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Summary 
In order to regenerate tissues successfully, stem cells must first detect injuries and then 
produce missing cell types through largely unknown mechanisms. Planarian flatworms have an 
extensive stem cell population responsible for regenerating any organ after amputation. Here, 
we compare stem cell responses to different injuries by amputation of a single organ, the 
pharynx, or removal of tissues from other organs by decapitation. We find that planarian stem 
cells adopt distinct behaviors depending on what tissue is missing: loss of non-pharyngeal 
tissues increases numbers of non-pharyngeal progenitors, while removal of the pharynx 
specifically triggers proliferation and expansion of pharynx progenitors. By pharmacologically 
inhibiting either proliferation or activation of the MAP kinase ERK, we identify a narrow window 
of time during which proliferation, followed by ERK signaling, produces pharynx progenitors 
necessary for regeneration. Further, unlike pharynx regeneration, eye regeneration does not 
depend on proliferation or ERK activation. These results indicate that stem cells tailor their 
proliferation and expansion to match the regenerative needs of the animal. 
 
Introduction 
When faced with injury or disease, many animals can repair or even replace damaged tissue. 
This process of regeneration is observed across animal species, and is often fueled by tissue-
resident stem cells (Bely & Nyberg, 2010; Alejandro Sánchez Alvarado & Tsonis, 2006; Tanaka 
& Reddien, 2011). In response to injury, stem cells accelerate the production of specific types of 
differentiated cells in order to repair damaged tissues. For example, in adult mammals, injuries 
to the intestine, skin or lung induce stem cells to increase proliferation rates and alter their 
differentiation potential (Buczacki et al., 2013; Stabler & Morrisey, 2017; Tetteh et al., 2015; 
Tumbar et al., 2004). These findings suggest that injury can modify the behavior of stem cells to 
promote repair, but how these changes contribute to tissue regeneration remains unclear. 
 
The freshwater planarian Schmidtea mediterranea is an ideal model organism to study how 
injury invokes repair due to their virtually endless ability to regenerate (Ivankovic et al., 2019). 
This ability is driven by an abundant, heterogeneous population of stem cells (Adler & Sánchez 
Alvarado, 2015; Reddien, 2018; Zhu & Pearson, 2016). Defined by ubiquitous expression of the 
argonaute transcript piwi-1 (Reddien et al., 2005), planarian stem cells consist of both 
pluripotent stem cells (PSCs) capable of reconstituting the entire animal (Wagner et al., 2011) 
and organ-specific progenitors (Figure 1A) (Scimone, Kravarik, et al., 2014; van Wolfswinkel et 
al., 2014; Zeng et al., 2018). Organ-specific progenitors contribute to the maintenance and 
regeneration of planarian organs, including a pharynx, primitive eyes, muscle, intestine, an 
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excretory system and a central nervous system (Figure 1A), all enveloped in epithelium 
(Roberts-Galbraith & Newmark, 2015). During tissue homeostasis, stem cells replenish these 
organs by constant turnover (Pellettieri & Sánchez Alvarado, 2007). However, once an injury 
occurs, stem cells immediately begin to proliferate, and vast transcriptional changes ensue 
(Sandmann et al., 2011; Wenemoser et al., 2012; Wenemoser & Reddien, 2010). 
Phosphorylation of the extracellular signal-regulated kinase (ERK) is required for many of these 
wound-induced transcriptional changes, as well as stem cell differentiation, proliferation and 
survival (Owlarn et al., 2017; Shiroor et al., 2019; Tasaki et al., 2011). How these injury-induced 
changes regulate stem cell behavior to facilitate the transition from a homeostatic state and 
contribute to successful regeneration of particular organs are key issues to resolve.  
 
Recent transcriptional profiling of planarian stem cells (Fincher et al., 2018; Plass et al., 2018; 
Scimone, Kravarik, et al., 2014; van Wolfswinkel et al., 2014; Zeng et al., 2018) has revealed 
markers of organ-specific progenitors, providing an opportunity to track how stem cells respond 
to injuries and initiate organ regeneration. Because most planarian organs are dispersed 
throughout the body (Figure 1A), injuries often cause simultaneous damage to multiple organs 
(Elliott & Sánchez Alvarado, 2013). The resulting complex regenerative response has limited 
our ability to decipher how stem cells respond to damage of particular organs. Unlike most other 
planarian organs, the pharynx is anatomically distinct (Adler & Sánchez Alvarado, 2015; 
Kreshchenko, 2009). Importantly, it can be completely and selectively removed without 
perturbing other tissues by brief exposure to sodium azide (Adler et al., 2014; Shiroor et al., 
2018). Because only a single organ is removed, pharynx amputation vastly simplifies the 
regeneration challenge posed to the animal. Additionally, a pharynx-specific progenitor, the 
Forkhead transcription factor FoxA, is expressed in stem cells and increases upon pharynx loss 
(Adler et al., 2014). These properties allow us to dissect how stem cells respond to loss of a 
specific organ and are regulated to restore it. 
 
By inflicting different types of injuries to both the pharynx and body, and then tracking organ-
specific progenitors, we show that planarian stem cells exhibit distinct responses to loss of 
different organs. We find that amputation of non-pharyngeal tissues only affects the behavior of 
non-pharyngeal progenitors. Conversely, removal of pharynx tissue specifically triggers an 
increase in pharynx progenitors, but not other progenitor types. This increase in pharynx 
progenitors, and subsequent pharynx regeneration, depends on an initial burst of stem cell 
proliferation, followed by ERK signaling. Unlike the pharynx, eye regeneration is not dependent 
on proliferation or ERK signaling. Therefore, we propose that loss of different tissues stimulates 
unique behaviors in stem cells that channel their outputs towards replacement of missing 
organs.  
 
Results 
 
Pharynx Progenitors Increase Only after Pharynx Loss 
Previous work identified the forkhead transcription factor FoxA as an essential regulator of 
pharynx regeneration in planarians (Adler et al., 2014; Scimone, Kravarik, et al., 2014). When 
the pharynx is present during homeostasis, FoxA is expressed in a subset of stem cells. 
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However, upon pharynx removal, the number of stem cells expressing FoxA increases (Figure 
1B) (Adler et al., 2014). These findings support a model in which pharynx loss stimulates stem 
cells to initiate pharynx regeneration by selectively upregulating expression of FoxA. If this is the 
case, injuries that do not remove pharynx tissue, like head amputations, should not cause an 
increase in pharynx progenitors (Figure 1C). However, another study has suggested that stem 
cells may non-specifically modify their progenitor output based on the size and position of a 
wound, instead of the identity of missing tissues (LoCascio et al., 2017). If this model is true, 
then head amputation, where pharyngeal tissue is not removed, should also stimulate an 
increase in pharynx progenitors (Figure 1C).  
 
To test these two possibilities, we labeled pharynx progenitors with double fluorescent in situ 
hybridization (FISH) for FoxA and the stem cell marker piwi-1 3 days after pharynx or head 
amputation. We then quantified pharynx progenitors in a region anterior to the pharynx that was 
adjacent to wounds left by either head and pharynx amputations. As previously reported, we 
found that pharynx removal caused a significant increase in pharynx progenitors as compared 
to intact controls (Figure 1D and 1E) (Adler et al., 2014). By contrast, head amputation did not 
influence the number of pharynx progenitors, which were similar to intact animals (Figure 1D 
and 1E). These data indicate that pharynx progenitors are produced in response to pharynx 
loss, but not injury to other tissue types.  
 
