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ABSTRACT

Variation in envirmmental conditions duringevelopment can lead to changes in-fifstory traits

with long-lasting effects. Here, we study environmentally induced variation, i.e. the consequences of
potential maternal oviposition choices, in atswof life-history traits in prediapause larvae of the
Glanville fritillary butterfly. We focus on offspring survival, early growth rates and relative fat
reserves, and papecificattention to intraspecific variation in the responses (GXEXE). Glolvedly,

found that thermal performance and survival curves vabenlveendiets of two host plants
suggesting that hoshodifies thetemperature impagcbr vice versaAdditionally, we show that the

relative fat content hastestdependentgiscontinuous rgponse to developmental temperature. This
implies that a potential switch in resource allocation, from more investment in growth at lower
temperatures to storage at higher temperatures, is dependent on other environmental variables.
I nterestibhb&ayl awgefpndportion of the wvariance
di fferences among families, or Il nteractions
famspgcific r easpptantrseemsaitno Itahregel y c oersv isrt emme nat
Al togetther results of our sgayayhteirdteirsrc otrcee itrhter

variation in the field of evolutionary ecol og

K e y w odewklspmental plasticity GXEXET intraspecific variationi temperaturé@ nutrition 7

multidimensional plasticity
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1. INTRODUCTION

Species can cope with environmental change by avoiding stressful conditions, by producing
phenotypedbetter adjusted tthe new environmental conditiottsrough plasticityor by adapting to
the novekonditions through evolutionary chande 2]. Even though the avoidance of environmental
stress is an effectivstrategy, e.g. through tracking favourable conditions by expanding to higher
latitudes or altitudes [3], it is often limited by factors sucthaglistribution of resources, the structure
of the landscape and/or the dispersal ability of the species. Moreover, when environmental changes
are rapidadaptive evolutiomay not occur fast enough. In those cases, plasticity can enable species
to persst under the novel conditions, allowing more time for mutations to arise and selection to occur
[4, 5]. Assessing a species' ability to respond plastically to environmental change, and evaluating its
performance when exposed to conditions that are begoatthe limit ofthe normal range, could

therefore shed lightowh et her organi sms wi | | bbe able to pe

Developmental plasticity is defined as the process through which external conditions, such as
nutrition and temperature, canlunce developmental trajectories and lead to irreversible changes
in the adult phenotype [1]. This phenomemuaobiquitous in nature, especially among taxa that have
sessile lifestyles [68]. The environmental regulation of development has been stadtedsively
using insects, whose pealult stages are often immobile and thus must cope with local environmental
conditions. In general, when exposed to higher temperatures, insect larvae tend to grow faster [9, 10]
and the body size of the emerging adidtsmaller[9, 11, 12], which might alter performance later
in life. Likewise, nutrition is known to regulatievelopment in insects through nutrient balance [13

15] and/or the concentration of secondary metabolites in the diet [16].

When assessing respses to changes in environmental conditions, it is important to recognise
that the environmental factors that affect the phenotype typically occur simultaneously and
interactively [17]. Hence, plastic responses to one type of environmental stress mpgrimedeon
the state of another external factor. Such-additive multidimensional plasticity, in response to

combinations of thermal and nutritional environments, has been demonstrated in moths [14],
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butterflies [18] and fruit flies [19]. For example,ngh et al. showed that poor host plant quality
mainly influenced development at intermediate temperatures the tropical buBteyityus anynana

[18]. Moreover, significant genetic variation for (multidimensional) plasticity is known to exist in
both natwal and laboratory populations FA2]. This intraspecific variation in the ability to respond

to an environmental cue (GxE), or combinations of cues (GXEXE), is hypothesised to be beneficial in
the light of climate change sinddacilitates the evolutio of wider ranges of environmental tolerance

[23, 24]

In this study we focus on environmentally induced variation in a suite dfibfery traits in the
Glanville fritillary butterfly (Melitaea cinxig. The species occurs at its northern range mangime
Aland archipelago (SW Finland) where it inhabits a highly fragmented network of habitat patches
that are defined by the presence of at least one of two available host plant §dactagp lanceolata
and Veronica spicata hereafter referred to d@lantago and Veronica respectively [25].Adult
females produce large egg clutches, and the selection of suitable oviposition sites is known to be a
hierarchical process [26, 27]. In the field, gravid females of the Glanville fritillary appear to first
chocse habitats that are hot, dry and sunny [28, B@st plant discrimination, with individuals
typically preferring one host species over the other, occurs subsequently [30, 31]. Therefore, selective
mothers can influence the developmental trajectorieshef offspring through oviposition site

selection, which in turn may affect offspring performance and fitness [32].

