- 1 Title: Where in the leaf is intercellular CO<sub>2</sub> (C<sub>i</sub>)? Considerations and recommendations
- 2 for assessing gaseous diffusion in leaves
- 3 Authors: Joseph R. Stinziano<sup>1</sup>, Jun Tominaga<sup>1,2</sup>, David T. Hanson<sup>1\*</sup>
- 4 Affiliations:
- <sup>5</sup> <sup>1</sup>Department of Biology, The University of New Mexico, Albuquerque, NM 87104, USA,
- <sup>6</sup> <sup>2</sup>Department of Mathematical and Life Sciences, Hiroshima University, Hiroshima 739-
- 7 8526, Japan
- 8 \*Corresponding author: David T. Hanson; email: <u>dthanson@unm.edu</u>
- 9 Other email addresses: jstinziano@unm.edu, jtominaga@unm.edu
- 10

# 11 ORCiDs

- 12 Joseph R. Stinziano: 0000-0002-7628-4201
- 13 Jun Tominaga: 0000-0001-7338-1826
- 14 David T. Hanson: 0000-0003-0964-9335
- 15
- 16 **Date of submission:** May 5, 2020
- 17 **Tables:** 2
- 18 Figures: 8 (1-7 color) plus 5 supplemental (all color)
- 19 Word count: 10,271
- 20

## 21 Highlight

22 Leaf water vapor and CO<sub>2</sub> exchange have been successfully used to model

23 photosynthetic biochemistry. We review critical assumptions in these models and make

24 recommendations about which need to be re-assessed.

25

## 26 Abstract

27 The assumptions that water vapor exchange occurs exclusively through stomata, that 28 the intercellular airspace is fully saturated with water vapor, and that CO<sub>2</sub> gradients are negligible between stomata and the intercellular airspace have enabled significant 29 30 advancements in photosynthetic gas exchange research for nearly 60 years via calculation of intercellular  $CO_2$  (C<sub>i</sub>). However, available evidence suggests that these 31 32 assumptions may be overused. Here we review the literature surrounding evidence for and against the assumptions made by Moss & Rawlins (1963). We reinterpret data from 33 34 the literature by propagating different rates of cuticular water loss, CO<sub>2</sub> gradients, and unsaturation through the data. We find that in general, when cuticle conductance is less 35 36 than 1% of stomatal conductance, the assumption that water vapor exchange occurs exclusively through stomata has a marginal effect on gas exchange calculations, but 37 this is not true when cuticle conductance exceeds 5% of stomatal conductance. Our 38 analyses further suggest that CO<sub>2</sub> and water vapor gradients have stronger impacts at 39 40 higher stomatal conductance, while cuticle conductance has a greater impact at lower 41 stomatal conductance. Therefore, we recommend directly measuring C<sub>i</sub> whenever possible, measuring apoplastic water potentials to estimate humidity inside the leaf, and 42 exercising caution when interpreting data under conditions of high temperature and/or 43 low stomatal conductance, and when a species is known to have high cuticular 44 45 conductance.

46

*Keywords:* cuticle conductance, mesophyll conductance, photosynthetic capacity,
photosynthesis, stomatal conductance, transpiration, water use efficiency

#### 49 Introduction

Nearly 60 years ago. Moss and Rawlins (1963) introduced a calculation to estimate 50 intercellular CO<sub>2</sub> concentrations (C<sub>i</sub>) under the assumption that all water flux out of the 51 leaf occurs through the stomata. The importance of their findings was such that it 52 quickly became dogma and is severely under-cited (<100 citations according to Google 53 Scholar) despite underlying nearly every measurement of stomatal conductance  $(q_s)$ 54 and C<sub>i</sub>. C<sub>i</sub> now plays a central role in plant gas exchange research: it is used to derive 55 56 parameters for a biochemical model of leaf gas exchange through measurements of net  $CO_2$  assimilation (A<sub>net</sub>) responses to  $CO_2$  (Farguhar *et al.*, 1980), which in turn can be 57 used to drive photosynthesis in coupled vegetation-climate models (e.g. Oleson et al., 58 2013), and  $C_i$  is a necessary starting point for estimating CO<sub>2</sub> fluxes within leaves all the 59 60 way to the site of carboxylation (Evans et al., 1986). However, this approach uses myriad assumptions that are generally not realistic (and almost physically impossible in 61 62 other cases), including saturated vapor pressure in the leaf (Hygen, 1951, 1953; Slavik, 1958; Jarvis & Slatyer, 1970; Ward & Bunce, 1986; Egorov & Karpushkin, 1988; 63 64 Karpushkin, 1994; Campbell & Norman, 1998; Canny & Huang, 2006; Cernusak et al., 2018), negligible cuticular conductance (Boyer et al., 1997; Meyer & Genty, 1998; 65 Šantrůček et al., 2004; Boyer 2015a; Tominaga & Kawamitsu, 2015a; Tominaga et al., 66 2018), homogenous stomatal conductance (Downton et al., 1988; Terashima et al., 67 1988; Buckley et al., 1997; Meyer & Genty, 1998), no CO<sub>2</sub> gradients within leaves (i.e. 68 infinite CO<sub>2</sub> conductance; Parkhurst, 1984; Long et al., 1989), no air pressure gradients 69 within the leaf (Leuning, 1983; Dacey, 1987), strict Fickian diffusion of CO<sub>2</sub> into leaves 70 (Leuning, 1983; Dacey, 1987), and resistances to gas diffusion are additive (i.e. follow 71 the Ohm's law analogy, Parkhurst, 1984). For the purposes of this review, we define 72 73 infinite conductance as a conductance high enough that a negligible concentration gradient forms between the two compartments in question. Here we review the concept 74 of C<sub>i</sub>, g<sub>s</sub>, and assumptions inherent in their calculations, and provide recommendations 75 on moving beyond the Moss and Rawlins (1963) paradigm of assumptions. 76 77

78 The Moss and Rawlins (1963) paradigm

To calculate stomatal resistance, Gaastra (1959), with Brown and Escombe's (1900)

80 Ohm's law analogy of resistances to gas diffusion (although this may not necessarily

81 hold true: see Parkhurst, 1984), introduced a series of Equations:

82

83 
$$A_{net} = \frac{C_a - C_i}{r_{sc}} = g_{sc}(C_a - C_i)$$
 Eq. 1

84

85 
$$E = \frac{W_i - W_a}{r_{sw}} = g_{sw}(W_a - W_i)$$
 Eq. 2

86

87 where  $A_{net}$  is net CO<sub>2</sub> assimilation,  $C_a$  is the CO<sub>2</sub> concentration external to the leaf,  $r_{sc}$ and  $g_{sc}$  is the stomatal resistance and conductance (reciprocal of resistance) to CO<sub>2</sub>, E 88 is transpiration through the stomata,  $W_a$  and  $W_i$  are the water vapor concentration 89 external to the leaf and in the intercellular airspace,  $r_{sc}$  and  $g_{sc}$  is the stomatal resistance 90 91 and conductance to water vapor. Considering the boundary resistance was negligibly small in the measurement system (which we also assume through this review), Moss 92 93 and Rawlins (1963) expressed the diffusion properties of CO<sub>2</sub> and water vapor in leaves 94 as:

95

96 
$$\frac{g_{sw}}{g_{sc}} = \frac{D_w}{D_c}$$
 Eq. 3

97

where  $D_w$  and  $D_c$  are the diffusion coefficients for CO<sub>2</sub> and water vapor in air.  $D_w/D_c$  is usually assumed to be equal to ~1.6 (Li-Cor, 2019; although see Holmgren et al 1965 Physiologia Plant. 18:557 where they use 1.7). Note that 1) Massman (1998) reported a mean ratio of 1.577 with uncertainties as high as 7% for the diffusivity of water vapour, 2) the number is valid for Fickian diffusion, and 3) this may vary if the stomatal pore size is small enough that Knudsen diffusion occurs instead of Fickian diffusion (e.g. Parkhurst, 1994). Solving the system of Eqs.1-3 they obtained:

106 
$$C_i = C_a - 1.6 \left(\frac{A_{net}}{E}\right) (W_i - W_a)$$
 Eq. 4

4

where  $W_i$  is assumed to be saturated for the leaf temperature ( $T_{leaf}$ ). Using conductance term, Eq. 4 can be rewritten as:

110

111 
$$C_i = C_a - 1.6 \frac{A_{net}}{g_{sw}}$$
 Eq. 5

112

Given that  $C_a$  and  $A_{net}$  are directly measurable,  $g_{sw}$ , calculated from *E* and water vapor gradients ( $W_a$ - $W_i$ ) (Eq. 2), would be the critical parameter that determines validity of  $C_i$ (though measurement precision of  $C_a$  and  $A_{net}$  affects the calculation).

- 117 Based on the above, Moss and Rawlins (1963) introduced assumptions (both explicitly
- and implicitly) into the calculation of  $C_i$ :
- 119 1. All transpired water flows through stomata
- 120 2. No CO<sub>2</sub> or H<sub>2</sub>O gradients within leaves (internal conductance,  $g_{ias} = \infty$ )
- 121 3.  $W_i$  is at saturation (W<sub>i</sub> = saturation vapor pressure, e<sub>s</sub>; mesophyll apoplast water 122 potential,  $\Psi_{m,apo} = 0$ )
- 4. Uniform stomatal apertures over leaf surfaces
- 124 5. No air pressure gradients across leaf surfaces
- 125 6.  $\frac{D_w}{D_c} = 1.6$  (based on Fickian diffusion in air)
- 126 7. One-dimensional models approximate the three-dimensional leaf
- 127
- 128 For the purposes of this review, we are going to address the data surrounding the
- implications and failures of assumptions 1 to 3 in relation to C<sub>i</sub> calculations and data
- derived from  $C_i$  and give a cursory overview on the remaining assumptions. Note that
- these assumptions equally apply to the von Caemmerer and Farquhar (1981)
- 132 modification to Moss and Rawlins (1963).
- 133
- 134 What do tests of Moss and Rawlins (1963) say?
- 135 The first test of the calculation was done in 1982 (Sharkey *et al.*, 1982) whereby *C<sub>i</sub>* was
- directly measured and compared to the calculated value based on the Moss and
- 137 Rawlins assumption. Sharkey et al. (1982) used a dual open-flow/closed-flow system

whereby one side of the leaf was equilibrated in a closed system to measure  $C_i$ , while 138 the other side was measured with the open-flow system used to calculate  $C_i$ . Note that 139 this method requires a steady-state setup and assumes that the CO<sub>2</sub> in the closed-flow 140 system is in equilibrium with the internal airspace of the leaf. Sharkey et al. (1982) 141 concluded that the calculated values were in "good agreement" with the measured 142 values, although there were some deviations less than  $\pm 20 \mu$ mol mol<sup>-1</sup> (Table 1). They 143 also reported that at very high vapor pressure difference (VPD) and conductance less 144 than 60 mmol m<sup>-2</sup> s<sup>-1</sup>, the calculated  $C_i$  increased while the measured  $C_i$  decreased. 145 Since then, fewer than 10 studies have assessed the Moss and Rawlins (1963) 146 147 assumptions (Table 1) despite the fact that it is the foundation for a broad range of research activities. These studies employed direct C<sub>i</sub> measurements similar to Sharkey 148 149 et al. (1982), except for Boyer et al. (1997). Intriguingly, most evidence suggests that there are issues in the assumptions that lead to discrepancies between measured and 150 151 calculated C<sub>i</sub> (Table 1), with explanations ranging from cuticular water loss (Boyer et al., 1997), to patchy stomatal apertures (Downton et al., 1988; Terashima et al., 1988; 152 153 Meyer & Genty, 1998) and intra-leaf CO<sub>2</sub> gradients (Sharkey et al., 1982; Mott & O'Leary, 1984; Parkhurst et al., 1988; Parkhurst & Mott, 1990; Parkhurst, 1994). 154 155

156 Assumption 1 – all water flows through stomata

157 Cuticular water loss is a proposed explanation for the reported discrepancies (Kirschbaum and Pearcy, 1988; Boyer et al., 1997; Meyer & Genty, 1998; Boyer, 2015a; 158 Tominaga & Kawamitsu, 2015a, Tominaga et al., 2018). Using hypostomatous leaves of 159 grape (Vitis vinifera L.), Boyer et al. (1997) measured gas exchange through the adaxial 160 stomata-free side while the abaxial stomatous side was sealed. In this circumstance,  $C_i$ 161 162 was estimated to be near the compensation point (50  $\mu$ mol mol<sup>-1</sup>) with a little CO<sub>2</sub> flux on the cuticular side while calculations showed  $C_i$  close to  $C_a$ . As a result, the calculated 163  $C_i$  was larger than the actual value by over a hundred µmol mol<sup>-1</sup> (astomatous side of 164 Vitis vinifera in Table 1). Later, this result was reproduced in the same species (Bover 165 2015b) with a direct system that reached  $C_a$  as high as several % to detect very small 166 CO<sub>2</sub> fluxes through the cuticle (Boyer & Kawamitsu, 2011), as well as in passion fruits 167 (Passiflora edulis Sims) (Tominaga et al., 2018). Boyer (2015b) found that the 168

measured  $C_i$  increased by only 2 µmol mol<sup>-1</sup> above the CO<sub>2</sub> compensation point of 44 169  $\mu$ mol mol<sup>-1</sup> despite the large CO<sub>2</sub> gradients (10000  $\mu$ mol mol<sup>-1</sup>) across the cuticular 170 surface, suggesting that the cuticle is an effective barrier against CO<sub>2</sub> diffusion. 171 Transpiration was always greater than assimilation through the cuticle, causing cuticle 172 conductance for water vapor  $(q_{cw})$  to be 20-40× larger than cuticle conductance for CO<sub>2</sub> 173  $(q_{cc})$ , which is a much higher ratio than the 1.6 assumed for stomata (Eq. 3). This is 174 likely because the pathway for CO<sub>2</sub> in these experiments was from the leaf airspaces 175 176 through the epidermal cells and cuticle, whereas the pathway for water diffusion was from the epidermal surface through the cuticle. 177

178

Calculations (Eq. 4) consistently overestimate the  $C_i$  for the astomatous side of 179 180 hypostomatous leaves (Table 1). In contrast, C<sub>i</sub> values were in closer agreement between direct measurements and calculations in the high CO<sub>2</sub> tests for stomatous leaf 181 182 surfaces in sunflower (Helianthus annuus L.) (Boyer & Kawamitsu (2011) in Table 1). It should be noted that von Caemmerer and Farguhar (1981) slightly modified Eq. 4 by 183 184 including a ternary effect term that describes the hinderance of CO<sub>2</sub> diffusion into the leaf due to the much larger flux of H<sub>2</sub>O out of the leaf (Eq. B18 in von Caemmerer & 185 Farguhar, 1981), and this version is used more generally and also in Table 1. Boyer & 186 Kawamitsu (2011) experimentally validated this modification under high  $C_a$  that 187 188 enhanced the ternary effect, and thus direct measurements include this effect. 189

To see the cuticle effect on both leaf sides (cuticle plus stomata), Boyer (1997) 190 recalculated  $C_i$  in the standard measurements for both sides using the cuticle 191 192 conductance determined on the same leaf (Vitis vinifera (both sides) in Table 1). The 193 results suggest that the cuticle effect can be substantial— $C_i$  differential is 126 µmol mol<sup>-</sup> <sup>1</sup> at 1100  $\mu$ mol mol<sup>-1</sup>  $C_a$ — when  $g_{sw}$  is relatively small, but only marginal— $C_i$  differential 194 of 3  $\mu$ mol mol<sup>-1</sup> at 350  $\mu$ mol mol<sup>-1</sup>  $C_a$ — when  $g_{sw}$  is relatively large. This conclusion was 195 recently confirmed with direct measurements in amphistomatous sunflower leaves with 196 stomata closed by feeding ABA (Boyer, 2015a; Tominaga & Kawamitsu, 2015a), and 197 amphistomatous bean (*Phaseolus vulgaris* L.) leaves with low stomatal density (SD) 198 (Tominaga et al., 2018), as summarized in Table 1. In these studies (Tominaga & 199

Kawamitsu, 2015a; Tominaga et al., 2018), calculation and direct measurements draw 200 essentially the same A/C<sub>i</sub> response curves when  $g_{sw}$  was large ( $g_{sw}$ >250 mmol m<sup>-2</sup> s<sup>-1</sup>) 201 with open stomata and/or high SD. In contrast, when  $g_{sw}$  was small ( $g_{sw}$ <50 mmol m<sup>-2</sup> s<sup>-</sup> 202 <sup>1</sup>) with closed stomata and/or low SD,  $A/C_i$  curves were depressed due to over-203 estimation of the calculated  $C_i$ . The similar depression was also confirmed with the 204 standard open-flow measurements for both sides (Tominaga & Kawamitsu, 2015a), as 205 was observed previously in similar ABA treatments (Downton et al., 1988; Terashima et 206 207 al., 1988). Clearly, this should create a problem for interpreting gas exchange measurements. Cuticular water loss also causes calculated  $C_i$  to be lower than the 208 209 actual value when  $CO_2$  is diffusing out from the leaf as it overestimates the  $CO_2$  transfer through stomata regardless of diffusional direction. In accordance, negative  $C_i$ 210 211 differentials were found with negative  $A_{net}$  in dark, and low  $C_a$  in light (Table 1). 212 213 There are debates as to whether and when cuticular water loss would be a significant portion of water loss across the leaf (Ledford, 2017). Generally, we would expect cuticle 214 215 conductance to be more significant at low values of g<sub>sw</sub> as noted above (Meyer and Genty, 1998; Flexas et al., 2002; Lawlor, 2002) and under heat stress where the cuticle 216

could undergo a state change to become very permeable to water (although note that cuticular melting may not occur until temperatures >60 °C, Bargel et al., 2006). But how large is leaf cuticle conductance and water loss? Unfortunately, biologists studying cuticle properties often focus on cuticle permeance (units: m s<sup>-1</sup>), which can hinder comparisons with gas exchange where conductance and flux are normally measured (units mol m<sup>-2</sup> s<sup>-1</sup>). A series of equations permits the calculation of conductance and flux from permeance. For conductance (Hall, 1982; Nobel, 1991):

224

$$g_{cw} = P_c \frac{p}{RT} \qquad \text{Eq. 6}$$

226

Where  $g_{cw}$  is cuticular conductance for water vapor (mol m<sup>-2</sup> s<sup>-1</sup>), P<sub>c</sub> is cuticular permeance (m s<sup>-1</sup>), p is atmospheric pressure (Pa), R is the universal gas constant (8.314 m<sup>3</sup> Pa K<sup>-1</sup> mol<sup>-1</sup>), and T is temperature (K). And for the flow rate of water across

the cuticle (flux, transpiration), assuming steady-state conditions (Riederer andSchreiber, 2001):

232

233 
$$E_c = \frac{P_c(W_i - W_a)}{18.02}$$
 Eq. 7

234

Where  $E_c$  is cuticular transpiration (water flux) across the cuticle (mol m<sup>-2</sup> s<sup>-1</sup>),  $P_c$  is cuticular permeance (m s<sup>-1</sup>),  $W_i$  is the water vapor concentration adjacent to the outer epidermal wall (g m<sup>-3</sup>),  $W_a$  is the water vapor concentration at the leaf surface (g m<sup>-3</sup>), and 18.02 is the molar mass of water (g mol<sup>-1</sup>).