To examine if this response is dependent on organ loss, we inflicted injuries to the pharynx that 
either removed part of it (~50-80%), or damaged it without removing any tissue. We then 
labeled and quantified pharynx progenitors 3 days later. If the pharynx was damaged without 
tissue removal, no increase in pharynx progenitors occurred. However, if part of the pharynx 
was removed, we observed a significant increase in pharynx progenitors (Figure 1F and 1G). 
Therefore, stimulation of pharynx progenitor production requires recognition of lost pharynx 
tissue, but not necessarily loss of the entire organ.    
 
To determine when pharynx progenitors emerge and how long they persist, we quantified the 
number of pharynx progenitors at various times after pharynx amputation. Pharynx progenitors 
emerged within 2 days, peaked at 3 days, and returned to homeostatic levels 4 days after 
amputation (Figure 1H). Together, these data indicate that planarian stem cells sense the loss 
of missing pharynx tissue to initiate its specific regeneration through the production of pharynx 
progenitors.  
 
Proliferation of FoxA+ Stem Cells is Specifically Triggered by Pharynx Loss 
Within hours of any injury, planarian stem cells increase proliferation rates. If tissue is removed, 
a later, “regeneration-specific” wave of proliferation occurs adjacent to the injury, and persists 
for days (Baguñà, 1976; Wenemoser & Reddien, 2010). The precision of pharynx amputation, 
paired with stem cell expression of the pharynx-specific progenitor marker FoxA allows us to 
define the potential contributions of these proliferative cells to the regeneration of a specific 
organ. By visualizing mitotic figures with antibody staining for phosphohistone H3 (H3P), we 
confirmed previous results that local stem cell proliferation increases near the wound 1 day after 
either pharynx or head removal (Figure 2A) (Adler et al., 2014; Baguñà, 1976). To determine if 
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these proliferating stem cells express FoxA, we combined FISH for FoxA with antibody staining 
for H3P, 1 day after amputation. Following pharynx removal, we observed higher numbers of 
FoxA+ H3P+ stem cells as compared to intact animals (Figure 2B). To determine how soon after 
amputation these stem cells initiate proliferation, and how long it persists, we monitored the 
coincidence of FoxA+ H3P+ stem cells at various times after pharynx amputation. Proliferation of 
FoxA+ stem cells increased within 6 hours of amputation, peaked 1-2 days later, and returned to 
homeostatic levels 4 days after amputation (Figure 2C). Despite an increase in stem cell 
proliferation 1 day after head amputation (Figure 2A) (Baguñà, 1976), numbers of FoxA+ H3P+ 

stem cells did not correspondingly increase (Figure 2B and 2D). These data show that pharynx 
loss specifically stimulates FoxA+ stem cells to proliferate prior to the observed increase in 
pharynx progenitors that occurs 3 days after amputation (Figure 1H) (Adler et al., 2014). 
 
Planarian pluripotent stem cells (PSCs) are able to self-renew and generate all the cell types in 
the body (Figure 1A) (Scimone, Kravarik, et al., 2014; van Wolfswinkel et al., 2014; Wagner et 
al., 2011; Zeng et al., 2018). The recent identification of molecular markers of PSCs enables 
tracking of these cells after injuries. One such marker is the tetraspanin group specific gene 1 
(tgs-1) (Zeng et al., 2018). To identify whether PSCs expressing FoxA proliferate after pharynx 
loss, we labeled mitotic figures with H3P and double FISH for FoxA and tgs-1 1 day after 
amputation. Following pharynx amputation, we observed an increase in proliferation of PSCs 
negative for FoxA (FoxA- tgs-1+), pharynx progenitors (FoxA+ tgs-1-), and PSCs expressing 
FoxA (FoxA+ tgs-1+) (Figure S1A and S1B). Therefore, both FoxA+ PSCs and pharynx 
progenitors are triggered to divide after pharynx loss. 
 
Proliferation in a Critical Window of Time is Required for Pharynx Regeneration 
In planarians, lineage tracing experiments have shown that proliferation contributes to the 
production of regenerated tissues (Cowles et al., 2013; Eisenhoffer et al., 2008; Forsthoefel et 
al., 2011; Newmark & Sánchez Alvarado, 2000; Wagner et al., 2011). We find that proliferation 
of FoxA+ stem cells (Figure 2C) precedes the increase in pharynx progenitors (Figure 1H) 
following pharynx amputation, suggesting that stem cell proliferation may generate pharynx 
progenitors. To test this possibility, we blocked cell division with nocodazole, a microtubule 
destabilizer that causes a metaphase arrest. In planarians, exposure to nocodazole for 24 hours 
causes an accumulation of mitotic (H3P+) nuclei (Figure 2A) (Grohme et al., 2018; van 
Wolfswinkel et al., 2014).  
 
We soaked animals in nocodazole for 24 hour increments beginning either immediately after 
amputation, or 1 or 2 days after pharynx amputation (Figure 3B). Because the pharynx is 
required to ingest food, amputation causes an inability to eat for about 7 days, until the organ is 
functionally regenerated (Adler et al., 2014; Ito et al., 2001). Therefore, to determine the 
outcome of this transient blockade of mitosis on pharynx regeneration, we assayed the recovery 
of feeding behavior. Animals treated with nocodazole from 0-1 or 2-3 days after pharynx 
amputation recovered feeding behavior at a similar rate as DMSO-treated control animals 
(Figure 3C). However, animals treated with nocodazole 1-2 days after pharynx amputation had 
a drastic delay in recovery of feeding, with only 50% of worms regaining the ability to eat within 
20 days of amputation, and 100% within 32 days of amputation (Figure 3C). To verify that 
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nocodazole treatment under these conditions delayed pharynx regeneration, we examined 
pharynx anatomy 7 days after amputation by whole-mount FISH of the pharynx-specific marker 
laminin (Cebrià et al., 2007). Animals treated with nocodazole 1-2 days after pharynx 
amputation had markedly smaller pharynges as compared to DMSO-treated controls (Figure 
3D). Because such a transient inhibition of proliferation significantly delayed pharynx 
regeneration, we conclude that stem cell division 1-2 days after amputation is critical for pharynx 
regeneration.  
 
Notably, this time frame coincides with the proliferative peak of FoxA+ stem cells that occurs 
after pharynx amputation (Figure 2C), suggesting that proliferation directly contributes to the 
increase in pharynx progenitors observed 3 days after amputation (Figure 1H). To test whether 
proliferation in this brief window is required for the production of pharynx progenitors, we 
analyzed the impact of nocodazole exposure on FoxA+ stem cells. First, we examined whether 
FoxA+ stem cells were mitotically arrested following nocodazole treatment. We observed a 
significant increase in FoxA+ H3P+ stem cells 2 days after amputation (Figure S2A and S2B), 
illustrating that stem cells poised to become pharyngeal cells were arrested in mitosis. We then 
performed FISH for FoxA and piwi-1 3 days after pharynx amputation and found that 
nocodazole treatment caused a dramatic decrease in pharynx progenitors compared to DMSO-
treated controls (Figure 3E and 3F). Importantly, intact animals treated with a similar exposure 
to nocodazole for 24 hours followed by 1 day of recovery showed no difference in the 
abundance of pharynx progenitors compared to DMSO-treated controls (Figure S2C and S2D), 
indicating that proliferation in this short time frame affects pharynx progenitors specifically 
during regeneration. Together, our data show that proliferation in a critical window of 1 to 2 days 
after pharynx amputation produces a population of progenitors that are likely essential for 
pharynx regeneration.    
 
