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ABSTRACT 15 

Immune regulatory metabolites are key features of the tumor microenvironment (TME), yet with 16 

a few notable exceptions, their identities remain largely unknown. We uncovered the immune 17 

regulatory metabolic states and metabolomes of sorted tumor and stromal, CD4+, and CD8+ cells 18 

from the tumor and ascites of patients with high-grade serous ovarian cancer (HGSC) using high-19 

dimensional flow cytometry and metabolomics supplemented with single cell RNA sequencing. 20 

Flow cytometry revealed that tumor cells show a consistently greater uptake of glucose than T 21 

cells, but similar mitochondrial activity. Cells within the ascites and tumor had pervasive 22 

metabolite differences, with a striking enrichment in 1-methylnicotinamide (MNA) in T cells 23 

infiltrating the tumor compared to ascites. Despite the elevated levels of MNA in T cells, the 24 

expression of nicotinamide N-methyltransferase, the gene encoding the enzyme that catalyses the 25 

transfer of a methyl group from S-adenosylmethionine to nicotinamide, was restricted to 26 

fibroblasts and tumor cells. Treatment of T cells with MNA resulted in an increase in T cell-27 

mediated secretion of the tumor promoting cytokine tumor necrosis factor alpha. Thus, the TME-28 

derived metabolite MNA contributes to an alternative and non-cell autonomous mechanism of 29 

immune modulation of T cells in HGSC. Collectively, uncovering the tumor-T cell metabolome 30 

may reveal metabolic vulnerabilities that can be exploited using T cell-based immunotherapies to 31 

treat human cancer.  32 
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Tumor-derived metabolites can have profound suppressive effects on anti-tumor immunity, with 33 

increasing evidence that they can also function as key drivers of disease progression1,2. Beyond the 34 

Warburg effect, recent work has begun to characterize the metabolic states of tumor cells and their 35 

relationship to the immunological state of the TME. Studies in murine models have helped uncover the 36 

role of metabolites such as (R)-2-hydroxyglutarate3, BH44 and methylglyoxal5 as well as pathways 37 

including glutamine metabolism6, oxidative metabolism7, and glucose metabolism8 that impact T cell 38 

function and antitumor immunity. Furthermore, studies in humans have elucidated key metabolic 39 

pathways in tumors, for example demonstrating that tumors can use lactate as fuel9. Despite this, the 40 

diversity and impact of specific metabolites on tumor-infiltrating lymphocytes (TILs) are largely 41 

unknown. To characterize this diversity and better understand how metabolites in the TME influence T 42 

cell function, a combined flow cytometry and mass-spectrometry approach was used to profile tumor 43 

and TIL from patients with HGSC. Using this approach two spatially distinct microenvironments were 44 

interrogated, the ascites10 and tumor, within the same patients to reveal potential reciprocal metabolic 45 

interactions between tumor cells and TIL. 46 

 47 

The phenotypic and metabolic states of cells in the matched ascites and tumor environments from six 48 

patients with HGSC (Extended Data Table 1) were evaluated using high-dimensional flow cytometry to 49 

synchronously quantify glucose uptake (2-(N-(7-Nitrobenz-2-oxa-1,3-diazol-4-yl)Amino)-2-50 

Deoxyglucose, 2-NBDG) and mitochondrial activity (MitoTracker Deep Red)5,11,12 alongside canonical 51 

markers to distinguish immune and tumor cell populations (Extended Data Table 2, Extended Data Fig. 52 

1a). This revealed high levels of glucose uptake in tumor cells relative to T cells in both the ascites and 53 

tumor, but more modest differences in mitochondrial activity. Tumor cells (CD45-EpCAM+) had on 54 

average 3-4 times the glucose uptake of T cells, whereas CD4+ T cells had on average 1.2 times the 55 

glucose uptake of CD8+ T cells, suggesting that TILs have different metabolic requirements even within 56 
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the same TME (Fig. 1a). In contrast, the mitochondrial activity in tumor cells was similar to CD4+ T 57 

cells, and both had greater mitochondrial activity than CD8+ T cells (Fig. 1b). Collectively, these results 58 

reveal a metabolic hierarchy, with tumor cells more active than CD4+ T cells, and CD4+ T cells more 59 

metabolically active than CD8+ T cells. Despite these effects across cell types, there were no consistent 60 

differences in the metabolic states of CD4+ and CD8+ T cells, or their relative proportions, in the ascites 61 

