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Abstract  

Delineating age-related cortical trajectories in healthy individuals is critical given the 

association of cortical thickness with cognition and behaviour. Previous research has shown 

that deriving robust estimates of age-related brain morphometric changes requires large-

scale studies. In response, we conducted a large-scale analysis of cortical thickness in 

17,075 individuals aged 3-90 years by pooling data through the Lifespan Working group of 

the Enhancing Neuroimaging Genetics through Meta-Analysis (ENIGMA) Consortium. We 

used fractional polynomial (FP) regression to characterize age-related trajectories in cortical 

thickness, and we computed normalized growth centiles using the parametric Lambda, Mu, 

and Sigma (LMS) method. Inter-individual variability was estimated using meta-analysis and 

one-way analysis of variance. Overall, cortical thickness peaked in childhood and had a 

steep decrease during the first 2-3 decades of life; thereafter, it showed a gradual monotonic 

decrease which was steeper in men than in women particularly in middle-life. Notable 

exceptions to this general pattern were entorhinal, temporopolar and anterior cingulate 

cortices. Inter-individual variability was largest in temporal and frontal regions across the 

lifespan. Age and its FP combinations explained up to 59% variance in cortical thickness. 

These results reconcile uncertainties about age-related trajectories of cortical thickness; the 

centile values provide estimates of normative variance in cortical thickness, and may assist 

in detecting abnormal deviations in cortical thickness, and associated behavioural, cognitive 

and clinical outcomes.        

 

 

Keywords: Cortical Thickness; Development; Aging; Trajectories 
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Introduction 
In the last two decades, there has been a steady increase in the number of studies of age-

related changes in brain morphometry (Ducharme, et al., 2015; Giedd and Rapoport, 2010; 

Good, et al., 2001; Hasan, et al., 2016; Kaup, et al., 2011; Mutlu, et al., 2013; Pomponio et 

al., 2019; Raznahan, et al., 2011; Salat, et al., 2004; Shaw, et al., 2008; Sowell, et al., 2007; 

Sowell, et al., 2003; Sowell, et al., 2004; Storsve, et al., 2014; Tamnes, et al., 2010; 

Thambisetty, et al., 2010; Vaidya, et al., 2007; Walhovd, et al., 2017; Wierenga, et al., 2014) 

as a means to understand the genetic and environmental influences on the human brain 

(Fjell and Walhovd, 2010; Raz, et al., 2005; Walhovd, et al., 2017). Here we focus 

specifically on cortical thickness, as assessed using magnetic resonance imaging (MRI), as 

this measure has established associations with behaviour and cognition in healthy 

populations (Burgaleta, et al., 2014; Fjell and Walhovd, 2010; Hedden and Gabrieli, 2004; 

Kharitonova, et al., 2013; Mills, et al., 2014; Shaw, et al., 2006a) and with disease 

mechanisms implicated in neuropsychiatric disorders (Boedhoe, et al., 2018; Hibar, et al., 

2018; Rapoport, et al., 2001; Schmaal, et al., 2017; Shaw, et al., 2006b; Thompson, et al., 

2007; Thormodsen, et al., 2013; van Erp, et al., 2016; van Rooij, et al.; Walton, et al., 2017; 

Whelan, et al., 2018). 

 

Structural MRI is the most widely used neuroimaging method in research and clinical 

settings because of its excellent safety profile, even in repeat administration, ease of data 

acquisition and high patient acceptability. Thus, establishing the typical patterns of age-

related trajectories in cortical thickness could be a significant first step in the translational 

application of neuroimaging. The value of reference data is firmly established in medicine 

where deviations from the expected range are used to trigger further investigations or 

interventions. Classic examples are the growth charts developed by the World Health 

Organization (http://www.who.int/childgrowth/en/) and US National Center for Health 

Statistics (https://www.cdc.gov/growthcharts/cdc_charts.htm) to monitor child development 

and the body mass index (BMI) which has been instrumental in informing scientific models 

and public health policies relating to cardio-metabolic health (Johnson, et al., 2015).     