ERK Phosphorylation is Required for Increased Pharyngeal Progenitors 
The mitogen activated protein (MAP) kinase pathway drives proliferation and differentiation 
during development and regeneration in many organisms (Ghilardi et al., 2020; Patel & 
Shvartsman, 2018). In planarians, the MAP kinase ERK is the earliest known signal required for 
regeneration. ERK is phosphorylated within minutes after an injury, which is dispensable for 
wound healing but required for regeneration and stem cell proliferation (Owlarn et al., 2017; 
Tasaki et al., 2011). To determine whether ERK is required for pharynx regeneration, we 
exposed animals to PD0325901 (PD), an inhibitor of the upstream kinase MEK which normally 
phosphorylates ERK. Following pharynx amputation, we maintained animals in the presence of 
PD for 5 days (Figure 4A), which was previously shown to inhibit head regeneration (Owlarn et 
al., 2017), and then assayed feeding behavior daily. While control animals regained the ability to 
feed within 7 days, animals treated with PD had a substantial delay in feeding, with 50% of 
worms feeding by day 13 and all worms feeding by day 29 (Figure 4B). We verified that this 
delay in feeding was due to defects in pharynx regeneration with whole-mount laminin FISH, 
and found that PD-treated animals lacked a pharynx 7 days after amputation (Figure 4C). These 
data indicate that ERK signaling is required for pharynx regeneration.  
 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 6, 2020. ; https://doi.org/10.1101/2020.05.05.077875doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.05.077875
http://creativecommons.org/licenses/by-nc/4.0/


6 

To pinpoint when ERK signaling is important for pharynx regeneration during this 5-day window, 
we exposed animals to PD for defined times after pharynx amputation (Figure 4A) and then 
used feeding assays to monitor pharynx regeneration. Animals treated with PD beginning 1 day 
after pharynx amputation (1-5 days) display a similar delay in the ability to feed as animals 
treated for 5 full days. However, animals treated for only the first day after amputation (0-1 days) 
or beginning 2 days after pharynx amputation (2-5 days) regained the ability to feed at rates 
similar to controls (Figure 4B). These results define a window 1-2 days after amputation in 
which activation of ERK signaling is important for pharynx regeneration. Coincidentally, this time 
frame immediately follows the proliferation of FoxA+ stem cells (Figure 2C), but occurs just prior 
to the increase in pharynx progenitors (Figure 1H) observed after pharynx loss. The requirement 
for ERK activity in this window suggests that ERK may be important for establishing pharynx 
progenitors, but not necessarily for the proliferation of FoxA+ stem cells during regeneration.  
 
Because ERK signaling has known roles in stem cell proliferation and differentiation in planaria 
(Owlarn et al., 2017; Tasaki et al., 2011), we tested whether ERK inhibition would impact the 
expansion of pharynx progenitors during pharynx regeneration. To determine whether ERK is 
required for generating pharynx progenitors, we maintained animals in PD for 3 days following 
pharynx amputation and performed FISH for FoxA and piwi-1. Exposure to PD caused a 
significant decrease in pharynx progenitors as compared to controls (Figure 4D and 4E). To 
determine whether this decrease was due to reduced proliferation, we analyzed the number of 
FoxA+ H3P+ stem cells at different times after pharynx amputation. The number of proliferating 
FoxA+ stem cells after exposure to PD was comparable to controls (Figure 4F and 4G). 
However, we did observe a slight, but significant, decrease in the total number of H3P+ cells 3 
days after pharynx amputation, consistent with what has been reported in regenerating heads 
(Figure 4H) (Owlarn et al., 2017). This result indicates that ERK activation is not required for the 
specific increase in proliferation of FoxA+ stem cells caused by pharynx loss. Instead, ERK 
contributes to increased FoxA expression in pharynx progenitors, suggesting that it is required 
for stem cell differentiation during pharynx regeneration.  
 
Soon after amputation, ERK signaling is required for expression of several genes including 
follistatin (fst) (Owlarn et al., 2017), which accelerates regeneration by inhibiting activin-1 and -2 
(Gaviño et al., 2013; Roberts-Galbraith & Newmark, 2013; Tewari et al., 2018). Consequently, 
we predicted that ERK signaling could promote pharynx regeneration through induction of fst 
expression. After head amputation, fst expression increases within 6 hours (Gaviño et al., 
2013). By contrast, we did not observe fst expression until 24 hours after pharynx amputation 
(Figure S3A), suggesting that pharynx removal may activate ERK later than head removal. 
However, fst(RNAi) animals regained the ability to feed at a normal rate after pharynx 
amputation (Figure S3B), indicating that pharynx regeneration does not depend on fst. 
Therefore, although pharynx loss eventually induces fst expression, regulation of pharynx 
regeneration via ERK is independent of fst. 
 
Pharynx Loss Does Not Increase Non-pharyngeal Progenitors 
Planarian progenitor stem cells can be distinguished by expression of various organ-specific 
transcription factors that are often required for subsequent organ regeneration. These include 
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ovo, myoD, gata4/5/6, six-1/2 and pax6a, which are also expressed in mature organs (eye, 
muscle, gut, excretory system and nervous system, respectively) (Figure 5A) (Flores et al., 
2016; Lapan & Reddien, 2012; Rouhana et al., 2013; Scimone et al., 2011, 2017; Scimone, 
Kravarik, et al., 2014). Expression of these markers in piwi-1+ stem cells provides another 
opportunity to link the behavior of organ-specific progenitors with injury. Our data so far support 
a model in which pharynx tissue loss specifically amplifies FoxA+ pharynx progenitors. If this is 
true, head amputation, which disrupts all organ systems except the pharynx, should amplify 
non-pharyngeal progenitors while removal of the pharynx should not (Figure 5B). Conversely, a 
previous study showed that surgical amputation of the pharynx resulted in increased production 
of differentiated non-pharyngeal tissues, supporting a model in which injury non-specifically 
amplifies any nearby progenitors (Figure 5B) (LoCascio et al., 2017). However, the surgical 
removal of the pharynx employed in this study also injured surrounding tissues, making it 
difficult to decipher which injuries contributed to the production of differentiated cells. Therefore, 
to test these two models, we evaluated the behavior of multiple organ-specific progenitors after 
either pharynx or head amputation. 
 
Besides the pharynx, the eye is the only other organ in the planarian that is anatomically 
restricted and thus can be fully removed without leaving any remaining tissue behind (Lapan & 
Reddien, 2012; LoCascio et al., 2017). To test whether selective pharynx removal induces non-
specific production of other tissue types, we first measured eye progenitor abundance 3 days 
after pharynx or head amputations with FISH for ovo and piwi-1. As previously shown, 
decapitated animals, where the eyes are completely removed, have significantly more eye 
progenitors than intact controls (Lapan & Reddien, 2012). Conversely, following pharynx 
amputation, animals had similar numbers of eye progenitors as intact controls (Figure 5C and 
5D), indicating that pharynx loss does not stimulate the production of eye progenitors. If the 
broad damage caused by head amputation stimulates the specific regeneration of missing 
tissues, we predicted that an increase in other organ-specific progenitors after head, but not 
pharynx, amputation would also occur. To test this, we quantified organ-specific progenitors for 
muscle (myoD+), intestine (gata-4/5/6+), the excretory system (six-1/2+) and the nervous system 
(pax6a+) (Figure 5A) after either pharynx or head removal. These organ-specific progenitors 
increased 3 days after head removal, but not pharynx removal, as compared to intact controls 
(Figure 5D). These data indicate that pharynx loss does not stimulate production of non-
pharyngeal progenitors. Also, our data suggests that organ-specific progenitors are induced to 
expand by removal of tissue from the organs that they replenish.  
 
