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Abstract 

 One of the approaches to cure HIV is the use of therapeutic vaccination. We have launched the Provir/Latitude 45 

study to identify conserved CTL epitopes in archived HIV-1 DNA according to the HLA class I alleles in aviremic 

patients under antiretroviral therapy (ART).  A HIV-1 polypeptidic therapeutic vaccine  based on viral sequence data 

obtained from circulating blood was proposed; here, our aim was to compare the proviral DNA in blood and gut-

associated lymphoid tissue (GALT) at two different levels : nucleotide sequences and potential CTL epitopes. The 

reverse transcriptase was sequenced in both compartments using next generation sequencing (NGS) in samples from 

nine individuals, two of which had also single genome sequencing (SGS) performed;  phylogenetic trees were 

established and compared ; CTL epitopes were also identified according to their potential affinity for the HLA alleles .     

The  proviral sequences of both compartments intra-patient exhibited a very low genetic divergence  while it was 

possible to differentiate the sequences inter-patients; SGS analysis of two couples of samples confirmed that there 

was not a compartmentalization of the sequences intra-patient.When we simulated the CTL epitopes which can be 

presented by the corresponding HLA alleles in both compartments,  no significant difference was observed.  We 

conclude that the proviral DNA sequences in blood and GALT are similar and that the epitope analysis in blood can 

be considered as relevant to that observed in the GALT,  a hard-to-reach major compartment, and can therefore be 

used for therapeutic vaccine approaches.  
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Introduction 

HIV-1 infection can be treated with ART, leading to the control of viral replication and improving the health of people 

living with HIV (PLWH). However, ART cannot be interrupted since this would lead to a rebound of viral replication 

[1,2] as virus establishes cellular (latently infected resting CD4+ memory T cells) and anatomical reservoirs very early 

during  infection [3-8]. Gut Associated Lymphoid Tissue (GALT) is considered to be one of the main reservoirs of SIV 

and HIV infection [9-11]. Cure strategies for HIV-1 include therapeutic vaccination [12], although immune response 

observed was not able to control viral replication after ART discontinuation [13]. In this context, we launched the 

Provir/Latitude 45 project to identify conserved CTL epitopes in the proviral HIV-1 DNA of patients with long-term 

ART.  The study involves in silico modeling based on the HIV-1 proviral DNA sequences, the HLA alleles and the HIV-1 

CTL epitopes recorded in the Los Alamos database and the Immune Epitope database (IEDB) simulator following 

sequencing of the archived DNA from peripheral blood mononuclear cells (PBMC), i.e. from circulating blood. Since 

our initial work was based on proviral DNA in PBMC, we assessed whether our observations would be the same in 

another compartment, namely GALT. Herein, we present a phylogenetic comparison of the archived HIV-1 DNA in 

PBMC and GALT from patients at success of ART, together with an evaluation of  theoretically conserved CTL 

epitopes in both compartments.           

 

Results 

Phylogenetic trees  of  intra-patient and inter-patient samples 

GALT and PBMC proviral DNA samples obtained from nine patients were sequenced by NGS. The phylogenetic trees 

of all samples are presented in Figure 1; NGS intra-patient sequences from blood and GALT compartments analyses 

exhibit a low genetic divergence and are located on the same branch. When analyzing simultaneously the data from 

two patients (5A and 10) (Figure2) we are able, as expected, to differentiate viral sequences originating from the two 

patients. As a slight discrimination between PBMC and GALT samples was observed when considering NGS 

sequences, we carried out a SGS analysis of samples 5A and 10 (PBMC and GALT) to check a potential artefactual role 

of the amplification process on the discrimination between both compartments. As shown in Figure 2, this analysis 
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indicates that there was a true intermingling of the clonal sequences for patient 5A, evidencing lack of 

compartmentalization. For patient 10, the clonal PBMC sequences were located  at the origin of the GALT NGS part 

of the tree (please refer to Figure 1) , then found in the PBMC part of the NGS tree while GALT clonal sequences 

were located at the end of the GALT tree and the origin of the PBMC tree; as for patient 5A we can conclude that 

there is no evidence of compartmentalization.  

