressed genes (DEGs) between growth conditions, comprising one quarter of all genes in ​E. 
coli ​(Figure 2a). The DEGs spanned every Cluster of Orthologous Gene (COG) category, with 
no known function for 21% of all DEGs. Rich media (R10LB and CA-MHB) induced similar 
transcriptional responses, as only 556 genes were differentially expressed between the two 
media. 
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Figure 2: Global comparative analysis of the ​E. coli​ transcriptome across three media 
compositions. (a) Differentially expressed genes across COG categories between M9 and the 
two rich media (RPMI and CA-MHB). (b) Top two principal component loadings for the 
PRECISE dataset, comprising 278 RNA-seq profiles ​(Sastry et al., 2019)​, combined with the 
data generated in this study. (c-f) Proportion of expression deviation explained by 8 groups of 
i-modulons. I-modulons in each group are shown in Figure 3 and Figure S2c,d. Percentages 
above 3% are shown. 
 
The newly-generated RNA-seq data was compared to a previously published high-quality 
compendium containing 278 ​E. coli​ expression profiles, named PRECISE, to contextualize the 
transcriptional response to the three media types ​(Sastry et al., 2019)​. Principal component 
analysis (PCA) of the combined dataset showed that CA-MHB and R10LB produced responses 
that were significantly different than the previously probed conditions in PRECISE, including 
growth on LB media without RPMI (Figure 2b). On the other hand, the expression levels on M9 
minimal media were highly similar to expression levels under identical conditions produced five 
years ago (R​2​ = 0.85), highlighting the internal consistency of this dataset. This older expression 
profile grown on glucose minimal media serves as the reference condition, to which all 
i-modulon activities are compared. 
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We previously showed that independent component analysis (ICA) can be applied to large 
RNA-seq datasets to extract independently modulated sets of genes, termed i-modulons, and 
their condition-specific activities ​(Sastry et al., 2019)​. I-modulons exhibit high overlap with 
classically-defined regulons, which allows us to directly associate i-modulons to one or more 
known transcriptional regulators. Unlike many module detection methods ​(Saelens et al., 2018)​, 
ICA also computes i-modulon activities across all expression profiles, which represent the 
activity level of the linked regulator under each specific condition.  
 
We subsequently combined the 278 datasets in PRECISE combined with 30 new RNA-seq 
datasets to form a compendium of 308 profiles (Supplementary Data). Application of ICA 
identified 98 i-modulons, of which 88 were nearly identical to i-modulons extracted from the 
original PRECISE dataset of 278 profiles ​(Sastry et al., 2019)​ (Figure S1). On average, 
i-modulons could explain 81% of the difference in expression between each pair of media 
conditions (Figure 2c-e). Borrowing from multiple linear regression, we also calculated how 
much of the expression deviation could be directly explained by each i-modulon (See Methods). 
 
I-modulons elucidate transcriptional markers of ‘greedy’ growth in rich media 
 
The major source of expression variation between either rich media (RPMI and CA-MHB) and 
minimal media was explained by the ‘fear-greed’ tradeoff ​(Sastry et al., 2019)​ (Figure 3a). This 
trade-off is between fast growth (i.e. ‘greed’) and high stress response readiness (i.e. ‘fear’). In 
rich media, cells are significantly less stressed by their environment, leading to a strong 
decrease in the activity level of stress-related i-modulons, such as RpoS and the GadEWX 
acid-response system ​(Seo et al., 2015)​. In turn, this frees cellular resources that can be 
allocated to promote growth, as indicated by the increases in activity levels of i-modulons 
encoding genes related to translation and the central dogma of molecular biology. These two 
processes are molecularly linked through ppGpp, the stress alarmone, which binds to RNA 
polymerase to wobble the transcriptome ​(Sanchez-Vazquez et al., 2019)​. The i-modulon 
activities under rich media are similar to the i-modulon activities of an RpoB mutant acquired 
during adaptive laboratory evolution on glucose minimal media ​(Utrilla et al., 2016)​, which is 
hypothesized to affect the ppGpp binding site on RNA polymerase. 
 