compared to the tumor (Fig. 1c). Conversely, within the CD45- cell fraction, there was an increase in the 62 

proportion of EpCAM+ cells in the tumor compared to the ascites (Extended Data Fig. 1b). We also 63 

observed clear metabolic differences among EPCAM+ and EPCAM- cell fractions. EPCAM+ (tumor) 64 

cells had substantially greater glucose uptake and mitochondrial activity than EPCAM- cells, consistent 65 

with much higher metabolic activity in tumor cells than fibroblasts in the TME (Extended Data Fig. 1c, 66 

d).  67 

 68 

Further analysis revealed other clear differences when considering more highly-resolved phenotypic 69 

states of T cells13. Indeed, activated (Extended Data Fig. 1e-g) and effector memory (Extended Data Fig. 70 

1h, i) T cells were much more frequent (as a proportion of T cells) in the tumor than ascites. Similarly, 71 

resolving phenotypes by the expression of activation markers (PD1, CD25, CD137) revealed that while 72 

these populations showed some differences in metabolism (Extended Data Fig. 2a-e), no consistently 73 

significant metabolic differences were observed between naïve, effector, or memory cells (defined by 74 

CCR7 and CD45RO, Extended Data Fig. 2f-i). These results were confirmed through automated 75 

assignment of cell phenotypes using machine learning method14, which further revealed an abundant 76 

myeloid cell population (CD3-/CD4+) predominately in patient ascites that displayed the highest 77 

glucose uptake and mitochondrial activity of any identified cell type (Extended Data Fig 3). These 78 

results underscore strong metabolic differences across different cell types found in the ascites and 79 

tumors of HGSC patients. 80 
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A major challenge in understanding the metabolomic profiles of TIL has been the need to isolate 81 

samples of T cells of sufficient purity, quality and quantity from tumors. Recent studies have shown that 82 

flow cytometry based sorting and bead enrichment methods can cause alterations in cellular metabolite 83 

profiles15–17. To overcome this, we optimized a bead enrichment approach to isolate and separate TIL 84 

from surgically resected human ovarian cancers prior to analysis by liquid chromatography tandem mass 85 

spectrometry (LC-MS/MS) (See Methods; Extended Data Fig. 4a). To assess the overall impact of this 86 

protocol on metabolite changes, we compared the metabolite profiles of activated T cells following bead 87 

isolation to cells that did not undergo bead isolation but remained on ice, and found high correlation 88 

among methods (r = 0.77), as well as high reproducibility among technical replicates for this panel of 86 89 

metabolites (see Extended Data Fig. 4b). These methods thus enabled accurate metabolite profiling in 90 

cells undergoing enrichment, to provide a first high-resolution platform for the identification of specific 91 

metabolites in HGSC thereby allowing deeper insight into cell-specific metabolic programs.  92 

 93 

We applied this enrichment method to profile 99 metabolites in CD4+, CD8+, and CD45- cell fractions 94 

from the primary ascites and tumor of six patients with HGSC (Extended Data Fig. 4c). Profiling 95 

revealed strong metabolic separation of cell types within and across patients (Fig. 2a, Extended Data 96 

Fig. 5a). In particular, patient 70 had distinct metabolic profiles compared to other patients (Fig. 2b, 97 

Extended Data Fig. 5b), indicating the potential for substantial metabolic heterogeneity among patients. 98 

Notably, patient 70 had a smaller total volume of ascites collected (80 mL) compared to the other 99 

patients (1.2-2 L) (Extended Data Table 1). Controlling for inter-patient heterogeneity during principal 100 

component analysis (e.g. using partial redundancy analysis) revealed consistent changes among cell 101 

types, with clear clustering of cell types and/or microenvironments based on metabolite profile (Fig. 2c). 102 

Analyses of single metabolites underscored these effects and revealed dramatic differences among cell 103 

types and microenvironments. Notably, the most extreme difference observed was for 1-104 
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methylnicotinamide (MNA), which was enriched in CD45- cells in general, and ~10-100-fold in T cells 105 

when they infiltrated the tumor (Fig. 3a). This effect was most pronounced for CD4+ T cells; while 106 