To confirm that all the sequences were clustered by patient, we estimated the evolutionary divergence between 

sequences (Table 1) considering patients 5A and 10 . HIV-1 clusters were identified at maximum genetic distances 

between 4.5% and 7.5% and bootstrap support threshold varied between 70% and 99% [14]. As  sequences from 

patients 5A and 10 are assembled with a median divergence of 5.3% and 2.2% respectively with bootstrap values of 

80% and 93%, we confirm that these sequences from GALT and PBMC formed a specific cluster per patient. 

 

Table1: Estimates of evolutionary divergence between patients’ HIV proviral DNA sequences. Evolutionary 

divergences are based on the number of base substitutions per site among RT NGS and/or SGS sequences obtained 

from GALT and/or PBMC proviral DNA of  patients 5A and 10. nd: not done 

 

 

  Patient 05A Patient 10 Patients 5A + 10 

  Median [min-max] Mean Median [min-max] Mean Median [min-max] Mean 

GALT 

NGS 0.030 [0-0.189] 0.029 0.016 [0-0.098] 0.016 nd nd 

SGS 0.055 [0-0.088] 0.047 0.005 [0-0.013] 0.005 nd nd 

NGS+ 

SGS 
0.061 [0-0.119] 0.054 0.011 [0-0.065] 0.012 nd nd 

PBMC 

NGS 0.053 [0-0.145] 0.051 0.013 [0-0.061] 0.013 nd nd 

SGS 0.047 [0-0.122] 0.051 0.013 [0-0.030] 0.013 nd nd 

NGS+ 

SGS 
0.065 [0.013-0,132] 0.065 0.016 [0-0.057] 0.017 nd nd 
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GALT 

+ 

PBMC 

NGS 0.053 [0.008-0.143] 0.054 0.022 [0.003-0.095] 0.022 0.08 [0.047-0.214] 0.085 

 

CTL epitopes with affinity for HLA alleles 

The epitopes selected by our simulation pipeline have a high theoretical affinity for the HLA alleles of the patients. 

We compared the inhibitory concentration 50 (IC50) values for each epitope based on its PBMC and GALT proviral 

sequences. An example is presented in Table 2. In the case of the RT (18-26) epitope, there was one variant in GALT 

and two in PBMC with a conserved very low IC50, making it possible to predict a high affinity for the B*08:01 allele. 

For the second epitope RT (158-166), there were two variants in both compartments. All variants were different with 

one in GALT at 44.89% (AIFQSSMTQ) exhibiting an IC50 largely>500 nanomolar (nM) (2203.8nM) and therefore 

having no affinity for the A*03:01 allele. 

Combining all the data for the nine patients of the study and taking into account their various HLA I alleles A and B 

plus the obtained DNA sequences in both compartments, we found that 23 epitopes had affinity for the following 

alleles: A*02:01, A*03:01, A*11:01, B*08:01, B*35:01, B*40:01, B*07:02 (all data  available in  Table S1). The number 

of variants per compartment ranged from one to three. There was no significant difference in the number of variants 

between GALT and PBMC (Wilcoxon test p-value=0.6239). The number of epitopes exhibiting a variant with an IC50 

>500nM was limited to one sample (please refer to the example above and to Table S1 , so the variability in the 

compartments may not be associated with a defect on presentation of the epitopes by the alleles.   

 

Table 2 : Examples of RT epitopes with theoretical affinity for the HLA alleles of the patients. Positions precise RT 

amino-acids involved. The numbers of reads and their percentage (%) relative to the total number of reads covering 

the targeted region are related to NGS results. The Inhibitory concentrations IC50 (nM) that reflect the affinity of the 

epitopes for the HLA alleles-were automatically calculated using TutuGenetics software. The modified amino-acids in 

the epitopes versus the reference sequence from the Los Alamos database are in bold character and  underlined. 

When > 500 nM the IC50 is noted in bold italic. 