239

240 Cuticle permeances (m s<sup>-1</sup>) available in Riederer & Schreiber (2001) were converted

into g<sub>cw</sub> and E<sub>c</sub> values wherever sufficient data were available in the original papers to
 perform the calculations (Table 2). Mean g<sub>cw</sub> calculated from Riederer and Schreiber

(2001) was 0.511 ± 0.101 mmol m<sup>-2</sup> s<sup>-1</sup> (range: 0.015 to 5.862 mmol m<sup>-2</sup> s<sup>-1</sup>), while mean

E<sub>c</sub> was  $15.18 \pm 2.66 \mu mol m^{-2} s^{-1}$  (range: 0.46 to 134.36  $\mu mol m^{-2} s^{-1}$ ) (Table 2; Fig 1a).

How do these g<sub>cw</sub> values compare to stomatal conductance?

246

247 We compared the range in  $g_{cw}$  values above to the stomatal conductances ( $g_{sw}$ ) reported in Douthe et al. (2011), Vrábl et al. (2009), and Scafaro et al. (2011) (which we 248 also use to test the implications of g<sub>cw</sub> on mesophyll conductance, g<sub>m</sub>, below; see Pons 249 et al., 2009 for a discussion of this). Given that measured g<sub>sw</sub> from the studies used for 250 the  $g_m$  analysis varied from 43.6 to 1,253 mmol m<sup>-2</sup> s<sup>-1</sup> (mean: 474 ± 44 mmol m<sup>-2</sup> s<sup>-1</sup>), a 251 quick estimate suggests that gcw could range between 0.001 and 13% of gsw 252 measurements (calculation based on means: 0.1% of g<sub>sw</sub>), which may have significant 253 implications for gas exchange measurements in certain species under some conditions. 254 255 Analyzing Eq. 7, there are two unknowns (P<sub>c</sub> and W<sub>i</sub>, though P<sub>c</sub> is measurable in 256 astomatous cuticles), necessitating an assumption about the value of either Pc or Wi. 257

258 Typically, W<sub>i</sub> is assumed to be equal to the water vapor concentration of the saturation

vapor pressure at  $T_{leaf}$ . However, it is difficult to assess whether this assumption holds,

as the site of evaporation for cuticle conductance is within the cell wall of the epidermis

and reflects a different site of evaporation than for airspace W<sub>i</sub>. This assumption may be 261 262 broken during the dry-down experiments for gravimetrically-determined cuticular water loss. During these measurements, water loss rates decline over time until a breakpoint 263 and a constant rate of water loss are achieved. Beyond the breakpoint, stomata are 264 assumed to be closed. Furthermore, despite the leaf having lost a substantial amount of 265 water, the W<sub>i</sub> assumption is used to calculated P<sub>c</sub>, with W<sub>i</sub> assumed to be the same for 266 the cell wall of the epidermis and the intercellular airspace. Therefore, at a given value 267 268 of  $E_c$ , when the  $W_i$  assumption is violated, then  $P_c$  will change. In this way, it is possible that much of the literature on cuticular water loss is mis-estimating cuticular 269 270 permeances, and therefore cuticular conductance. This could explain why gas exchange estimates of cuticular conductance often far exceed the conductance 271 272 measured using the gravimetric method or isolated cuticles, although leaky stomata in the gas exchange methods could contribute to these differences as well. 273

274

## Assumption $2 - no CO_2$ or $H_2O$ gradients within leaves

276 Due to finite intercellular CO<sub>2</sub> conductance in leaves  $(q_{ias})$ , adaxial-abaxial gradients of  $C_1$  must exist along the mesophyll cells (CO<sub>2</sub> sink). In amphistomatous leaves, CO<sub>2</sub> 277 diffuses through stomata on both sides, and the diffusion path meets somewhere in the 278 middle of the leaf where the gradient ends. Because  $CO_2$  diffuses slowly through 279 280 cuticle, larger  $C_i$  gradients would develop in hypostomatous leaves than in 281 amphistomatous leaves as the path-length could be longer in the airspace (Parkhurst and Mott, 1990; Evans and Loreto, 2000). Direct measurement technically alters amphi-282 to hypostomatous leaves by closing one surface, thereby doubling the diffusion path 283 (e.g., Fig. 9 in Boyer & Kawamitsu, 2011). While CO<sub>2</sub> is entering through one side, 284 285 direct measurements measure the CO<sub>2</sub> equilibrated at the opposite side—end of the diffusion path—and thus measures the lowest  $C_i$  for the gradient. Therefore, positive  $C_i$ 286 differentials observed in amphistomatous leaves may be associated with the gradient. 287 Parkhurst et al. (1988) explored this effect by observing 20-60 µmol mol<sup>-1</sup> C<sub>i</sub> differentials 288 at about ambient 300-350  $\mu$ mol mol<sup>-1</sup> CO<sub>2</sub> in five amphistomatous species (Table 1). 289 Considering the differential as the  $C_i$  gradient, they estimated the difference between 290 calculated  $C_i$  and mean  $C_i$  to be 1/6 of the gradient or 3-10 µmol mol<sup>-1</sup> for these 291

amphistomatous species, according to the one-dimensional diffusion analysis. Their 292 estimation depends on the location of calculated  $C_i$  which, in turn, depends on the 293 diffusion path for water vapor because calculations assume the same pathway for CO<sub>2</sub> 294 and H<sub>2</sub>O in stomatal conductance. The diffusion path for stomatal conductance is then 295 defined by the point where the gradients of water vapor starts (i.e. the conceptual 296 evaporating surface), that is  $W_i$  (Eq. 2). Parkhurst et al. (1988) and Sharkey et al. (1982) 297 considered this was right beneath stomata or stomatal cavity. However, this may not be 298 299 true due to water vapor gradients and/or unsaturation of water vapor in the leaf airspace (see below). For the C<sub>i</sub> differentials they observed, cuticle conductance might have an 300 301 impact especially when stomatal conductance was small, yet they did not report  $q_{sw}$ (Table 1). 302

303

Dual sided open-flow data on amphistomatous leaves suggest that CO<sub>2</sub> concentrations 304 305 gradients are minimal across the leaf surface (Mott & O'Leary, 1984), however it is important to note that these data relied on the assumption that W<sub>i</sub> is saturated at the 306 307 substomatal cavity. Calculations for C<sub>i</sub> are at the physical evaporating surfaces (W<sub>i</sub>), which is not necessarily in the substomatal cavity. Therefore, such data do not provide 308 evidence against a  $CO_2$  concentration gradient per se, but rather that the  $CO_2$ 309 concentration gradient is less than that required to cause a substantial difference 310 311 between [CO<sub>2</sub>] at the evaporating surfaces on the adaxial and abaxial sides of the leaf. 312

As mentioned above, location of  $W_i$  is critical to define location of  $C_i$  through altering the 313 diffusion path(-length) for stomatal conductance as illustrated in Fig. 2a. In general,  $W_i$ 314 is considered to be saturated at  $T_{leaf}$  or 100% relative humidity (RH) throughout the 315 316 airspace up until sub-stomatal cavity (shown as 100 in Fig. 2a). In this representation, calculated  $C_i$  is at the sub-stomatal cavity  $(C_{i,s})$ , and the  $C_{i,s}$  is further reduced toward 317 the mesophyll cell surface ( $C_{i,ias}$ ) due to finite  $g_{ias}$ . When leaves are transpiring through 318 stomata, evaporation essentially occurs on the cell surfaces exposed to the intercellular 319 airspace (e.g., apoplast of the mesophyll cells). As for assimilation, a W<sub>i</sub> gradient must 320 exist from the evaporating surface to the stomatal cavity due to finite conductance to 321 water vapor (shown as blue gradient on left hand side of Fig. 2a). In such case, the 322

calculated  $C_i$  would be closer to the mesophyll cell surfaces where 100% RH occurs (i.e.,  $C_{i,ias}$ ).

325

326 Assumptions  $3 - W_i$  saturation and  $\Psi_{m,apo} = 0$  MPa

Besides  $W_i$  gradients, water potential of the water on the evaporating surface of the apoplast of the mesophyll cells ( $\Psi_{m,apo}$ , the location most pertinent to C<sub>i</sub>) would affect the location of saturated  $W_i$  because RH over a solution is a function of  $\Psi$  of the solution as (Campbell & Norman, 1998):

331

332 
$$RH = exp\left(\frac{M_W\psi}{RT}\right)$$
 Eq. 8

333

where  $M_w$  is the molecular weight of water (0.018 kg mol<sup>-1</sup>),  $\Psi$  is the water potential in J 334 kg<sup>-1</sup> (numerically equivalent to kPa), R is the universal gas constant (8.314 J K<sup>-1</sup> mol<sup>-1</sup>), 335 336 and T is the temperature in K. Eq. 8 indicates that RH in the airspace decreases as the  $\Psi_{m,apo}$  declines. If we assume that apoplastic and symplastic water potentials are in 337 equilibrium in leaves, bulk water potential in leaf tissue ( $\Psi_{\text{leaf}}$ ), which we normally 338 measure, may approximate the  $\Psi_{apo}$ . We note that it is the water potential at the 339 mesophyll apoplast that matters most for C<sub>i</sub> calculations that are relevant for 340 photosynthetically active tissues. Water potential of the bulk apoplast ( $\Psi_{apo}$ ) is 341 composed of both mesophyll and bundle sheath apoplastic components ( $\Psi_{m,apo}$  and 342  $\Psi_{b,apo}$ ), and thus may be insufficient for calculating W<sub>i</sub>. However, the importance of this 343 depends on the ratio of mesophyll to bundle sheath. If we assume that the bundle 344 sheath + epidermal transpiration is small relative to mesophyll transpiration, then we 345 can assume that  $\Psi_{apo} \approx \Psi_{m,apo}$ . 346

347

However if we assume for a moment that  $\Psi_{\text{leaf}} = \Psi_{\text{apo}}$ , and  $\Psi_{\text{m,apo}}$  is the relevant value for calculating W<sub>i</sub>, for a leaf at night,  $\Psi_{\text{leaf}}$  can be as high as -0.1 MPa, corresponding to a  $W_i$  that is 99.9% RH, while a leaf at daytime with a  $\Psi_{\text{leaf}}$  of -2.0 MPa corresponds to a  $W_i$  of 98.5% RH (Eq. 8). Martínez-Vilalta et al. (2014) compiled a global dataset of water potential measurements, finding median predawn  $\Psi_{\text{leaf}}$  of -0.69 MPa (mean: -0.111 MPa, IQR: -0.13 – -0.34 MPa) and midday  $\Psi_{\text{leaf}}$  of -1.72 MPa (mean: -2.05 MPa, IQR: - 2.41 MPa – -1.23 MPa) corresponding to 99.5% (mean: 99.2%, IQR: 99.1 – 99.8 %) RH at predawn (assuming leaf temperatures of 25 °C) and 98.8% (mean: 98.5%, IQR: 98.3 - 99.1%) RH at midday. The effect of unsaturation on the calculation is illustrated on right hand side of Fig. 2a. 100% RH no longer exists in the intercellular airspace. Instead, it is located an imaginary point within the mesophyll cell ( $C_{i,liq}$ ), thereby causing the calculated  $C_i$  to be lower than the actual  $C_i$  in the airspace.

361 Some studies have suggested that the airspace could be unsaturated (Hygen, 1951, 1953; Slavik, 1958; Jarvis & Slatver, 1970; Ward & Bunce, 1986; Egorov & Karpushkin, 362 1988; Karpushkin, 1994; Canny & Huang, 2006; Cernusak et al., 2018, 2019), while 363 others have considered that effect of the  $\Psi_{\text{leaf}}$  is so small that the 100% RH can be 364 365 assumed (Farguhar & Raschke, 1978; Jones & Higgs, 1980; Sharkey et al., 1982; Parkhurst et al., 1988; Buckley et al. 2017, Buckley and Sack 2019). However, 366 367 Cernusak et al. (2018) recently estimated that the relative humidity could be as low as 77% and 87% ( $\Psi \approx -35$  MPa and -18 MPa, respectively) in *Pinus edulis* and *Juniperus* 368 monosperma when the leaves opened stomata and actively photosynthesized. If true, 369 370 unsaturation can have significant impact on the calculations at least in those species. 371

## 372 Assumption 4 – uniform stomatal apertures over leaf surfaces

Non-uniform stomatal apertures or stomatal 'patchiness' is another factor that could bias 373 calculation of C<sub>i</sub> (Downton et al., 1988; Terashima et al., 1988). They found patchy 374 distribution of A<sub>net</sub> throughout the leaves fed with ABA and proposed that if it is 375 associated with stomatal patchiness,  $C_i$  would vary among patches and averaged  $C_i$ 376 would be overestimated based on the conductance-weighed calculation (Eq. 5; 377 Mansfield et al., 1990; Terashima, 1992; Buckley et al., 1997). Patchiness likely occurs 378 in plants under water stresses that induce stomatal closure, however it is not a general 379 phenomenon as it appears to depend on species, growth conditions, and how quickly 380 the stress is imposed (Cheeseman 1991, Gimenez et al., 1992; Gunasekera & 381 Berkowitz, 1992; Wise et al., 1992; Tezara et al., 1999; Mott & Buckley, 2000). A 382 number of methods have been used to assess patchiness in conjunction with gas 383 384 exchange measurements (Terashima, 1992): starch accumulation (Terashima et al.,

1988), autoradiography of fixed <sup>14</sup>CO<sub>2</sub> (Downton et al., 1988a,b; Gunasekera & 385 Berkowitz, 1992; Sharkey & Seemann, 1989; Wise et al., 1992), fluorescence imaging 386 (Daley et al., 1989; Mott, 1995; Meyer & Genty, 1998). Although the results often have 387 been attributed to patchy stomatal closure, these methods depend on photosynthetic 388 metabolism and could as well reflect non-uniform metabolism (Lauer & Boyer, 1992; 389 Wise et al., 1992). Also, lateral CO<sub>2</sub> diffusion and different stomatal behavior on both 390 391 surfaces in amphistomatous leaves should affect the extent of observed patchiness. 392 More independent and direct measurements of aperture/ $q_{sw}$  distributions, such as direct observations (Laisk et al., 1983; Van Gardingenet al., 1989; Lawson et al., 1997) and 393 394 thermal imaging (West et al., 2005; McAusland et al., 2013), may be preferable. The problems associated with stomatal patchiness are also attributable to  $T_{leaf}$  distributions 395 396 that are difficult to measure accurately and are needed for  $W_i$ . Direct  $C_i$  measurement can avoid these effects as it does not rely on conductance (Lauer & Boyer, 1992; Boyer 397 398 & Kawamitsu, 2011).

399

#### 400 Assumption 5 – no pressure gradients across leaf surfaces

Pressure gradients across the leaf surface would have direct impact on the 401 concentration gradients because same atmospheric pressure is assumed for both inside 402 and outside the leaf. There is evidence that humidity- and thermal- induced pressure 403 404 gradients can exist across leaves, with data suggesting that this is the case in Nelumbo 405 (Leuning, 1983; Dacey 1987) and Nuphar lutea (Dacey, 1981), however such pressure gradients may be associated most closely with aquatic plants (Steinberg, 1996). A 406 modeling analysis suggests that intercellular airspace could be pressurized by up to 4 407 kPa-3.9% of 101.3 kPa for standard atmosphere-across the leaf (e.g. Steinberg, 408 409 1996), and that pressure gradients should increase with saturation of the intercellular airspace. If such pressurization can occur in terrestrial plants (which could happen 410 under low q<sub>ias</sub> values and increasing radiation loads as suggested by Steinberg, 1996), 411 the possibility exists, therefore, that while W<sub>i</sub> may not be equal to e<sub>s</sub> per se, it may equal 412 es at ambient air pressure if the leaf is pressurized and leaf RH < 100%, and or exceed 413 the expected  $e_s$  if leaf RH is close to or greater than 100%.  $W_i$  calculated with the 414 external ambient pressure would be lower than the actual  $W_i$  inside the leaf (i.e., the 415

416 actual  $W_i$  is greater than 100% RH). To our knowledge, however, there are no studies 417 demonstrating leaf to air pressure gradients in terrestrial plant species.