R10LB contains glucose in its formulation, but displays surprisingly high transcriptomic 
similarities to glucose-starved media (Figure 3b). The cAMP receptor protein, CRP, is activated 
when glucose is absent from the media, recruiting RNA polymerase to genes encoding catabolic 
pathways for alternative carbon sources ​(Kolb et al., 1993)​. Although glucose uptake was not 
previously detected in CA-MHB ​(Poudel et al., 2020)​, some of its CRP-related i-modulon 
activities are closer to M9 media than R10LB. 
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Figure 3: Mechanisms underlying the complex transcriptional response to different media. Bar 
charts show the i-modulon activities for (a) fear-greed i-modulons; (b) Carbon source catabolism 
i-modulons; (c) amino acid and vitamin B i-modulons; (d) Nucleotide biosynthesis i-modulons; 
(e) Respiration i-modulons; (f) Iron-related i-modulons. Individual measurements for 
independent biological replicates are plotted on top of bars. 
 
Biosynthetic pathways for vitamins and amino acids contributed to 19% and 15% of the 
expression deviation from M9 for R10LB and CA-MHB, respectively (Figure 3c). These 
responses are consistent with the defined formulation of RPMI, which contains all amino acids 
and multiple B-vitamins, and shows that the undefined media CA-MHB and LB have a similar 
nutritional content to R10LB. The main deviations appear to be in histidine and branched-chain 
amino acid biosynthesis, which are all regulated by tRNA-mediated transcriptional attenuation. 
The two media also deviate with respect to nucleotides as pyrimidine biosynthesis is 
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upregulated in R10LB, indicating that cells are starved for pyrimidines (Figure 3d). Although 
nucleotides are not in the RPMI formulation, the cells downregulated the ​de novo ​purine 
biosynthesis pathway. 
 
The next largest contributor to expression deviation in R10LB included four i-modulons related 
to anaerobic respiration (Figure 3e). Three i-modulons were enriched with the transcription 
factor Fnr; one i-modulon was uniquely enriched with the Fnr regulon, one i-modulon was 
enriched with genes co-regulated by Fnr and the nitrate-responsive regulator NarL and the final 
i-modulon contained genes co-regulated by Fnr, NarL, and the nickel regulator NikR. The fourth 
i-modulon in this group was related to ArcAB, a two-component system that senses the redox 
state of quinone electron carriers to regulate the TCA cycle, among other genes ​(Federowicz et 
al., 2014; Georgellis et al., 2001)​. The ArcA i-modulon activity was partially reduced in both 
R10LB and CA-MHB. 
 
Another major difference between the two media is the presence of free iron, as indicated by the 
differential activation of two Fur-enriched i-modulons (Figure 3f). Fur binds to free iron (II) and 
represses genes related to iron siderophore synthesis and transport ​(Seo et al., 2014)​. The Fur 
i-modulons are not correlated with Fur expression, and are likely driven by intracellular iron 
availability (Figure S2a,b). From the i-modulon activities, cells growing in glucose M9 media 
appear to contain more free iron than CA-MHB, but significantly less than R10LB. 
 
A few additional i-modulons were differentially activated across the multiple media conditions, 
and coincidently discriminate the biological processes that are perturbed between the old and 
new glucose M9 expression profiles. The new glucose M9 and CA-MHB expression profiles 
displayed an activation of three i-modulons related to the Rcs-phosphorelay (Figure S2c), 
whereas the R10LB i-modulon activities were near the reference condition. The FliA i-modulon, 
which controls chemotaxis, was activated in all three media, whereas the FlhDC i-modulon, 
which controls biosynthesis and assembly of flagella, was strongly activated in RPMI (Figure 
S2d). 
 
Consistent transcriptional effects of subinhibitory antibiotic treatment 
 
Since the ICA-based decomposition of transcriptomes provided a clear explanation of the 
complex responses to different media compositions, we used a similar approach to investigate 
the effects of antibiotic treatment at the subinhibitory concentrations presented in Figure 1. 
 
The i-modulon activities for the antibiotic-treated conditions were primarily clustered by media, 
even when controlling for the media-specific responses (Figure 4a). Meropenem treatment on 
R10LB had minimal effects on the transcriptome and was removed from subsequent analyses.  
 