MNA in CD8+ cells also appeared to be strongly affected by the environment, this was not significant as 107 

tumor CD8+ fractions were only evaluable for three of the six patients.  108 

 109 

MNA is produced by the transfer of a methyl group from s-adenosyl-L-methionine (SAM) to 110 

nicotinamide (NA) by nicotinamide N-methyltransferase (NNMT). NNMT is over-expressed in multiple 111 

human cancers and has been linked to proliferation, invasion, and metastasis. To better understand the 112 

source of MNA in T cells in the TME, we used single cell RNA sequencing (scRNA-seq) to characterize 113 

NNMT expression across cell types in the ascites and tumor of three patients with HGSC (Extended Data 114 

Table 3). Profiling ~6,500 cells revealed that NNMT expression was confined to presumptive fibroblast 115 

and tumor cell populations in both the ascites and tumor environments (Fig. 3b,c). Notably, there was no 116 

appreciable NNMT expression in any PTPRC-expressing (CD45+) populations (Fig. 3c), suggesting the 117 

MNA detected in metabolite profiling is imported into T cells. The expression of aldehyde oxidase 1 118 

(AOX1), which converts MNA to 1-methyl-2-pyridone-5-carboxamide (2-PYR) or 1-methyl-4-pyridone-119 

5-carboxamide (4-PYR), was likewise restricted to fibroblast populations (Extended Data Fig. 6), 120 

collectively suggesting that T cells lack the capacity for conventional MNA metabolism. This metabolite 121 

profile and scRNA-seq analysis also revealed similar, although less dramatic, patterns for both L-122 

kynurenine and adenosine (Extended Data Fig. 7), two well-characterized immunosuppressive 123 

metabolites that were also elevated in T cells from the tumor, and/or in tumor cells. These trends, 124 

coupled with the striking enrichment of MNA in T cells within the tumor, raised the possibility that 125 

secretion of MNA into the TME may modulate the phenotypes of TIL to compromise antitumor 126 

immunity. 127 
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To determine the impact of MNA on T cells, healthy donor T cells were activated in the presence of 128 

MNA and assessed for proliferation and function. Addition of MNA did not lead to decreased 129 

proliferation or viability in either CD4+ or CD8+ T cells after 7 days (Fig. 4a), but rather increased the 130 

proportion of CD4+ and CD8+ T cells that expressed tumor necrosis factor alpha (TNFα) (Fig. 4b). 131 

While TNFα has been reported to have context-dependent pro- and anti-tumor effects, it has a well-132 

described role in promoting ovarian cancer growth and metastasis18–20. Patients with ovarian cancer have 133 

been reported to have higher concentrations of TNFα within their ascites and tumor tissue than selected 134 

benign tissue21–23. Mechanistically, TNFα can modulate activation, function and proliferation of 135 

leukocytes, and change the phenotype of cancer cells24,25. Consistent with these findings, differential 136 

expression analysis of T cell populations between the ascites and tumor also revealed a significant up-137 

regulation of TNF on T cells in the tumor relative to the ascites. Importantly, the increase in TNF was 138 

only apparent for T cell populations that did not exhibit a cytotoxic phenotype (Fig. 4c). Taken together, 139 

these data support the notion of a dual immune suppressive and tumor promoting role for MNA in 140 

HGSC. 141 

 142 

By applying a combined metabolomics approach, this study revealed pervasive immune metabolome 143 

differences between cells within the tumor and ascites of HGSC patients. This integrated analysis 144 

demonstrated differences in glucose uptake and mitochondrial activity between T cells and tumor cells 145 

in HGSC. However, these flow-based methods of assessing metabolism, while methodologically 146 

straightforward and providing single cell resolution, do not provide sufficient information regarding the 147 

cellular impacts of specific metabolites that function in cis or in trans within a given cell type. 148 

Importantly, our work uncovered a previously unrecognized metabolite MNA as differentially abundant 149 

between compartments and cell types. In vitro, MNA increased T cell-mediated secretion of the tumor 150 

promoting cytokine TNFα, providing insight for an alternative and non-cell autonomous role of MNA as 151 

an immune modulator in the ovarian TME. 152 
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Figures 206 

 207 

Figure 1 | Tumor cells have greater glucose uptake but similar mitochondrial activity to T cells. a, 208 

b, Representative plot (left) and tabulated data (right) for median fluorescent intensity (MFI) of glucose 209 

uptake (2-NBDG) (a) and mitochondrial activity (MitoTracker Deep Red) (b) of CD4+ T cells, CD8+ T 210 

cells, and EpCAM+CD45- tumor cells from ascites and tumor. c, Proportion of CD4+ and CD8+ cells 211 