418

## 419 Assumption 6 – Fickian diffusion of $CO_2$ and $H_2O$

In the case of pressure gradients across the leaf in aguatic plants, the pressure 420 gradients can be established because pore sizes are small enough that Knudsen 421 422 diffusion is dominant over Fickian diffusion (Steinberg, 1996). Thus, it is possible that in 423 some terrestrial species, the pore sizes could be sufficiently small as to cause Knudsen diffusion to occur, altering the diffusivity constants for CO<sub>2</sub> and H<sub>2</sub>O, although stomatal 424 pore size would need to be quite small for this effect (e.g. < 1 µm, Leuning, 1983), and 425 the ratio of Knudsen diffusion coefficients for H<sub>2</sub>O and CO<sub>2</sub> would be 1.56 as the ratios 426 427 are dependent on pore size and molecular mass. Thus, while Knudsen diffusion may occur in some cases, the assumption of Fickian diffusion is likely sufficient for terrestrial 428 429 plants in most cases.

430

#### 431 Assumption 7 – one dimension approximates the three-dimensional leaf

The equations used in gas exchange are typically one dimensional, and it is generally assumed that this is sufficient to capture the behaviour of the leaf area measured through gas exchange. However, this may be insufficient (Parkhurst, 1977) and threedimensional models predict that some gas exchange traits could be strongly affected (Parkhurst, 1994; Earles et al., 2018). Furthermore, three dimensional models predict mechanisms behind some of the responses observed in mesophyll conductance to CO<sub>2</sub> (*g<sub>m</sub>*) (Tholen & Zhu, 2011).

439

440 Implications of broken assumptions – where is C<sub>i</sub>?

441 Most of the assumptions listed above essentially relate to meaning of stomatal 442 conductance—source of transpiration, diffusion path, behavior and diffusive capacity of 443 stomata. While cuticular CO<sub>2</sub> movement is very small and probably negligible in  $A_{net}$ 444 considerable cuticular water loss occurs in transpiration, and so  $g_{sw}$  should include  $g_{cw}$ . 445 Because stomatal and cuticular transpiration occur in parallel cuticle conductance is 446 additive to stomatal conductance as (Fig. 2a):

- 447 448  $g_{sw} = g_{sw}' + g_{cw}$  Eq. 9
- 449

where  $g_{sw}$  is what we calculate according to Eq. 2 where *E* includes stomatal and cuticular transpiration whereas  $g_{sw}$ ' accounts for only stomatal transpiration. Eq. 9 shows that the  $g_{sw}$  is overestimated by  $g_{cw}$  (Fig. 2a). Also, the effect of  $g_{cw}$  on the calculation is expected to be greater with the larger  $g_{cw}$  and smaller  $g_{sw}$ ', both of which increase the proportion of  $g_{cw}$  to  $g_{sw}$ .

455

Parkhurst (1994) and co-workers suggested C<sub>i</sub> as we calculate it is better represented 456 by C<sub>i,s</sub> for C<sub>i</sub> at the stomatal cavity based on the calculations used (Fig. 2a). Parkhurst 457 458 (1994) predicted that the degree of  $C_i$  over-estimation relative to the average  $C_i$  would be greater for hypostomatous leaves rather than amphistomatous leaves, and further 459 460 argues that even dual-sided gas exchange measurements can only measure C<sub>i.s</sub>, the average C<sub>i</sub>. However, calculated C<sub>i</sub> could be deeper than they assumed. Diffusion path 461 of  $g_{sw}$  affects location of  $C_i$  and is potentially complicated because where a  $W_i$  gradient 462 occurs and where  $W_i$  is saturated (100% RH) might change with microenvironment and 463 water status in leaves. To disentangle these effects, it is helpful to find 100% RH within 464 the leaf because it defines the starting point of  $g_{sw}$  as well as the end point of  $g_{sc}$  which 465 sets the location of  $C_i$ . In Fig. 2a, stomatal conductance to  $CO_2(g_{sc})$  for each  $C_i$  site as 466 well as  $W_i$  are indicated. 467

468

469 When there is no  $W_i$  gradient and the  $\Psi_{m,apo}$  is zero, sub-stomatal cavity may be

470 saturated (center of Fig. 2a). In this scenario,  $C_i$  would be calculated as  $C_{i,s}$  with the  $g_{sc}$ 

471 accounting only stomatal path ( $g_{sc} = g_{sc}$ ). We note that the substomatal cavity may not

472 be saturated if the cuticle extends into the substomatal cavity as it does for

- 473 *Tradescantia virginiana* (Nonami et al. 1991). When the  $W_i$  gradients exist and the  $\Psi$  is
- zero, 100% RH may be found at the mesophyll cell surface (left hand side of Fig. 2a).

Now, the calculated  $C_i$  would indicate the  $C_{i,ias}$  with the  $g_{sc}$  accounting for the stomatal

plus intercellular pathway from the stomatal cavity to the mesophyll cell surface  $\left(\frac{1}{a}\right)$ 

477  $\frac{1}{g_{sc'}} + \frac{1}{g_{ias}}$ ). When the  $\Psi_{m,apo}$  is negative (right hand side of Fig. 2a), 100% RH may be 478 within the mesophyll cell. In this case, the  $g_{sc}$  partially includes CO<sub>2</sub> diffusion path in the 479 liquid phase in addition to the air phase  $(\frac{1}{g_{sc}} = \frac{1}{g_{sc'}} + \frac{1}{g_{ias}} + \frac{1}{g_{liq}})$ , and the  $C_i$  would be 480 calculated as  $C_{i,liq}$ . The  $C_{i,liq}$  would be located in the liquid path from the cell wall surface 481 ( $C_{i,ias}$ ) to chloroplast stroma ( $C_c$ ) depending on where the assumed  $W_i$  is located. 482 Importantly,  $g_{ias}$  and  $g_{liq}$  usually resides in the mesophyll conductance ( $g_m$ ) as (Evans et 483 al., 2009):

484

485 
$$\frac{1}{g_m} = \frac{1}{g_{ias}} + \frac{1}{g_{liq}}$$
 Eq. 10

486

487 where  $g_m$  is defined as:

- 488
- $489 \qquad g_m = \frac{A_{net}}{C_i C_c} \qquad \qquad \text{Eq. 11}$
- 490

Clearly,  $g_m$  is affected by  $g_{cw}$  and  $W_i$  which break the assumptions of  $g_{sc} = g_{sc}$  (i.e.,  $C_i =$ 491  $C_{i,s}$ , the C<sub>i</sub> in the substomatal cavity). If  $g_{ias}$  is included in  $g_{sc}$  when saturated  $W_i$  occurs 492 at the mesophyll cell surface, calculated  $C_i$  would be  $C_{i,ias}$  rather than  $C_{i,s}$  and  $g_m$  might 493 be calculated to be strictly liquid-phase conductance  $(g_m = g_{lig})$ . Furthermore, some 494 portion of  $g_{liq}$  is mis-assigned to  $g_{sc}$  as the  $\Psi_{apo}$  'pulls' the  $C_{i,liq}$  deeper into the mesophyll 495 496 cells ( $q_{lia}$  error in Fig. 2b). Consequently, decreasing the path-length for CO<sub>2</sub> overestimates the apparent  $q_m$  (Eq. 10. Even if sub-stomatal  $W_i$  is saturated, the vapor 497 pressure difference between air and leaf (VPD<sub>leaf</sub>) may 'push' the  $W_i$  deeper into the 498 airspace by making the  $W_i$  gradients steeper (Fig. 2c). Then,  $g_m$  would also be 499 500 overestimated by reducing some portion of path-length in the airspace ( $g_{ias}$  error in Fig. 2c). These 'pushing' and 'pulling' effect can happen either independently or 501 502 simultaneously or in coordinated manner when environmental water demand is excessive (e.g., under drought). We can see by this illustration that only under very 503 504 specific circumstances can our current assumptions about  $W_i$  provide us with 'true'  $g_s$ ,  $C_i$ , and  $g_m$ . 505

| 506 |                                                                                                                                                                                           |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 507 | In the following sections, we model the implications when some of these assumptions                                                                                                       |
| 508 | fail, reinterpret data from the literature in several case studies on mesophyll                                                                                                           |
| 509 | conductance and the photosynthetic $CO_2$ response, and propagate different rates of                                                                                                      |
| 510 | cuticular water loss, $W_i$ gradients, and unsaturation through the data.                                                                                                                 |
| 511 |                                                                                                                                                                                           |
| 512 | Modeling the implications of cuticle conductance                                                                                                                                          |
| 513 |                                                                                                                                                                                           |
| 514 | Re-calculations of C <sub>i</sub> , intrinsic water use efficiency, mesophyll conductance                                                                                                 |
| 515 | Analogous to Eq. 5, $C_i$ was recalculated ( $C_{i,cuticle}$ ) with the actual $g_{sw}$ in Eq. 9 as:                                                                                      |
| 516 |                                                                                                                                                                                           |
| 517 | $C_{i,cuticle} = C_a - 1.6 \frac{A_{net}}{g_{sw'}} = C_a - 1.6 \frac{A_{net}}{g_{sw} - g_{cw}}$ Eq. 12                                                                                    |
| 518 |                                                                                                                                                                                           |
| 519 | For $C_a$ , we assumed infinite boundary layer conductance as most papers do not report                                                                                                   |
| 520 | enough information to recalculate or extract boundary layer conductance and gas                                                                                                           |
| 521 | exchange chambers are designed to minimize boundary layers. In Eq. 12, we also                                                                                                            |
| 522 | assumed that cuticle conductance for $CO_2$ was negligible ( $g_{cc} = 0$ ) because the effect of                                                                                         |
| 523 | the $g_{cc}$ on the $A_{net}$ has been often undetectably small under experimental $C_a$ levels                                                                                           |
| 524 | (Boyer et al., 1997; Tominaga et al., 2018).                                                                                                                                              |
| 525 |                                                                                                                                                                                           |
| 526 | To propagate $g_{cw}$ through the modeling, we fixed $g_{cw}$ as a proportion of stomatal                                                                                                 |
| 527 | conductance (0, 1 x 10 <sup>-5</sup> , 1 x 10 <sup>-4</sup> , 1 x 10 <sup>-3</sup> , 1 x 10 <sup>-2</sup> , 5 x 10 <sup>-2</sup> , 1 x 10 <sup>-1</sup> , and 2.5 x 10 <sup>-1</sup> ) at |
| 528 | the lowest light intensity for light response curves (see below), 25 $^\circ C$ for temperature                                                                                           |
| 529 | response curves (see below), and 400 $\mu$ mol mol <sup>-1</sup> CO <sub>2</sub> for the CO <sub>2</sub> response curves                                                                  |
| 530 | (see below).                                                                                                                                                                              |
| 531 |                                                                                                                                                                                           |
| 532 | Introducing $g_{cw}$ into a gas exchange approach to plant water balance has implications                                                                                                 |
| 533 | for how we define water use efficiency, as we can partition out stomatal and cuticular                                                                                                    |
| 534 | water use efficiencies. By separating out cuticle and stomatal water loss components,                                                                                                     |
| 535 | we can better understand the immediate cause as to why plants vary in water use                                                                                                           |
|     |                                                                                                                                                                                           |

efficiency (i.e. stomatal versus cuticular components). This partitioning could then be

18

used to inform crop breeding for further enhancing water use efficiency. We

recalculated intrinsic water use efficiency (*iWUE*) as:

540 
$$iWUE_s = \frac{A_{net}}{g_{sw'}}$$
 Eq. 13

541

where *iWUE*<sub>s</sub> is intrinsic stomatal water use efficiency, ( $\mu$ mol CO<sub>2</sub> mol<sup>-1</sup> H<sub>2</sub>O). To calculate the effects of including cuticular conductance on water use efficiency, we used a representative steady-state *A*-*C*<sub>i</sub> curve for *Populus deltoides* from Stinziano *et al*. (2017) and we propagated *g*<sub>cw</sub> as a proportion of *g*<sub>sw</sub> at a reference [CO<sub>2</sub>] of 400 µmol mol<sup>-1</sup>. For this propagation, we recalculated *g*<sub>sc</sub> according to the standard procedure (Li-Cor, 2019):

548

549 
$$g_{sc} = \frac{1}{(1+K)\left(\frac{1.6}{g_{sw}}\right) + \frac{1.37}{g_{bw}}} + \frac{K}{(1+K)\left(\frac{1.6}{g_{sw}}\right) + K\frac{1.37}{g_{bw}}}$$
 Eq. 14

550

where *K* is the ratio of stomata on the adaxial to the abaxial surface of the leaf

(assumed to be equal to 1), and  $g_{bw}$  is the boundary layer conductance to water.

553 Accounting for cuticular conductance in the calculations of water use efficiency leads to

an increase of up to 20% in iWUE when cuticular conductance is high (Fig. 3).

555

556 Implications of cuticular conductance on the interpretation of mesophyll conductance

557 data

558 *g<sub>m</sub>* Calculations

Since  $C_c$  is also dependent on  $C_i$ , we need to set out *a priori* predictions of how changes in  $C_i$  would affect  $C_c$ . To predict this effect, we started with the equation describing the online isotope discrimination from (Farquhar *et al.*, 1982) as modified by (Wingate *et al.*, 2007):

563

564 
$${}^{13}\Delta = a_b \frac{c_a - c_s}{c_a} + a \frac{c_s - c_i}{c_a} + (b_s + a_w) \frac{c_i - c_c}{c_a} + b \frac{c_c}{c_s} - f \frac{r_*}{c_a} - (e + e^*) \frac{R_d}{kc_a}$$
 Eq. 15

565

where  ${}^{13}\Delta$  is the predicted net  ${}^{13}C$  discrimination,  $a_b$  is the  ${}^{13}C$  fractionation due to 566 diffusion through the boundary layer, a is the <sup>13</sup>C fractionation due to diffusion through 567 the stomata,  $b_s$  is the <sup>13</sup>C fractionation due to CO<sub>2</sub> solubilization,  $a_w$  is the <sup>13</sup>C 568 fractionation during diffusion in water, b is net <sup>13</sup>C fractionation during carboxylation by 569 rubisco and PEP carboxylase, f is the <sup>13</sup>C fractionation due to photorespiration, e is the 570 <sup>13</sup>C fractionation due to decarboxylation, e<sup>\*</sup> is apparent <sup>13</sup>C discrimination during 571 decarboxylation, k is carboxylation efficiency,  $\Gamma_*$  is the photorespiratory CO<sub>2</sub> 572 573 compensation point, and R<sub>d</sub> is the rate of respiration in the dark. Note that for the sake of simplicity, we ignore all ternary interactions here (Farguhar and Cernusak, 2012) as it 574 becomes an unnecessarily complex for demonstrating the reliance of g<sub>m</sub> on C<sub>i</sub> for this 575 review (see below). We can rearrange this for C<sub>c</sub> to obtain: 576

577

578 
$$C_c = \frac{C_a ({}^{13}\Delta - a_b) + C_s (a_b - a) + C_i (a - b_s - a_w) + (e + e^*) \frac{R_d}{k} - f \Gamma_*}{b - b_s - a_w} \quad \text{Eq. 16}$$

579

Now suppose we have  $C_{i,standard}$  and  $C_{i,cuticle}$ , and want to calculate the difference between  $C_{c,standard}$  ( $C_c$  determined without  $g_c$ ) and  $C_{c,cuticle}$ . By calculating the difference, most terms in the above Eq. cancel out (even the term with k, which should be the same in theory; see Appendix A for details), leaving us with:

584

585 
$$C_{c,standard} - C_{c,cuticle} = \frac{a - b_s - a_w}{b - b_s - a_w} (C_{i,standard} - C_{i,cuticle})$$
 Eq. 17

586

587 Which can be further rearranged to:

588

589  $\frac{C_{c,standard} - C_{c,cuticle}}{C_{i,standard} - C_{i,cuticle}} = \frac{a - b_s - a_w}{b - b_s - a_w} \qquad \text{Eq. 18}$ 

590

In this way, the difference in  $C_c$  can be calculated using a ratio of fractionation constants and the difference in  $C_i$ . Since a is typically assumed to be 4.4 ‰, b<sub>s</sub> is assumed to be 1.1 ‰ at 25 °C (Vogel, 1980), a<sub>w</sub> is assumed to be 0.7 ‰, and b is assumed to be between 27 and 30 ‰, then the difference in  $C_c$  values should be between 9.2 and 10.3

595 % of the difference in  $C_i$  values at 25 °C. For the  $g_m$  calculations, we took a conservative 596 approach and assumed that the difference in  $C_c$  was 9.2% of the difference in  $C_i$  values. 597

Including the ternary effects from Farquhar and Cernusak (2012) makes *a priori* predictions of the effect of cuticle conductance on C<sub>c</sub> more difficult. Describing the
 discrimination:

601

602

$${}^{13}\Delta = \frac{1}{1-t} \left[ a_b \frac{c_a - c_s}{c_a} + a \frac{c_s - c_i}{c_a} \right] + \frac{1+t}{1-t} \left[ \left( b_s + a_w \right) \frac{c_i - c_c}{c_a} + b \frac{c_c}{c_s} - f \frac{r_*}{c_a} - (e + e^*) \frac{R_d}{kc_a} \right]$$
Eq. 19

603

604 Where t is the ternary term described by:

605  
606 
$$t = \frac{\left[1 + \frac{a_b(C_a - C_s) + a(C_s - C_i)}{C_a - C_i}\right]}{2g_{ac}}E_s$$
 Eq. 20

607

Where g<sub>ac</sub> is the total conductance to CO<sub>2</sub> diffusion. Note that C<sub>i</sub>, E<sub>s</sub>, and g<sub>ac</sub> all need to 608 be corrected for g<sub>sw</sub> and g<sub>c</sub> occurring in parallel. Since g<sub>c</sub> affects nearly every 609 component of t, calculations using <sup>13</sup>C discrimination may be highly sensitive to g<sub>c</sub> when 610 considering ternary interactions. However, if we assume a  $C_a$  of 400 µmol mol<sup>-1</sup>,  $g_{bw}$  of 2 611 mol m<sup>-2</sup> s<sup>-1</sup>, g<sub>sw</sub> of 0.15 mol m<sup>-2</sup> s<sup>-1</sup>, leaf-to-air vapor pressure deficit of 1.0 kPa, A<sub>net</sub> of 15 612 µmol m<sup>-2</sup> s<sup>-1</sup>, t changes value from 2.6547 in the case of no cuticle conductance up to 613 2.659 in the case where 10% of  $g_{sw}$  is attributed to cuticle conductance. Thus, the 614 ternary calculations may be minimally sensitive to cuticle conductance. We can 615 rearrange Eq. 20 for C<sub>c</sub>: 616

617

618 
$$C_{c} = \frac{a \frac{C_{s} - C_{i}}{C_{a}(1-t)} - a_{b} \frac{C_{s}}{C_{a}(1-t)} - (e+e^{*}) \frac{R_{d}(1+t)}{kC_{a}(1-t)} - f \frac{\Gamma^{*}(1+t)}{C_{a}(1-t)} + \frac{C_{i}(1+t)(b_{s}+a_{w})}{C_{a}(1-t)} + \frac{a_{b}}{1-t} - \frac{13}{4}}{\frac{(1+t)(b_{s}+a_{w})}{C_{a}(1-t)} - \frac{b(1+t)}{C_{s}(1-t)}}$$
Eq. 21

619

We can see that the effect of cuticle conductance affects nearly every term in the equations. And solving for the difference between  $C_c$  without cuticle conductance  $(C_{c,s})$ and with cuticle conductance  $(C_{c,c})$  we get (See Appendix B for derivation):

623

624 
$$C_{c,s} - C_{c,c} = \frac{a[(C_s - C_{i,s})(1 + t_c) - (C_s - C_{i,c})(1 + t_s)] + [a_b C_a - a_b C_s - 2^{13} \Delta C_a][t_c - t_s] + (b_s + a_w)(1 + t_s)(1 + t_c)[C_{i,s} - C_{i,c}]}{(1 + t_s)(1 + t_c)[b_s + a_w - \frac{bC_a}{C_s}]}$$

625

Eq. 22

626

where  $C_{i,s}$  is  $C_i$  without cuticle conductance,  $C_{i,c}$  is  $C_i$  accounting for cuticle

conductance,  $t_s$  is the ternary equation without cuticle conductance, and  $t_c$  is the ternary equation with cuticle conductance. For the purposes of this review, however, we have not included the ternary effects into our modeling.