We first investigated common trends in i-modulon activities upon treatment by any antibiotic. 
Antibiotic treatment increased activity of the translation i-modulon in all media compositions 
(Figure 4b), but left the other Fear-Greed trade-off i-modulons largely unchanged (Figure S3). 
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Although none of the selected antibiotics directly interact with the ribosome, this indicated that 
antibiotic-mediated stress could indirectly increase ribosome levels in the cell. 
 
We also observed significant reduction in both Crp-related i-modulon activities upon antibiotic 
treatment in rich media (Figure 4c). The Crp i-modulons encode genes in secondary carbon 
source catabolism; the Crp-1 i-modulon contains scavenging enzymes such as tryptophanase 
and acetyl-coA synthetase, whereas the Crp-2 i-modulon represents expression of 
phosphotransferase systems for alternative carbon sources. 
 
Nutrient usage in the two rich media was nearly identical in the untreated samples, except for 
i-modulons encoding histidine biosynthesis (His-tRNA), branched-chain amino acid biosynthesis 
(Leu/Ile), and nucleotide biosynthesis (PurR-1 and PurR-2). However, upon treatment by any 
antibiotic, the activities of these i-modulons converged to similar levels in rich media (Figure S4). 
 

 
Figure 4: Consistent i-modulon responses to antibiotic treatment. (a) Clustered heatmap of 
expression differences in antibiotic-treated samples. Expression differences shown are between 
the antibiotic treated sample and the untreated sample in the same media condition. (b) Bar 
chart of translation i-modulon activities with and without antibiotic treatment. (c) Scatter plot of 
the Crp-1 and Crp-2 i-modulon activities across PRECISE. Arrow indicates the effect of 
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antibiotic treatment in rich media. I-modulon activities from CRP knock-out and partial knock-out 
strains are also shown. (d) Scatter plot of Fnr and ArcA i-modulon activities across PRECISE. 
Arrows indicate the effect of antibiotic treatment in rich media. Anaerobic respiration conditions 
from PRECISE are also highlighted.  
 
Subinhibitory antibiotic treatment decelerates cellular respiration in rich media 
 
Across PRECISE, we observed a strong significant negative correlation between Fnr and ArcA 
i-modulon activities (Pearson R = -0.74 , p-value < 10 ​-10​, Figure 4d), which represent two major 
respiration-related transcription factors. Fnr contains an iron-sulfur cluster that is destabilized in 
the presence of molecular oxygen ​(Kiley and Beinert, 1998)​, rendering Fnr inactive. Therefore, 
the high expression of these genes in R10LB indicates a high respiration rate that leaves little 
intracellular molecular oxygen available to destabilize Fnr’s iron-sulfur cluster. Herein lies one of 
the major differences between the two media; R10LB appears to promote a higher respiration 
rate than CA-MHB. 
 
In both rich media, antibiotic treatment resulted in significant drops in Fnr i-modulon activities, 
indicating higher intracellular oxygen levels. This drop was coupled by a simultaneous increase 
in ArcA- regulated genes in the TCA cycle. Together, these two i-modulons point towards 
deceleration of the high respiratory rate facilitated by the rich media and a reduction in the redox 
state, as sensed by the ArcAB response system ​(Georgellis et al., 2001)​. A prior study used 
biochemical assays to investigate the effects of bacteriostatic antibiotics on ​E. coli​ ​(Lobritz et al., 
2015)​, and observed that antibiotic treatment drastically reduced the respiration rate and 
moderately reduced the redox state of the cell. However, this effect seemed to be mitigated in 
minimal media, where we inferred a lower cellular respiration rate. 
 
Ciprofloxacin treatment leads to divergence in iron regulation 
For most i-modulons, treatment by any antibiotic in subinhibitory concentrations resulted in a 
convergence of i-modulon activity between R10LB and CA-MHB. However, these mirrored 
responses do not explain why drugs like ciprofloxacin or meropenem have diverging MICs on 
the two media. Here, we will focus on ciprofloxacin and suggest a hypothesis towards its 
differential activity on the two media. 
 