(of CD3+ T cells) within ascites and tumor. P-values determined by paired t-test (*p<0.05, **p<0.01, 212 

***p<0.001) (a-c). Lines indicate matched patients (n=6). Fluorescence Minus One (FMO); Median 213 

Fluorescence Intensity (MFI).  214 
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 215 

 216 

Figure 2 | Metabolite profiling of matched ascites and tumor reveals key differences between 217 

tumor cells and T cells. a, Heatmap of normalized metabolite abundance, with dendrograms 218 

representing Ward’s clustering of Euclidean distances among samples. b, Principal components analysis 219 

(PCA) of sample metabolite profiles, showing triplicate replicates of each sample, with samples from the 220 

same patients joined by lines. c, PCA of sample metabolite profiles conditioned on patient (i.e. using 221 

partial redundancy); sample types are circumscribed by convex hulls.  222 
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 223 

 224 

Figure 3 | 1-Methylnicotinamide (MNA) is more abundant in T cells from the tumor compared to 225 

ascites. a, Normalized abundance of MNA in CD4+, CD8+ and CD45- cells from ascites and tumor. 226 

Boxplots show medians (lines), interquartile range (box hinges) and range of data up to 1.5X 227 

interquartile range (box whiskers). P-values are determined using limma with patient as a random effect, 228 

as described in methods (*p<0.05, **p<0.01). b, t-SNE of scRNA-seq of ascites (grey) and tumor (red) 229 

(n=3 patients). c, NNMT expression in different cellular populations identified using scRNA-seq.   230 
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 231 

 232 

Figure 4 | Exogenous MNA enhances TNFα expression in T cells. a, Total live cell count and 233 

viability directly from culture on day 7. Bar graphs represent mean with SEM of three healthy donors. b, 234 

TNFα expression in T cells treated with exogenous MNA. T cells were activated using CD3/CD28 with 235 

IL2 in respective concentrations of MNA for 7 days. Cells were stimulated with PMA/Ionomycin with 236 

GolgiStopTM for 4 hours prior to analysis. Example plot of live cells (left) and tabulated data (right). Bar 237 

graphs represent mean with SEM of 3 healthy donors. P-value determined using paired t-test (*p<0.05, 238 

**p<0.01). c, T cells (non-cytotoxic) show increased expression of TNF in the tumor relative to the 239 

ascites of HGSC. Colors represent different patients. Displayed cells have been randomly subsampled to 240 

300 and jittered to limit overplotting (Padj = 0.0076).  241 
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Methods 242 

Patient sample collection and processing. Patient specimens and clinical data were obtained through 243 

the BC Cancer Tumour Tissue Repository (TTR), certified by the Canadian Tissue Repository Network. 244 

All specimens and clinical data were obtained with either informed written consent or a formal waiver of 245 

consent under protocols approved by the Research Ethics Board of the BC Cancer Agency and the 246 

University of British Columbia (H07-00463). Samples are stored in a certified BioBank (BRC-00290). 247 

Detailed patient characteristics are shown in Extended Data Table 1 and Extended Data Table 3. 248 

For cryopreservation, patient tumor samples were mechanically disaggregated using a scalpel 249 

and pushed through a 100 μm filter to obtain a single cell suspension. Patient ascites was centrifuged at 250 

1500 rpm for 10 minutes at 4 °C to pellet cells and remove supernatant. Cells obtained from tumor and 251 

ascites were cryopreserved in 50% heat inactivated human AB serum (Sigma), 40% RPMI-1640 (Fisher) 252 

and 10% DMSO.  253 

Cell culture reagents. Complete media consisted of a 0.22 μm filtered 50:50 supplemented 254 

RPMI1640:AimV. RPMI1640 + 2.05 mM L-Glutamine (Fisher) was supplemented with 10% heat 255 

inactivated human AB serum (Sigma), 12.5 mM HEPES (Fisher), 2 mM L-Glutamine (Fisher), 1x 256 

Penicillin Streptomycin solution (Fisher) and 50 μM B-mercaptoethanol. AimV (Invitrogen) was 257 

supplemented with 20 mM HEPES (Fisher) and 2 mM L-glutamine (Fisher). Flow cytometry staining 258 

buffer consisted of 0.22 μm filtered PBS (Invitrogen) supplemented with 3% heat inactivated AB human 259 

serum (Sigma). Cell enrichment buffer consisted of 0.22 μm filtered PBS supplemented with 0.5% heat 260 

inactivated human AB serum (Sigma). 261 

Flow cytometry for metabolic profiling. Cells were stained with 10 nM MitoTracker Deep Red (MT 262 

