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Abstract 

Availability of comprehensive phylogenetic tree for flowering plants which includes many of 

the economically important crops and trees is one of the essential requirements of plant 

biologists for diverse applications. It is the first study on the use of chloroplast genome of 

3265 Angiosperm taxa to identify evolutionary relationships among the plant species.  Sixty 

genes from chloroplast genome was concatenated and utilized to generate the phylogenetic 

tree. Overall the phylogeny was in correspondence with Angiosperm Phylogeny Group 

(APG) IV classification with very few taxa occupying incongruous position either due to 

ambiguous taxonomy or incorrect identification. Simple sequence repeats (SSRs) were 

identified from almost all the taxa indicating the possibility of their use in various genetic 

analyses. Large proportion (95.6%) of A/T mononucleotide was recorded while the di, tri, 

tetra, penta and hexanucleotide amounted to less than 5%. Ambiguity of the taxonomic status 

of Tectona grandis L.f was assessed by comparing the chloroplast genome with closely 

related Lamiaceae members through nucleotide diversity and contraction an expansion of 

inverted repeat regions. Although the gene content was highly conserved, structural changes 

in the genome was evident. Phylogenetic analysis suggested that Tectona could qualify for a 

subfamily Tectonoideae.  Nucleotide diversity in intergenic and genic sequences revealed 

prominent hyper-variable regions such as, rps16-trnQ, atpH-atpI, psc4-psbJ, ndhF, rpl32 and 

ycf1 which have high potential in DNA barcoding applications. 
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Chloroplasts are the sunlight driven energy factories sustaining life on earth by generating 

carbohydrate and oxygen. Besides photosynthesis, chloroplast performs many biosynthesis 

such as fatty acids, amino acids, phytohormones, metabolites and production of nitrogen 

source (Daniell et al. 2016). Retrograde signalling of chloroplasts plays a significant role in 

biotic and abiotic stress responses in plants. Circular chloroplast (cp) genome with size range 

of 120 to 160 kb undergoes no recombination and uniparently inherited in angiosperms. It has 

been targeted for complete sequencing due to the importance of its gene content and 

conserved nature. The major features of angiosperm chloroplast genome include quadripartite 

circular structure with two copies of inverted repeat (IR) regions that are separated by a large 

single copy (LSC) region and a small single copy (SSC) region (Jansen et al. 2005). The 

genome includes SSRs, single nucleotide polymorphisms (SNPs), insertions and deletions 

(InDels), small inversions and divergent hotspots. The cp genome with GC content of 35 - 38 

% encodes for 120-130 genes including protein coding genes, tRNA and rRNA genes. Genes 

with introns are 10-25 in number and few duplicated genes are also observed (Wicke et al. 

2011).  Knowledge on cp genome continues to reveal many variations and add information 

on their functional and evolutionary significance. 

Sequencing of genome with unparalleled efficiency and precision provides enormous options 

to completely sequence cp genome. Several de novo assemblies of cp genome are reported 

frequently for many genome sequence deficient species thus providing a novel resource for 

functional genomics, evolutionary analysis and molecular breeding (Daniell et al. 2016; 

Guyeux et al. 2019). Unique information in cp genome allow overwhelming applications in 

taxonomy, phylogeny, phylogeography and DNA barcoding (Byrne and Hankinson 2012; 

Dong et al. 2012; Yan et al. 2019). Although the gene content and gene ordering in cp 

genome of plants is highly conserved (Daniell et al.  2016), several rearrangements occurred 

during evolution of plants (Ali 2019). In few plant families such as Fabaceae and 
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Geraniaceae, the loss of one IR or few genes were observed, indicating the atypical evolution 

and gene functional changes among them (Martin et al. 2014). Further, accelerated mutation 

rate in certain regions of cp genome was also recorded. Both genic and intergenic regions 

show single nucleotide polymorphism (SNP), indels and simple sequence repeat (SSR) 

variations across and within plant species (Wang et al. 2018; Zhang et al. 2018a). SSRs are 

small repeating units of DNA harbouring high level variations in the sequence and used for 

species identification in many crop species (Shukla et al. 2018; Takahashi et al. 2018; Lu et 

al. 2018). Comparison of cp genome of two Apiaceae members,  Angelica polymorpha 

Maxim. and Ligusticum officinale Koch showed the presence of a 418 bp deletion in the ycf4-

cemA intergenic region of A. polymorpha, which was used  in discrimination of these taxa 

(Park et al. 2019).  