Ciprofloxacin blocks DNA gyrase, creating double-stranded DNA breaks ​(Chen et al., 1996)​. 
Subsequently, we observed a strong activity increase in the i-modulon representing the 
SOS-response regulator LexA in all three media (Figure 5a). In addition, ciprofloxacin has 
diverging effects on the two Fur-related i-modulons. The two Fur i-modulons contain many of 
the same genes, and exhibit a general trend in their activities across the entire PRECISE 
database (Figure 5b). The Fur-1 i-modulon responds to iron starvation, de-repressing iron (II) 
and (III) siderophore synthesis and transport systems, ribonucleotide reductases, superoxide 
dismutase, and iron-sulfur cluster assembly. The Fur-2 i-modulon responds to excess iron, 
further repressing siderophore transport and repressing the energy-transducing Ton system. 
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Figure 5: I-modulon responses to ciprofloxacin treatment. (a) The DNA-damage response 
regulator LexA is activated by ciprofloxacin treatment. (b) Scatter plot of the Fur-1 and Fur-2 
i-modulon activities. Expression profiles from PRECISE are shown in light gray, and other colors 
are described in the legend. Arrows indicate i-modulon shifts in R10LB and CA-MHB resulting 
from ciprofloxacin treatment. 
 
The Fur i-modulon activities diverge further upon ciprofloxacin treatment (Figure 5b), indicating 
an increase in free iron in R10LB and a stronger iron starvation response in CA-MHB. Between 
the increased intracellular oxygen levels observed in the previous section, and the increase in 
free iron specific to R10LB, the increased susceptibility of ​E. coli​ to ciprofloxacin in R10LB may 
be explained by Fenton chemistry, in which unincorporated iron and hydrogen peroxide 
generate hydroxyl radicals to further damage DNA ​(Imlay, 2013)​. 
 
Prior studies have observed that reactive oxidative species, such as those created by Fenton 
chemistry, may contribute to the antibacterial action of ciprofloxacin ​(Dwyer et al., 2014, 2007; 
Goswami et al., 2006)​. However, it is not clear if iron levels directly affect ciprofloxacin efficacy, 
especially in light of the controversy regarding the role of oxidative stress in antibiotic lethality 
(Dwyer et al., 2015; Keren et al., 2013; Liu and Imlay, 2013)​. Additional studies investigating this 
relationship are therefore warranted. 
 
Discussion: 
 
Bacterial responses to antibiotics are complex, and depend on a variety of environmental and 
genetic factors. In this study, we explored the effects of different media compositions and 
antibiotic treatments on the transcriptomic state of the model organism ​E. coli​. First, we showed 
that i-modulons could simplify the interpretation of large changes in expression due to varying 
environmental conditions. We then leveraged i-modulon activities with biochemical knowledge 
to infer the respiratory rate of ​E. coli​, and subsequently elucidated a drop in respiration caused 
by antibiotic treatment. We also noted a significant difference in Fur activity between the two 
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rich media, providing a potential hypothesis behind the differential susceptibility to ciprofloxacin 
in the two media. 
 
We have presented an analytical pipeline for probing and contextualizing the transcriptomic 
effects of antibiotic treatment using a model organism. Although our analysis was focused on 
subinhibitory effects of antibiotics, this could be extended to investigate inhibitory or lethal doses 
of antibiotics. As publicly available transcriptomic datasets grow in size and diversity ​(Barrett et 
al., 2013)​, this pipeline can be applied to pathogenic strains and organisms grown in 
physiologically relevant media conditions. Future studies could explore the metabolic and 
transcriptional shifts associated with antibiotic treatment, leading to a “white-box” approach that 
connects antibiotic-treated transcriptomes to biochemical knowledge ​(Yang et al., 2019)​. 
 
Methods: 
 
Bacterial strains and growth conditions 
Escherichia coli strain MG1655 was grown in three media: (1) M9 minimal medium (47.8 mM 
Na2HPO4, 22 mM KH2PO4, 8.6 mM NaCl, 18.7 mM NH4Cl, 2 mM MgSO4 and 0.1 mM 
CaCl2) supplemented with 0.2% (w/v) glucose (M9); (2) Roswell Park Memorial Institute 1640 
(RPMI) (Thermo Fisher Scientific) supplemented with 10% LB (R10LB); (3) Mueller Hinton Broth 
(Sigma-Aldrich) supplemented with 25 mg/L Ca ​2+​ and 12.5 mg/L Mg ​2+​ (CA-MHB). Glycerol 
stocks of E. coli were inoculated into the respective media and cultured overnight at 37 °C with 
vigorous agitation. 
 