DR) and 100 μM 2-(N-(7-Nitrobenz-2-oxa-1,3-diazol-4-yl)Amino)-2-Deoxyglucose (2-NBDG) for 30 263 

minutes in complete media at 37°C. Next, cells were stained with viability dye-eF506 for 15 minutes at 264 

4 °C. Cells were resuspended in FC block (eBioscience) and Brilliant Stain Buffer (BD Bioscience) 265 
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diluted in flow cytometry staining buffer (according to manufacturer instructions) and incubated for 10 266 

minutes at room temperature. Cells were stained with a panel of antibodies (Extended Data Table 3) in 267 

flow cytometry staining buffer for 20 minutes at 4 °C. Cells were resuspended in flow cytometry 268 

staining buffer prior to analysis (Cytek Aurora; 3L-16V-14B-8R configuration). 269 

Cytometry data were analyzed using SpectroFlo and FlowJo V10, and figures were created using 270 

GraphPad Prism 8. Median Fluorescent Intensity of 2-NBDG and MT DR were log10 normalized prior to 271 

statistical analysis using paired t-test to account for matched patients. Any population with less than 40 272 

events was removed from the analysis, an MFI value of 1 was inputted for any negative values prior to 273 

statistical analysis and data visualization. 274 

Unbiased discovery of cell populations in flow cytometry data. To supplement our manual gating 275 

strategy for the above flow panel, we used Full Annotation Using Shape-constrained Trees (FAUST)14 276 

to automatically assign cells to populations, after dead cell exclusion in FlowJo. We manually curated 277 

outputs to merge populations that appeared to be mis-assigned (merged PD1+ with PD1- tumor cells), 278 

and retained populations comprising, on average, more than 2% of cells in each sample, for a total of 11 279 

populations. 280 

Cell activation and enrichment for metabolite profiling optimization. Peripheral blood mononuclear 281 

cells (PBMCs) were isolated from a Leukopheresis Pack (Stemcell) using Ficoll gradient density 282 

centrifugation. CD8+ T cells were isolated from the PBMCs using CD8 MicroBeads (Miltenyi) and 283 

expanded using TransAct (Miltenyi) for 2 weeks in complete media according to manufacturer's 284 

instructions. Cells were rested for 5 days in complete media with 10 ng/ml IL-7 (Peprotech) and then 285 

restimulated with TransAct. On day 7, cells were enriched using CD45 MicroBeads (Miltenyi) in three 286 

rounds of sequential enrichment according to the manufacturer’s instructions. Cells were aliquoted for 287 

analysis by flow cytometry (described above) and 1 million cells were aliquoted in triplicate for analysis 288 

by LC-MS/MS. Samples were processed for LC-MS/MS as described below. We imputed missing 289 
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metabolite values with an ion count of 1000. Each sample was normalized by total ion count (TIC) and 290 

log10 transformed prior to statistical analysis. 291 

Cell-type enrichment of patient samples. Patient cells were filtered through a 40 μm filter. Samples 292 

were enriched for CD8+, CD4+ and CD45- cells (on ice) using three sequential rounds of positive 293 

selection by magnetic bead separation (Miltenyi MACS MicroBeads). CD8- fraction was used for CD4 294 

enrichment, and the CD4- fraction was used for CD45- enrichment to maximize cell recovery.  295 

LC-MS/MS metabolite profiling. To prepare samples (in triplicate) for metabolite profiling, cells were 296 

washed once with ice-cold saline solution and 1 mL of 80% methanol added to each sample before 297 

vortexing and snap freezing in liquid nitrogen. Samples were subjected to 3 freeze-thaw cycles, and 298 

centrifuged at 14,000 rpm for 15 minutes at 4 °C. The metabolite-containing supernatant was evaporated 299 

until dry. Metabolites were reconstituted in 50 μl of 0.03% formic acid, vortex-mixed, and centrifuged to 300 

remove debris. The supernatant was transferred to a high-performance liquid chromatography (HPLC) 301 

vial for the metabolomics study. Each sample was processed with similar numbers of cells using a 302 

randomized processing scheme to prevent batch effects. We performed qualitative assessment of global 303 