Using a fulifactorial splitbrood design, we explore the consequences of these maternal
oviposition choices for the p@iapause larvae dfielitaea cinxia We aim to research the (combined)
effects of developmental temperature drabt planton prediapause larvae of this species. We
measure the survival, early growth rates and relative fat content of offspring reared at four different
temperatures and on two different host plants, and pay attention to intraspecific variation in the
responses by using individuals inadifferent genetic backgrounds (i.e. families$. shown in other
insects, we expect a large positive effect of developai¢emperature on growth rate. Furthermore,

in the scenario o&additive multidimensional plasticityye expect larvae to grow faster and have
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higher survival onVeronica within each thermal environmengs this has previously been

demonstrated under latadory conditions [16, 33 ndi vi dual s that devel op
di apausing for |l onger, are predicted to all o
t hought to be the pri marwi nftueerl Hinallyigx@vitbetdhs .nt e r
natural habitat of this species is heterogeneous and fragmented, wefespeet p g ci f i ¢ r es

to the environment al factors (GxE, GXxEXE) to
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2. METHODS

Study system

Melitaea cinxiais aunivoltine species and dhe Aland islandsdults emerge from their pupae
in June after which females lay several clutches of 10000 eggs [34]. The sessile pt@pause
larvae hatch in late June and early July and live gregariously on the hosifpleait mothers' choice.
In the beginning of autumn the larvae spin a communal web in which they diapause until spring.
Overwinter survival is impacted by multiple factors, among which body wiizh larger larvae
having a higher chance to survive [3BJter diapause, larvae become solitary and can move over
longer distances in search of resources and/or suitabtehabitats [36]. The laboratory population
of M. cinxiaused in this study was established in 2015 from 136g¢iapause larvae (consisting
105unique families) collected from 34 habitat patches across the large network of habitat patches on

the Aland islands.

Experimental design

In the spring of 2019, diapausing larvae of the laboratory stock were stimulated to recommence
development, read to adulthood in small transparent plastic containers, and mated with an unrelated
individual. Subsequently, the gravid females were provided with a siRigietago plant for
oviposition, and the host plant was checked daily for newly produced eggesutClutches were
carefully removed, placed in individual pettii s hes, and transferred to

set to 28:15 °C and a 12L:12D cycle.

Egg clutches of 15 females were divided over eight experimental treatments in two steps, yielding
a full-factorial splitbrood design with twdliets of differenhost plantsRlantagoandVeronicg and
four developmental day temperatures (28 °C, 30 °C, 32 °C and 34 °C). First, to ensure the utilization
of a single host plant species throughout develeqt, egg clutches were divided into two equal
groups 35 days after oviposition. One of these groups was provided with fresh leaRtntdgo

while the other received freslieronicaleaves. All plants were reared under standard conditions
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(28:15 °C). Seond, when approximately 90% of the larvae within each group transitioned from the
first to the second instar, we generated experimental cohorts of 15 siblings. These cohorts were
randomly divided over four climateontrolled chambers (28:15 °C, 30:15 32,15 °C and 34:15

°C, all with a 12L:12D cycle, and using a Sanyo M8BD for the 32 °C treatments and a Sanyo

MLR-351 for the others).

Throughout the experiment, larvae were inspected every morning and fresh leaves were provided
to ensuread libitumfeeding conditions. For five familiesndividuals from a second clutch (from the
same parents) were used to complete all experimental treatments. One female did not produce enough
offspring to complete all treatments and these data have been excluded filven &umalyses. A
schematic representation of the experimental design is given in Figure S1. For further information on

the background of larvae used in the experiment see Table S1.

Life-history traits

We studied environmentally induced variation in aeswit life-history traits and focussed on
offspring survival, early growth rates, and the relative amount of fat reserves accumulated during
early development. To assess offspring survival, the larvae within each cohort were counted every
fourth day, and orthese days the entire cohort was also weighed to the nearest 0.01 mg (Mettler
Toledo XS105 DualRange) to trace overall mass gain during early development. This procedure was
continued until the first individual of the cohort entered the diapause staigh, ¥em be recognised
by a change in body colour (from pdleown to black), an increase in larval body hair density, and
the presence of red eyes. From this date forward individual data was collected by recording the day
of entering diapause and the badgss of each diapausing larvae. Subsequently, larvae were frozen

to -80 °C, and stored in eppendorf tubes until further processing.
The individual growth rates were calculated according to the formula

Growth rate = [In(diapause mas$)In(2"? instar masg)/ development time
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where 2%instar mass (i.e. mass at the start of the experiment) was estimated by dividing the mass of
the entire cohort by the number of individuals, and development time was computed as the time

between the start of the experiment dine day the individual entered diapause [37].