Pharynx, but not head removal, stimulates the proliferation of FoxA+ stem cells (Figure 2C and 
2D). Stem cell progenitors in the epidermal lineage have also been shown to proliferate 
following head amputation (van Wolfswinkel et al., 2014). Therefore, we tested whether stem 
cells expressing non-pharyngeal progenitor markers were similarly stimulated to proliferate 1 
and 2 days after pharynx or head amputation. We were unable to detect proliferating eye 
progenitors (ovo+ H3P+), even after head amputation (data not shown). However, stem cells 
expressing other progenitor markers did proliferate. The kinetics of each differed slightly, with 
increased proliferation of gata-4/5/6+ stem cells 1 day, and others (six1/2+, pax6a+, myoD+) 2 
days after head amputation, but not pharynx amputation (Figure S4A and S4B). Despite slight 
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differences in the kinetics of each progenitor marker, the overall trend supports the notion that 
only loss of non-pharyngeal tissues triggers proliferation of stem cells expressing non-
pharyngeal progenitor markers.  
 
All of these organ-specific transcription factors, with the exception of pax6a, are required for 
regeneration of their cognate organ (Adler & Sánchez Alvarado, 2017; Flores et al., 2016; 
Lapan & Reddien, 2012; Pineda et al., 2002; Scimone et al., 2011, 2017). To verify that these 
transcription factors do not regulate pharynx regeneration, we knocked them down with RNAi. 
However, knockdown did not impact the recovery of feeding behavior after pharynx amputation 
(Figure S4C). Together, these data suggest that tissue loss specifically amplifies only the organ-
specific progenitors that are required to regenerate missing tissues.  
 
Proliferation and ERK Activation are Not Required for Eye Regeneration 
Decapitated head fragments lack a pharynx, but retain eyes, providing a different context in 
which to investigate the specificity of stem cell responses to missing organs. Therefore, we 
analyzed pharynx and eye progenitor behavior in decapitated head fragments. As expected, the 
number of pharynx progenitors in head fragments was significantly higher 3 days after 
amputation. Conversely, eye progenitors showed no discernible difference between 0 and 3 
days after amputation (Figure 6A and 6B). This lack of eye progenitor amplification in head 
fragments was somewhat surprising because previous studies have shown that tissue removal 
near the eye, without removing the eye itself, increases eye progenitors (LoCascio et al., 2017). 
Regardless, these results further support a model in which stem cells modify their behavior 
depending on what organs are present or absent.  
 
Selective removal of the eye does not increase broad stem cell proliferation or eye-specific 
progenitors (LoCascio et al., 2017), and we were unable to detect proliferating ovo+ stem cells 
even after head amputation (data not shown). To test whether eye regeneration relies on 
proliferation, as pharynx regeneration does, we exposed worms to nocodazole for 24 hours 
beginning 1 day after head amputation, and assessed the emergence of photoreceptors. In 
DMSO-treated controls, photoreceptors re-emerged 7 days after amputation (Figure 6C) (Lapan 
& Reddien, 2011). While nocodazole-treated worms failed to regenerate heads and had 
noticeably smaller blastemas than control animals, photoreceptors still emerged by 7 days in 
50% of animals. By contrast, consistent with what has been published, animals treated with the 
ERK inhibitor, PD, for 5 days after head removal completely failed to regenerate any new head 
tissue (Figure 6C) (Owlarn et al., 2017; Tasaki et al., 2011). These data suggest that eyes can 
regenerate after decapitation without stem cell proliferation.  
 
To further test the requirement for proliferation and ERK signaling during eye regeneration, we 
evaluated eye regeneration after more subtle surgeries in which the eyes are selectively 
removed. Following eye resections, we immediately exposed animals either to nocodazole or 
PD and monitored eye regeneration with live imaging and FISH for ovo and the eye-specific 
marker opsin (A. Sánchez Alvarado & Newmark, 1999). We confirmed that eye tissue was 
successfully removed by the absence of photoreceptors in animals 0 days after surgery (Figure 
6D). While FISH revealed that opsin staining was not completely removed, it was strongly 
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diminished and ovo signal was eliminated (Figure 6E). Even when worms were exposed to 
nocodazole for 48 hours, which caused some animal lethality, eyes regenerated normally in 
surviving worms. Animals treated with PD for 5 days following resection also regenerated eyes 
similar to DMSO-treated controls (Figure 6D and 6E). Therefore, unlike pharynx regeneration, 
eye regeneration does not require proliferation and only requires ERK if more tissue has been 
removed, such as in the context of head regeneration. These data suggest that eye 
regeneration may be regulated differently than other organs, or may occur in alternative ways 
depending on the context of the wound.  
 
Discussion 
In this study, we challenged the planarian stem cell compartment by inflicting different types of 
injuries to evaluate how stem cells sense organ loss and initiate tissue-specific regeneration. 
We show that proliferation and expansion of organ-specific progenitors depends on the removal 
of tissues that they are required to regenerate (Figure 7). In particular, we find that pharynx 
regeneration depends on an increase in pharynx progenitors that occurs only if pharynx tissue is 
lost. This increase first relies on a burst in proliferation of FoxA+ stem cells, followed by ERK 
signaling that likely drives differentiation of stem cells into pharynx progenitors. Conversely, 
stem cells expressing non-pharyngeal progenitor markers divide and increase only when the 
tissues they are required to regenerate are removed. While head regeneration is also 
dependent on proliferation and ERK activation, regeneration of the eyes is not (Figure 7). These 
findings suggest that in many cases, stem cells can sense the identity of missing tissues to 
launch their targeted regeneration.  
 
Stem Cell Heterogeneity and Specificity of Regeneration 
Molecular heterogeneity is a feature of many stem cell systems including embryonic, neural, 
and muscle stem cells (Chaker et al., 2016; Scaramozza et al., 2019; Torres-Padilla & 
Chambers, 2014). While planarian PSCs are sufficient to reconstitute entire animals after 
transplantation by producing the necessary organ-specific progenitors (Wagner et al., 2011; 
Zeng et al., 2018), how stem cell heterogeneity is utilized during regeneration has been difficult 
to decipher. Traditional amputation methods injure multiple tissues at once, are typically variable 
in position and size, and also cause major disruptions to positional patterning of the anterior-
posterior axis, complicating the study of regeneration (Reddien, 2018). Selective removal of the 
pharynx circumvents these issues in two ways. First, the tissue removed by chemical 
amputation and the wound that it generates are reproducible among animals. Second, it does 
not perturb axial patterning or other organ systems. Together, these advantages enable us to 
challenge the stem cell population in a precise way. By studying the dynamics of FoxA 
expression in stem cells after pharynx removal, we have uncovered shifts in heterogeneity that 
depend on the presence or absence of a particular organ. Intriguingly, we find that stem cells 
expressing both the PSC marker, tgs-1, and FoxA, or FoxA alone are stimulated to divide after 
pharynx removal. Therefore, both PSCs and pharynx progenitors respond to pharynx loss and 
channel their proliferative output towards pharynx regeneration. Combined with our analysis of 
non-pharyngeal progenitor dynamics after different amputations, our results suggest that the 
heterogeneity of the stem cell population can be differentially deployed depending on what 
tissues need repair.  
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Previous work showed that large wounds stimulate broad differentiation of stem cells into 
nearby organs, while eye resection alone does not stimulate an increase in ovo+ eye progenitors 
(LoCascio et al., 2017). Based on these observations, the authors speculated that stem cells 
non-specifically modify their output of progenitors based on the size and position of a wound, 
instead of the identity of missing tissues. However, by investigating the dynamics of a wide 
variety of organ-specific progenitors after different injuries, we show that stem cells can adopt 
specific, tailored responses to the loss of different tissues. Amputation of non-pharyngeal 
tissues increases non-pharyngeal progenitors, while pharynx tissue loss triggers a specific 
increase of pharynx progenitors. Therefore, although some aspects of regeneration are likely to 
be general, amplification of progenitors typically requires the removal of the tissues they are 
required to regenerate. Smaller lesions, such as eye resections, do not stimulate a proliferative 
wound response (LoCascio et al., 2017). This difference could potentially explain why eye 
regeneration, in this context, happens passively via homeostatic progenitor production and 
reduced apoptosis in the regenerating eye (LoCascio et al., 2017). It is likely that stem cells 
increase proliferation rates, and differentially upregulate organ-specific transcription factors, 
depending on the type of damage inflicted to the animal. This dynamic response of stem cells 
may enable a flexible cellular output to replenish damaged tissues. 
 