Antibiotic Susceptibility Testing: 
Antibiotic susceptibility was determined as described previously ​(Dillon et al., 2019)​. Briefly, E. 
coli were cultured in the same media throughout (M9, R10LB, or CA-MHB) prior to the addition 
of antibiotics. Mid-logarithmic phase cultures were diluted to approximately ~2.5 × 10 ​7​ CFU/mL 
(~OD600 = 0.08) and diluted 1:100 in 200 μL media prepared with serial dilution. Plates were 
incubated with shaking at 200 rpm at 37°C overnight. Bacterial growth (OD​600​) was determined 
approximately 20 h later utilizing a Enspire Alpha multimode plate reader (PerkinElmer). To 
calculate the MIC90, defined as the amount of drug required to inhibit ≥90% of the growth of the 
untreated controls, the density of each drug-treated well was compared to untreated control. 
MIC for high-density cultures were performed as described above, except with a starting 
OD600~0.05 after dilution. 
 
Killing Assays  
Mid-log ​E. coli ​MG1655 was used to inoculate 15 ml of either glucose M9, R10LB, or CA-MHB 
with approximately 2.5 ∗ 10 ​7​ ​CFU/mL (OD600~0.05). Each experimental well of the 96-well flat 
bottom plate received 180 μl of bacterial culture and 20 μl of the desired 10x drug stock. Plates 
were incubated shaking at 100 rpm at 37C overnight. After 20 h, plates were removed from the 
incubator and serial 10-fold dilutions of each well performed in their respective media. Twenty 
microliters of each serial dilution was spot plated onto LA and incubated at 37C overnight to 
enumerate the CFU.  
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RNA-seq expression profiling and processing 
Total RNA was sampled from duplicate cultures. Strains were cultured overnight in the 
respective media as described above. Mid-log phase cultures were diluted (starting 
OD600~0.05) into 30mL media for untreated conditions, or 30 mL media containing the MIC of 
the respective antibiotic for the respective media (Table 1). Flasks were incubated for 30 min at 
37C with shaking. Cell broth was centrifuged and supernatant was removed. RNA extraction 
and library preparation were performed as described in ​(Sastry et al., 2019)​. Raw sequencing 
reads were performed as described in ​(Sastry et al., 2019)​. ​Differential expression was 
performed using DESeq2 ​(Love et al., 2014)​, with a log ​2​ fold change cutoff of 1.5 and q-value 
cutoff of 0.05. 
 
ICA 
Log-transformed transcripts per million (log-TPM) expression levels were concatenated to the 
PRECISE dataset. ICA and i-modulon processing were performed as described in ​(Sastry et al., 
2019)​. Briefly, we executed FastICA 100 times with random seeds and a convergence tolerance 
of 10 ​-6​ for RNA-seq data, and a convergence tolerance of 10 ​-7​ for proteomics data. We 
constrained the number of independent components (ICs) in each iteration to the number of 
components that reconstruct 99% of the variance as calculated by principal component 
analysis. The resulting ICs were clustered using DBSCAN to identify robust ICs, with 
parameters with epsilon of 0.1, and minimum cluster seed size of 50. This process was 
repeated 10 times, and only ICs that consistently occurred in all runs were kept. 
 
As described in Sastry et al.​(Sastry et al., 2019)​, i-modulons were extracted from ICs by               
iteratively removing genes with the largest absolute value and computing the D’agostino K​2 test              
statistic of the resulting distribution. Once the test statistic fell below a cutoff, which was               
identified through a sensitivity analysis ​(Sastry et al., 2019)​, we designated the removed genes              
as the “i-modulon”. 
 
Explained variance 
 
Explained variance between two conditions was calculated as follows: 

xplained V ariance  E k =
(ΔX)  ∑
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Where ​k ​is the i-modulon of interest. The total explained variance was calculated similarly: 
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The difference between the CEV and the sum of the explained variance is the confounding 
variance. 
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