 

There is significant uncertainty about the shape and inter-individual variability of age-related 

trajectories. Prior studies have reported linear and non-linear associations between age and 

cortical thickness (e.g., (Amlien, et al., 2016; Brouwer, et al., 2017; Brown and Jernigan, 

2012; Brown, et al., 2012; Mills, et al., 2014; Mutlu, et al., 2013; Raznahan, et al., 2011; 

Shaw, et al., 2006a; Shaw, et al., 2008; Sowell, et al., 2003; van Soelen, et al., 2012; 

Wierenga, et al., 2014) that may be influenced by sex (Coffey, et al., 1998; Paus, 2010; Raz, 

et al., 2010). The present study harnesses the power of the Enhancing Neuroimaging 
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Genetics through Meta-Analysis (ENIGMA) Consortium, a multinational collaborative 

network of researchers organized into working groups that conduct large-scale analyses 

integrating data from over 250 institutions (Grasby, et al., 2018; Thompson, et al., 2017; 

Thompson, et al., 2014). Within ENIGMA, the focus of the Lifespan Working group is to 

delineate age-related trajectories of brain morphometry extracted from MRI images using 

standardized protocols and unified quality control procedures harmonized and validated 

across all participating sites. Moreover, the ENIGMA Lifespan dataset is the largest sample 

of healthy individuals available worldwide that offers the most comprehensive coverage of 

the human lifespan. This distinguishes the ENIGMA Lifespan dataset from other imaging 

samples, such as the UK Biobank (http://www.ukbiobank.ac.uk) which only includes 

individuals over 40 years of age. In the present study, we used MRI data from 17,075 

healthy participants aged 3-90 years to define age-related trajectories and centile values for 

regional cortical thickness in the entire sample and for each sex. We estimated regional 

inter-individual variability because it represents a major source of inter-study variation on 

age-related effects (Dickie, et al., 2013; Raz, et al., 2010). Based on prior literature, our 

initial hypotheses were that cortical thickness in most regions would have an inverse U-

shaped trajectory with variable rates of decline between late childhood and old age that 

would be influenced by sex.  
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Materials and Methods 

Study Samples 

De-identified demographic and cortical thickness data from 83 worldwide samples (Figure 1) 

were pooled to create the dataset analysed in this study. The pooled sample comprised 

17,075 participants (52% female) aged 3-90 years (Table 1). All participants had been 

screened to exclude psychiatric disorders, medical and neurological morbidity and cognitive 

impairment. Information on the screening protocols and eligibility criteria is provided in 

Supplemental Table S1.  

 

Image acquisition and processing 

Prior to pooling the data used in this study, researchers at each participating institution (a) 

used the ENIGMA MRI analysis protocols, which are based on FreeSurfer 

(http://surfer.nmr.mgh.harvard.edu) (Fischl, 2012; Fischl, et al., 2002), to extract cortical 

thickness of 68 regions from high-resolution T1-weighted MRI brain scans collected at their 

site; (b) inspected all images by overlaying the cortical parcellations on the participants’ 

anatomical scans; (c) excluded improperly segmented scans and outliers identified using 

five median absolute deviations (MAD) of that of the median value. Information on scanner 

vendor, magnetic field strengths, FreeSurfer version and acquisition parameters for each 

sample provided by the participating institutions is detailed in Supplemental Table S1. 

 

Analysis of age-related trajectories in cortical thickness 

We modeled the effect of age on regional cortical thickness using higher order fractional 

polynomial (FP) regression analyses (Royston and Altman, 1994; Sauerbrei, et al., 2006) 

implemented in STATA software version 14.0 (Stata Corp., College Station, TX). FP 

regression is one of the most flexible methods to study the effect of continuous variables on 

a response variable (Royston and Altman, 1994; Sauerbrei, et al., 2006). FP allows for 

testing a broad family of shapes and multiple turning points while simultaneously providing a 

good fit at the extremes of the covariates (Royston and Altman, 1994). Prior to FP 

regression analysis, cortical thickness values were harmonized between sites using the 

ComBat method in R (Fortin, et al., 2018; Fortin, et al., 201 Radua et al., 2020; this issue).  

Originally developed to adjust for batch effect in genetic studies, ComBat uses an empirical 

Bayes method to adjust for inter-site (inter-scanner) variability in the data, while preserving 

variability related to the variables of interest. As the effect of site and thus scanner had been 

adjusted for using ComBat, we only included sex as a covariate in the regression models. 

Additionally, standard errors were adjusted for the effect of site in the FP regression. We 

centred the data from each brain region so that the intercept of an FP was zero for all 

covariates. We used a predefined set of power terms (-2, -1, -0.5, 0.5, 1, 2, 3) and the 
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natural logarithm function, and up to four power combinations to identify the best fitting 

model. FP for age is written as age(&',&),…&+)-β  where p in 𝑎𝑔𝑒(2',2),…2+) refers to regular 

powers except 𝑎𝑔𝑒(3) which refers to ln(age). Powers can be repeated in FP; each time a 

power s repeated, it is multiplied by another ln(age). As an example:  

																													age(3,',')-𝛽 = β3 	+	β'age3 +	β)age' 	+	β8age' ln(age) 			
= 	 β3 	+	β'ln(age) +	β)age	 +	β8age	ln	(age) 

 

494 models were trained for each region. Model comparison was performed using a partial 

F-test and the lowest degree model with the smallest P-value was selected as the optimal 

model. Following permutation, critical alpha value was set at 0.01 to decrease the probability 

of over-fitting. The age at maximum cortical thickness for each cortical region was the 

maximum fitted value of the corresponding optimal FP model.  