631

#### 632 Reinterpreting gm data

We reinterpreted  $g_m$  by propagating a  $g_{cw}$  into the  $g_{sw}$  data through recalculating C<sub>i</sub> from 633 634 Eq. 12 and gm from Eq. 11. We fixed  $g_{cw}$  as a proportion of stomatal conductance (0, 1 x 10<sup>-5</sup>, 1 x 10<sup>-4</sup>, 1 x 10<sup>-3</sup>, 1 x 10<sup>-2</sup>, 5 x 10<sup>-2</sup>, 1 x 10<sup>-1</sup>, and 2.5 x 10<sup>-1</sup>) at the lowest light 635 intensity for light response curves (see below), 25 °C for temperature response curves 636 (see below), and 400  $\mu$ mol mol<sup>-1</sup> CO<sub>2</sub> for the CO<sub>2</sub> response curves (see below). 637 638 For reinterpreting the g<sub>m</sub> temperature response data from Scafaro et al. (2011), we included temperature response functions of g<sub>cw</sub> obtained from Riederer and Schreiber 639 (2001) fitting an Arrhenius equation on either side of the breakpoint in the Arrhenius 640 plot: 641

642

643 
$$g_{cw} = g_{cw,base} e^{\frac{E_a(T-298)}{298RT}}$$
 Eq. 23

644

where  $g_{cw,base}$  was determined as above, the highest and lowest E<sub>a</sub> (25,215 J mol<sup>-1</sup> with 645 a breakpoint at 35 °C to 85,171 J mol<sup>-1</sup>; 20,145 J mol<sup>-1</sup> with a breakpoint at 30 °C to 646 69,856 J mol<sup>-1</sup>, respectively) from Riederer and Schreiber (2001) were used. T is the 647 leaf temperature in K, and R is the universal gas constant (8.314 J mol<sup>-1</sup> K<sup>-1</sup>). For g<sub>m</sub> 648 light response data, we calculated g<sub>cw</sub> based on the g<sub>a</sub> data from the lowest light 649 intensity to minimize issues with g<sub>cw</sub> exceeding g<sub>a</sub>. In nearly all cases, g<sub>cw</sub> substantially 650 affected  $g_m$ , with notable changes occurring when  $g_c$  exceeds ~1% of  $g_s$  (Fig. 4b, d, f). 651 In regard to environmental responses of gm, light and temperature responses are much 652

653 more sensitive to  $g_{cw}$  than CO<sub>2</sub> response (Fig. 4b, d, f). It is important to note that  $g_m$ 654 appears most sensitive to  $g_{cw}$  for C<sub>i</sub> < 500 µmol mol<sup>-1</sup>.

655

#### 656 *Reinterpreting A-C<sub>i</sub> data*

We used a representative steady-state A-C<sub>i</sub> response from *Populus deltoides* (Stinziano *et al.*, 2017). A-C<sub>i</sub> data were recalculated by assuming: 1) constant  $g_{cw}$  across all C<sub>i</sub>, and

- 659 2)  $g_{cw}$  was 0 to 25% (in increments of 0.1%) of  $g_{sw}$  at C<sub>a</sub> of 400 µmol mol<sup>-1</sup>. All A-C<sub>i</sub>
- 660 curves were fit using the 'bilinear' approach (which treats the FvCB model as a change-
- point model during curve fitting similar to Gu et al., 2010) of the {plantecophys} package
- in R (Duursma, 2015). For species that had temperature response curve measured, we
- 663 fit the modified Arrhenius model to the maximum Rubisco carboxylation (V<sub>cmax</sub>) and
- 664 maximum electron transport (J<sub>max</sub>) rates.
- 665

Accounting for cuticle conductance causes a decrease in the calculated value of C<sub>i</sub>,

- such that current calculations methods are systematically overestimating  $C_i$  (Fig. 4a, c,
- e). These differences are least pronounced for A-C<sub>i</sub> curve data (Fig. 4c), and most
- 669 pronounced for temperature response data. In some instances, the C<sub>i</sub> calculations
- breakdown when  $g_{cw}$  approaches the value of  $g_{sw}$ . Accounting for  $g_{cw}$  alters the shape of
- the A-C<sub>i</sub> response, and increases fitted values for V<sub>cmax</sub> and J<sub>max</sub>, although differences
- appear negligible until  $g_{cw}$  is ~1% of  $g_{sw}$  (Fig. 5). In light of the interpretations of
- Parkhurst (1994), we modelled the impact of combined CO<sub>2</sub> gradients and cuticle
- 674 conductance on the perceived A/C<sub>i</sub> response.
- 675

676 Modeling g<sub>ias</sub> and W<sub>i</sub> effects on gas exchange parameters

677 Considering the Eq. describing the surface to intercellular CO<sub>2</sub> concentration gradient: 678

679  $A_{net} = g_{sc}(C_s - C_i)$  Eq. 24

680

681 where  $g_{sc}$  is stomatal conductance to CO<sub>2</sub>, C<sub>s</sub> is the CO<sub>2</sub> concentration at the leaf 682 surface, and C<sub>i</sub> is intercellular airspace CO<sub>2</sub> concentration. Eq. 24 can misrepresent the 683 process, which according to Parkhurst (1994) would be:

684

685 
$$A_{net} = g_{sc}(C_s - C_{i,es}) = g_{ias}(C_{i,es} - C_{ias})$$
 Eq. 25

686

where  $C_{i,es}$  is the  $CO_2$  concentration at the site of evaporating surfaces,  $g_{ias}$  is the conductance of  $CO_2$  from the evaporative surfaces to the intercellular airspace, and  $C_{ias}$ is the concentration of  $CO_2$  in the intercellular airspace. Note that under the Parkhurst (1994) definition,  $C_{ias}$  could represent a point anywhere in the intercellular airspace, while  $C_{i,es}$  is assumed to be closer to the substomatal cavity than  $C_{ias}$ . If the evaporating surface is at the mesophyll cell surface, then Eq. 25 would have to account for this reversed order and be re-written as:

694

695 
$$A_{net} = g_s(C_s - C_{ias}) = g_{ias}(C_{ias} - C_{es})$$
 Eq. 26

696

Furthermore,  $g_s$  needs to be corrected for cuticular conductance. Therefore, we can describe the conductance of CO<sub>2</sub> and water from the leaf surface to the intercellular airspace ( $g_{s,ias}$ ) according to:

700

701 
$$g_{s,ias} = \frac{1}{\frac{1}{g_s - g_c} + \frac{1}{g_{ias}}}$$
 Eq. 27

702

We can further include mesophyll conductance,  $g_m$ , to calculate total conductance of CO<sub>2</sub> and water from the leaf surface to the chloroplast ( $g_t$ ):

705

706 
$$g_t = \frac{1}{\frac{1}{g_s - g_c} + \frac{1}{g_{ias}} + \frac{1}{g_m}}$$
 Eq. 28

707

We can then model the implications of  $g_c$  and  $g_{ias}$  on  $C_i$  by varying their values. We linked Eq. 28 to a leaf-level model of photosynthesis:

710

711 
$$A_{net} = V_{cmax} \frac{C_c - \Gamma^*}{C_c + K_c \left(1 + \frac{O_c}{K_0}\right)} - R$$
 Eq. 29

712

713 
$$A_{net} = J \frac{C_c - \Gamma^*}{4C_c - 8\Gamma^*} - R$$
 Eq. 30

714

715 
$$(J - 0.5\alpha I)(J - J_{max}) = 0$$
 Eq. 31

716

<sup>717</sup> where  $V_{cmax}$  is maximum rate of Rubisco carboxylation,  $O_c$  is the oxygen concentration <sup>718</sup> in the chloroplast (210 mmol mol<sup>-1</sup>),  $K_c$  is the Michaelis-Menten constant for Rubisco <sup>719</sup> carboxylation,  $K_o$  is the Michaelis-Menten constant for Rubisco oxygenation,  $J_{max}$  is the <sup>720</sup> maximum rate of electron transport, J is the rate of electron transport,  $\alpha$  is the proportion <sup>721</sup> of irradiance (I) absorbed by the leaf, R is respiration, and  $\Gamma^*$  is the photorespiratory <sup>722</sup> CO<sub>2</sub> compensation point. All values (except for V<sub>cmax</sub> and J<sub>max</sub>) were obtained from <sup>723</sup> Bernacchi *et al.* (2001).

724

We assumed a  $V_{cmax}$  and  $J_{max}$  of 100 and 200, respectively, and modelled under light saturating conditions such that J =  $J_{max}$ . We modelled from a C<sub>s</sub> of 50 to 2000 in 50 ppm intervals. For calculating E<sub>s</sub> (to represent the 'measured' transpiration from a gas exchange cuvette) we used the following equation:

729

730 
$$E_s = g_{sw} \frac{W_i - W_s}{P}$$
 Eq. 32

731

where E<sub>s</sub> is stomatal transpiration, g<sub>sw</sub> is stomatal conductance (ranging from 0.03 to 732 2.00 mol m<sup>-2</sup> s<sup>-1</sup>), W<sub>i</sub> is the water concentration inside the leaf (assumed to be 100% 733 saturation vapor pressure for this initial calculation, which was calculated according to 734 Cernusak et al., 2018), W<sub>s</sub> is the water vapor concentration at the leaf surface 735 (assumed to be 50% saturation vapor pressure), and P is atmospheric pressure 736 (assumed to be 100 kPa). We assumed leaf temperature was equal to air temperature 737 of 298 K. Once E<sub>s</sub> was calculated, we then altered our assumptions about W<sub>i</sub>, changing 738 it to 99% and 90% of saturation vapor pressure. Then for each different  $W_i$  scenario, we 739 set g<sub>cw</sub> to either 0 or 0.01, and g<sub>ias</sub> to either 1.00 (Mott, 1988) or infinity. The C<sub>i</sub> obtained 740 when  $W_i = 100\%$  saturation vapor pressure,  $g_{cw} = 0$  and  $g_{ias} = infinity$  was used as the 741 reference C<sub>i</sub>. Anet was then modelled to obtain A/C<sub>i</sub> responses (using both reference C<sub>i</sub> 742

and the C<sub>i</sub> obtained from each combination of W<sub>i</sub>,  $g_{cw}$  and  $g_{ias}$ ) which were then fit using {plantecophys} (Duursma, 2015) in R (R Core Team, 2018) to obtain V<sub>cmax</sub> estimates.

745

746 Modeling the effects of  $g_{cw}$  and  $g_{ias}$  across a range of reference  $g_{sw}$  (i.e. the  $g_s$ 'measured' using a typical open-flow gas exchange system), we see that g<sub>c</sub> has the 747 greatest impact at low  $g_{sw}$ , with a negligible effect when  $g_{cw}/g_{sw} < 1\%$  at a C<sub>s</sub> of 400 ppm 748 (Fig. 6). Finite gias, however, has a much larger impact on Ci, with its effect size 749 750 increasing with g<sub>sw</sub> (Fig. 6). This explains the Ci discrepancies observed in Table 1 larger discrepancy with low g<sub>sw</sub> and smaller discrepancy with high g<sub>sw</sub>. It is also possible 751 752 that the discrepancies relate to C<sub>ias</sub> being directly measured deeper in the intercellular airspace than the location of the evaporating surface such that the calculated C<sub>i</sub> is C<sub>i.es</sub> 753 754 and the differences are due to how the quantities are defined. In the case of leaves treated with ABA (e.g. Boyer 2015a,b; Tominaga & Kawamitsu, 2015a) or stress 755 756 induced stomatal closure, g<sub>cw</sub> could account for the majority of the impact, since the limit of the CO<sub>2</sub> gradient-related deviation in calculated and real C<sub>i</sub> tends towards 0 as 757 758 measured g<sub>sw</sub> approaches 0. Looking at W<sub>i</sub>, the impact of W<sub>i</sub> assumptions is evident. A 1% reduction in W<sub>i</sub> increases the C<sub>i</sub> discrepancy by a few ppm (Fig. 6b), and a 10% 759 reduction causes changes the discrepancy by over 20 ppm in some cases (Fig. 6c). 760 761

762 If we fit A/C<sub>i</sub> curves in the presence of g<sub>cw</sub> and finite g<sub>ias</sub> and use the Moss & Rawlins 763 (1963) assumptions,  $g_c$  has a relatively small impact on  $V_{cmax}$ , but is important in cases where  $g_{cw} > 5\%$  of  $g_s$ , while  $g_{ias}$  causes a large depression in  $V_{cmax}$  across all  $g_{sw}$  used in 764 simulations (Fig. 6g, h, i). As vapor pressure in the leaf is reduced from 100%, V<sub>cmax</sub> 765 estimates increase (Fig. 6g, h, i). Interestingly, with  $g_{cw} > 0$ ,  $g_{ias} < \infty$ , internal vapor 766 767 pressure < saturation vapor pressure and high  $g_{sw}$ ,  $V_{cmax}$  estimations are close to the value used in the model (Fig. 6i). Based on these modeling analyses, the impact of finite 768 g<sub>ias</sub> may be of greater concern when estimating gas exchange parameters than g<sub>c</sub>, and 769 many of the large gc values reported using C differentials between calculated and 770 measured values may in fact be partially attributed to a finite gias. It is crucial to note, 771 however, that cuticle water fluxes have been reported up to 65% of total water flux 772 across a leaf (Šantrůček et al., 2004), and the relative influence of gias and gcw depend 773

on the relative value of g<sub>sw</sub>. Given our modeling results showing the different impact of

g<sub>cw</sub> and g<sub>ias</sub> on gas exchange data, it may be possible to construct a model capable of

estimating g<sub>cw</sub> and g<sub>ias</sub> from a data set. This would allow proper attribution of C<sub>i</sub>

777 differentials to g<sub>cw</sub> versus g<sub>ias</sub>.

778

Given the impact when all three assumptions test above are violated, it is possible that 779 many (or even most) estimates of apparent V<sub>cmax</sub> in the literature may still be 'correct' for 780 781 the wrong reasons. However, we would like to note important assumptions made in our modeling: 1) resistances within the leaf are additive (which may not hold; Parkhurst, 782 1984), 2) Fickian (rather than Knudsen, which may occur; Dacey, 1987) diffusion 783 governs gas diffusion from outside to inside the leaf, 3) the leaf is treated one-784 785 dimensionally rather than three-dimensionally (which will affect calculations: Parkhurst, 1977; Earles et al., 2018), 4) the air pressure differential from outside to inside the leaf 786 787 is 0 (evidence suggested this may not be correct, at least in the extreme case of lotus, Nelumbo; Leuning, 1983; Dacey, 1987). 788

- 789
- 790

## 791 Solving the failed assumption

792 When does it (not) work?

793 Cuticular conductance has largely been assumed negligible and is often ignored in gas exchange measurements, while CO<sub>2</sub> gradients are largely ignored - however this may 794 be due to partitioning g<sub>ias</sub> into g<sub>m</sub> (Evans et al. 1994), reducing the need to consider g<sub>ias</sub> 795 when C<sub>i</sub> is taken as C<sub>i.es</sub>. To date, many of the Moss and Rawlins (1963) assumptions 796 797 have been shown to be incorrect in at least some cases (e.g. Hygen, 1951, 1953; 798 Slavik, 1958; Jarvis & Slatyer, 1970; Leuning, 1983; Parkhurst, 1984; Ward & Bunce, 1986; Dacey, 1987; Egorov & Karpushkin, 1988; Long et al., 1989; Karpushkin, 1994; 799 Boyer et al., 1997; Meyer and Genty, 1998; Santrůček et al., 2004; Canny & Huang, 800 2006; Boyer 2015a; Boyer, 2015b; Tominaga and Kawamitsu, 2015a; Cernusak et al., 801 2018; Tominaga et al., 2018, Cernusak et al. 2019). We summarize the assumptions 802 and their expected impact on  $C_i$  calculations in Fig. 8. However, it is important to note 803

that the assumptions have allowed major breakthroughs in our understanding of plantphysiology.