Contribution of Proliferation to Regeneration 
In many organisms, elevated proliferation at sites of injury is a prominent feature of regeneration 
(Tanaka & Reddien, 2011). In planaria, an initial body-wide wave of proliferation occurs 
approximately 6 hours after any type of injury, followed by a second local proliferative wave at 
48 hours, but only if tissue has been removed (Baguñà, 1976; Wenemoser & Reddien, 2010). 
Little is known about how and when particular cell types are produced during each of these 
waves of proliferation. By pairing pharynx removal with FoxA expression in stem cells, we have 
dissected the contribution of proliferation to subsequent organ regeneration. Our observation 
that an increase in FoxA+ proliferating stem cells appears robustly within 6 hours of pharynx, but 
not head amputation, indicates that stem cells sense the identity of missing tissues during this 
first wave of proliferation. Because injury is only sufficient to induce regeneration when tissue is 
missing (Owlarn et al., 2017), all injuries may generate the same signals but only trigger 
regeneration under certain circumstances. Consistently, our findings suggest that missing tissue 
signals cause selective amplification of pharynx progenitors to confer a specific regenerative 
outcome when the pharynx is lost. Additionally, loss of non-pharyngeal tissues stimulates 
proliferation of stem cells expressing non-pharyngeal progenitor markers. These data suggest 
that missing tissue signals may be a general strategy used to channel the fate of stem cells to 
replace damaged organs during initial proliferative responses.  
 
By preventing mitotic exit with nocodazole, we made the surprising discovery that proliferation in 
a narrow window of time following amputation is absolutely necessary for pharynx regeneration. 
Nocodazole exposure for 24 hours beginning one day after amputation severely delayed the 
recovery of feeding behavior. Surprisingly, nocodazole exposure for a 24-hour period either 
before or after this window did not have a similar effect, indicating that cell division 2-3 days 
after amputation is not required for pharynx regeneration. This time frame is concurrent with the 
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peak of proliferation that occurs after tissue removal, and is consistent with a recent finding that 
the missing tissue response is not required for regeneration (Tewari et al., 2018). Further, 
nocodazole exposure completely blocked the increase of pharynx progenitors that typically 
occurs 3 days after pharynx amputation. Therefore, without proliferation in this narrow window, 
cell production required to rebuild the pharynx occurs at a significantly slower rate. Because 
regeneration depends on proliferation during such a short time, our results suggest that stem 
cells detect tissue loss through transient signals generated by injury that are necessary to 
accelerate subsequent regeneration.  
 
How or when fate acquisition might occur in these proliferating cells during regeneration 
remains unclear. Cell fate acquisition can occur throughout the cell cycle (Fichelson et al., 2005; 
Pauklin & Vallier, 2014; Soufi & Dalton, 2016). Tissue loss could generate fleeting signals 
sensed by stem cells that influence them to adopt a specific cell fate during proliferation to 
compensate for missing tissue. Alternatively, progenitors may be poised to receive such a 
signal, allowing them to quickly initiate regeneration upon exit of the cell cycle. Indeed, studies 
in human hepatoma cell lines have shown that FoxA1 remains attached to chromatin during 
mitosis, contributing to rapid activation of downstream following mitosis during liver 
differentiation (Caravaca et al., 2013). Our data show that both FoxA+ pharynx progenitors and 
PSCs expressing FoxA increase proliferation after pharynx removal, suggesting that a 
combination of both might be true. Future work will define whether regeneration of other organs 
also depends on proliferation in such a narrow window, as well as the nature of the signals 
responsible for selectively amplifying different progenitor types.  
 
ERK Signaling Plays Multiple Roles During Regeneration 
Phosphorylation of ERK activates regeneration in many animals (DuBuc et al., 2014; Wan et al., 
2012; Yun et al., 2014). In planaria, ERK phosphorylation is one of the earliest known events 
required for regeneration, where it triggers wound-induced transcription and promotes stem cell 
proliferation and differentiation (Owlarn et al., 2017; Tasaki et al., 2011). ERK may also function 
to re-establish axial patterning during regeneration (Owlarn et al., 2017; Umesono et al., 2013), 
which depends on a network of positional cues that are expressed in muscle cells throughout 
the body (Lander & Petersen, 2016; Scimone et al., 2016; Witchley et al., 2013). Because 
injuries that disrupt muscle require re-establishment of these positional cues for regeneration to 
proceed (Rink, 2018), it has been difficult to distinguish ERK’s functions in initiating organ 
regeneration with its roles in axial re-patterning in studies where bodily injuries were employed. 
Removal of the pharynx does not disrupt body wall muscle, which allowed us to identify a 
distinct role for ERK in organ regeneration. Following pharynx removal, ERK activation is not 
involved in proliferation of FoxA+ stem cells but is required for the subsequent increase in 
pharynx progenitors. These results show that another signal must trigger proliferation of FoxA+ 
stem cells, and that ERK acts later during organ regeneration, likely to facilitate stem cell 
differentiation or to maintain progenitor fate.  
 
Receptor tyrosine kinases such as the epidermal growth factor receptor (EGFR) and the 
fibroblast growth factor receptor (FGFR) have been shown to play critical roles in signaling 
upstream of ERK in many organisms (Patel & Shvartsman, 2018), making them intriguing 
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candidates to explore in planaria as potential regulators of regeneration. In planarians, egfr-3 is 
required to activate ERK during regeneration (Fraguas et al., 2017) and is also involved in stem 
cell differentiation (Fraguas et al., 2011; Lei et al., 2016). Other studies have also highlighted 
roles for the ligand egf-4 and the receptors, egfr-1 and egfr-5, in the differentiation of stem cells 
into brain, intestinal and excretory tissues, respectively (Barberán et al., 2016; Fraguas et al., 
2014; Rink et al., 2011). Whether any of the planarian EGF or FGF ligands or receptors similarly 
regulate the differentiation of pharyngeal progenitors is an area for future investigation (Cebrià 
et al., 2002; Ogawa et al., 2002).  
 
Pioneer Factors: Manifesting Specific Regeneration Programs in Stem Cells  
Following pharynx loss, planarian FoxA is selectively upregulated in stem cells to drive organ 
regeneration. Mammalian homologs of FoxA were the first identified ‘pioneer’ transcription 
factors, characterized by their ability to engage closed chromatin and drive organogenesis (Hsu 
et al., 2015; Iwafuchi-Doi & Zaret, 2016; Lam et al., 2013; Zaret & Mango, 2016). This raises the 
possibility that pioneer factors may be viable in vivo targets for achieving regeneration of entire 
organs. In fact, overexpression of a related mammalian transcription factor, FoxN, is sufficient to 
drive regeneration of the thymus in mice (Bredenkamp et al., 2014). The increased proliferation 
of PSCs expressing FoxA after pharynx removal suggests that activation of pioneer factors in 
stem cells may also drive organ regeneration in planaria. Other pioneer factors, including gata-
4/5/6, soxB1-2 and FoxD, are also expressed in planarian stem cells and are required for 
regeneration of the intestine (Flores et al., 2016; González-Sastre et al., 2017), sensory neurons 
(Ross et al., 2018) and anterior pole (Scimone, Lapan, et al., 2014; Vogg et al., 2014), 
respectively. Therefore, upregulation of pioneer factors in stem cells may be a general strategy 
used to initiate organ regeneration. Identifying the regulatory mechanisms responsible for the 
selective activation of pioneer factors in stem cells may be an ideal approach to understanding 
how organisms initiate regeneration of targeted organs in vivo. 
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fulfilled by the Lead Contact, Carolyn Adler (cea88@cornell.edu). 
 