Position HLA allele Compartment Epitope 

sequence 

Number 

of reads 

Reads (%) IC50 (nM) 
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RT(18-26) HLA-B*08:01 

GALT GPKVKQWPL 78287 87.73% 41.5 

PBMC 

GPKVKQWPL 11562 87.66% 41.5 

GPKAKQWPL 233 1.77% 50.5 

RT(158-166) HLA-A*03:01 

GALT 

AIFQSSMTK 48154 44.22% 12.8 

AIFQSSMTQ 48889 44.89% 2203.8 

PBMC 

AIFQSSMIK 30329 84.62% 13.9 

AIFRSSMIK 444 1.24% 8.7 

 

 

 

Discussion 

Archived viral DNA is found in intestinal tissue at a higher concentration than in PBMCs in ART patients [15], 

although the distribution of DNA in CD4+ CCR7+, transitional memory and effector memory T cells is different in 

blood and intestinal compartments [16]. GALT is therefore a compartment of major importance in the 

pathophysiology of HIV infection [17,18]. The data presented here are not related to the quantification of archived 

DNA but rather to a comparison of the RT sequences obtained by NGS in GALT and PBMC. In that regard, Van Marle 

et al. [19] have studied biopsies from infected untreated individuals and sequenced the nef and RT genes of the viral 

RNA from blood (PBMC) and different parts of the gut by cloning and Sanger sequencing  ;  they concluded that 

there is a compartmentalization of the virus in the gut reservoir. On the other hand, Lerner et al [20] found a low 

diversity of the GALT and PBMC viruses in patients having experienced a voluntary treatment interruption while 

Imamichi et al [21] did not demonstrate any difference between RNA and DNA sequences from gut and blood of 

patients chronically infected with HIV-1. Studying HIV-1 infected patients at early and chronic infection stages, 

Rozera et al [22] found a more pronounced compartmentalization of proviral quasispecies in gut compared with 

PBMC samples in patients with early infection compared with chronic patients. The loss of gut/PBMC 

compartmentalization in more advanced stages of HIV infection was confirmed by longitudinal observation. 
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Regarding ART treated patients, Evering et al.[23] have studied the variability of the proviral DNA in the gut and 

blood compartments by SGS of   the env part of the virus .  They showed absence of evolution of the env sequences 

in the GALT and in PBMC ; the authors mention that they cannot rule out the possibility of evolution in other viral 

genomic regions of HIV-1 such as pol which have not been investigated. Josefsson et al [24] have compared the HIV 

DNA in PBMC and GALT from patients being on successful ART; they have used SGS technology and showed that 

there is no significant difference between the sequences from both compartments. They concluded that the HIV 

reservoir is stable on long-term suppressive ART and raise the hypothesis that the population of infected cells 

exhibiting a low variability of the virus could be maintained by homeostatic cell proliferation. 

The patients of our study are similar to those of the two publications mentioned above; they were long term ART- 

treated patients with controlled viral load and therefore a stable viral reservoir ; the phylogenetic inferences 

obtained after NGS evidenced a very low genetic distance between the GALT and PBMC compartments intra-patient. 

On the other hand, it is possible to differentiate the GALT/PBMC sequences inter- patients; the SGS analysis 

performed for two samples, 5A and 10, plus the genetic divergence values after NGS and SGS are concordant with a 

high similarity between proviruses intra- patient. It must be underlined that the SGS technique decreases taq-

induced recombination and nucleotide misincorporation , providing therefore a more reliable conclusion than 

conventional cloning [33]. 

Among the limitations of our study we must note the fact that only the RT part of the proviral DNA has been 

considered and also that we have analyzed global archived DNA molecules without differentiating noninfectious and 

replication competent genomes [34]; however, more recent data show that even defective proviral DNA molecules 

can be expressed and yield viral proteins recognized by CTL T CD8+ lymphocytes [35]. 

Provir/Latitude 45 project is based on the identification of conserved epitopes in the provirus with potential affinity 

for the dominant alleles of the population; therefore, more than 200 patients at successful ART have been 

investigated for these conserved epitopes [27] and a peptide cocktail has been proposed ; it must be noted that this 

project is based on the study of the blood compartment and the question  has been raised whether another 

compartment could yield different results ; as the GALT is a major reservoir, we have then focused on a simulation of 

the CTL epitopes of the nine patients in both compartments with a high affinity for the corresponding HLA I alleles ; 

having determined  viral CTL epitopes in the blood compartment that should have a high affinity for the 

corresponding HLA A and B alleles of the patients individually, we have raised the question of a full identity or not of 

these epitopes in the gut compartment; a significant difference would be a hurdle for the vaccine strategy based on 
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the blood analysis; clearly, however, the differences between the two compartments are slight even if there are 

variants at the epitope locations (but with a close affinity for the HLA alleles); the global choice of the epitopes at the 

blood level seems therefore extrapolable to the GALT level. In conclusion, our results  confirm that the proviruses in 

GALT and PBMC are very similar in these patients having experienced a long-term ART success and who could be the 

target population of choice for a therapeutic vaccine. They also provide new data on the high similarity of the CTL 

epitopes in both compartments according to their potential affinity for the HLA alleles of the patients investigated. 