806

807 Our analysis of the effects of  $g_{cw}$  on gas exchange measurements suggests that  $C_i$  is relatively unaffected when g<sub>cw</sub> is less than 1% of g<sub>sw</sub> across a range of irradiance, [CO<sub>2</sub>], 808 and temperature, and has a relatively minor effect on fitted values of V<sub>cmax</sub> and J<sub>max</sub>. 809 810 Given that most values of g<sub>cw</sub> measured to date are relatively low, and assuming g<sub>cw</sub> 811 was measured correctly, it is likely below the 1% threshold in unstressed plants, especially crops (Table 2; Schuster et al., 2017), this would explain why the Moss and 812 Rawlins (1963) assumption that  $g_{cw} = 0$  has been successful in advancing our 813 understanding of photosynthesis over the past six decades. In regard to g<sub>m</sub>, accounting 814 815 for g<sub>cw</sub> increases the value of g<sub>m</sub>, however such effects are small across irradiance and  $[CO_2]$  when  $g_{cw}$  is at or below 1%  $g_{sw}$  but become particularly important for the 816 817 temperature response of mesophyll conductance. When g<sub>cw</sub> exceeds 1% of g<sub>sw</sub>, the calculations for mesophyll conductance broke down for the modeling, giving extremely 818 819 high and/or negative values for g<sub>m</sub>, which is related to C<sub>i,cuticle</sub> dropping close to or below C<sub>c</sub>. Pons et al. (2009) recommended accounting for g<sub>cw</sub> in g<sub>m</sub> measurements, and our 820 modeling suggests that this is critical when looking at the temperature response of  $q_m$ , 821 and in cases where g<sub>cw</sub> is very high relative to g<sub>sw</sub>. We may thus expect significant 822 823 errors in gas exchange calculations when g<sub>sw</sub> is low (i.e. low light, drought, and high 824 VPD conditions), and/or when  $g_{cw}$  is high (i.e. high temperature, well-watered plants). Furthermore, considering chlorophyll fluorescence-based estimates of g<sub>m</sub> (i.e. Harley et 825 al., 1992), sensitivity of g<sub>m</sub> should be similar to the isotopic method as it is calculated via 826 Eq. 23, with the added caveat that C<sub>c</sub> becomes sensitive to the estimate of the 827 828 photorespiratory CO<sub>2</sub> compensation point ( $\Gamma^*$ ). Since  $\Gamma^*$  can be estimated from gas exchange or Rubisco kinetics, the sensitivity of calculated g<sub>m</sub> to g<sub>cw</sub> via the variable J 829 method will depend on how  $\Gamma^*$  is measured. In this regard, interpreting data from 830 drought and temperature stress experiments should proceed with caution if g<sub>cw</sub> is 831 ignored. 832

833

CO<sub>2</sub> gradients within leaves have ontological consequences for gas exchange 834 measurements, in particular, the meaning of C<sub>i</sub> (Parkhurst, 1994). If typical C<sub>i</sub> estimates 835 are taken to be C<sub>i.es</sub> measurements, then the implications of a finite g<sub>ias</sub> on data derived 836 from the C<sub>i</sub> estimates are minimal, since g<sub>ias</sub> is often subsumed into g<sub>m</sub> (Evans et al., 837 1994). If C<sub>i,es</sub> occurs at the surface of the mesophyll cells, then g<sub>ias</sub> will have no impact 838 on C<sub>i</sub> estimates since the g<sub>sw</sub> calculation occurs at the location of the evaporating 839 surface (Parkhurst, 1994). However, if the Ci.es is located closer to the stomata than Cias 840 841 (i.e. if the evaporating surface is not the mesophyll cell surface), Cias would then be located closer to the mesophyll cells than C<sub>i.es</sub>. Our modeling of finite g<sub>ias</sub> represents this 842 case and demonstrates that the implications of  $q_{ias}$  on data derived from such  $C_i$ 843 estimates can be quite large, causing C<sub>i</sub> estimates to differ by >10  $\mu$ mol mol<sup>-1</sup>, and g<sub>sw</sub> 844 845 to be reduced by more than 50% (Fig. 6). To reiterate, subsuming g<sub>ias</sub> into g<sub>m</sub> eliminates the consequences of gias for 'Ci' estimates under conditions where Cias lies closer to the 846 mesophyll cells than C<sub>i.es</sub>. If C<sub>i.es</sub> is at the mesophyll cell surface, then g<sub>ias</sub> is already 847 accounted for in g<sub>sw</sub> calculations. As long as it is recognized that C<sub>i</sub> estimates represent 848 849 C<sub>i,es</sub> (Parkhurst, 1994) and that all derived parameters are apparent parameters on a C<sub>i,es</sub>-basis, g<sub>ias</sub> poses minimal issues to the interpretation of C<sub>i</sub> data. This becomes an 850 issue however, in cases where the location of the evaporating surface differs between 851 species or treatment groups (e.g. control versus drought stress). The same would be 852 true for parameters derived from C<sub>ias</sub> estimates if the rest of g<sub>m</sub> were ignored. Note that 853 854 this underscores the importance of knowing the location of the C<sub>i</sub> calculation. However, it appears that gias has minimal consequences for gm relative to gcw at low values of gsw 855 (Fig. 7), with  $g_{ias}$  shifting the  $g_{sw}$  value at which  $g_{cw}$  has the greatest impact on  $g_m$ . 856 Reducing W<sub>i</sub> tends to reduce the impact of  $g_{cw}$  and  $g_{ias}$  on  $g_m$  (Fig. 7). We also 857 858 calculated the theoretical maximum values for gias based on leaf thicknesses from Onoda et al. (2011) to estimate diffusion distances, along with biophysical equations to 859 calculate conductance (Massman, 1998; Campbell & Norman, 1998) (see 860 Supplementary Methods for more information on the calculations). We calculated that 861 the median maximum theoretical values of gias for an amphistomatous and 862 hypostomatous leaf is 24 and 3 mol  $m^{-2} s^{-1}$ , respectively (Fig. 1c). 863 864

29

So far, the above cases refer to conditions where W<sub>i</sub> is at saturation vapor pressure. in 865 cases where W<sub>i</sub> is not at saturation vapor pressure inside the leaf (e.g. Cernusak et al., 866 2018), the consequences vary with the degree to which the assumption is violated. C<sub>i</sub>, 867 868  $g_{sw}$ , and  $V_{cmax}$  are relatively unaffected when  $W_i$  is at 99% saturation (data not shown; note that xylem water potential is ~ -200 kPa (Nonami & Boyer, 1987), which would 869 have a W<sub>i</sub> value of ~99.85% saturation vapor pressure), however these parameters 870 871 become both over- and under-estimated when W<sub>i</sub> reaches 90% saturation depending on 872 which assumptions are violated (Fig. 6). Thus, it appears that very small violations of this assumption will have minimal effects on gas exchange parameters. But caution 873 874 must be exercised in cases where this assumption is likely to be violated, such as high vapor pressure deficit conditions, drought stress, and at high temperatures, as 875 876 parameters will be overestimated. We note that there could be cases of multiple assumption violations leading to 'correct' parameters for the wrong reasons (i.e. Figs. 877 878 6h,i), although even in these cases other parameters are still different.

879

880 Based on our modeling, we predict that under conditions where g<sub>sw</sub> is low (well-watered, 881 low light, high [CO<sub>2</sub>], low vapor pressure deficit, high leaf water potential), cuticular water loss will be sufficient to cause calculations to overestimate C<sub>i</sub> (Fig. 2). Under 882 conditions where W<sub>i</sub> is less than expected (drought, high vapor pressure deficit, high 883 884 temperature), calculated C<sub>i</sub> values will be lower than the actual C<sub>i</sub> (inside the mesophyll 885 cells in Fig. 2b). As g<sub>ias</sub> becomes increasingly finite, the C<sub>i</sub> estimates will change in meaning from C<sub>ias</sub> to C<sub>i.es</sub>, barring violations in the other assumptions. Lastly, under 886 conditions where g<sub>sw</sub> is high, g<sub>cw</sub> is minimal, g<sub>ias</sub> is very high, and the assumptions of 887 Moss and Rawlins (1963) hold, then calculated C<sub>i</sub> and measured C<sub>i</sub> should agree. 888 889 However, in this last case, the agreement results from C<sub>i</sub> meaning C<sub>ias</sub>, which means 890 that the assumptions behind  $g_m$  measurements need to be adjusted accordingly.

891

Cuticular water loss could be a significant source of water flux across the leaf and has the potential to undermine the assumptions upon which gas exchange calculations are based. We urge caution when performing and interpreting measurements of  $g_m$  due to the potential impact of  $g_{cw}$  on  $g_m$  calculations. More research is needed to assess the

magnitude of cuticular water loss across species and climates, however our data 896 suggest that  $q_{cw}$  must exceed 1% of  $q_{sw}$  to have a substantial impact on photosynthetic 897 gas exchange. Current information on the  $g_{cw}$  suggests that it may exceed that 1% 898 threshold on average, depending on the measurement methodology. Combining the 899 information from Riederer and Schreiber (2001) and Schuster et al. (2017), median g<sub>c</sub> 900 based on all methods was 1.84 mmol m<sup>-2</sup> s<sup>-1</sup> (IQR: 0.45 - 4.67 mmol m<sup>-2</sup> s<sup>-1</sup>, mean: 2.73 901 mmol m<sup>-2</sup> s<sup>-1</sup>), while median  $g_c$  based on permeance was 0.32 mmol m<sup>-2</sup> s<sup>-1</sup> (IQR: 0.11 – 902 0.90 mmol m<sup>-2</sup> s<sup>-1</sup>, mean: 0.85 mmol m<sup>-2</sup> s<sup>-1</sup>) and 3.31 mmol m<sup>-2</sup> s<sup>-1</sup> (IQR: 1.58 – 5.91 903 mmol m<sup>-2</sup> s<sup>-1</sup>, mean: 3.82 mmol m<sup>-2</sup> s<sup>-1</sup>) based on minimum conductance methods (Fig. 904 1a). Meanwhile, g<sub>sw</sub> from the global datasets of Lin et al. (2015) and Smith and Dukes 905 (2017) was 104 mmol m<sup>-2</sup> s<sup>-1</sup> (IQR: 52 – 226 mmol m<sup>-2</sup> s<sup>-1</sup>, mean: 185 mmol m<sup>-2</sup> s<sup>-1</sup>), 906 suggesting that based on median values, cuticle conductance could range between 907 0.31 and 3.2 % of g<sub>sw</sub> (Fig. 1). Schuster et al. (2017) note that minimum conductance 908 909 methods can be biased towards high values if stomata are not completely closed, which may explain the 10-fold difference in median permeance between the methods. Another 910 911 possible explanation for this discrepancy could be related to stretching of the cuticle at high  $\Psi$ , which enhances  $g_{cw}$  (Boyer et al., 1997) and would be the case for many 912 minimum conductance measurements but not for permeance methods, where isolated 913 cuticle could shrink (Boyer, 2015). We also note the large discrepancy in sample sizes 914 915 for estimates of  $g_{sw}$  (> 22,000 observations) and  $g_{cw}$  (404 observations and only 148 for 916 permeance-based methods). The development of a rapid method for assessing  $g_{cw}$ would help in circumventing broken assumptions when  $g_{cw}/g_{sw}$  is high. 917

918

The source of cuticular water loss is (un)clear: some evidence suggests that the bulk of 919 920 cuticular water loss occurs across the guard cell cuticles rather than the epidermal surface (Šantrůček et al., 2004). Such heterogeneity in cuticular conductance across a 921 leaf would need to be accounted for to obtain accurate C<sub>i</sub> estimates, especially if 922 epidermal and guard cell cuticular water loss show differential responses to leaf turgor. 923 This would only matter if the change in permeability with turgor of the guard cells was 924 greater than the change in permeability with turgor in other cells on the leaf surface. 925 However, much of the work measuring cuticle conductance focuses on either isolated 926

- 927 cuticle from astomatous leaf surface or a gravimetric determination of cuticle
- 928 conductance, with assumptions on stomatal opening and closure.
- 929
- 930 However, we note that part of the apparent effect of cuticle conductance in some
- studies may be due to CO<sub>2</sub> gradients (finite g<sub>ias</sub>) within leaves. In fact, both processes
- can result in similar effects at low  $g_{sw}$  (Parkhurst, 1994; Fig. 6a), and each process
- could explain the evidence supporting the other process making partitioning difficult.
- Therefore, partitioning the impacts of g<sub>cw</sub> and g<sub>ias</sub> on C<sub>i</sub> estimates should be a research
   priority.
- 936
- 937 Recommendations
- 938 We recommend the following:
- 939 1. Whenever possible, measure water potential (ideally  $\Psi_{m,apo}$ ) to estimate  $W_i$  inside 940 the leaf.
- 941 2. If measurements are not possible, choose suitable values of  $\Psi$  from the literature 942 and calculate W<sub>i</sub>.
- 3. Be clear as to the definition of C<sub>i</sub>: is it C<sub>i,es</sub>, C<sub>ias</sub> or some other value? This will
  ensure that gas exchange parameters can be properly compared without
  confounding different aspects of leaf physiology.
- 946

947 In terms of understanding  $g_m$ , it is apparent that splitting  $g_m$  into its component parts (e.g. g<sub>ias</sub>, g<sub>lig</sub>) is necessary to understand how internal conductances respond to the 948 environment. Given the likelihood of the variable location of C<sub>i</sub> during most g<sub>m</sub> 949 950 measurements, many of the g<sub>m</sub> measurements may not be directly comparable as they 951 would be comparing different resistance pathways. Given that recent data assessing  $W_i$ 952 inside leaves focused on xerophytic leaves (Cernusak et al., 2018), more data are needed to understand how W<sub>i</sub> varies across environmental conditions in more 953 954 mesophytic species, and especially angiosperms. 955 As a community, we have made significant advances within the Moss & Rawlins (1963) 956

957 paradigm. Technological advances are now making it possible and crucial to move

- beyond the Moss & Rawlins paradigm to further our understanding of photosynthesis
- and gaseous diffusion in leaves by addressing each of the assumptions (Fig. 8).
- 960

961 Code and Data

- 962 All code is available as supplementary files ("Modeling.rmd", "Reanalysis of gm
- 963 data.rmd", "Literature gc-gs-gias calculations.rmd"), as are input data
- 964 ("popexample.csv", "CO2response.csv", "temp data.csv", "gmlight.csv", "cuticle
- conductance temp response.csv", "cuticle\_bins.csv", "WP.csv", "Diffusion bins Onoda
- 966 data.csv"). Modeling code automatically generates .csv files for the modeling analysis.
- 967

# 968 Acknowledgements

- We would like to thank Dr. Patrick J. Hudson for comments on an early draft of the
- 970 manuscript and Dr. John S. Boyer for comments on a late draft. We would like to thank
- 971 Yusuke Onoda for providing data on leaf thicknesses from Onoda et al. (2011) and Jordi
- 972 Martínez-Vilalta for providing water potential data from Martínez-Vilalta et al. (2014).
- 973 This work was also supported by funding to DTH through the NSF EPSCoR Program
- under Award # IIA-1301346 and through NSF IOS 1658951 at the University of New
- 975 Mexico. Any opinions, findings, and conclusions or recommendations expressed in this
- 976 material are those of the authors and do not necessarily reflect the views of the National
- 977 Science Foundation. J.T. is supported by Research Fellowships for Young Scientists from the 978 Japan Society for the Promotion of Science (JSPS).
- 979
- 980

# 981 Author Contributions

- All authors contributed to the design of the study. JRS performed the modeling. JRS
- 983 wrote the manuscript with input from all authors.
- 984

## References

**Bargel H, Kock K, Cerman Z, Neinhuis C**. 2006. Evans review no. 3: structurefunction relationships of the plant cuticle and cuticular waxes – a smart material? *Functional Plant Biology* 33, 893-910.

**Boyer JS**. 2015*a*. Turgor and the transport of CO<sub>2</sub> and water across the cuticle (epidermis) of leaves. *Journal of Experimental Botany* **66**, 2625–2633.

**Boyer JS**. 2015*b*. Impact of cuticle on calculations of the CO2 concentration inside leaves. *Planta* **242**, 1405–1412.

**Boyer JS, Kawamitsu Y**. 2011. Photosynthesis gas exchange system with internal CO<sub>2</sub> directly measured. *Environmental and Biological Control* **49**, 193-207.

**Boyer JS, Wong SC, Farquhar GD**. 1997. CO<sub>2</sub> and water vapor exchange across leaf cuticle (epidermis) at various water potentials. *Plant Physiology* **114**, 185–191.

**Brown HT, Escombe F**. 1900. Static diffusion of gases and liquids in relation to the assimilation of carbon and translocation in plants. *Philosophical Transactions of the Royal Society B* **193**: 185-193.

**Buckley TN, Farquhar GD, Mott KA**. 1997. Qualitative effects of patchy stomatal conductance distribution features on gas-exchange calculations. *Plant, Cell & Environment* **20**: 867-880.

Buckley TN, John GP, Scoffoni C, Sack L. 2017. The sites of evaporation within leaves. *Plant Physiology* 173:1763-1782.