metabolites as previously published on the AB SCIEX QTRAP 5500 triple-quadrupole mass 304 

spectrometer26. Chromatogram review and peak area integration were performed using MultiQuant 305 

software version 2.1 (Applied Biosystems SCIEX).  306 

Characterizing metabolic differences across cell types and microenvironments. Missing metabolite 307 

values were imputed with an ion count of 1000 and normalized peak area calculated for each detected 308 

metabolite using the total ion count from each sample to correct variations introduced from sample 309 

handling through instrument analysis. TIC-normalization was followed by log10 transformation and 310 

autoNorm row-scaling using MetaboAnalystR27 (default parameters). We conducted exploratory analysis 311 

of metabolome differences across sample types using PCA with the vegan R package, and conditioned 312 

the analysis on patient using partial redundancy analysis. Heatmap dendrograms were constructed using 313 
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Ward’s method to cluster Euclidean distances among samples. We identified differentially-abundant 314 

metabolites across cell types and microenvironments using limma28 on the log10-transformed row-315 

normalized metabolite abundances. To simplify interpretation, we specified the model using the group 316 

means parameterization, treating cell types within microenvironments as each group (n=6 groups); for 317 

significance testing we took the average of triplicate measurements for each metabolite to avoid 318 

pseudoreplication, and included patient as a block in the limma design. To examine metabolites that 319 

differed across patients we re-fit models in limma including patient as a fixed effect. We reported 320 

significance at Padj < 0.05 (Benjamini-Hochberg correction) for pre-specified contrasts among cell types 321 

and microenvironments. 322 

scRNA-seq. Single cell transcriptome sequencing was performed on total viably-frozen ascites and 323 

tumor samples using the 10X 5’ Gene Expression protocol, following viability enrichment with the 324 

Miltenyi Dead Cell Removal Kit (>80% viability). 5 cases with matched tumor and ascites available 325 

were profiled, although low viability from 1 tumor sample prevented its inclusion. To enable 326 

multiplexing of patients, we combined samples from each patient in lanes of the 10X Chromium 327 

controller, with separate runs for ascites and tumor fractions. Following sequencing (Illumina HiSeq 328 

4000 26x98bp PE, Genome Quebec; mean of 73,488 and 41,378 reads per cell for tumor and ascites, 329 

respectively), we assigned donor identities using CellSNP and Vireo29 (based on the common human 330 

SNP VCF provided by CellSNP for GRCh38). We excluded unassigned cells and those identified as 331 

doublets, and matched donors between ascites and tumor samples based on the nearest identity-by-state 332 

(IBS) of inferred patient genotypes using SNPRelate30. Based on this assignment, we retained 3 cases 333 

with abundant cellular representation in both tumor and ascites fractions for downstream analysis. 334 

Following quality filtering steps in the scater31 and scran32 BioConductor packages, this yielded 6,975 335 

cells (2,792 and 4,183 from tumor and ascites, respectively) for analysis. We clustered cells by 336 

expression using igraph’s33 Louvain clustering implementation of the shared nearest neighbour network 337 
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(SNN) based on Jaccard distance. Clusters were manually annotated into presumptive cell types based 338 

on marker gene expression and visualized with t-SNE. 339 

T cell functional assay. PBMCs were isolated from a leukapheresis product (Stemcell) by Ficoll 340 

gradient density centrifugation. CD3+ cells were isolated from the PBMCs using CD3 Microbeads 341 

(Miltenyi). The CD3+ cells were activated with plate bound CD3 (5 μg/ml), soluble CD28 (3 μg/ml), 342 

and IL-2 (300 U/ml, Proleukin) in the presence or absence of MNA. On the final day of expansion 343 

viability (Fixable Viability Dye eFluor450, eBioscience) and proliferation (123count eBeads, Thermo) 344 

was assessed by flow cytometry. Effector function was assessed by stimulating cells for 4 hours with 345 

PMA (20 ng/ml) and Ionomycin (1 μg/ml) with GolgiStopTM and monitored for CD8-PerCP (RPA-T8, 346 

Biolegend), CD4-AF700 (RPA-T4, Biolegend), and TNFa-FITC (MAb11, BD).  347 

Statistical analysis. Statistical analysis was carried out as described in the text or methods using 348 