Materials Availability 
Plasmids generated in this study will be made available on request, without restriction.  
 
Data and Code Availability 
This study did not generate/analyze [datasets/code] 
 
Figure Legends 
  
Figure 1: Pharyngeal Progenitors Increase Only after Pharynx Loss 
(A) Schematic of planarian stem cell lineage. Left, whole-mount in situ hybridization (WISH) for 
the stem cell marker piwi-1. Right, cartoon depiction of the dashed boxed region showing that 
planarian stem cells consist of both pluripotent stem cells (PSCs) and organ-specific progenitors 
that produce planarian organs.  
(B) Live images of planarians before and after pharynx amputation. Boxes represent schematics 
of FoxA+ progenitor stem cells (red) among other stem cells (grey), before and after pharynx 
amputation. Red arrows = pharynx; scale bars = 500μm. 
(C) Models for specific and non-specific stem cell responses after different amputations 
(indicated by red lines). FoxA+ progenitor stem cells (red), other stem cells (grey). 
(D) Confocal images of double fluorescent in situ hybridization (FISH) for FoxA (green) and piwi-
1 (magenta) in intact animals, or 3 days after pharynx or head amputation. DNA = DAPI (blue); 
dashed boxes = region imaged; arrows = double-positive cells; scale bar = 10μm. 
(E) Graph of FoxA+ piwi-1+ cells in the area outlined by dashed boxes in D. 
(F) Confocal images of FISH for FoxA (green) and piwi-1 (magenta) in intact animals, or 3 days 
after incision or partial amputation of the pharynx. DNA = DAPI (blue); red lines = site of incision 
or tissue removal; dashed box = region imaged; arrows indicate double-positive cells; scale bar 
= 10µm. 
(G) Graph of FoxA+ piwi-1+ cells in the area outlined by dashed boxes in E. 
(H) Graph of FoxA+ piwi-1+ cells at indicated times after pharynx amputation in the area outlined 
by dashed boxes in E. Graphs are represented as mean ± SEM. Dots = individual animals; and 
*, p ≤ 0.05; **, p ≤ 0.01; ***, p ≤ 0.001, unpaired t-test.  
 
Figure 2: Proliferation of FoxA+ Stem Cells is Specifically Triggered by Pharynx Loss 
(A) Whole-mount images of phosphohistone H3 (H3P) antibody in intact worms, or 1 day after 
pharynx or head amputation. Dashed blue outlines animal; scale bars = 250μm. 
(B) Confocal images of FISH for FoxA (green) and H3P antibody (magenta) in intact animals, or 
1 day after pharynx or head amputation. DNA = DAPI (blue); dashed boxes = region imaged; 
arrows = double-positive cells; scale bar = 10μm. 
(C) Graph of FoxA+ H3P+ cells at indicated times after pharynx amputation in the area outlined 
by dashed boxes in B. 
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(D) Graph of FoxA+ H3P+ cells at indicated times after head amputation in the area outlined by 
dashed boxes in B. Graphs are represented as mean ± SEM. Dots = individual animals; and *, p 
≤ 0.05; ***, p ≤ 0.001, ****, p ≤ 0.0001, unpaired t-test. 
 
Figure 3: Proliferation in a Critical Window of Time is Required for Pharynx Regeneration 
(A) Whole-mount images of H3P antibody in intact animals treated with DMSO (control) or 
nocodazole for 24 hours. Dashed line outlines animal; scale bars = 250µm. 
(B) Schematic of nocodazole treatment relative to pharynx amputation for graph in C.   
(C) Graph of feeding behavior of animals after pharynx amputation, treated as indicated in B 
and assayed daily, represented as a proportion. n ≥ 20 animals. 
(D) Whole-mount FISH for the pharynx marker laminin 7 days after pharynx amputation in 
animals treated with DMSO or nocodazole, 1 day after amputation for 24 hours. Dashed line 
outlines animal; boxes = zoomed area on right; scale bars = 250µm (left), 50µm (right). n ≥ 10 

animals. 
(E) Confocal images of FISH for FoxA (green) and piwi-1 (magenta) 3 days after pharynx 
amputation in animals treated with DMSO or nocodazole, 1 day after amputation for 24 hours. 
DNA = DAPI (blue); dashed boxes = region imaged; arrows = double-positive cells; scale bar = 
10µm. 
(F) Graph of FoxA+ piwi-1+ cells in the area outlined by dashed boxes in E, represented as 
mean ± SEM. Dots = individual animals; and **, p ≤ 0.01, unpaired t-test. 
  
Figure 4: ERK Phosphorylation is Required for Increased Pharyngeal Progenitors 
(A) Schematic of PD0325901 (PD) exposure relative to pharynx amputation for graph in B. 
(B) Graph of feeding behavior of animals after pharynx amputation, treated as indicated in A 
and assayed daily, represented as a proportion. n ≥ 20 animals. 
(C) Whole-mount FISH for the pharynx marker laminin 7 days after pharynx amputation in 
animals treated with DMSO or PD for 5 days. Dashed line outlines animal; boxes indicate 
zoomed area on right; scale bars = 250µm (left) or 50µm (right). n ≥ 10 animals. 
(D) Confocal Images of FISH for FoxA (green) and piwi-1 (magenta) 3 days after pharynx 
amputation in animals treated with DMSO or PD. DNA = DAPI (blue); dashed boxes = region 
imaged; arrows = double-positive cells; scale bar = 10µm.  
(E) Graph of FoxA+ piwi-1+ cells in the area outlined by dashed boxes in D. 
(F) Confocal images of FoxA FISH (green) and H3P antibody (magenta) 1 and 3 days after 
pharynx amputation in animals treated with DMSO or PD. DNA = DAPI (blue); dashed boxes = 
region imaged; arrows = double-positive cells; scale bar = 10μm. 
(G) Graph of FoxA+ H3P+ cells in the area outlined by dashed boxes in F at different times after 
pharynx amputation in animals treated with DMSO or PD.  
(H) Graph of H3P+ cells in the area outlined by dashed boxes in F at different times after 
pharynx amputation in animals treated with DMSO or PD. Bar graphs are represented as mean 
± SEM. In bar graphs: dots = individual animals; and **, p ≤ 0.01; ***, p ≤ 0.001, unpaired t-test. 
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Figure 5: Pharynx Loss Does Not Increase Non-pharyngeal Progenitors 
(A) Schematic of organ-specific progenitors and the organ systems they replenish. Progenitors 
express both piwi-1 and organ-specific transcription factors.  
(B) Models for specific and non-specific organ regeneration. Organ-specific progenitor stem 
cells (colored as indicated in A), other stem cells (grey). 
(C) Confocal images of FISH for ovo (green) and piwi-1 (magenta) in intact animals, or 3 days 
after pharynx or head amputation. DNA = DAPI (blue); dashed boxes = region imaged; arrows = 
double-positive cells; scale bar = 10µm.  
(D) Graph of cells double-positive for piwi-1 and the indicated progenitor marker in the area 
outlined by dashed boxes in C, represented as mean ± SEM. Dots = individual animals; and **, 
p ≤ 0.01; ***, p ≤ 0.001, unpaired t-test.  