**Buckley TN, Sack L. 2019**. The humidity inside leaves and why you should care: implications of unsaturation of leaf intercellular airspaces. *American Journal of Botany* 106(5):1-4.

**Campbell GS, Norman JM**. 1998. An introduction to environmental biophysics. Springer-Verlag, New York.

**Canny MJ, Huang CX**. 2006. Leaf water content and palisade cell size. *New Phytologist* **170**: 75-85.

**Cernusak LA, Goldsmith GR, Arend M, Siegwolf, RTW**. 2019. Effect of vapor pressure deficit on gas exchange in wild-type and abscisic acid-insensitive plants. *Plant Physiology* online early DOI:10.1104/pp.19.00436

Cernusak LA, Ubierna N, Jenkins MW, Garrity SR, Rahn T, Powers HH, Hanson DT, Sevanto S, Wong SC, McDowell NG, Farquhar GD. 2018. Unsaturation of vapour pressure inside leaves of two conifer species. *Scientific Reports* **8**: 7667.

**Cheeseman JM, Clough BF, Carter DR, Lovelock CE, Eong OJ, Sim RG.** 1991. The analysis of photosynthetic performance in leaves under field conditions: a case study using *Bruguiera* mangroves. *Photosynthesis Research*, **29**, 11-22.

**Dacey JWH**. 1981. Pressurized ventilation in the yellow waterlily. *Ecology* **62**: 1137-1147.

**Dacey JWH**. 1987. Knudsen-transitional flow and gas pressurization in leaves of *Nelumbo*. *Plant Physiology* **85**: 199-203.

**Douthe C, Dreyer E, Epron D, Warren CR**. 2011. Mesophyll conductance to  $CO_2$ , assessed from online TDL-AS records of <sup>13</sup>CO<sub>2</sub> discrimination, displays small but significant short-term responses to  $CO_2$  and irradiance in *Eucalyptus* seedlings. *Journal of Experimental Botany* **62**, 5335–5346.

**Downton WJS, Loveys BR, Grant WJR**. 1988. Non-uniform stomatal closure induced by water stress causes putative non-stomatal inhibition of photosynthesis. *New Phytologist* **110**: 503-509.

**Earles JM, Théroux-Rancourt G, Roddy AB, Gilbert ME, McElrone AJ, Brodersen C**. 2018. Beyond porosity: 3D leaf intercellular airspace traits that impact mesophyll conductance. *Plant Physiology* **178**, 148-162.

**Egorov VP, Karpushkin LT**. 1988. Determination of air humidity over evaporating surface inside a leaf by a compensation method. *Photosynthetica* **22**: 394-404.

**Evans J**. 1995. Carbon fixation profiles do reflect light absorption profiles in leaves. *Australian Journal of Plant Physiology* **22**, 865-873.

**Evans JR, Caemmerer SV, Setchell BA, Hudson GS**. 1994. The relationship between CO<sub>2</sub> transfer conductance. *Australian Journal of Plant Physiology* **21**: 475-495.

**Evans JR, Loreto F.** 2000. Acquisition and diffusion of CO<sub>2</sub> in higher plant leaves. In: Leegood, R. C., Sharkey, T. D., von Caemmerer, S. eds. Photosynthesis: Physiology and Metabolism, Kluwer Academic Publishers, Netherlands, 321–351.

**Farquhar GD, von Caemmerer S, Berry JA**. 1980. A biochemical model of photosynthetic CO<sub>2</sub> assimilation in leaves of C<sub>3</sub> species. *Planta* **149**, 78–90.

Farquhar GD, Cernusak LA. 2012. Ternary effects on the gas exchange of isotopologues of carbon dioxide. *Plant, Cell & Environment* **35**, 1221–1231.

**Farquhar G, O'Leary M, Berry J**. 1982. On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. *Australian Journal of Plant Physiology* **9**, 121.

**Farquhar GD, Raschke K**. 1978. On the resistance to transpiration of sites of evaporation within leaf. *Plant Physiology* **61**: 1000-1005.

**Flexas J, Bota J, Escalona JM, Sampol B, Medrano H**. 2002. Effects of drought on photosynthesis in grapevines under field conditions: an evaluation of stomatal and mesophyll limitations. *Functional Plant Biology* **29**, 461.

**Gaastra P**. 1959. Photosynthesis of crop plants as influenced by light, carbon dioxide, temperature, and stomatal diffusion resistance. *Mededelingen van de Landbouwhogeschool te Wageningen, Nederland* **59**: 1-68.

**Gimenez C, Mitchell VJ, Lawlor DW**. 1992. Regulation of photosynthetic rate of two sunflower hybrids under water stress. *Plant Physiology* **98**: 516-514.

**Gunasekera D, Berkowitz GA**. 1992. Heterogenous stomatal closure in response to leaf water deficits is not a universal phenomenon. *Plant Physiology* **98**: 660-665.

**Hall AE**. 1982. Mathematical models of plant water loss and plant water relations. In: Lange OL, Nobel PS, Osmond CB, Ziegler H, eds. Physiological plant ecology II. Berlin, Heidelberg: Springer Berlin Heidelberg, 231–261.

Hoad SP, Grace J, Jeffree CE. 1996. A leaf disc method for measuring cuticular conductance. *Journal of Experimental Botany* **47**: 431-437.

Hygen G. 1951. Studies in plant transpiration I. Physiologia Plantarum 4: 57-183.

Hygen G. 1953. Studies in plant transpiration II. Physiologia Plantarum 6: 106-133.

Jarvis PG, Slatyer RO. 1970. The role of the mesophyll cell wall in leaf transpiration. *Planta* **80**: 303-322.

Jones HG, Higgs KH. 1980. Resistance to water loss from mesophyll cell surface in plant leaves. *Journal of Experimental Botany* **31**: 545-553.

**Karpushkin LT**. 1994. A compensation gasometric method for estimating the kinetic parameters of H<sub>2</sub>O and CO<sub>2</sub> exchange in plant leaves. *Russian Journal of Plant Physiology* **41**: 410-413.

**Kerstiens G**. 1996a. Cuticular water permeability and its physiological significance. *Journal of Experimental Botany* **47**: 1813-1832.

**Kerstiens G**. 1996b. Diffusion of water vapour and gases across cuticles and through stomatal pores presumed closed. In: **Kerstiens G**, ed. *Plant cuticles: and integrated functional approach* Oxford: Bios, 121-133.

**Kirschbaum MUF, Pearcy RW**. 1988. Gas exchange analysis of the relative importance of stomatal and biochemical factors in photosynthetic induction in *Alocasia macrorrhiza*. *Plant Physiology* **86**: 782-785.

Laisk A, Ojs V, Kull K. 1980. Statistical distribution of stomatal apertures of Vicia faba and Hordeum vulgare and the Spannungsphase of stomatal opening. *Journal of Experimental Botany* **31**, 49-58.

Lauer MJ, Boyer JS. 1992. Internal CO2 measured directly in leaves: Abscisic acid and

low leaf water potential cause opposing effects. Plant Physiology 98, 1310-1316.

**Lawlor DW**. 2002. Limitation to Photosynthesis in Water-stressed Leaves: Stomata vs. Metabolism and the Role of ATP. *Annals of Botany* **89**, 871–885.

Lawson T, James W, Weyers J. 1998. A surrogate measure of stomatal aperture. *Journal of Experimental Botany*, **49**, 1397-1403.

**Ledford H**. 2017. Overlooked water loss in plants could throw off climate models. *Nature* **546**, 585–586.

Leuning R. 1983. Transport of gases into leaves. Plant, Cell & Environment 6: 181-194.

Lin Y-S, Medlyn BE, Duursma RA, Prentice IC, Wang H, et al. 2015. Optimal stomatal behaviour around the world. *Nature Climate Change* **5**, 459–464.

Long SP, Farage PK, Bolhár-Nordenkampf HR, Rohrhofer U. 1989. Separating the contribution of the upper and lower mesophyll to photosynthesis in *Zea mays* L. leaves. *Planta* **177**, 207–216.

**Li-Cor**. 2019. Using the LI-6800 portable photosynthesis system. *Li-Cor Biosciences*, Lincoln, NB.

**McAusland L, Davey PA, Kanwal N, Baker NR, Lawson T.** 2013. A novel system for spatial and temporal imaging of intrinsic plant water use efficiency. *Journal of experimental botany* **64**, 4993-5007.

**Mansfield LA, Hetherington AM, Atkinson CJ.** 1990. Some current aspects of stomatal physiology. *Annual Review of Plant Physiology and Plant Molecular Biology* **41**, 55–75.

Martínez-Vilalta J, Poyatos R, Aquadé D, Retana J, Mencuccini M. 2014. A new look at water transport regulation in plants. *New Phytologist* **204**, 105-115.

**Massman WJ**. 1998. A review of the molecular diffusivities of  $H_2O$ ,  $CO_2$ ,  $CH_4$ , CO,  $O_3$ ,  $SO_2$ ,  $NH_3$ ,  $N_2O$ , NO, and  $NO_2$  in air,  $O_2$  and  $N_2$  near STP. *Atmospheric Environment* **32**, 1111-1127.

**Meyer S, Genty B**. 1998. Mapping intercellular  $CO_2$  mole fraction (C<sub>i</sub>) in *Rosa rubiginosa* leaves fed with abscisic acid by using chlorophyll fluorescence imaging. Significance of C<sub>i</sub> estimated from leaf gas exchange. *Plant Physiology* **116**, 947–957.

**Mott KA**. 1988. Do stomata respond to CO<sub>2</sub> concentrations other than intercellular? *Plant Physiology* **86**, 200-203.

**Mott KA, Buckley TN**. 2000. Patchy stomatal conductance: emergent collective behavious of stomata. *Trends in Plant Science* **5**: 258-262.

**Nobel P**. 1991. Physicochemical and environmental plant physiology. Academic Press San Diego.

**Nonami H, Boyer JS**. 1987. Origin of growth-induced water potential. *Plant Physiology* **83**, 596-601.

**Nonami H, Schulze E-D, Ziegler H**. 1991. Mechanisms of stomatal movement in response to air humidity, irradiance and xylem water potential. *Planta* **183**: 57-64.

Oleson KW, Lawrence DM, Bonan GB, Dreniak B, Huang M, Koven CD, Levis S, Li F, Riley WJ, Subin ZM, et al. 2013. Technical description of version 4.5 of the Community Land Model (CLM). Boulder, CO: National Center for Atmospheric Research.

**Onoda Y, Westoby M, Adler PB, Choong AMF, Clissold FJ, Cornelissen JHC, Diaz S, Dominy NJ, Elgart A, Enrico L, et al.** 2011. Global patterns of leaf mechanical properties. *Ecology Letters* **14**, 301-312.

**Parkhurst DF**. 1994. Diffusion of CO<sub>2</sub> and other gases inside leaves. *New Phytologist* **126**: 449-479.

**Parkhurst DF**. 1984. Mesophyll resistance to photosynthetic carbon dioxide uptakes in leaves: dependence on stomatal aperture. *Canadian Journal of Botany* **62**: 163-165.

**Parkhurst DF**. 1977. A three-dimensional model for CO<sub>2</sub> uptake by continuously distributed mesophyll in leaves. *Journal of Theoretical Biology* **67**: 471-488.

**Parkhurst DF, Mott KA**. 1990. Intercellular diffusion limits to CO<sub>2</sub> uptake in leaves. *Plant Physiology* **94**: 1024-1032.

**Parkhurst DF, Wong S-C, Farquhar GD, Cowan IR**. 1988. Gradients of intercellular CO<sub>2</sub> levels across the leaf mesophyll. *Plant Physiology* **86**: 1032-1037.

**Pons TL, Flexas J, von Caemmerer S, Evans JR, Genty B, Ribas-Carbo M, Brugnoli E**. 2009. Estimating mesophyll conductance to CO<sub>2</sub>: methodology, potential errors, and recommendations. *Journal of Experimental Botany* **60**, 2217–2234.

**Riederer M, Schreiber L**. 2001. Protecting against water loss: analysis of the barrier properties of plant cuticles. *Journal of Experimental Botany* **52**, 2023–2032.

**Šantrůček J, Šimáňová E, Karbulková J, Šimková M, Schreiber L**. 2004. A new technique for measurement of water permeability of stomatous cuticular membranes isolated from *Hedera helix* leaves. *Journal of Experimental Botany* **55**: 1411-1422.

Scafaro AP, Von Caemmerer S, Evans JR, Atwell BJ. 2011. Temperature response of mesophyll conductance in cultivated and wild *Oryza* species with contrasting mesophyll cell wall thickness. *Plant, Cell & Environment* **34**, 1999–2008.

**Schuster A-C, Burghardt M, Riederer M**. 2017. The ecophysiology of leaf cuticular transpiration: are cuticular water permeabilities adapted to ecological conditions? *Journal of Experimental Botany* **68**, 5271–5279.

**Sharkey TD, Seemann JR**. 1989. Mild water stress effects on carbon-reduction-cycle intermediates, ribulose bisphosphate carboxylase activity, and spatial homogeneity of photosynthesis in intact leaves. *Plant Physiology* **89**: 1060-1065.

**Sharkey TD, Imai K, Farquhar GD, Cowan IR**. 1982. A direct confirmation of the standard method of estimating intercellular partial pressure of CO<sub>2</sub>. *Plant Physiology* **69**, 657–659.

**Slavik B**. 1958 The influence of water deficit on transpiration. *Physiologia Plantarum* **11**: 524-535.

Smith NG, Dukes JS. 2017. LCE: leaf carbon exchange data set for tropical, temperate, and boreal species of North and Central America. *Ecology* **98**.

**Steinberg SL**. 1996. Mass and energy exchange between the atmosphere and leaf influence gas pressurization in aquatic plants. *New Phytologist* **134**: 587-599.

**Stinziano JR, Morgan PB, Lynch DJ, Saathoff AJ, McDermitt DK, Hanson DT**. 2017. The rapid A-C<sub>i</sub> response: photosynthesis in the phenomic era. *Plant, Cell & Environment* **40**, 1256–1262.

**Terashima I, Wong SC, Osmond CB, Farquhar GD. 1988**. Characterization of nonuniform photosynthesis induced by abscisic acid in leaves having different mesophyll anatomies. *Plant and Cell Physiology* **29**, 385–394.

**Terashima I.** 1992. Anatomy of non-uniform leaf photosynthesis. *Photosynthesis research*, **31**, 195–212.

**Tezara W, Mitchell VJ, Driscoll SD, Lawlor DW**. 1999. Water stress inhibits plant photosynthesis by decreasing coupling factor and ATP. *Nature* **401**: 914-917

**Tholen D, Zhu X-G**. 2011. The mechanistic basis of internal conductance: a theoretical analysis of mesophyll cell photosynthesis and CO<sub>2</sub> diffusion. *Plant Physiology* **178** 

**Tominaga J, Kawamitsu Y**. 2015*b*. Tracing Photosynthetic Response Curves with Internal CO<sub>2</sub> measured directly. *European Chemical Bulletin* **53**, 27–34.

**Tominaga J, Kawamitsu Y**. 2015*a*. Cuticle affects calculations of internal CO<sub>2</sub> in leaves closing their stomata. *Plant & Cell Physiology* **56**, 1900–1908.

**Tominaga J, Shimada H, Kawamitsu Y**. 2018. Direct measurement solves overestimation of intercellular CO<sub>2</sub> concentration in leaf gas-exchange measurements. *Journal of Experimental Botany* **69**, 1981-1991.

Van Gardingen PR, Jeffree CE, Grace J. 1989. Variation in stomatal aperture in leaves of *Avena latua* L observed by low-temperature scanning electron microscopy. *Plant Cell & Environment* **12**, 887-898.

**Vogel JC**. 1980. Fractionation of the carbon isotopes during photosynthesis. Fractionation of the carbon isotopes during photosynthesis. Berlin, Heidelberg: Springer Berlin Heidelberg, 5–29.

**Vrábl D, Vasková M, Hronková M, Flexas J, Santrucek J**. 2009. Mesophyll conductance to CO<sub>2</sub> transport estimated by two independent methods: effect of variable CO<sub>2</sub> concentration and abscisic acid. *Journal of Experimental Botany* **60**, 2315–2323.

**Ward DA, Bunce JA**. 1986. Novel evidence for a lack of water-vapor saturation within the intercellular airspace of turgid leaves of mesophytic species. *Journal of Experimental Botany* **37**: 504-516.

West JD, Peak D, Peterson JQ, Mott KA. 2005. Dynamics of stomatal patches for a single surface of *Xanthium strumarium* L. leaves observed with fluorescence and thermal images. *Plant, Cell & Environment* **28**, 633-641.

Weyers JDB, Lawson T. 1997. Heterogeneity in stomatal characteristics. *Advances in Botanical Research* **26**: 317-352.

**Wingate L, Seibt U, Moncrieff JB, Jarvis PG, Lloyd J**. 2007. Variations in 13C discrimination during CO<sub>2</sub> exchange by *Picea sitchensis* branches in the field. *Plant, Cell & Environment* **30**, 600–616.

**Wise RR, Ortiz-Lopez A, Ort DR.** 1992. Spatial distribution of photosynthesis during drought in field-grown and acclimated and nonacclimated growth chamber-grown cotton. *Plant Physiol*ogy **100**, 26-32.