Relative fat content at diapause was determined for seven randomly chosen individuals per
cohort. These larvae were dried to constant mass (60 °C for 24 h) and weighed to the nearest 0.01
mg, yielding initid dry mass. Triglyceride and free fatty acids were extracted by incubating the dried
body at room temperature in 1:2 (v/v) methanol:dichloromethane for 72 h, followed by drying and
re-weighing, yielding fafree dry mass [38]. The relative fat content wakulated according to the

formula

Relative fat content = (initial dry masdat-free dry mass) / initial dry mass

Statistical analyses

Intervalcensored survival curves were fitted using shevival package [39] and plotted using
thesurvminempackagd40]. Logrank tests were performed to determime influence of temperature
and host planbn survival using thenterval package [41]. A linear model was fitted to estimate the
effect of temperature artibston the mean amount of body mass gained during dastglopment.
Cohort mass was divided by the number of surviving individuals anttdogformed to improve
normality. Theday of the experiment, temperature &odt plantland all interactions) were included
in the full model. Two additional linear models werfitted to estimate the effect of family,
temperature andost(and all interactions) on individual growth rate and relative fat content. For all
models described above, stese model selection based on AIC values was performed using the
step(functon.Post hoc pairwise comparisons (Tukey's

emmeangackage [42]

Intraspecific variation in the responses to st plantis explored by extracting the slope of a
linear model with individual growth rate as dependent dnodt plantas independent variabiefor

each family and within each thermal environment. These slopes describe both the magnitude and the



175 direction of the response to thest plant[20]. Using Pearson correlations we test whetist
176 induced responses (i.e. themg) are familspecific and consistent across thermal environments.

177 All statistical analyses were performed in R [43].
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3. RESULTS

Pre-diapause survival and clutch mass

Probability of survival was generally high but dropped considerably for larvae with lo
development times (i.e. those that enter diapause in the pepegntiles of the distribution of
development times, Figure).1The probability of survival was not affected by temperature
(asymptotic logrank twsample ttest, P = 0.3968 for individuateared orPlantagg and P = 0.8678
for individuals reared oWeronicg. Survival was significantly lower for larvae that were reared on

Plantagq but only for the two highest temperatures/éfues given in Figure 1).

We found that both the thermal eromment and théost plantinteracted with time to affect
mean clutch mass. The effect of temperature on mean clutch mass increases with time
(time:temperature, F = 10.5182, P < 0.001), with larvae reared at 28 °C being significantly smaller
than those reared higher temperatures from day 8 onward (Figure 2A). The mean clutch mass of
cohorts reared oWeronicaincreased faster over time compared to those reareBlamago
(time:plant, F = 3.9190, P = 0.0089). Cohorts usiegonicawere smaller than those usiRtantago

at the start of the experiment (day O; Figure 2A) but larger at the final time point (day 16).

Individual growth rates and allocation to fat reserves

For both lifehistory traits (growth rate and fat content) we found that all main effectaland
interaction terms were statistically significant (see Tables S3 and S4). Averaged over the families,
modelestimated marginal means for the individual growth rates revealed that individuals achieve
higher growth rates oWeronica except for those read at 34 °C (Figure 2B, Table S3C). Growth
rate increased with temperature until a maximum at 32 °C. At an even higher temperature of 34 °C
growth rate dropped significantly compared to that at 32 °C for larvae fed/ertimica(pairwise
comparison: P <.001). In contrast, the growth rates of larvae reared at 34 Flamtagowere not

significantly different from those of individuals reared at 32 °C (pairwise compariso.$2%3.
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This decrease in growth rate at 34 °C was mainly caused by an intrekese&lopment time rather

than a decrease in body maBgj(ire S2.

The relative fat content showed a discontinuous change tieinperature gradient on both Isost
(Figure 2B, Table S4C). For individuals reared Blantagg development at the two higher
temperatures resulted in significantly higher relative amounts of fat reserves. The thermal threshold
at which change in relative fat content occurs was higher for individuals reakéer@mca where
only development at the highest temperature lead tn@ease in relative fat content. As a result of
the difference in threshold we only observed a significant effetibsff plantat 32 °C (pairwise

comparison: P < 0.001), with larvae utiliziRtantagohaving a higherelative fat contenbn average

Famislpeci fic r bostplanhses to t he

Our results demonstrate that I ntraspecific
(GXxExXxE) 1is | arge i nhitshtiosr ys ytsrtaeint.s ,F obru tb oetshp elciif:
rates, theffeoter @t iene) ronment al cues were |