 

Further, we divided the dataset into three age-groups corresponding to early (3-29 years), 

middle (30-59 years) and late life (60-90 years). Within each age-group, we calculated 

Pearson’s correlation coefficient between age and regional cortical thickness. Finally, we 

used the cocor package in R to obtain P-values for the differences in correlation coefficients 

between males and females in each age-group.  

 

Inter-individual Variation in Cortical Thickness 

The residuals of the FP regression models for each cortical region were normally distributed. 

Using one-way analysis of variance we extracted the residual variance around the optimal 

fitted FP regression model so as to identify age-group differences in inter-individual variation 

for each cortical region. Separately for each age-group (t), we calculated the mean age-

related variance of each cortical region using ;
∑=>?

@

AB
C	where e2 denotes the squared residual 

variance of that region around the best fitting FP regression line for each individual (i) of that 

age-group, and n the number of observations in that age-group. Because the square root of 

the squared residuals was positively skewed, we applied a natural logarithm transformation 

to the calculated variance. To account for multiple comparisons (68 regions assessed in 

three age-groups), statistical inference was based on a Bonferroni adjusted p-value of 

0.0007 as a cut-off for a significant F-test. To confirm that the sample effect did not drive the 

inter-individual variability analyses, we also conducted a meta-analysis of the standard 

deviation of the regional cortical thickness in each age-group, following previously validated 

methodology (Senior, et al., 2016). To test whether inter-individual variability is a function of 
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surface area (and possibly measurement error by FreeSurfer) we plotted SD values of each 

region against their corresponding average surface area. 

 

Centile Values of Cortical Thickness 

We calculated the centiles (0.4, 1, 2.5, 5, 10, 25, 50, 75, 90, 95, 97.5, 99, 99.6) for each 

regional cortical thickness measure by sex and hemisphere as normalized growth centiles 

using parametric Lambda (λ), Mu (μ), Sigma (σ) (LMS) method (Cole and Green, 1992) in 

the Generalised Additive Models for Location, Scale and Shape (GAMLSS) package in R 

(http://cran.r-project.org/web/packages/gamlss/index.html) (Rigby and Stasinopoulos, 2005; 

Stasinopoulos and Rigby, 2007). LMS is considered a powerful method for estimating centile 

curves based on the distribution of a response variable at each covariate value (in this case 

age). GAMLSS uses a penalized maximum likelihood function to estimate parameters of 

smoothness (effective degrees of freedom) which are then used to estimate the λ, μ and σ 

parameters (Indrayan, 2014). The goodness of fit for these parameters in the GAMLSS 

algorithm is established by minimizing the Generalized Akaike Information Criterion (GAIC) 

index.  
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Results 

 

Age-related trajectories in cortical thickness 

Figure 2 shows characteristic trajectories for cortical regions in each lobe, while the 

trajectories of all cortical regions are provided in Supplemental File S1. For most regions, 

cortical thickness showed a steep decrease until the 3rd decade of life, followed by a 

monotonic gradual decline thereafter (Supplemental Table S2). However, both entorhinal 

and temporopolar cortices showed an inverse U-shaped relation with age bilaterally while in 

the anterior cingulate cortex (ACC), cortical thickness showed an attenuated U-shaped 

trajectory. In general, age and its FP combinations explained up to 59% of the variance in 

mean cortical thickness (Supplemental Table S2). Age explained the smallest proportion of 

the variance for entorhinal (1-2%) and temporopolar (2-3%) cortices, whereas it explained 

the largest proportion of variance for superior frontal and precuneus gyri (50-52%). We 

observed some significant sex differences in the slopes of age-related regional cortical 

thickness reduction. In general, in the early-life group (3-29 years), the slopes for mean 

cortical thickness were not meaningfully different for males (r=-0.59) than females (r=-0.56). 