  
Figure 6: Proliferation and ERK Activation are Not Required for Eye Regeneration 
(A) Confocal images of FISH for piwi-1 (magenta) and FoxA or ovo (green) in head fragments 0 
and 3 days after amputation. Blue dashed line outlines head fragment; DNA = DAPI (grey); 
dashed boxes = zoomed area below; white arrows = eyes; yellow arrows = double-positive 
cells; scale bars= 50µm (top) and 10µm (top).   
(B) Graph of FoxA+ piwi-1+ and ovo+ piwi-1+ cells in the area outlined by dashed boxes in the 
cartoon, represented as mean ± SEM. Dots = individual animals; and *, p ≤ 0.05, unpaired t-
test.  
(C) Live images 7 days after head amputation of animals treated with PD or DMSO for 5 days 
after amputation, or nocodazole for 1 day beginning 24 hours after amputation. Red arrows = no 
eyes, white arrows = regenerated eyes; scale bars = 250µm. n ≥ 10 animals. 
(D) Live images 7 days after eye resection in animals treated with PD or DMSO for 5 days, or 
nocodazole for 48 hours, immediately after resection. Red arrows = resected eyes; white arrows 
= regenerated eyes; scale bars = 50µm. n ≥ 10 animals. 
(E) Confocal images of FISH for ovo (green) and opsin (magenta) 7 days after eye resection in 
animals treated with PD or DMSO for 5 days, or nocodazole for 48 hours immediately after 
resection. Red arrows = resected eyes; white arrows = regenerated eyes; scale bars = 50µm. n 
≥ 10 animals. 
 
Figure 7: Model for Amplification of Progenitors During Regeneration 
In intact animals during homeostasis, organ-specific progenitor markers are expressed in a 
subset of stem cells. Within 1 day of either pharynx or head amputation, stem cells expressing 
progenitor markers for missing tissues (except ovo) are induced to proliferate. Three days after 
amputation, progenitors specific to missing tissues increase in number. FoxA+ stem cells 
proliferate and subsequently increase pharynx progenitors, dependent on ERK signaling.  
 
Supplemental Figure Legends 
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Supplementary Figure 1: FoxA+ Pluripotent Stem Cells Proliferate after Pharynx 
Amputation 
(A) Confocal images of FoxA (turquoise) and tgs-1 (magenta) FISH, and H3P antibody (yellow) 
in intact animals, and 1 day after pharynx amputation. DNA = DAPI (grey); yellow arrows = only 
H3P+; blue arrows = FoxA H3P double-positive; white arrows = FoxA, tgs-1 and H3P triple-
positive; scale bar = 10μm. 
(B) Graph of H3P+ cells that are FoxA- tgs-1+ (green), FoxA+ tgs-1- (red), and FoxA+ tgs-1+ 
(yellow) 1 day after pharynx amputation in the area outlined by dashed boxes in A, represented 
as mean ± SEM. Dots = individual animals; and *, p ≤ 0.05; ***, p ≤ 0.001, unpaired t-test. 
 
Supplementary Figure 2: Nocodazole Treatment Stalls FoxA+ Stem Cells in Mitosis after 
Pharynx Amputation  
(A) Confocal images of FoxA FISH (green) and H3P antibody (magenta) 2 days after pharynx 
amputation in animals treated with DMSO or nocodazole, 1 day after amputation for 24 hours. 
DNA = DAPI (blue); arrows = double-positive cells; scale bar = 10μm. 
(B) Graph of FoxA+ H3P+ cells quantified from A, represented as mean ± SEM. 
(C) Confocal images of FISH for FoxA (green) and piwi-1 (magenta) in intact animals treated 
with the DMSO or nocodazole, for 24 hours and fixed 1 day after wash out. DNA = DAPI (blue); 
arrows = double-positive cells; scale bar = 10μm. 
(D) Graph of FoxA+ piwi-1+ cells from C. Graphs represented as mean ± SEM. Dots = individual 
animals; and ***, p ≤ 0.001, unpaired t-test. 
 
Supplementary Figure 3: ERK-dependent Pharynx Regeneration is Independent of 
follistatin  
(A) Whole-mount colorimetric in situ hybridization of fst in intact animals and at different times 
after pharynx or head amputation. Arrows = amputation site; scale bars = 250µm.  
(B) Feeding behavior in control (unc-22), FoxA and fst RNAi animals 7 days after pharynx 
amputation, represented as a proportion of the total. n ≥ 10 animals. 
 
Supplementary Figure 4: Proliferation of Stem Cells Expressing Non-pharyngeal 
Progenitor Markers is Not Triggered by Pharynx Loss   
(A) Graph of cells double-positive for H3P and the indicated organ-specific progenitor marker in 
intact animals, or 1 day after pharynx or head amputation. Dashed boxes = region quantified. 
(B) Graph of cells double-positive for H3P and the indicated organ-specific progenitor marker in 
intact animals, or 2 days after pharynx or head amputation. Dashed boxes = region quantified. 
(C) Graph of feeding behavior 7 days after pharynx amputation in RNAi animals, represented as 
a proportion of the total. n ≥ 10 animals. Bar graphs represented as mean ± SEM. Dots = 

individual animals; and *, p ≤ 0.05; **, p ≤ 0.01, unpaired t-test.  
 
Materials and Methods 
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Worm care  
Schmidtea mediterranea asexual clonal line CIW4 were maintained in a recirculating system 
which facilitates constant UV sanitization of water containing Montjuïc salts (planaria water) 
(Arnold et al., 2016; Merryman et al., 2018). Prior to their use for experiments, animals were 
transferred to static culture and maintained in planaria water supplemented with 50 µg/mL 
gentamicin sulfate. Animals used for experiments were between 2-3mm in length and starved 
for approximately 5-7 days. 

Amputations, sodium azide treatment and tricaine anesthetization 
Amputations were done on 2-3 mm animals. Selectively pharynx removal was performed by 
chemical amputation as previously described (Adler et al., 2014; Shiroor et al., 2018). 
Planarians were placed in 100mM sodium azide diluted in planaria water. After 4-7 min, the 
pharynx extended out of the body and was plucked off using fine forceps (#72700-D; Electron 
Microscopy Sciences). The sodium azide was removed no more than 10 min after initial 
exposure and worms were rinsed 3 times, removing all loose pharynges, before being 
transferred into a fresh dish. Heads were removed using a micro feather scalpel (#72045-45; 
Electron Microscopy Sciences) to remove the head from the body approximately halfway 
between the eyes and the pharynx. When compared to chemical pharynx amputations, head 
amputations were performed and intact animals were soaked in sodium azide for 2-3 minutes. 
For pharynx incisions and partial amputations, animals were soaked in tricaine solution (4g/L in 
21mM Tris pH 7.5) diluted 1:3 in planaria water which causes the pharynx to extrude but not 
eject it. Pharynx incisions were created by inserting forceps into the pharynx and snipping along 
its length. To remove a portion of the pharynx, the proximal end of the pharynx was stabilized 
with forceps while a scalpel trimmed off the distal end. Eye resections were carried out by 
immobilizing animals on moist filter paper on a cooled block. The tips of fine forceps were used 
to scrape out the eye. 

In situ hybridizations, immunostaining and microscopy 
Animals were fixed as previously described (Pearson et al., 2009) with minor modifications. 
Briefly, animals were killed in 7.5% N-acetyl-cysteine in PBS for 7.5 minutes and fixed in 4% 
paraformaldehyde in PBSTx (PBS + 0.3% Triton X-100) for 30 minutes. Worms were then 
rinsed twice with PBSTx and incubated in pre-warmed reduction solution (PBS+ 1% NP-40 + 
50mM DTT + 0.5% SDS) at 37°C for 10 minutes. Worms were rinsed twice more with PBSTx, 
dehydrated in a methanol series and stored at -20°C. 