Taken together, these results indicate that the analysis of the blood compartment can provide results that can 

extrapolated to the gut compartment, a major reservoir of HIV.  The strategies used in the future, whatever they 

might be, will have to eradicate the virus from the blood and also from the different tissue reservoirs including the 

gut.  

   

   

 

Materials and Methods 

Study participants 

A total of nine PLWH were recruited at MUHC . Cells were isolated at the CHUM Research Centre, Montreal, Quebec, 

Canada. All participants were MSM infected with HIV-1 subtype B. They were under successful ART which had been 

initiated between at least one year up to 14 years after HIV infection, while biopsies were obtained between four to 

26 years after ART initiation ; the main HLA alleles of the series investigated were representative of a Caucasian 

population (among them HLA A*02:01 and B*07:02); detailed clinical information on study cohort participants has 

been previously published [28]. 

Sigmoid colon biopsies and blood cells 

Sigmoid biopsies (≈32 biopsies/donor) were collected from HIV-infected individuals receiving ART during 

colonoscopy and processed using Liberase DL (Roche Diagnostics), as previously described (28). Matched peripheral 

blood (20 ml/donor) was collected on the same day from biopsy donors and immediately processed with Ficoll for 

PBMC isolation, performed in parallel with cell extraction from biopsy tissue. 

Extraction of total HIV DNA  
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Cells from gut biopsies and PBMC were suspended in 350 μL of RLT buffer with β-mercaptoethanol and total DNA 

was extracted using the Qiagen AllPrep DNA/RNA kit. The extracted DNA was then sent to Bordeaux University 

Hospital for further investigation. 

Identification of HLA alleles  

The method used for the molecular characterization of HLA alleles A and B in the Montreal cohort has been 

described previously [25]. Briefly, intermediate-to-high resolution sequencing of extracted DNA was performed by 

reverse Polymerase Chain Reaction-Sequence Specific Oligonucleotide (PCR-SSO) hybridization by using the 

LuminexH flow beads LabTypeH assay (InGen) for the A and B loci. Allelic ambiguities were resolved by PCR-

Sequence Specific Primer (SSP) amplification by using Olerup assays. Allele assignment was performed by 

comparison with official nomenclature and validated by the WHO committee for HLA system factors. All HLA A and B 

alleles have been determined for all patients. They are presented and discussed in Table 2 and Table S1 only when 

there affinity for the reference epitopes exhibits an inhibitory concentration 50, IC50<50nM (please refer to  the sub 

chapter Prediction of affinity between epitopes and HLA alleles using NGS data). 

 

NGS of HIV proviral DNA      

We used the method already published [29,30] to amplify fragment B, i.e. polymerase (Pol) region including  RT and 

integrase. After DNA extraction, nested PCR was carried out with the following outer primers: 1st F 

ATGATAGGGGGAATTGGAGGTTT (HXB2 loci 2388-2410), 1st R CCTGTATGCAGACCCCAATATG (5264-5243), and inner 

primers 2nd F GACCTACACCTGTCAACATAATTGG (2485-2509), 2nd R CCTAGTGGGATGTGTACTTCTGAACTTA (5219-

5192). The PCR products were purified and quantitated. The library was prepared using the Nextera XT DNA Sample 

Preparation kit. A purification step was performed and the library was quantified by Tapestation technology. Each 

individual library was then sequenced on a MiSeq Illumina platform. Raw data (FASTQ files) were submitted to the 

SmartGene® NGS HIV-1 module to generate a BAM file for each patient and each sample was processed for further 

analysis [31]. The study was carried out using only the Pol RT part region of the sequences obtained. 