Similarly, in the middle-life group (30-59 years) the slopes for mean cortical thickness were 

steeper for men (r =-0.39 to -0.38) than for women (r=-0.27). In the late-life group (61-90 

years) there was no meaningful difference between men (r-range= -0.30 to -0.29) and 

women (r-range= =-0.33 to -0.31) because the slopes of regional cortical thickness reduction 

became less pronounced in men while slightly increasing in women. At the regional level, 

the slope of cortical thinning in the early-life group was greater (P<0.0007) in males than in 

females in the bilateral cuneus, lateral occipital, lingual, superior parietal, postcentral, and 

paracentral, precuneus, and pericalcarine gyri. In middle-life age-group, the slope of cortical 

thinning was greater (P<0.0002) in men than in women in the bilateral pars orbitalis and pars 

triangularis as well as left isthmus of the cingulate, pars opercularis, precuneus, rostral 

middle frontal, and supramarginal, and right fusiform, inferior temporal, inferior parietal, 

lateral occipital, lateral orbitofrontal, rostral anterior cingulate, superior frontal, supramarginal 

regions and the insula (Figure 3, Supplemental Table S3, Supplemental Figure S1). 

 

Inter-individual Variation in Cortical Thickness 

Details of the inter-individual variation for all cortical regions in each group are provided in 

Supplemental Table S4, Supplemental Figure S2, and Figure 4. Across age-groups, the 

inter-individual variability in most cortical regions as measured by pooled SD was between 

0.1 and 0.2 mm. Higher levels of inter-individual variation were also observed but were 

mainly apparent bilaterally for the entorhinal, parahippocampal, transverse temporal, 

temporopolar, frontopolar, anterior and isthmus of the cingulate cortex, and the pars 
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orbitalis. The meta-analysis conducted as per (Senior, et al., 2016) confirmed the 

replicability of these findings in each age-group (early, middle and late life). We observed a 

nonlinear association between regional cortical surface area and inter-individual variability in 

that variability was typically higher in regions with smaller surface areas (Supplementary 

Figure S3).   

 

Centile Curves of Cortical Thickness 

Representative centiles curves for each lobe are presented in Figure 5. Centile values for 

the thickness of each cortical region, stratified by sex and hemisphere, are provided in 

Supplemental Tables S5-Table S7 and Supplemental File S2.    
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Discussion 
In the present study, we provide the most comprehensive characterisation of lifetime 

trajectories of regional cortical thickness based on multiple analytic methods (i.e., FP 

analysis, meta-analysis and centile calculations) and the largest dataset of cortical thickness 

measures available from healthy individuals aged 3 to 90 years. In addition to sample size, 

the study benefited from the standardised and validated protocols for data extraction and 

quality control that are common to all ENIGMA sites and have supported all published 

ENIGMA structural MRI studies (Hibar, et al., 2018; Schmaal, et al., 2017; Walton, et al., 

2017; Whelan, et al., 2018).  

 

As predicted, most regional cortical thickness measures reached their maximum value 

between 3-10 years of age, showed a steep decrease during the second and third decades 

of life and an attenuated or plateaued slope until later life. This pattern was independent of 

the hemisphere and sex. A recent review (Walhovd, et al., 2017) has highlighted 

contradictions between studies that report an increase in cortical thickness during early 

childhood and studies that report a decrease in cortical thickness during the same period. 

The results from our large-scale analysis help reconcile previous findings as we show that 

the median age at maximum thickness for most cortical regions is in the lower bound of the 

age range we examined here.  

 

In the entorhinal and temporopolar regions, cortical thickness remained largely stable until 

7th-8th decades of life when it started to decline. Although the FreeSurfer estimation of 

cortical thickness in these regions is often considered suboptimal (compared to the rest of 

the brain), we note that our findings are consistent with a prior multicentre study of 1,660 

healthy individuals (Hasan, et al., 2016). Further, the current study supports results from the 

National Institutes of Health MRI study of 384 individuals that found no significant change in 

the bilateral entorhinal and medial temporopolar cortex between the ages of 4-22 years 

(Ducharme, et al., 2016). A further study of 207 healthy adults aged 23-87 years also 

showed no significant cortical thinning in the entorhinal cortex until the 6th decade of life 

(Storsve, et al., 2014). These observations suggest that the cortex of the entorhinal and 

temporopolar regions is largely preserved across the lifespan in healthy individuals. Both 

these regions contribute to episodic memory and the temporopolar region is also involved in 

semantic memory (Horel, et al., 1984; Nakamura, et al., 1994; Rolls, 2017). Degenerative 

changes of the temporopolar cortex have been reliably associated with semantic dementia, 

which is characterised by loss of conceptual knowledge about real-world items (Hodges and 