Most of the studies on cp genome are limited to solve specific problems at genera or family 

level. High resolution plant phylogenies have been reported to identify the relationship 

between the wild and cultivated taxa of economically important species (Carbonell-Caballero 

et al. 2015). Chloroplast genetic engineering has been proven as one of the successful options 

in crop genome modifications (Oldenburg and Bendich 2015; Daniell et al. 2016). Further, 

hybridization compatibility towards generation new cultivars can be assessed by their 

phylogenetic relationships.  Geographical origin and history of domestication of a crop 

variety can be traced using cp genome which paves way for conservation and utilization of 

unique genetic variations (Wang et al. 2019; Nock et al. 2019).   Recently, phylogeny of 

green plants were analysed with 1879 taxa (Gitzendanner et al. 2018) and 3654 taxa 

including the members of Chlorophyta, Charophyta, Rhodopyta, Bryophyta, Pteridophyta, 

Gymnospermae and Angiospermae (Yang et al. 2019). In the present study, cp genome 

sequences of 3265 Angiosperm taxa was analysed for their phylogenic relationships and 
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distribution of simple sequence repeats (SSRs). Further, an attempt was made to elucidate the 

cp genome of Tectona grandis (teak), an economically important timber tree species growing 

in 60 different tropical countries, within the family Lamiaceae through phylogenetics, 

characterization of IR expansion and contraction and identification of genetic hotspot regions.   

 

Materials and Methods 

The complete chloroplast genome sequences that belong to Magnoliophyta or Angiospermae 

were downloaded from NCBI on July 03, 2019 using the link 

https://www.ncbi.nlm.nih.gov/genome/browse#!/organelles/magnoliophyta. Two species of 

Gymnospermae Taxus baccata L. and Pinus sylvestris L. were included as outgroups. The 

sequence sampling included all the major lineages of Magnoliophyta belonging to 57 orders, 

233 families and 3376 species. However, 111 taxa had the problems of duplicate genome 

entries or lesser number of genes and hence removed from the analysis.  A complete list of 

3265 taxa with two out group taxa with GenBank accession numbers is available in the 

Supplementary Table 1.  SSRs in plastome sequence were mined using MISA, a Perl script 

(http://pgrc.ipkgatersleben.de/misa/misa). MISA detect microsatellites in FASTA formatted 

nucleotide sequence and generates output along with statistical data in two separate files. The 

MISA definition of microsatellites was set by unit size (x) and minimum number of repeats 

(y): 1/10, 2/7, 3/5, 4/5, 5/5, 6/5 (x/y). The maximal number of interrupting base pairs in a 

compound microsatellite was set to 100. 

Sequence Extraction, Alignment and Phylogeny analysis 

Chloroplast genome phylogeny construction was performed with 60 genes extracted using 

BioEdit v7.0.5 (Hall 2011).  The dataset included genes  present in all the families like genes 
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encoding small-ribosomal proteins (rps2, rps3, rps4, rps8, rps11, rps14, rps15, rps18), large 

ribosomal proteins (rpl14, rpl20, rpl22, rpl32, rpl33, rpl36), DNA dependent RNA 

polymerase (rpoA, rpoB), photosynthesis and energy production (psaA, psaB, psaC, psaI, 

psaJ, psbA, psbB, psbC, psbD, psbE, psbF, psbH, psbI, psbJ, psbK, psbL, psbM, psbN, psbT, 

psbZ, atpA, atpB, atpE, atpH, atpI, ndhB, ndhC, ndhD, ndhE, ndhF, ndhG, ndhH, ndhI, ndhJ, 

ndhK, rbcL, petA, petG, petL, petN) and others (ycf4, matK, ccsA, cemA). 