## Tables

## Table 1. Reported $C_i$ for direct tests of the Moss and Rawlins (1963) assumptions.

|                                    |                           | gsw                                               | Ca            | C <sub>i</sub> differential <sup>a</sup> |                               |  |
|------------------------------------|---------------------------|---------------------------------------------------|---------------|------------------------------------------|-------------------------------|--|
| Species                            | Experiment                | (mmol $m^{-2} s^{-1}$ ) (µmol mol <sup>-1</sup> ) |               | Study                                    |                               |  |
|                                    |                           | mean / single /                                   | range         |                                          |                               |  |
| Hypostomatous leaves               |                           |                                                   |               |                                          |                               |  |
| Vitis vinifera                     | control                   | 178                                               | 350           | 3                                        |                               |  |
| (both sides)                       | high CO <sub>2</sub>      | 19                                                | 1100          | 126                                      | Boyer <i>et al.</i> (1997)    |  |
| Vitis vinifera                     | control                   | 4.4                                               | 350           | 291                                      |                               |  |
| (astomatous side) <sup>d</sup>     | high CO <sub>2</sub>      | 4.2                                               | 1100          | 940                                      |                               |  |
| Vitis vinifera <sup>c</sup>        | high CO                   | 0.73                                              | 40000         | 0420                                     | Boyer (2015b)                 |  |
| (astomatous side) <sup>d</sup>     | high CO <sub>2</sub>      | 0.73                                              | 10000         | 9436                                     |                               |  |
| Passiflora edulis                  |                           | 0.01                                              | 400           | 007 400                                  | Tominaga <i>et al.</i> (2018) |  |
| (astomatous side) <sup>d</sup>     | various T <sub>leaf</sub> | 0.21                                              | 400           | 267 – 432                                |                               |  |
| Amphistomatous                     |                           |                                                   |               |                                          |                               |  |
| leaves                             |                           |                                                   |               |                                          |                               |  |
| Xanthium strumarium <sup>b</sup>   | various CO <sub>2</sub>   |                                                   | 88 – 619      | 3 – 9                                    |                               |  |
|                                    | various light             |                                                   | 333 – 349     | -10 – 0                                  |                               |  |
|                                    | dark                      | not reported                                      | 352           | -19                                      | Sharkey <i>et al.</i> (1982)  |  |
| Gossypium hirsutum <sup>b</sup>    | various VPD               |                                                   | 330           | -14 — 14                                 |                               |  |
| Brassica chinensis <sup>b</sup>    |                           |                                                   |               | 31                                       |                               |  |
| Eucalyptus pauciflora <sup>b</sup> |                           |                                                   |               | 54                                       |                               |  |
| Gossypium hirsutum <sup>₅</sup>    | various species           | not reported                                      | 309 – 338     | 24                                       | Parkhurst et al. (1988)       |  |
| Phaseolus vulgaris <sup>b</sup>    |                           |                                                   |               | 29                                       |                               |  |
| Spinacia oleracea <sup>b</sup>     |                           |                                                   |               | 34                                       |                               |  |
| Helianthus annuus                  | very high CO <sub>2</sub> | 260-280                                           | 10000 – 50000 | <150                                     | Boyer & Kawamitsu (2011)      |  |
| Helianthus annuus                  | control                   | 205                                               | 400           | 30                                       | Boyer (2015a)                 |  |
|                                    | ABA                       | 37                                                | 400 245       | 245                                      |                               |  |
| Helianthus annuus                  | A/Ci curve                | 248 – 488                                         | 34 – 1556     | -10 – 36                                 | Tominogo 9 Koursita           |  |
|                                    | A/Ci curve                | 18 – 86                                           | 31 – 1982     | -10 – 451                                | Tominaga & Kawamits           |  |
|                                    | ABA                       |                                                   |               |                                          | (2015 <i>b</i> )              |  |
| Helianthus annuus                  | A/Ci curve                | 264 – 307                                         | 24 – 320      | -4 - 0                                   |                               |  |
| Phaseolus vulgaris                 | A/Ci curve                | 226 404                                           | 24 244        | -1 – 4                                   | Tominaga <i>et al.</i> (2018) |  |
|                                    | high SD                   | 336 – 401                                         | 24 – 344      | -1 - 4                                   |                               |  |
|                                    | A/Ci curve                | 27 40                                             | 22 – 652      | -6 – 166                                 |                               |  |
|                                    | low SD                    | 37 – 40                                           |               |                                          |                               |  |

Data were retrieved from either texts or figures unless the raw data are available.

 ${}^{a}C_{i}$  differential=Calculated  $C_{i}$  – measured  $C_{i}$ 

 $^bCO_2$  concentrations are shown in µbar. 1 µbar is 1 µmol mol^1 at standard pressure of 1013 bar.

<sup>c</sup>Ci was recalculated from Fig. 2 in Boyer (2015b), according to the model by von Caemmer & Farquhar (1981).

<sup>d</sup>For gas exchange measurements on astomatous side in hypostomatous leaves,  $g_{sw}$  indicates cuticle conductance ( $g_{cw}$ ).

Table 2. Cuticular permeances from Riederer and Schreiber (2001) re-interpreted as cuticular conductance ( $g_{cw}$ ) and transpiration ( $E_c$ ).

|                          | Temperature | Permeance                  | g <sub>cw</sub>                         | Ec                                      |                               |
|--------------------------|-------------|----------------------------|-----------------------------------------|-----------------------------------------|-------------------------------|
| Species                  | (K)         | (m s⁻¹ x 10 <sup>6</sup> ) | (mmol m <sup>-2</sup> s <sup>-1</sup> ) | (µmol m <sup>-2</sup> s <sup>-1</sup> ) | Source                        |
| Citrus aurantium         | 298         | 71.0                       | 0.29                                    | 9.1                                     | Baur, 1997                    |
| Ficus elastica           | 298         | 18.0                       | 0.07                                    | 2.3                                     |                               |
| Hedera helix             | 298         | 7.4                        | 0.03                                    | 0.9                                     |                               |
| Pyrus communis           | 298         | 670.0                      | 2.76                                    | 85.6                                    |                               |
| Stephanotis floribunda   | 298         | 330.0                      | 1.36                                    | 42.2                                    |                               |
| Citrus aurantium         | 298         | 120.0                      | 0.49                                    | 15.3                                    | Becker <i>et al</i> ., 1986   |
| Clivia miniata           | 298         | 11.0                       | 0.05                                    | 1.4                                     |                               |
| Ficus elastica           | 298         | 43.0                       | 0.18                                    | 5.5                                     |                               |
| Hedera helix             | 298         | 27.0                       | 0.11                                    | 3.5                                     |                               |
| Nerium oleander          | 298         | 33.0                       | 0.14                                    | 4.2                                     |                               |
| Pyrus communis           | 298         | 120.0                      | 0.49                                    | 15.3                                    |                               |
| Schefflera actinophylla  | 298         | 8.2                        | 0.03                                    | 1.0                                     |                               |
| Citrus aurantium         | 298         | 690.0                      | 2.84                                    | 88.2                                    | Geyer and Schonherr, 1990     |
| Citrus aurantium         | 298         | 470.0                      | 1.93                                    | 60.1                                    | Haas and Schonherr, 1979      |
| Anthurium brownii        | 303         | 11.5                       | 0.05                                    | 1.9                                     | Helbsing <i>et al</i> ., 2001 |
| Anthurium salviniae      | 303         | 6.8                        | 0.03                                    | 1.1                                     | -                             |
| Aspasia principissa      | 303         | 4.6                        | 0.02                                    | 0.8                                     |                               |
| Caularthron              |             |                            |                                         |                                         |                               |
| bilamellatum             | 303         | 11.3                       | 0.05                                    | 1.9                                     |                               |
| Epidendrum nocturum      | 303         | 17.7                       | 0.07                                    | 3.0                                     |                               |
| Notylia pentachne        | 303         | 12.7                       | 0.05                                    | 2.1                                     |                               |
| Oncidium ampliatum       | 303         | 9.5                        | 0.04                                    | 1.6                                     |                               |
| Peperomia cordulata      | 303         | 46.1                       | 0.19                                    | 7.8                                     |                               |
| Philodendron radiatum    | 303         | 11.8                       | 0.05                                    | 2.0                                     |                               |
| Philodendron tripartitum | 303         | 11.2                       | 0.05                                    | 1.9                                     |                               |
| Polystachya foliosa      | 303         | 60.7                       | 0.25                                    | 10.2                                    |                               |
|                          |             |                            |                                         |                                         |                               |

| Sobralia fenzliana     | 303 | 26.6   | 0.11 | 4.5   |                                  |
|------------------------|-----|--------|------|-------|----------------------------------|
| Sobralia suaveolens    | 303 | 16.9   | 0.07 | 2.8   |                                  |
| Trichopilia maculata   | 303 | 21.7   | 0.09 | 3.7   |                                  |
| Abies alba             | 293 | 1400.0 | 5.86 | 134.4 | Lendzian <i>et al</i> ., 1986    |
| Citrus aurantium       | 293 | 450.0  | 1.88 | 43.2  |                                  |
| Camellia sinensis      | 298 | 57.8   | 0.24 | 7.4   | Reiderer and Schreiber, 2001     |
| Citrus aurantium       | 298 | 95.2   | 0.39 | 12.2  |                                  |
| Clivia miniata         | 298 | 4.8    | 0.02 | 0.6   |                                  |
| Clusia flava           | 298 | 20.2   | 0.08 | 2.6   |                                  |
| Clusia uvitana         | 298 | 48.7   | 0.20 | 6.2   |                                  |
| Clusia uvitana         | 298 | 137.0  | 0.56 | 17.5  |                                  |
| Corynocarpus           |     |        |      |       |                                  |
| laevigatus             | 298 | 49.7   | 0.20 | 6.4   |                                  |
| Cydonia oblongata      | 298 | 101.0  | 0.42 | 12.9  |                                  |
| Euonymus japonica      | 298 | 79.2   | 0.33 | 10.1  |                                  |
| Ficus elastica         | 298 | 14.6   | 0.06 | 1.9   |                                  |
| Ficus elastica         | 298 | 39.5   | 0.16 | 5.0   |                                  |
| Forsythia intermedia   | 298 | 86.2   | 0.35 | 11.0  |                                  |
| Garcinia spicata       | 298 | 63.8   | 0.26 | 8.2   |                                  |
| Hedera helix           | 298 | 21.7   | 0.09 | 2.8   |                                  |
| Monstera deliciosa     | 298 | 24.3   | 0.10 | 3.1   |                                  |
| Nerium oleander        | 298 | 40.0   | 0.16 | 5.1   |                                  |
| Philodendron ilsemanii | 298 | 10.4   | 0.04 | 1.3   |                                  |
| Pyrus communis         | 298 | 63.4   | 0.26 | 8.1   |                                  |
| Pyrus communis         | 298 | 82.9   | 0.34 | 10.6  |                                  |
| Vanilla planifolia     | 298 | 3.6    | 0.01 | 0.5   |                                  |
| Allium cepa            | 298 | 190.0  | 0.78 | 24.3  | Schonherr and Merida, 1981       |
| Citrus aurantium       | 298 | 150.0  | 0.62 | 19.2  | Schonherr and Schmidt, 1979      |
| Citrus aurantium       | 298 | 280.0  | 1.15 | 35.8  |                                  |
| Camellia sinensis      | 298 | 46.8   | 0.19 | 6.0   | Schreiber and Riederer,<br>1996b |
|                        |     |        |      |       | 10000                            |

| Citrus aurantium        | 298 | 55.5  | 0.23 | 7.1  |
|-------------------------|-----|-------|------|------|
|                         |     |       |      |      |
| Citrus limon            | 298 | 204.0 | 0.84 | 26.1 |
| Clivia miniata          | 298 | 68.1  | 0.28 | 8.7  |
| Cydonia oblongata       | 298 | 273.0 | 1.12 | 34.9 |
| Euonymus japonica       | 298 | 155.0 | 0.64 | 19.8 |
| Ficus benjamina         | 298 | 56.4  | 0.23 | 7.2  |
| Ficus elastica          | 298 | 40.7  | 0.17 | 5.2  |
| Forsythia suspensa      | 298 | 168.0 | 0.69 | 21.5 |
| Gingko biloba           | 298 | 226.0 | 0.93 | 28.9 |
| Hedera helix            | 298 | 24.7  | 0.10 | 3.2  |
| Juglans regia           | 298 | 199.0 | 0.82 | 25.4 |
| Ligustrum vulgare       | 298 | 188.0 | 0.77 | 24.0 |
| Liriodendron tulipifera | 298 | 182.0 | 0.75 | 23.3 |
| Maianthemum bifolium    | 298 | 481.0 | 1.98 | 61.5 |
| Monstera deliciosa      | 298 | 18.6  | 0.08 | 2.4  |
| Nerium oleander         | 298 | 226.0 | 0.93 | 28.9 |
| Olea europaea           | 298 | 54.6  | 0.22 | 7.0  |
| Philodendron selloum    | 298 | 28.6  | 0.12 | 3.7  |
| Prunus laurocerasus     | 298 | 57.7  | 0.24 | 7.4  |
| Vanilla planifolia      | 298 | 7.4   | 0.03 | 0.9  |

## **Figures**

**Figure 1** – Density plot of measured (a) cuticle ( $g_c$ ), (b) stomatal ( $g_s$ ) values, and (c) maximum theoretical intercellular airspace conductance ( $g_{ias}$ ) values assuming diffusion through 12.5% of leaf thickness for amphistomatous leaves (Amphi) and 87.5% of leaf thickness for hypostomatous leaves (Hypo). (a) Data was compiled from Riederer and Schreiber (2001) and the supplementary information from Schuster et al. (2017). Black line indicates 1% of the median value from (b), while dashed lines indicate method-specific medians. (b) Data was compiled from Lin et al. (2015) and Smith and Dukes (2017). (c) Leaf thickness data used to calculate maximum  $g_{ias}$  from Onoda et al. (2011).

**Figure 2** – Implications of intercellular water vapor concentration (W<sub>i</sub>) as a percentage of saturation vapor pressure (VPD) for (a) conductance (g) calculations, and the effects of (b) water potential ( $\Psi$ ) and (c) leaf to air vapor pressure deficit (VPD<sub>leaf</sub>). a) When  $\Psi$  = 0 MPa, W<sub>i</sub> = 100% e<sub>s</sub>, and VPD = 0 kPa, then g represents stomatal conductance (g<sub>s</sub>). When  $\Psi$  = 0 MPa, W<sub>i</sub> = 100% e<sub>s</sub>, and VPD > 0 kPa, then 1/g represents 1/g<sub>s</sub> + 1/g<sub>ias</sub> (intercellular airspace conductance). When  $\Psi$  < 0 MPa, W<sub>i</sub> < 100% e<sub>s</sub>, and VPD > 0 kPa, then 1/g represents 1/g<sub>s</sub> + 1/g<sub>ias</sub> (intercellular airspace conductance). When  $\Psi$  < 0 MPa, W<sub>i</sub> < 100% e<sub>s</sub>, and VPD > 0 kPa, then 1/g represents 1/g<sub>s</sub> + 1/g<sub>ias</sub> (intercellular airspace conductance). When  $\Psi$  < 0 MPa, W<sub>i</sub> < 100% e<sub>s</sub>, and VPD > 0 kPa, then 1/g represents 1/g<sub>s</sub> + 1/g<sub>ias</sub> (intercellular airspace conductance). When  $\Psi$  < 0 MPa, W<sub>i</sub> < 100% e<sub>s</sub>, and VPD > 0 kPa, then 1/g represents 1/g<sub>s</sub> + 1/g<sub>ias</sub> + 1/g<sub>liq</sub> where g<sub>liq</sub> is liquid conductance into the cell. Potential locations of C<sub>i,es</sub> (CO<sub>2</sub> concentration at the evaporating surface) are indicated by black lines. b) As  $\Psi$  decreases, the location of calculated W<sub>i</sub> recedes further into the leaf and into the cell. c) As VPD<sub>leaf</sub> increases, the location of W<sub>i</sub> recedes away from the substomatal cavity. C<sub>c</sub>: chloroplastic CO<sub>2</sub> concentration, C<sub>ias</sub>: CO<sub>2</sub> concentration of the intercellular airspace.

**Figure 3** – Water use efficiency as a function of intercellular  $[CO_2]$  accounting for cuticular conductance ( $C_{icuticle}$ ), and the relationship with the proportion of stomatal conductance attributed to cuticular conductance. iWUE: intrinsic water use efficiency.

**Figure 4**– The sensitivity of intercellular  $[CO_2]$  (C<sub>i</sub>) (a, c, e) and mesophyll conductance (g<sub>m</sub>) (b, d, f) to the proportion of stomatal conductance attributed to cuticle conductance.

(a) Data from Douthe et al. (2011); (b) Data from Vrabl et al. (2009); (c, d) Data from Scafaro et al. (2011) assuming (c) the highest temperature sensitivity of cuticular conductance or (d) the lowest temperature sensitivity of cuticular conductance from Riederer and Schreiber (2001). For unrestricted axes and C<sub>i</sub> comparisons, see Figs. S1, S2; for g<sub>m</sub> comparisons, see Figs. S3, S4, S5).

**Figure 5** – a) Response of A<sub>net</sub> to C<sub>i</sub> under different  $g_{cw}$  scenarios. b) Response of  $g_{sw}$  to C<sub>i</sub> under different  $g_{cw}$  scenarios. Solid lines indicate value of  $g_{cw}$  across curve. c) Response of V<sub>cmax</sub> to J<sub>max</sub> as a function of the proportion of  $g_{sw}$  attributed to  $g_{cw}$ . Reinterpreted A-C<sub>i</sub> data extracted from Vrabl et al. (2009). A<sub>net</sub>: net CO<sub>2</sub> assimilation; C<sub>i</sub>: intercellular CO<sub>2</sub> concentration;  $g_{cw}$ : cuticle conductance to water;  $g_{sw}$ : stomatal conductance to water; J<sub>max</sub>: maximum rate of electron transport to RuBP regeneration; Proportion: proportion of  $g_{sw}$  attributed to  $g_{cw}$  at a reference CO<sub>2</sub> of 400 µmol mol<sup>-1</sup>; V<sub>cmax</sub>: maximum rate of rubisco carboxylation capacity.