Patterson, 2007). The integrity and resting metabolic rate of the temporopolar cortex 

decrease with age (Allen, et al., 2005; Eberling, et al., 1995; Fjell, et al., 2009; Insausti, et 
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al., 1998), and lower perfusion rates in this region correlate with cognitive impairment in 

patients with Alzheimer’s disease (AD) (Alegret, et al., 2010). Entorhinal cortical thickness is 

a reliable marker of episodic memory performance (Dickerson, et al., 2009; Fjell and 

Walhovd, 2010) and entorhinal cortex volume and metabolism are reduced in patients with 

Alzheimer’s Disease and mild cognitive impairment (Dickerson, et al., 2009; Hedden and 

Gabrieli, 2004). We therefore infer that “accelerated” entorhinal and temporopolar cortical 

thinning may be a marker of age-related cognitive decline; as they grow older, individuals at 

risk of cognitive decline may show a gradual shift in the distribution of the cortical thickness 

of these regions to the left which aligns with the exponential age-related increase in the 

incidence of AD in later decades of life (Mayeux and Stern, 2012). 

 

The thickness of the ACC showed an attenuated U-shaped association with age. This 

observation replicates an earlier finding in 178 healthy individuals aged 7-87 years, which 

also found a U-shaped relationship between ACC thickness and age (Sowell, et al., 2007). 

The U-shaped age trajectory of ACC thickness might explain divergent findings in previous 

studies that have reported age-related increases (Abe, et al., 2008; Salat, et al., 2004), age-

related reductions or no change (Brickman, et al., 2007; Ducharme, et al., 2016; Fjell and 

Walhovd, 2010; Good, et al., 2001; Vaidya, et al., 2007). 

 

A consistently higher degree of inter-individual variation was observed in the most rostral 

frontal regions (frontopolar cortex and pars orbitalis), in the ACC and in several temporal 

regions (entorhinal, parahippocampal, temporopolar and transverse temporal cortex). To 

some degree, greater variability in several of these regions may reflect variability in 

measurement associated with their smaller size (Supplementary Figure S3). Nevertheless, 

the pattern observed suggests that greater inter-individual variability may be a feature of 

proisocortical and periallocortical regions (in the cingulate and temporal cortices) that are 

anatomically connected to prefrontal isocortical regions, and particularly the frontopolar 

cortex. This isocortical region of the prefrontal cortex is considered evolutionarily important 

based on its connectivity and function compared both to other human cortical regions and 

corresponding cortical regions in non-human primates (Ongur, et al., 2003; Semendeferi, et 

al., 2011). The frontopolar region has several microstructural characteristics, such as a 

higher number and greater width of minicolumns and greater inter-neuron space, which are 

conducive to facilitating neuronal connectivity (Semendeferi, et al., 2011). According to the 

popular ‘gateway’ hypothesis, the lateral frontopolar cortex implements processing of 

external information (‘stimulus-oriented’ processing) while the medial frontopolar cortex 

attends to self-generated or maintained representations (“stimulus-independent” processing) 

(Burgess, et al., 2007). Stimulus-oriented processing in the frontopolar cortex is focused on 
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multitasking and goal-directed planning while stimulus-independent processing involves 

mainly mentalising and social cognition (Gilbert, et al., 2010). The other regions (entorhinal, 

parahippocampal, cingulate, and temporopolar) with high inter-individual variation in cortical 

thickness are periallocortical and proisocortical regions that are functionally connected to the 

medial frontopolar cortex (Gilbert, et al., 2010; Moayedi, et al., 2015). Notably, the 

periallocortex and proisocortex are considered transitional zones between the 

phylogenetically older allocortex and the more evolved isocortex (Galaburda and Sanides, 

1980). Specifically, the entorhinal cortex is perialiocortical (Insausti, et al., 2017; Insausti, et 

al., 1995), the cingulate and parahippocampal cortices are proisocortical and the cortex of 

the temporopolar region is mixed (Blaizot, et al., 2010; Petrides and Pandya, 2012). 

Considered together, these regions are core nodes of the default mode network (DMN; 

Raichle et al., 2001). At present, it is unclear whether this higher inter-individual variation in 

the cortical thickness of the DMN nodes is associated with functional variation, but this is an 

important question for future studies.   

 

The results presented here are based on the largest available brain MRI dataset worldwide 

covering the human lifespan. However, none of the pooled samples in the current study was 

longitudinal. We fully appreciate that longitudinal studies are considered preferable to cross-

sectional designs when aiming to define age-related brain morphometric trajectories. 

However, a longitudinal study of this size over nine decades of life is not feasible. In addition 

to problems with participant recruitment and retention, such a lengthy study would have 

involved changes in scanner types, magnetic field strengths and acquisition protocols in line 

with necessary upgrades and technological advances. We took several steps to mitigate 

against site effects. First, we ensured that we used age-overlapping datasets throughout. 