The extracted gene sequences were aligned using MAFFT v7.409 (Katoh and Standley 2013) 

with the settings FFT-NS-2 and executed the output as FASTA format. The aligned 

sequences were trimmed to equal lengths at the ends using BioEdit sequence alignment editor 

software version 7.0.5 and the concatenated with MEGA X version 10.0.5 (Kumar et al. 

2018). Phylogenetic analysis was performed for 3,265 species and outgroups with taxa, 

family and order levels using maximum parsimony method in PAUP* version 4.0b10 

(Swofford 2002). The most parsimonious trees were recovered with a heuristic search 

strategy employing tree bisection and reconnection (TBR) with 100 random addition 

sequence replications. In an attempt to infer the taxonomic position of Tectona grandis, a 

subset of data consisting of only Lamiaceae family members along with two out group 

members were subjected to phylogeny analysis. All the phylogenetic trees were viewed and 

labelled using Interactive Tree Of Life (iTOL) v4 (https://itol.embl.de/) (Letunic and Bork 

2019). 

Gene distribution in cp genome of 10 Lamiaceae species selected as close relatives of 

Tectona was compared and visualized using mVISTA software in Shuffle-LAGAN mode 

(Frazer et al. 2004) with the annotation of Tectona grandis as a reference. The same 

alignment was used to calculate the nucleotide variability values (π) within Lamiaceae 

plastomes. The sliding window analysis was performed in DnaSP 6.10 (Rozas et al. 2017) 
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with step size of 200 bp and window length of 600 bp and nucleotide diversity, π values were 

plotted using excel. Expansion and contraction of the IR regions among the selected 

Lamiaceae members were investigated and plotted using IRscope (Amiryousefi et al. 2018). 

Results and Discussion 

Organization, gene content, and characteristics of the chloroplast genome 

 

Chloroplast genome of 3,265 taxa belonging to 56 orders and 223 families were analysed to 

understand the diversity and phylogenetic relationships among them. Taxus baccata and 

Pinus sylvestris were included as out groups for phylogeny analysis. Maximum and minimum 

plastome size of 2,42,575 bp and 1,13,490 bp was observed in Pelargonium transvaalense 

Knuth and Aegilops cylindrica L. respectively with the average size of 1,53,043 bp. The GC 

content was ranging from 33.6 to 43.6 with the average of 37.6%. Average gene content was 

131 with maximum in Perilla (266 genes) and minimum (86 genes) in Halesia diptera Ellis 

(Supplementary Table 1). Sixty genes were considered for phylogeny analysis with 

minimum, maximum and average sequence length of 119 bp, 5591bp and 1366 bp 

respectively (Supplementary Table 2). The alignment of the concatenated data showed a 

minimum and maximum size of 37,700 bp (Fargesia denudate Yi) and 54,545 bp (Carpinus 

tientaiensis W.C.Cheng.) respectively with mean nucleotide composition of A = 28.1%, C = 

17.4%, G = 20.3% and T = 31.6%  (Supplementary Table 3). 