12% of the total ppphenatnydpivd dwaarli sggmoevt(hV r at es
bet ween t he hdstgplant If ya feolsdg ;tphFeant 32. 2507 ) ePS8B0) . 0
ot her wornspeciffami Iryvbcstwengeant o mpbetant deter mi
| ndeseodne families used in the experVMememth cdaehi e
individual s from ot fgef at&PH earnlt daag ulyheefaBa)ieslqgyesii §ti e
reactiehopes mwer e poascirtasvseltyh ecrom@le deay @ield.c8 ;me n
Figure S3). MRIr eotveegg hudstl i sliaagt resulted in

rates across families (and not within families



226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

4. DISCUSSION

Using a full factori al design, with folurtee
temperatures and,twe kapl opkdnt hepéeekbasnwvesaco
of phenotypic var i-laingteorayx rtorsasi tas siun ttehe fGll a f\ei

this section by describing the tdeamesrcauls sp ahtotwe

devel opment al -darpaajuescet olrarevsaeofcopurled be i nfl uen
selection iSubtslkeeguwinlt d vy, we go into the wvari a
among families in our study, and discudgschow
may I mpact the population's ability to persis

I n ectother ms, temperature can affect deve
chemical reaction kinematics and t hceh phy stiucranl
i mpact operafndrsmean c.e Saonmde fdietvneelsospi ng i ndi vi dual
t her mal environment, for example by relocat.i
i mmatl udfteages are | argeiynw tmmobiake, of§utheaGl an
opti mal thermal environment for devel opment ¢
of the female. As is true for many butterfly

t her mal environment ofsutnhneyi rorofsfhsgody nen Vbiyr oprrna
[ 28, AROr]aged eofearmi | i es, our data showed a cl
increasing temperatureACwi e raint eonpptei rnmautm r aerso ut

decreased forveramwdast aadr édsedPI|faonrt atghoose r ear

Mat epmaif erences to oviposit i n sunny habit
temperatures of thaeinrt uaftfisvpeerliyn gc,o nast ewedrvessir & faow
though the awagragenpamlaaitentesdomB25C acdhur iarge twed
summer , -dviheepmapgse | ar vae arseu ndsehvien eo pcirnega t(eFs gtulr ee
whi ¢ hc acuas emper atures c¢close to the ground to

ambi ent t[ednbp,dhdsbjyrgeest s t hat the maternal pref
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opti mal toef mA32r abur ear val gr owt h, and potenti a
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butterfly i n jland, and that thisf e®lxdgeeambict i
decline of the.Trmetugmo g thliast idocrama4a8]c decl i ne ha
deficits during HNagwak&kmnadgl tleynp etrtad urreecsorodbser ve
S5) could have exceddand ttshienfp dpesremall a rtvod ee r hence

environment s.

I n addition to an effect of temperature on ¢
rel dtaitvecont entThofs phegsi at ogeéecal tridgret st erymp
and was quantified for etlhaet ifvier sftatt icnmentiemt t hir
between 30 and 32 PA@nftammt abebweerad ?daad d3 40 r

Ve r o.rPreciaus research has shown igamincreases in relative fat content with increasing

temperature in other insects [e.g. 50,51, 82h i | e ot her studies have de
[ e. g. .®Bu8, hby3pjJot hesi s, stating that indivi.ceual
those with shorter devel opment ti mes, accumu
falsi fied. | wi f Actt hreda Ihaitaigeesn eistes ves al so demo

devel opment times and t htutsoseérorrdaeaersad tdtme3 4 nAd
in relative fat content seemedntt oi nbémgdaoswatahcuiad t
reared@dtl oxated more resources tBl aheagbdad o
VeromMitcd Bmperature we al so obdwstspedi fhe Igaoge
with i ndtivliRdzdaanhtya monst eduiced i nvestomegpmtr eidn t gr

siblingsVereanibaas.osugge vl slua hapedinashd s gr owt h
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Within the preferred suntnwo hawaitlaabsl, e nmod shte ry
di ffer in their sui tOakeirlailitiny cfaomrd o radravnacl e dweivtehl oo
earlier rewer ttouptéitah@eBY sper el ar vaevVep emfh@mam ome
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environmedittsi.on,n ian chosvaicdhu aelvse do nrei tgdghiewt ahv erraatge s
t her mal environments. Finally, the | weval vpey
uni form wh\enr onti ellai zihngvas | n s twvaa rki iaanocngtr roanvst th  tr