Second, standardised analyses and quality control protocols were used to extract cortical 

thickness measures at all participating institutions. Third, we estimated and controlled for the 

contribution of site and scanner using ComBat prior to conducting our analysis. The validity 

of the findings reported here is reinforced by their alignment with the results from short-term 

longitudinal studies of cortical thickness (Shaw, et al., 2006b; Sowell, et al., 2004; Storsve, 

et al., 2014; Tamnes, et al., 2010; Thambisetty, et al., 2010; Wierenga, et al., 2014). The 

generalizability of our findings for the older age-group is qualified by our selection of 

individuals who appear to be ageing successfully in terms of cognitive function and absence 

of significant medical morbidity. Nevertheless, despite the efforts to include only healthy 

older individuals, the observed pattern of brain aging may still be influenced by subclinical 

mental or medical conditions. For example, vascular risk factors (e.g., hypertension) are 

prevalent in older individuals and have been associated with decline in the age-sensitive 

regions identified here (Raz et al., 2005). Thus we cannot conclusively exclude the 
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possibility that such factors may have contributed to our results. Cellular studies show that 

the number of neurons, the extent of dendritic arborisation, and amount of glial support 

explain most of the variability in cortical thickness (Burgaleta, et al., 2014; la Fougere, et al., 

2011; Rakic, 1988; Thompson, et al., 2007). MRI lacks the resolution to assess 

microstructural tissue properties but provides an estimate of cortical thickness based on the 

MR signal (Walhovd, et al., 2017). Nevertheless, there is remarkable similarity between MRI-

derived thickness maps and post-mortem data (Sowell, et al., 2004; von Economo, 1929).  

 

The findings of the current study suggest several avenues of further research. MRI-derived 

measures of cortical thickness do not provide information on the mechanisms that underlie 

the observed age-related trajectories. However, the centile values across the lifespan, 

provided here, could be used to study factors that may lead to deviations in cortical 

thickness way from the expected age-appropriate range. Such factors may be genetic, 

epigenetic, hormonal, socioeconomic or related to physical traits and health and lifestyle 

choices. Additionally, the results of the current study provide a new avenue for investigating 

the functional correlates, either cognitive or behavioral, of age-related changes and inter-

individual variation in regional cortical thickness.       

 

In summary, we performed a large-scale analysis using data from 17,075 individuals to 

investigate the lifespan trajectories of cortical thickness in healthy individuals. Our results 

may shed light on the uncertainties regarding age-related developmental trajectories for 

cortical thickness. Estimated centile values and inter-individual variability measures have the 

potential to provide scientists and clinicians with new tools to detect morphometric deviations 

and investigating associated behavioural and cognitive phenotypes.  
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FIGURES 

 
Figure 1. Age range for each sample 
Abbreviations are explained in Table 1; further details of each sample are provided in the 

supplemental material. 
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Figure 2. Illustrative age-related trajectories of cortical thickness  
We present exemplars from each lobe as derived from fractional polynomial analyses of the 

entire dataset. Age-related trajectories of thickness for all cortical regions (for the entire 

dataset and separately for males and females) are given in the supplementary material. 
 

 
Figure 3. Correlation between age and cortical thickness across age-groups  
Left panel: early life age-group (3-29 years); Middle panel: middle life age-group (30-59 

years); Right panel: late life age-group (60-90 years).  
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Figure 4. Meta-analysis of the pooled standard deviation in the entire dataset 
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Figure 5. Illustrative Normative Centile Curves of Cortical Thickness 
We present exemplar sets of centile curves for each lobe as derived from LMS of the entire 

dataset. Normative Centile Curves of thickness for all cortical regions (for the entire dataset 

and separately for males and females) are given in the supplementary material. 
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Table 1. Characteristics of the included samples  