GraphPad Prism 8, Microsoft Excel or R v3.6.0. Where multiple samples were taken from the same 349 

patient (e.g. ascites and tumor), we used paired t-tests, or included patient as a random effect in linear or 350 

generalized models, as appropriate. For metabolomic analysis, significance testing was done on means 351 

of triplicate measurements. 352 

Data Availability 353 

Raw sequencing data will be deposited at NCBI dbGAP (Accession pending). Processed data files and 354 

scripts to reproduce metabolomics and scRNA-seq analyses are available at 355 

github.com/vicDRC/onecarbon. Flow cytometry data will be deposited at flowrepository. 356 

Code Availability  357 

R scripts to reproduce metabolomic and single cell RNA-seq analyses are available at 358 

github.com/vicDRC/onecarbon. 359 
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Extended data 399 

 400 
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Extended Data Figure 1 | Phenotypic characterization of ascites and tumor by flow cytometry. a, 401 

Representative gating strategy for analysis by flow cytometry. b, Proportion of EpCAM+ (of CD45-) 402 

tumor cells within ascites and tumor. c, d, Representative plot (left) and tabulated data (right) for 403 

glucose uptake (2-NBDG) (c) and mitochondrial activity (MitoTracker Deep Red) (d) of 404 

EpCAM+CD45- tumor and EpCAM-CD45- stromal cells from ascites and tumor. e, Representative 405 

gating strategy for CD25, CD137 and PD1 expression by flow cytometry. f, g, CD25, CD137 and PD1 406 

expression on CD4+ T cells (f) and CD8+ T cells (g). h, i, Naive, central memory (Tcm), effector (Teff), 407 

and effector memory (Tem) phenotype based on CCR7 and CD45RO expression. Representative plot 408 

(left) and tabulated data (right) for CD4+ T cells (h) and CD8+ T cells (i) from ascites and tumor. P-409 

values (*p<0.05, **p<0.01, ***p<0.001) determined by paired t-test (b-d, f-i). Median Fluorescence 410 

Intensity (MFI). 411 
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 412 

Extended Data Figure 2 | T cell metabolism is impacted by expression of activation markers. a, 413 

Representative plots of glucose uptake (2-NBDG) and mitochondrial activity (MitoTracker Deep Red) 414 

for CD25, CD137 and PD1 positive and negative CD4 and CD8 T cells. b, c, Mitochondrial activity (b) 415 

and glucose uptake (c) of CD25, CD137 and PD1 CD4+ T cells. d, e, Mitochondrial activity (d) and 416 
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glucose uptake (e) of CD25, CD137 and PD1 CD8+ T cells. f, g, Representative plot (left) and tabulated 417 

data (right) for glucose uptake (f) and mitochondrial activity (g) of naive, Tcm, Teff and Tem CD4+ T 418 

cells. h, i, Representative plot (left) and tabulated data (right) for glucose uptake (h) and mitochondrial 419 

activity (i) of naive, Tcm, Teff and Tem CD8+ T cells. P-values (*p<0.05, **p<0.01, ***p<0.001) 420 

determined by paired t-test b-i). Lines indicate matched patients (b-i). Fluorescence Minus One (FMO); 421 

Median Fluorescence Intensity (MFI); Central memory T cells (Tcm); Effector T cells (Teff); Effector 422 

memory T cells (Tem). 423 
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 424 

Extended Data Figure 3 | Automated analysis of metabolism and cell type by flow cytometry. a, 425 

Heat map of cell type abundance. b, c, Glucose uptake and mitochondrial activity of cell fractions within 426 

ascites (b) and tumor (c). Boxplots show medians (lines), interquartile range (box hinges) and range of 427 
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data (box whiskers; excepting outliers, shown as points) d, e, Correlation between glucose uptake and 428 

mitochondrial activity of cell fractions within the ascites (d) and tumor (e). f, g, Correlation of glucose 429 

uptake (f) and mitochondrial activity (g) of cell fractions between ascites and tumor. Median (per 430 

phenotype) of median (per sample) biexponential-transformed Median Fluorescence Intensity (MFI) 431 

values shown.  432 
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Extended Data Figure 4 | Schematic workflow and impact of enrichment on metabolite profiling. 434 

a, Schematic of magnetic bead enrichment. Cells underwent three consecutive rounds of magnetic bead 435 

enrichment or remained on ice. b, Impact of enrichment type on metabolite abundance. Means of 436 

triplicate measurements for each enrichment type +/- SE shown. Gray line represents 1:1 relationship. 437 