Although cp genome information of green plants was employed for phylogeny analysis, 

consolidated data on SSR distribution across different orders is not available in the published 

literature. The assembled chloroplast genomes of 3265 species were mined for the presence 

of SSRs and a total of 163940 SSRs from 3265 scaffolds were identified (Table 1). Overall 

119 repeat types were detected with two types of mono-nucleotides (A/T and G/C), three 
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types of di-nucleotides (AC/GT, AG/CT and AT/AT), 12 types of tri-nucleotides, 6 types of 

tetra-nucleotides, 31 types of penta-nucleotides and 65 types of hexa nucleotides 

(Supplementary Table 4). The major SSR types with more than 20 numbers were listed in the 

Table 2. Among the identified SSRs, the mono-nucleotide was the most abundant SSR type, 

accounting for 95.6% of the total SSR motifs, which was followed by di (2.93%), tri (0.97%), 

tetra (0.076%) penta  (0.13%) and hexa (0.23%) nucleotide SSR motifs. There was a large 

proportion of mononucleotide while the rest amounted to less than 5%. Although Poales had 

more number of SSRs, Asterales has diverse types. A/T richness of the chloroplast genome is 

identified in many previous studies (Cheon et al. 2019). It was suggested that such high 

amount of mononucleotide repeats in chloroplast genome may contribute to heritable 

variations (Bi et al. 2018). 

 

Phylogeny of Angiosperms 

Application of phylogenetic reconstruction methods, unequivocal availability of genomic 

data and computational algorithms are continue to resolve several unanswered taxonomical 

problems in plant species. In the present study, phylogenetic trees had congruence with the 

Angiosperm Phylogeny Group (APG) IV system of classification.  Six orders namely, 

Crossosomatales, Picraminiales, Metteniusales, Vahliales, Escalloniales and Bruniales did not 

have any representative taxa. Some of the orders such as Acorales, Amborellales, 

Aquifoliales, Berberidopsidales, Buxales, Canellales, Celastrales, Ceratophyllales, 

Chloranthales, Commelinales, Garryales, Huerteales, Icacinales, Oxalidales, Pandanales, 

Paracryphiales, Petrosaviales, Trochodendrales and Zygophyllales had 1-4 taxa 

representation. Different levels of diversification of angiosperms were recently proposed 

(Soltis et al. 2019) and the results obtained in this study showed high level of correspondence 
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with ordinal level phylogeny of APG IV (Supplementary Fig. 1).  The early diverging 

angiosperms including ANA grade, Magnoliids and Chloranthales formed a distinguishing 

clusters. COM clade comprising Celestrales, Oxalidales, and  Malphigiales and  

Zygophyllales under Fabids formed a separate cluster along with nitrogen fixing clade 

Cucurbitales, Fabales, Fagales and Rosales. Early diverging eudicots Ceratophyllales, 

Ranunculales, Proteales, Trochodenrales, Buxales and Dilleniales formed a specific cluster. 

Similarly, superrosids and superastrids formed clearly distinguishable clusters. The monocot 

families Arecales, Acorales, Alismatales, Asparagales, Commelinales, Dioscoreales, Liliales, 

Pandanales, Petrosaviales, Poales and Zingiberales could be identified individually. 

All the families within 56 orders were assessed for their taxonomical position and were in 

correspondence with the APG IV system of classification (Supplementary Fig. 2). However, 

at taxa level, few species were placed discordantly in different families.  Recently, complete 

chloroplast genomes of 26 Gentianales species were analysed for phylogenetic relationships 

and found that Gynochthodes nanlingensis (Y.Z.Ruan) Razafim. & B.Bremer was grouped 

under Apocynaceae (Zhou et al. 2018). The present results were also confirmed the grouping 

of G. nanlingensis under Apocynaceae instead of Rubiaceae. Similarly, the genus Wightia of 

Scrophulariaceae has attracted attention in various studies (Zhou et al. 2014; Xia et al. 2019) 

and in the present study Wightia speciosissimais (D. Don) Merr. was placed closed to 

Phrymaceae members (Supplementary Fig. 2). Similarly, the genus Pedicularis of the family 

Orobanchasceae was grouped in Lamiaceae needs further studies. Recent report on molecular 

phylogeny of Orobanchaceae could not clear the species complex (Li et al. 2019). 