Sample 

Age, 
Mean, 
Years 

Age, 
SD, 
Years 

Age 
Range 

Sample 
Size, N 

Number 
of Males 

Number 
of 
Females 

ADHD NF 14 0.7 13 14 3 1 2 
AMC 23 3.4 17 32 99 65 34 
Barcelona 1.5T 15 1.9 11 17 24 10 14 
Barcelona 3T 15 2.2 11 17 31 13 18 
Betula 62 12.4 26 81 231 105 126 
BIG 1.5T 28 14.3 13 82 1319 657 662 
BIG 3T 24 8.1 18 71 1291 553 738 
BIL&GIN 27 7.7 18 57 452 220 232 
Bonn 39 6.5 29 50 175 175 0 
BRAINSCALE 10 1.4 9 15 172 102 70 
BRCATLAS 40 17.2 18 84 163 84 79 
CAMH 44 19.3 18 86 141 72 69 
Cardiff 26 7.8 18 58 265 78 187 
CEG 16 1.8 13 19 31 31 0 
CIAM 27 4.2 19 34 24 13 11 
CLING 25 5.3 18 58 323 132 191 
CODE 40 13.3 20 64 72 31 41 
COMPULS/TS 
Eurotrain 11 1 9 13 42 29 13 
Edinburgh 24 2.9 19 31 55 20 35 
ENIGMA-HIV 25 4.3 19 33 30 16 14 
ENIGMA-OCD 
(AMC/Huyser) 14 2.8 9 17 6 2 4 
ENIGMA-OCD 
(IDIBELL) 33 10.4 20 50 20 8 12 
ENIGMA-OCD 
(Kyushu/Nakao) 45 14.1 24 64 16 6 10 
ENIGMA-OCD 
(London 
Cohort/Mataix-Cols) 38 11.6 26 63 10 2 8 
ENIGMA-OCD (van 
den Heuvel 1.5T) 41 12.9 26 50 3 0 3 
ENIGMA-OCD (van 
den Heuvel 3T) 36 10.9 22 55 8 4 4 
ENIGMA-OCD-3T-
CONTROLS 32 11 20 56 17 4 13 
FBIRN 37 11.4 19 60 164 117 47 
FIDMAG 38 10.1 19 64 123 54 69 
GSP 27 16.5 18 90 2008 893 1115 
HMS 40 12.2 19 64 55 21 34 
HUBIN 42 8.8 19 56 102 69 33 
IDIVAL (1) 65 9.8 49 87 34 13 21 
IDIVAL (3) 30 7.8 19 50 104 63 41 
IDIVAL( 2) 28 7.6 15 52 80 50 30 
IMAGEN 14 0.4 13 16 1722 854 868 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 7, 2020. ; https://doi.org/10.1101/2020.05.05.077834doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.05.077834
http://creativecommons.org/licenses/by-nc-nd/4.0/


                                                                                                                  Cortical Thickness throughout Life 
 

33 
 

Sample 

Age, 
Mean, 
Years 

Age, 
SD, 
Years 

Age 
Range 

Sample 
Size, N 

Number 
of Males 

Number 
of 
Females 

IMH 32 9.8 20 58 73 48 25 
IMpACT-NL 36 12.1 19 62 91 27 64 
Indiana 1.5T 62 11.7 37 84 49 9 40 
Indiana 3T 27 19.7 6 87 199 95 104 
Johns Hopkins 44 12.5 20 65 85 42 43 
KaSP 27 5.7 20 43 32 15 17 
Leiden 17 4.8 8 29 572 279 293 
MAS 79 4.7 70 90 385 176 209 
MCIC 32 12.1 18 60 91 61 30 
Melbourne 20 2.9 15 25 70 39 31 
METHCT 27 6.5 19 53 39 29 10 
MHRC 22 3.1 16 27 27 27 0 
Muenster 35 12.1 17 65 744 323 421 
NCNG 51 16.9 19 80 345 110 235 
NESDA 40 9.7 21 56 65 23 42 
NeuroIMAGE 17 3.4 9 27 252 115 137 
Neuroventure 14 0.6 12 15 137 62 75 
NTR (1) 15 1.4 11 18 37 14 23 
NTR (2) 34 10.4 19 57 112 42 70 
NTR (3) 30 5.9 20 42 29 11 18 
NU 33 14.8 14 68 79 46 33 
NUIG 36 11.5 18 58 92 53 39 
NYU 31 8.7 19 52 51 31 20 
OATS (1) 71 5.6 65 84 80 53 27 
OATS (2) 69 5.1 65 81 13 7 6 
OATS (3) 69 4 65 81 116 64 52 
OATS (4) 70 4.7 65 89 90 63 27 
Olin 36 13 21 87 582 231 351 
Oxford 16 1.4 14 19 37 18 19 
PING 12 4.8 3 21 431 223 208 
QTIM 23 3.3 16 30 308 96 212 
Sao Paolo  28 6.1 17 43 51 32 19 
Sao Paolo-2 31 7.6 18 50 58 30 28 
SCORE 25 4.3 19 39 44 17 27 
SHIP 2 55 12.3 31 88 306 172 134 
SHIP TREND 50 13.7 22 81 628 355 273 
StagedDep 48 8.1 32 59 23 7 16 
Stanford 45 12.6 21 61 8 4 4 
STROKEMRI 45 22.1 18 78 52 19 33 
Sydney 39 22.1 12 84 157 65 92 
TOP 35 9.9 18 73 303 159 144 
Tuebingen 40 12.4 24 61 38 12 26 
UMCU 1.5T 33 12.5 17 66 278 158 120 
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Sample 