Intraclass correlation for replicate measurements (ICC) shown in axis labels. c, Schematic of patient 438 

metabolite profiling workflow. Ascites or tumor was collected from patients and cryopreserved. A 439 

fraction of each sample was analyzed by flow cytometry, while the remaining sample underwent three 440 

rounds of enrichment for CD4+, CD8+ and CD45- cells. These cell fractions were analyzed using LC-441 

MS/MS. 442 
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 443 

Extended Data Figure 5 | Changes in relative metabolite abundance across cell types within ascites 444 

and tumor. a, Heatmap of normalized metabolite abundance, with dendrograms representing Ward’s 445 

clustering of Euclidean distances among samples. Relative abundance of metabolites in the ascites (left) 446 
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and tumor (right). b, Top four significantly differing metabolites across patients (all Padj for F-Test of 447 

patient effect in limma < 0.05). Boxplots show medians (lines), interquartile range (box hinges) range of 448 

data up to 1.5X interquartile range (box whiskers; excepting outliers, shown as points). 449 

 450 

Extended Data Figure 6 | Expression of population defining makers and metabolic genes within 451 

the scRNA-seq data. Expression of NNMT, CD3D, EPCAM, COL1A1, PTPRC and AOX1 within 452 

ascites and tumor, shown as log2 normalized unique molecular identifier (UMI) counts. 453 

 454 

Extended Data Figure 7 | Relative abundance of adenosine (a) and L-kynurenine (b) measured by 455 

LC-MS/MS. P-values determined as described in methods (*p<0.05). Boxplots show medians (lines), 456 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 7, 2020. ; https://doi.org/10.1101/2020.05.05.077990doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.05.077990


interquartile range (box hinges) and range of data up to 1.5X interquartile range (box whiskers; outliers 457 

shown as points). P values determined using limma as per Figure 3. 458 

 459 

Extended Data Table 1 | HGSC patient characteristics for metabolic profiling by flow cytometry 460 

and LC-MS/MS.  461 

Patient Tumor location Age at surgery Survival 
(months)* 

Tumor stage† Tumor grade† Ascites 
volume (mL) 

37 omentum 70 12 3C 3 1800 

38 ovary 40 16 T3b 3 1200 

70 omentum 50 23 3C 3 80 

58 omentum 78 18 4 3 2000 

93 fallopian tube 53 82 3B 2 1600 

98 omentum 39 13 3C 3 2000 

* Survival calculated from the date of diagnosis to the date of death 462 

† Tumor stage and grade were determined by a pathologist at the time of surgery 463 

 464 

Extended Data Table 2 | Flow cytometry metabolic profiling panel.  465 

Fluorochrome Marker Expression Clone Company Catalogue 

number 

--- 2-NBDG Glucose uptake --- Thermo N13195 

PE CD326 (EpCAM) Epithelial cells 1B7 Thermo 12-9326-42 

PerCP CD8 Effector T cells RPA-T8 Biolegend 301030 

PerCP-eFluor710 CD25 Activation/Tregs 4E3 Thermo 46-0257-41 

PE-Cy7 CD45RO Phenotype UCHL1 Thermo 25-0457-42 

--- MitoTracker Deep 

Red 

Mitochondrial 

activity 

--- Thermo M22426 

AF700 CD4 Helper T cells RPA-T4 Biolegend 300526 

APC/Fire750 CCR7 Phenotype G043H7 Biolegend 353246 

eFlour506 Viability Live/dead cells --- Thermo 65-0866-14 

PO CD45 Leukocytes HI30 Thermo MHCD4530 

BV605 CD137 Activation 4B4-1 Biolegend 309822 

BV650 CD279 (PD1) Activation/Exhaust

ion 

EH12.2H7 Biolegend 329950 

BV750 CD3 T cells SK7 Biolegend 344845 

 466 

 467 
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Extended Data Table 3 | HGSC patient characteristics for single cell RNA sequencing. 468 

Patient Tumor location Age at surgery Survival 
(months)* 

Tumor stage† Tumor grade† 

46 ovary 54 24 3C 3 

58 omentum 78 18 4 3 

59 omentum 68 26 3C 3 

69 omentum 59 17 3C 3 

109 ovary 77 62 3C 3 

* Survival calculated from the date of diagnosis to the date of death 469 

† Tumor stage and grade were determined by a pathologist at the time of surgery 470 
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