obseameflgmi hRPlean.toago

Since females can maximize their-r fitness b
performance of t heir of fiperifmg mamsc emaky pno tzle e ¢
fritillary mothernverawbéepr 6ot tatvtnd dtadb | per.eflenrt er €
been shown that females of this species do no
in their |l ocal environment, but that this pref
regi ona8l0o, s bdal,e 5[5] . This | ocal adaptation 1is
hosts i n tPhanbeeldni pwietdremdmainal y oc chwarbriitmg ip a
in thwesbeth part of the arwheVepslomgcanFamahedai
therefore reliable hosvterplwhreta wdferels ar \ba cd atr

butterfliesVimoneghens whkerabl ePlpanrifdedo e5d5 ]t o

't is |1 mpdrhteamth steos veldaed f ects of the host p
of our experimental design; while temperature
herbivor e, direct effects of t erhpaenrtast wrsee don nt

were <cultivated and kept under greenhouse c
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act as feeding stimulants in s pM.c i @ilannsdt atbhuet
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In addition to the more general patterns described almevéound significant genetic variation

for (multidimensional) plasticity in this system. In other words, the phenotypic responses to the
(combination of) environmental kables were highly dissimilar across families (i.e. significant GxE

and GXxEXE interactions). For example, thent er actinon hleetfvaemi | y and
explained a | arge proportion of the wgreicanade
reponsebostver ¢ hlear g eclryo scso ntshiesrtneanlt envi r onment s.
fastwerofmcag. family 5), others consi £t eamttlay oa
(e.g. fAudH yi Mti2rnaspechifs ccasaei aail ioadao punl avtinit dn r
plasticity is common in bgftd. mata@G,alb6ajndandblo
benefichaéctforexposed tobet¢tawmae eitithled mg eceviod &ist

potieanlt [ 24] .

As a final not e we woeulgde nleirkael tpoa setmepdhinasssi dzieess ki
one presented here (i.e. using a relatwhelhy s
phenotypes vary stirkagm@lugoda caxoasmsp lgee n eu g ianegb afco

describe tMhatcilnxigeae  r afl p\eerrfoanrhma éblezmt,teawgloo 1 e t |
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is in fact not the case for al | famili ese The

could potentidlfffehamét génes akd

In conclusion, we demonstrated that larval performance curves in the Glanville fritillary butterfly
are familyspecific and interactively mediated by the thermal and nutritional environinént. r e s u | t
of our study therefore wtndeyisrcer ¢ hda henuli tmpdil
environmental effects on phenotype expression
variation is | ikely an nlnepvoerlt arnets pdoentseersmitnoa nen

in this system.
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FIGURE LEGENDS

Figure 1 KaplanMeier survival probability over time for larvae reared Blantago (green) and
Veronica(purple), at four different day temperatures. Shaded area represents the 95% confidence
interval. Grey lines show the mean day of diapause, and the distnitmitdiapausing day is given

in the upper panels. The probability of survival is not affected by temperature, but, at the two highest
day temperatures, survival is significantly lower for larvae that were rear@thotago(P-values

given in the figure)

Figure 2 Environmentally induced variation in IHieistory traits.A) Dots depict the mean clutch

mass, logiransformed and corrected for number of individuals, in each thermal environraig)(x

for Plantago(green) and/eronica(purple), on four asessment days (from left to right: day O [i.e.

2" instar mass], day 4, day 8 and day 12). Significant differences between thermal treatments
(Tukey's HSDU G:05) are indicated by different letters. Details of the statistical test can be found

in TableS2.B) Modelestimated marginal meafsr the individual growth rates (left;R 0.5964)

and the relative fat content (right2 R 0.4992). Error bars repsent 95% confidence intervals and
significant di fferences between groups (Tukey

indicated by different letters. Details of statistical tests can be found in Tables S3 and S4.
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Figure S4 A) Variance in larval growth rates within families (CV; standard deviation divided by the
mean for each family) was similésetween host treatment) Utilising Plantagoas a host plant
resulted in higher variance in larval growth rates across families g@vidard deviation of family

means divided by the global mean growth rate, calculated for each temperature treatment separately)



Figure S5 Minimum, mean and maximum temperatures in Aland in the months April until August

for years between 1958 and 201Bymbol colour gradient indicates temperature, with cold
temperatures represented by blue and warm temperatures indicated by red. The pictures above the
panels show the presence of butterfly-btages per time period, with post diapause larvae being
preent in April and May, after which they pupate and emerge as adults who lay their eggs in June.
Prediapause larvae then develop in July and Audiesnperature data was derived frtme Jomala

climate station database in Alanifustrations courtesy of Lisa Woestmann