Cypripedium macranthos Sw. of Orchidaceae was surrounded by Asparagaceae members and 

Lagerstroemia villosa L. belonging to the family Lythraceae was embedded in between 

Combretaceae, could be due to taxonomical misidentification (Kim et al. 2014). Similarly, 
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the species Rivinia humilis L. of the family Petiveriaceae and Monococcus echinophorus L. 

of the family Phytolaccaceae were placed conflictingly which reflected the uncertainty of 

their taxonomical status  (Lee et al. 2013). Monococcus echinophorus was considered as a 

member of the family Petiveriaceae (Walker 2018). The taxonomic position of Chaetachme 

aristata Planch was established in the family Cannabaceae (Yang et al. 2013; Zhang et al. 

2018b) instead Ulmaceae, and in the species tree it was grouped along with Cannabaceae 

members.  All such inconsistent placement of plant species demands generation of cp genome 

information in all the plant taxa to suitably assess their phylogenic status.   

Taxonomy of Tectona   

Till date the taxonomical status of the species Tectona grandis under Lamiaceae remain 

poorly understood phylogenetically. Complex morphological features of Tectona such as 

actinomorphic 5–7-lobed calyx and corolla, enlarged and inflated persistent calyx, and four 

chambered stony endocarp with small central cavity between the chambers posed problem in 

clear cut classifications. Many previous studies on molecular phylogeny of Tectona showed 

its unique phylogenetic position in Lamiaceae (Wagstaff and Olmstead, 1997; Li et al. 2016; 

Yasodha et al. 2018).  In congruence with earlier studies, dendrogram obtained in the present 

study with 60 genes in 39 members of Lamiaceae confirmed the distinctness of the genus 

Tectona (Supplementary Fig. 3). All the lower level clades of phylogeny had 100% bootstrap 

values except Tectona-Premna clade showed 99.3%, establishing its difference from Premna. 

It was also confirmed that Tectona showed proximity to Premnoideae, Ajugoideaea and 

Scutellarioideae (Li et al. 2016). 

 

Based on the results of phylogeny, 10 closely related taxa including T. grandis were selected 

for further characterization of cp genome. IRscope analysis is usually recommended for 
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comparative cp genome analysis at species level to infer the structural variations in the large 

single copy (LSC), small single copy (SSC) and inverted repeats (IRs) junctions (Thode and 

Lohmann, 2019). This study depicted the genetic architecture of ten Lamiaceae members in 

the vicinity of the sites connecting the IRs to LSC and SSC regions to provide deeper insights 

of these junctions. The cp genome sequence of Tectona grandis (NC_020098.1) was 

1,53,953�bp, comprising LSC spanning 85,318�bp, SSC spanning 17,741�bp, and two IR 

regions each of 25,447�bp length. Among the closely related species of Tectona, the region 

between IRb and LSC was conserved as rpl22-rps19-rpl2 and the gene rps19 extended in IRb 

with 36 to 61�bp (Supplementary Fig. 4).  The gene ndhF was placed in junction between 

IRb and SSC (JSB). The gene ndhF was present in SSC region of Tectona grandis whereas in 

Premna microphylla it was present 6bp away from IRb region. The JSA junction (SSC/IRa) 

and JLA junction (LSC/IRa) was characterized by the presence of ycf1 and trnH gene 

respectively, except Tecona grandis, where tRNA was present in JLA junction and loss of 

trnH gene was observed. In Scutellaria baicalensis, the trnH was present in LSC region.   

Duplication of the genes in cp genome is widely reported (Raveendar et al. 2015) and 

duplicated rps19 and ycf1 among the analysed species was obvious. Chloroplast genome 

evolution is governed by the IR expansions and contractions leading to variations in the 

genome size (Könyves et al. 2018; Li et al. 2018). However in this study, LSC region (81,770 

bp to 86,078 bp) had wide variation, whereas less variation in IR and SSC regions were 

observed. Further within genus such as Holcoglossum, no variations in IR regions were 

reported (Li et al. 2019). 