Age, 
Mean, 
Years 

Age, 
SD, 
Years 

Age 
Range 

Sample 
Size, N 

Number 
of Males 

Number 
of 
Females 

UMCU 3T 44 14 19 78 144 69 75 
UNIBA 27 9.1 18 63 130 67 63 
UPENN 37 13.1 18 85 115 42 73 
Yale 14 2.7 10 18 12 5 7 
Total 31 18.2 3 90 17075 8212 8863 

 

N=number; SD= standard deviation 

Abbreviations of studies: ADHD-NF = Attention Deficit Hyperactivity Disorder- 
Neurofeedback Study; AMC = Amsterdam Medisch Centrum; Basel = University of Basel; 
Barcelona = University of Barcelona; Betula = Swedish longitudinal study on aging, 
memory, and dementia; BIG = Brain Imaging Genetics; BIL&GIN = a multimodal 
multidimensional database for investigating hemispheric specialization; Bonn = University 
of Bonn; BrainSCALE=Brain Structure and Cognition: an Adolescence Longitudinal twin 
study; CAMH = Centre for Addiction and Mental Health; Cardiff = Cardiff University; CEG = 
Cognitive-experimental and Genetic study of ADHD and Control Sibling Pairs; CIAM = 
Cortical Inhibition and Attentional Modulation study; CLiNG = Clinical Neuroscience 
Göttingen; CODE = formerly Cognitive Behavioral Analysis System of Psychotherapy 
(CBASP) study; Edinburgh = The University of Edinburgh; ENIGMA-HIV = Enhancing 
NeuroImaging Genetics through Meta-Analysis-Human Immunodeficiency Virus Working 
Group; ENIGMA-OCD = Enhancing NeuroImaging Genetics through Meta-Analysis- 
Obsessive Compulsive Disorder Working Group; FBIRN = Function Biomedical Informatics 
Research Network; FIDMAG = Fundación para la Investigación y Docencia Maria 
Angustias Giménez; GSP = Brain Genomics Superstruct Project; HMS = Homburg 
Multidiagnosis Study; HUBIN = Human Brain Informatics; IDIVAL = Valdecilla Biomedical 
Research Institute; IMAGEN = the IMAGEN Consortium; IMH=Institute of Mental Health, 
Singapore; IMpACT = The International Multicentre persistent ADHD Genetics 
Collaboration; Indiana = Indiana University School of Medicine; Johns Hopkins = Johns 
Hopkins University; KaSP= The Karolinska Schizophrenia Project; Leiden = Leiden 
University; MAS = Memory and Ageing Study; MCIC = MIND Clinical Imaging Consortium 
formed by the Mental Illness and Neuroscience Discovery (MIND) Institute now the Mind 
Research Network; Melbourne = University of Melbourne; Meth-CT = study of 
methamphetamine users, University of Cape Town; MHRC = Mental Health Research 
Center; Muenster = Muenster University; NESDA = The Netherlands Study of Depression 
and Anxiety; NeuroIMAGE = Dutch part of the International Multicenter ADHD Genetics 
(IMAGE) study; Neuroventure: the imaging part of the Co-Venture Trial funded by the 
Canadian Institutes of Health Research (CIHR); NCNG = Norwegian Cognitive 
NeuroGenetics sample; NTR = Netherlands Twin Register; NU = Northwestern University; 
NUIG = National University of Ireland Galway; NYU = New York University; OATS = Older 
Australian Twins Study; Olin = Olin Neuropsychiatric Research Center; Oxford =Oxford 
University; QTIM = Queensland Twin Imaging; Sao Paulo = University of Sao Paulo; 
SCORE = University of Basel Study; SHIP-2 and SHIP TREND = Study of Health in 
Pomerania; Staged-Dep= Stages of Depression Study; Stanford = Stanford University; 
StrokeMRI = Stroke Magnetic Resonance Imaging; Sydney = University of Sydney; TOP = 
Tematisk Område Psykoser (Thematically Organized Psychosis Research); TS-
EUROTRAIN = European-Wide Investigation and Training Network on the Etiology and 
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Pathophysiology of Gilles de la Tourette Syndrome; Tuebingen = University of Tuebingen; 
UMCU = Universitair Medisch Centrum Utrecht; UNIBA = University of Bari Aldo Moro; 
UPENN=University of Pennsylvania; Yale = Yale University 
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