Phylogenetic analysis following NGS 

Using Galaxy and Clustal software, RT gene sequences from the two compartments (GALT and PBMC) per patient 

were selected for neighbor-joining analysis from matrix distances calculated after gapstripping of alignments, with a 

Kimura two-parameter algorithm and bootstrap analysis. To do so, an alignment was generated that included only 

reads with lengths > 400 bp corresponding to a given region of RT (variable according to the patient, from amino-
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acids 39 to 202). This length limitation explains the small number of reads used for this analysis compared to the 

total number of reads covering this region. Phylogenetic trees were visualized using ITOL (Interactive Tree of Life) 

software [32].  

SGS and analysis 

SGS was carried out using samples from two patients (5A and 10) according to the method of Palmer et al [33]. The 

total extracted DNA of both compartments was diluted in TE buffer at a dilution yielding a PCR product in 3 out of 10 

PCRs. In this case, according to Poisson’s distribution, the dilution contains 1 copy of cDNA per positive PCR at about 

80% of the time. Two rounds of PCR for RT amplification were followed by visualization of the PCR products by 

capillary electrophoresis using QIAxcel DNA screening kit. The 1:9 dilution was found to be optimal for Sanger 

sequencing and the sequences (assuming that there was no mixture of population) of PBMC and GALT obtained 

were aligned by Clustal to obtain a neighbor-joining tree. 

Prediction of affinity between epitopes and HLA alleles using NGS data 

The TutuGenetics software [36] allows the automatic identification of CTL epitopes that can theoretically be 

presented by the HLA I alleles of the patients. It  links the sequence data, the identity of the HLA alleles, the Los 

Alamos HIV database for CTL epitopes and the International Immune Epitope Database (IEDB) simulator. It does not 

only identify CTL epitopes in the LANL database but also proposes predictive epitopes as previously published [27]. 

Using the TutuGenetics software, the theoretical affinity between the CTL epitopes encoded in the RT region and the 

HLA alleles of each patient at both compartments was calculated. We focused only on those epitopes that had a 

theoretical affinity for a defined allele of the patient with an MHC IC50 <50nM. When variants were identified, they 

were evaluated for their IC50<50nM or in ranges between 50-500 nM. It should be noted that the number of reads 

analyzed was higher since only variants present at a frequency > 1% at a given position of the CTL epitopic peptide 

sequence were considered. 

Evolutionary divergence and statistical analysis 

The median, mean and range of the number of base substitutions per site between RT sequences were calculated. 

Analyses were conducted using the Maximum Composite Likelihood model [37].The analysis involved 4100 

nucleotide sequences. Codon positions included were 1st+2nd+3rd+Noncoding. All positions containing gaps and 

missing data were eliminated. There were a total of 376 positions in the final dataset. Evolutionary analyses were 

conducted in MEGA7 [38].  
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The Wilcoxon test was used for analysis of the number of variants at the different positions of epitopes with a 

theorical affinity for defined alleles within both compartments; the IC50 values considered were <500nM and 

>500nM. 

 

List of abbreviations 

GALT: gut associated lymphoid tissue; NGS: next generation sequencing; PLWH: people living with HIV; PBMC: 

peripheral blood mononuclear cells; IC50 : inhibitory concentration 50; SGS: single genome sequencing; Pol: 

polymerase; RT: reverse transcriptase; ART: antiretroviral therapy 
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Patient 14

Figure 1 : Phylogenetic trees of the NGS sequences amplified from HIV-1 proviral DNA extracted from 

PBMC (blue) and GALT (red) samples for all the patients. The same reference sequences were used for 

all trees and are notified in black. The trees are rooted on N sequences. The boostrap values greater 

than 50 are indicated on the branches.   
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2030 RT sequences of patient 5A

Branch length : 0,01369

Bootstrap : 80

2038 RT sequences of patient 10

Branch length : 0,01633

Bootstrap : 93

1% divergence

Figure 2 : Phylogeny of RT sequences obtained by NGS and SGS from PBMC and GALT of patients 10 and 5A.  The 

NGS sequences are in black and not detailed in PBMC or GALT (please refer to Figure1). Symbols denote sampling 

location and patients : patient 5A PBMC (red star), patient 5A GALT (red square), patient 10 PBMC (green star), 

patient 10 GALT (green square)
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