 

Level of sequence divergence among the cp genome would provide the basic information on 

similarity across individuals. Sequence divergence of T. grandis was assessed by the 

comparative analysis among the closely related Lamiaceae members using mVISTA. The cp 
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genomes showed sequence divergence below 50%, indicating a low conservatism in the non 

coding regions of these chloroplast genomes (Fig. 1). The alignment revealed species 

sequence divergence across the cp genome, signifying the lack of conservation of genome. 

The single-copy regions, intergenic regions and genic regions were more divergent except for 

few genic regions like rrn16, rrn23, ndhB and, rps7 (Fig. 1). According to the chloroplast 

genome sequence alignment of the ten Lamiaceae taxa, about 29 hyper-variable regions were 

discovered with nucleotide diversity (π) value of 0.07 and above (Fig. 2). Some of the 

important hotspot regions were rps16-trnQ, atpH-atpI, psc4-psbJ, ndhF, rpl32 and ycf1. 

These mutational hotspots would serve as potential loci for developing novel DNA barcodes 

for plant classification. Thus, phylogeny and distinctness of the cp genome of Tectona 

confirmed the earlier proposal of a new subfamily Tectonoideae with Tectona as a monotypic 

genus (Li and Olmstead 2017). 

 

Conclusion 

 

Unprecedented availability of genomic data from organelles provides opportunities to discern 

the evolutionary relationships among the plant species. In the current study, chloroplast 

genome phylogeny of 3625 Angiosperm taxa revealed the phylogenetic and taxonomic status 

in congruence with APG IV classification. Valuable data generated on distribution of SSRs 

would give an impetus on their use in species identification and evolution of several 

angiosperm taxa. Many plant species requiring deeper understanding on phylogeny and 

taxonomy were identified and generation of more cp genome data in many of the unexplored 

plant species becomes essential. The phyogeny of Lamiaceae members, variations in 

structure and gene content confirmed the unique status of Tectona in the family. Nucleotide 

diversity among the closely related species in Lamiaceae with several variable hotspots 
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would be useful to develop DNA markers suitable for discrimination of species and inference 

of phylogenetic relationships.  
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FIGURE LEGENDS 

Fig 1. Comparisons of the Large Single Copy (LSC), Inverted Repeat a (IRa), Small 

Single Copy (SSC), and Inverted Repeat b (IRb) boundaries among 

ten Lamiaceae chloroplast genomes. Boxes above the main line represent the genes at 

the IR/SC borders. 

Fig. 2. Sliding window analysis of the whole chloroplast genome of 10 species 

of Lamiaceae members. (window length: 600�bp, step size: 200�bp). X-axis: position 

of the midpoint of a window, Y-axis: nucleotide diversity of each window. 
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Supplementary Fig. 1. Fifty percent maximum parsimony majority rule consensus 

tree of Angiospermae with major clades inferred from 60 chloroplast protein coding 

genes. Terminals with a circle represent collapsed clades with�≥�2 taxa. 

Supplementary Fig. 2. Phylogenetic tree of 3265 taxa data set with two outgroups 

based on 60 chloroplast protein coding genes using maximum parsimony (MP). The 
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coloured strips indicate the clustering of the MP tree at the family and ordinal level. 

Ordinal and higher-level group names follow APG IV. 

Supplementary Fig. 3. Phylogenetic tree of Lamiaceae members.  Dendrogram 

generated based on whole chloroplast genome using maximum parsimony (MP) with 

50% majority‐rule consensus principle. 

Supplementary Fig. 4. Identity plot comparing 10 Lamiaceae members chloroplast 

genome sequences with annotations, using mVISTA. The vertical scale indicates the 

percentage of identity, ranging from 50 to 100%. The horizontal scale indicates the 

coordinates within the chloroplast genomes. Grey arrows represent the genes and their 

orientations. Blue boxes represent exon regions and red boxes represent non-coding 

sequence (CNS) regions. 
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