Colorimetric in situ hybridizations were performed as described in (Pearson et al., 2009) using 
the anti-DIG-AP (Roche 11093274910) at 1:3000. Fluorescent in situ hybridizations were 
performed as in (King & Newmark, 2013) with minor modifications. Briefly, probes were 
generated for the genes indicated below with the provided animals were rehydrated and 
bleached (5% formamide, 1.2% H2O2 in 0.5x SSC) for 2 hours, then treated with proteinase K (4 
µg/mL in PBSTx, Thermo Fisher 25530049). Following overnight hybridizations at 56°C, 
samples were washed 2x each in wash hybe (5 min), 1:1 wash hyb:2X SSC-0.1% Tween 20 (10 
min), and 2X SSC-0.1% Tween 20 (30 min), 0.2X SSC-0.1% Tween 20 (30 min) at 56°C 
followed by 3 x 10 minute PBSTx washes at room temperature. Subsequently, animals were 
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placed in blocking solution (0.5% Roche Western Blocking Reagent and 5% inactivated horse 
serum for POD and AP antibodies and 0.2% BSA for DNP antibodies diluted in PBSTx). 
Animals were then incubated with an appropriate antibody: 1:1000 anti-DIG-POD (Roche 
11207733910), 1:1000 anti-FITC-POD (Roche 11426346910) or 1:200 anti-DNP-HRP (Perkin 
Elmer FP1129) in blocking solution at 4°C overnight (2 nights for anti-DNP). Antibodies were 
washed off in PBSTx and probes were developed by pre-incubation with tyramide (1:2000 FAM; 
1:7,500 Cy3) in borate buffer for 30 minutes and then developed with 0.005% H2O2 in borate 
buffer for 45 minutes. Animals were pre-incubated with rhodamine tyramide (1:5000) for 10 
minutes and developed for 15. For the development of subsequent probes, or detection of H3P, 
peroxidase was inactivated with 200mM sodium azide in PBSTx for 1 hour, then rinsed with 
PBSTx >6 times before application of the next antibody. 

Animals were stained with phosphohistone H3 following in situ hybridizations by incubation in 
anti-phosphohistone H3 (Ser10) antibody (Abcam, Cambridge, MA Ab32107) at a concentration 
of 1:1000 in blocking solution (0.5% Roche Western Blocking Reagent and 5% inactivated 
horse serum in PBSTx) for 2 days at 4°C. Primary was washed off with PBSTx followed by 
incubation with either goat anti-rabbit-Alexa Fluor 647 (Life Technologies A21072) at 1:500 or 
goat anti-rabbit-HRP (Thermo Fisher 31460) at 1:2000 in PBSTx overnight at 4°C. Antibody was 
washed off with PBSTx and samples incubated in HRP antibody were pre-incubated in 
rhodamine tyramide (1:5000 in PBSTx) for 10 minutes and then developed with 0.005% H2O2 in 
PBSTx for 15 minutes.  
 
DAPI [5µg/mL]  (Thermo Scientific) diluted 1:5000, was added during the last antibody 
incubation. After development, animals were soaked in ScaleA2 (4M urea, 20% glycerol, 0.1% 
Triton X-100, 2.5% DABCO) (Hama et al., 2011) for at least 3 days and mounted in Aqua-
Polymount (Polysciences Inc. 18606). Whole-mount colorimetric in situ hybridizations and live 
worms were imaged on a Leica M165F. Fluorescent in situ hybridizations were imaged on a 
Zeiss 710 confocal microscope. Images were processed in Fiji (Schindelin et al., 2012). 
  
Nocodazole treatment 
Nocodazole (Sigma M1404) was administered in 24 or 48 hour increments at 50ng/mL diluted in 
planaria water containing 0.05% DMSO. Following treatment, animals were rinsed 3 times, 
transferred to a fresh dish and rinsed daily until further experimentation. 
 
PD0325901 MEK1/2 inhibitor III (PD) treatment 
PD0325901 (EMD Millipore™ Calbiochem™ 4449685MG) was administered at 10µM diluted in 
planaria water containing 0.02% DMSO, and replaced daily. Animals whose treatment started at 
0 days post-amputation were also soaked in PD 1 hour prior to and during amputation. After 
removal of PD, animals were rinsed 3 times and either fixed immediately, or transferred to a 
new dish and rinsed daily until further experimentation. 
 
Feeding assay 
Animals were delivered 20µL of colored food (4:1 liver:milliQ water with 2% red food coloring) in 
a petri dish. Percentage of animals with red intestines were scored after approximately 30 min 
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of food exposure. For time courses, feeding assays started at 4 days post-amputation and any 
animals that ate were scored and then removed from the dish. Feeding assay time courses 
were repeated at least three times with ~20 animals assayed per experiment.  
 
Feeding RNAi  
RNAi was carried out as previously described (Rouhana et al., 2013), with a few exceptions. 
Briefly, double stranded RNA (dsRNA) was synthesized in vitro using PCR products of 
mentioned genes. dsRNA was then diluted in colored food to a final concentration of 400ng/µL. 
Animals were removed from the incubator and immediately fed every 3 days, for a total of 6 
feeds, except for gata-4/5/6 and six-1/2 RNAi which developed phenotypes after 1-2 feeds. C. 
elegans unc22 dsRNA was used as a control. Amputations were carried out 5-7 days after the 
last feed. All RNAi experiments were repeated at least twice with at least 10 animals per 
experimental group. Efficient knockdown was confirmed by WISH and/or manifestation of known 
phenotypes. 
 
Quantification and statistical analysis  
Quantification of piwi-1+ progenitors was performed with a minimum of 3 animals for each 
experimental group. Quantification was carried out manually in size-matched areas in the same 
approximate region of the animal. Quantification of H3P was performed in 5 animals for each 
experimental group. The anterior trunk region was imaged for H3P-stained animals and all H3P 
foci in the imaged region were quantified manually. In all bar graphs, dots represent individual 
animals and error bars represent standard error. Statistical analysis was performed using 
PRISM-Graphpad version 8 to perform an unpaired t-test. *p ≤ 0.05; **p ≤ 0.01, ***p ≤ 0.001 

and ****p ≤ 0.0001.  
 
Gene annotation 
Sequences for all transcripts used in this study for in situ hybridization and dsRNA synthesis 
were previously published and were identified in the ‘dd_Smed_v6’ transcriptome in PlanMine 
(Brandl et al., 2016) as follows: piwi-1 (dd_Smed_v6_659_0_1) (Reddien et al., 2005); FoxA 
(dd_Smed_v6_10718_0_4) (Adler & Sánchez Alvarado, 2015; Scimone, Kravarik, et al., 2014); 
tgs-1 (dd_Smed_v6_10988_0_1) (Zeng et al., 2018); laminin (dd_Smed_v6_8356_0_1) (Cebrià 
& Newmark, 2007); fst (dd_Smed_v6_9584_0_1) (Wenemoser et al., 2012); ovo 
(dd_Smed_v6_48430_0_1) (Lapan & Reddien, 2012); myoD (dd_Smed_v6_12634_0_1) 
(Cowles et al., 2013); gata-4/5/6 (dd_Smed_v6_4075_0_1) (Wagner et al., 2011); six-1/2 
(dd_Smed_v6_9774_0_1) (Scimone et al., 2011); and pax6a (dd_Smed_v6_17726_0_1) 
(Pineda et al., 2002). 
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