**Figure 6** – Effects of CO<sub>2</sub> gradients (finite  $g_{ias}$ ) and cuticle conductance ( $g_c$ ) on calculated C<sub>i</sub> ( $\Delta$ C<sub>i</sub>) (a, b, c),  $g_s$  (d, e, f), and  $\Delta$ V<sub>cmax</sub> (g, h, i), when intercellular water vapor concentration (W<sub>i</sub>) is at 100% (a, d, g), 95% (b, e, h), and 90% (c, f, i) of saturation vapor pressure ( $e_s$ ).  $g_{s\_actual}$ : actual stomatal conductance given the assumptions;  $g_{s\_ref}$ : reference  $g_s$  where  $g_c = 0$ ,  $g_i$  mmol m<sup>-2</sup> s<sup>-1</sup><sub>s</sub> = infinity, and W<sub>i</sub> = 100%  $e_s$ ; Ng<sub>ias</sub>: no CO<sub>2</sub> gradient; Yg<sub>ias</sub>: CO<sub>2</sub> gradient present,  $g_{ias} = 1000$  mmol m<sup>-2</sup> s<sup>-1</sup>; Ng<sub>c</sub>:  $g_c = 0$  mmol m<sup>-2</sup> s<sup>-1</sup>; Yg<sub>c</sub>:  $g_c = 10$  mmol m<sup>-2</sup> s<sup>-1</sup>;  $\Delta$ V<sub>cmax</sub>: percent change in maximum rate of Rubisco carboxylation.

**Figure 7** – Modelled impacts of intercellular [H<sub>2</sub>O] (W<sub>i</sub>), cuticle conductance (g<sub>c</sub>), and intercellular airspace conductance (g<sub>ias</sub>) on mesophyll conductance (g<sub>m</sub>) expressed as a change in g<sub>m</sub> ( $\Delta$ g<sub>m</sub> (%)), across a range of reference g<sub>s</sub> values (g<sub>s\_ref</sub>). W<sub>i</sub> is either a) 100% saturation vapor presure (e<sub>s</sub>), b) 95% e<sub>s</sub>, or c) 90% e<sub>s</sub>. Reference value for g<sub>m</sub> is 0.48 mol m<sup>-2</sup> s<sup>-1</sup> at 1 atmosphere. For  $\Delta$ g<sub>m</sub> < 10% in Ng<sub>ias</sub>Yg<sub>c</sub>, g<sub>s\_ref</sub> must exceed 0.187 mol m<sup>-2</sup> s<sup>-1</sup>, 0.168 mol m<sup>-2</sup> s<sup>-1</sup>, and 0.15 mol m<sup>-2</sup> s<sup>-1</sup> in a), b), and c), respectively. Ng<sub>ias</sub>:

no CO<sub>2</sub> gradient; Yg<sub>ias</sub>: CO<sub>2</sub> gradient present,  $g_{ias} = 1000 \text{ mmol } \text{m}^{-2} \text{ s}^{-1}$ ; Ng<sub>c</sub>:  $g_c = 0 \text{ mmol } \text{m}^{-2} \text{ s}^{-1}$ ; Yg<sub>c</sub>:  $g_c = 10 \text{ mmol } \text{m}^{-2} \text{ s}^{-1}$ .

**Figure 8** – Relative effects of departures from each assumption on calculated  $C_i$  ( $C_{ic}$ ) relative to actual C<sub>i</sub> under constant A and constant measured conductance (g). Assumption 1: increasing g<sub>cw</sub> causes C<sub>ic</sub> to increase, leading to overestimation of C<sub>i</sub>, with a stronger effect at lower g. **Assumption 2**: decreasing g<sub>ias</sub> causes C<sub>ic</sub> to increase, leading to overestimation of C<sub>i</sub>, with a stronger effect at higher g. Assumption 3: decreasing W<sub>i</sub> from 100% SVP causes C<sub>ic</sub> to decrease, leading to underestimation of C<sub>i</sub>, with a stronger effect at lower g. Decreasing leaf water potential ( $\Psi_{m,apo}$ ) causes W<sub>i</sub> to decrease, causing C<sub>ic</sub> to decrease and underestimate C<sub>i</sub>. Assumption 4: positively skewed stomatal apertures means that stomata are more closed than expected based on g, such that C<sub>ic</sub> overestimates C<sub>i</sub>. Likewise, negatively skewed stomatal apertures means that stomata are more open than expected based on g, such that Cic underestimates C<sub>i</sub>. This results from influences on g<sub>ias</sub> – smaller than expected stomatal apertures means that the effective pathlength for diffusion is longer, decreasing gias relative to an "expected value", while larger than expected stomatal apertures means that the effective pathlength for diffusion is smaller, increasing gias relative to an "expected value". In the second case and under Assumption 2, the difference in gias would be a difference between a smaller and larger infinite value. Assumption 5: a pressurized leaf relative to air ( $\Delta P_{\text{leaf-to-air}} > 0$ ) means that calculated W<sub>i</sub> is higher than the expected es, causing Cic to overestimate Ci, and a negatively pressurized leaf  $(\Delta P_{\text{leaf-to-air}} > 0)$  means that W<sub>i</sub> is lower than the expected e<sub>s</sub>, causing C<sub>ic</sub> to underestimate C<sub>i</sub>. Note that the pressure will also have implications for the diffusion dynamics, but we do not address them here. **Assumption 6**: when  $D_{H2O}/D_{CO2} > 1.6$ ,  $g_{sc}$ is overestimated, causing  $C_{ic}$  to overestimate  $C_i$ , while  $D_{H2O}/D_{CO2} < 1.6$  causes underestimation of gsc, leading Cic to underestimate Ci. Note that these effects are stronger under smaller values of g. Assumption 7: when considering gas exchange in 3-D, tortuosity of the pathway and homo/heterobaricity of the leaf (which could feed into tortuosity), and leaf thickness impact gias, with higher tortuosity, lower heterobaricity and thicker leaves, decreasing gias, causing Cic to overestimate Ci. Note: tortuosity, heterobaricity, and leaf thickness will influence gias. Assumptions 3 and 5 feed into assumption 3, while assumptions 4 and 7 feed into assumption 2.

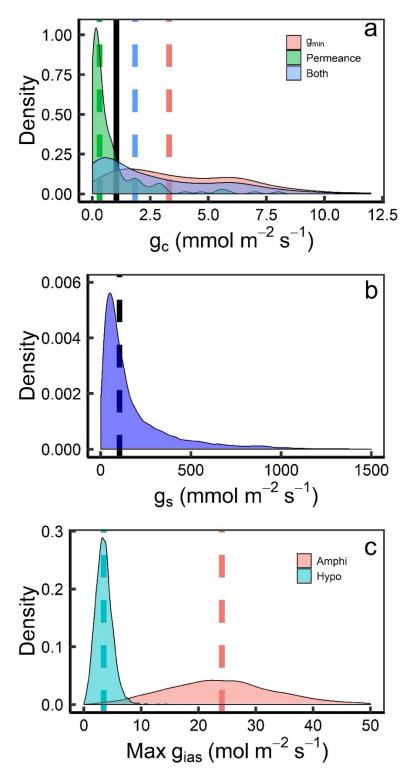



Figure 1

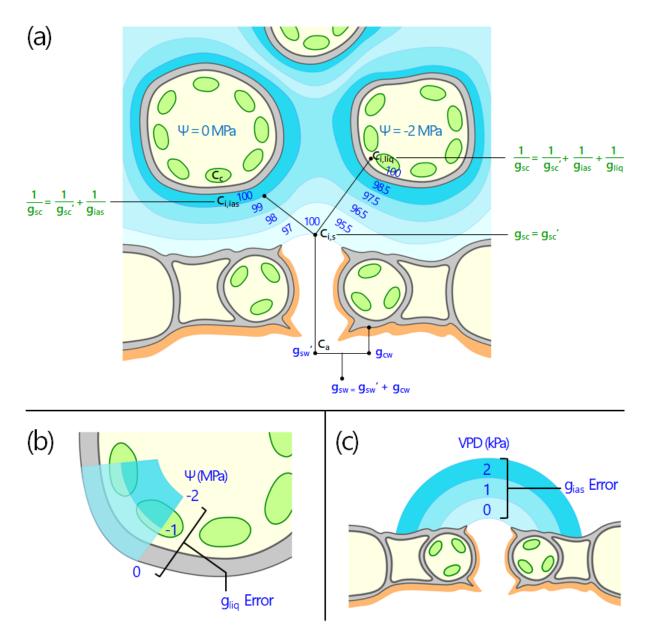



Figure 2



Figure 3

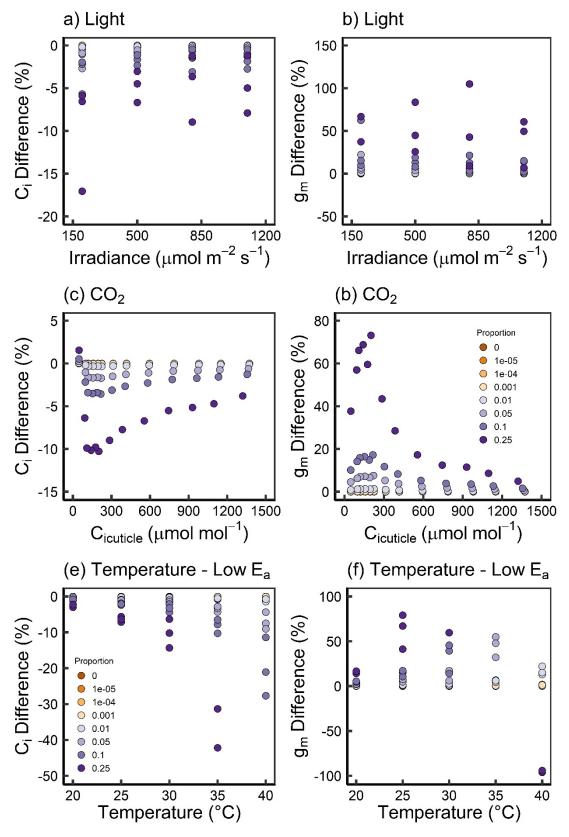



Figure 4

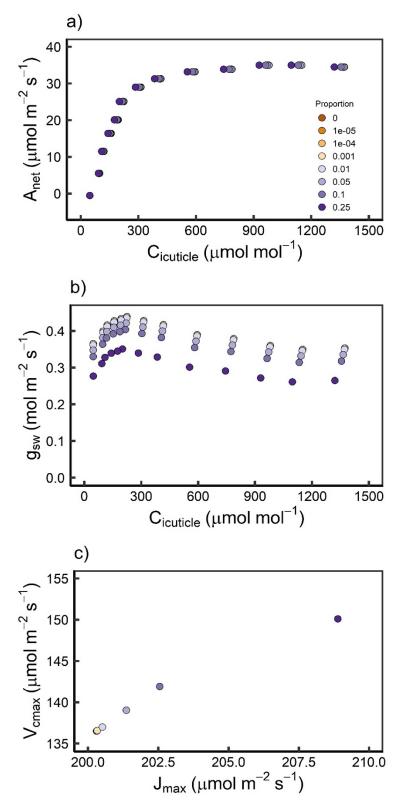



Figure 5

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.05.079053; this version posted May 7, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license.

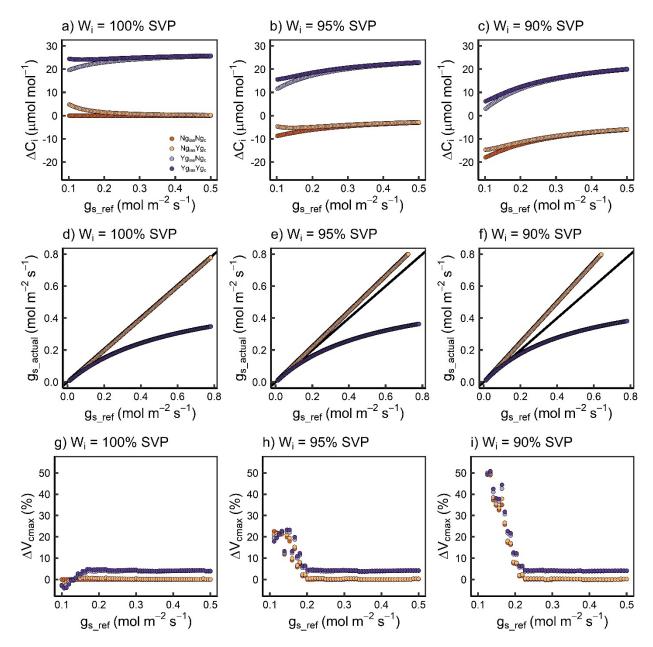



Figure 6

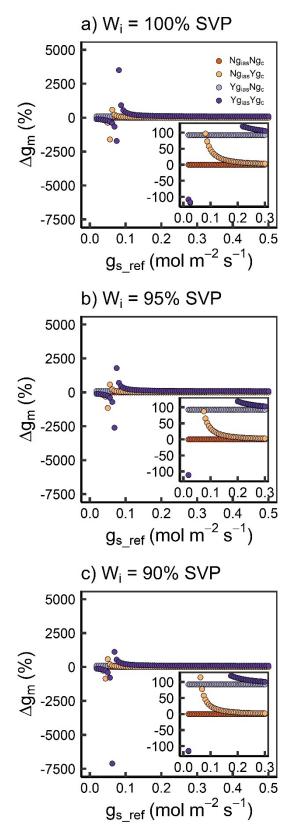



Figure 7

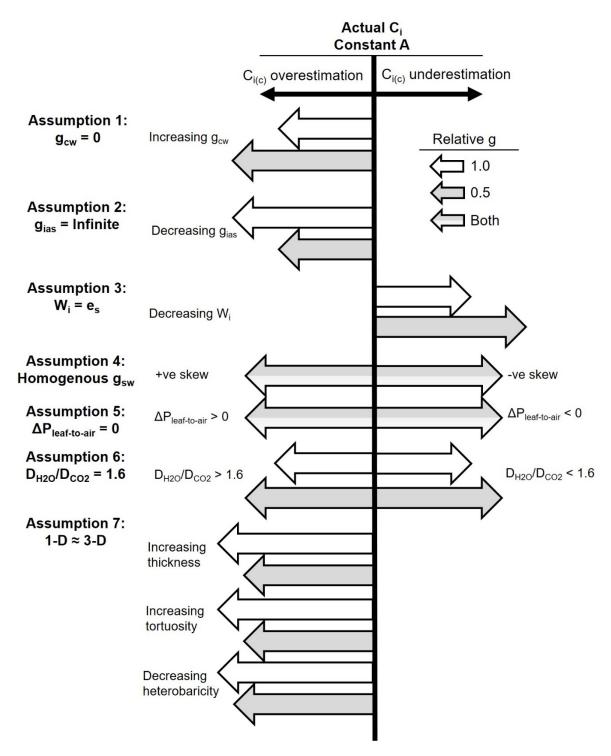



Figure 8

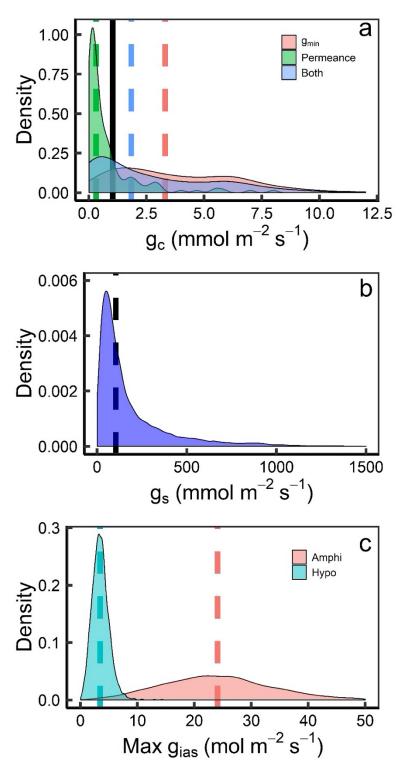



Figure 1

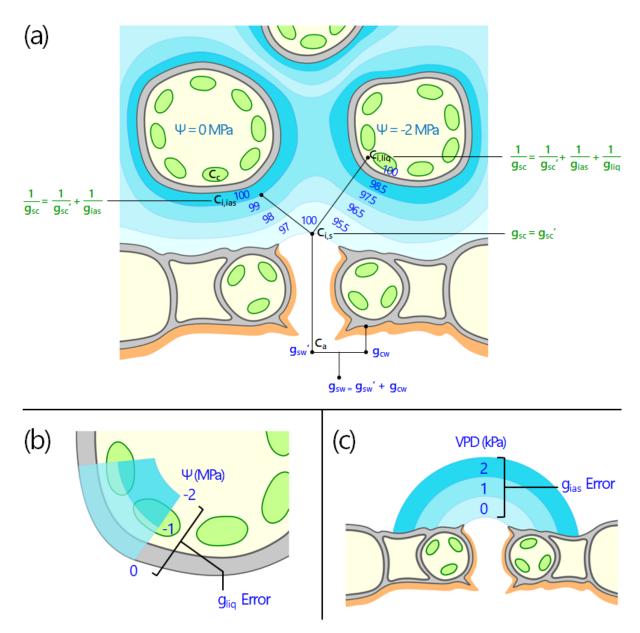



Figure 2

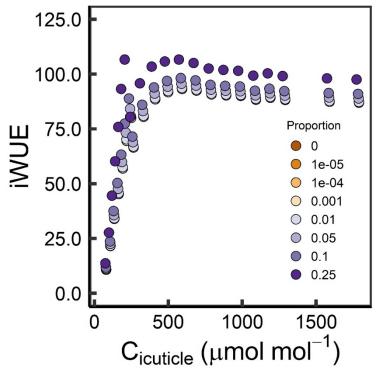



Figure 3

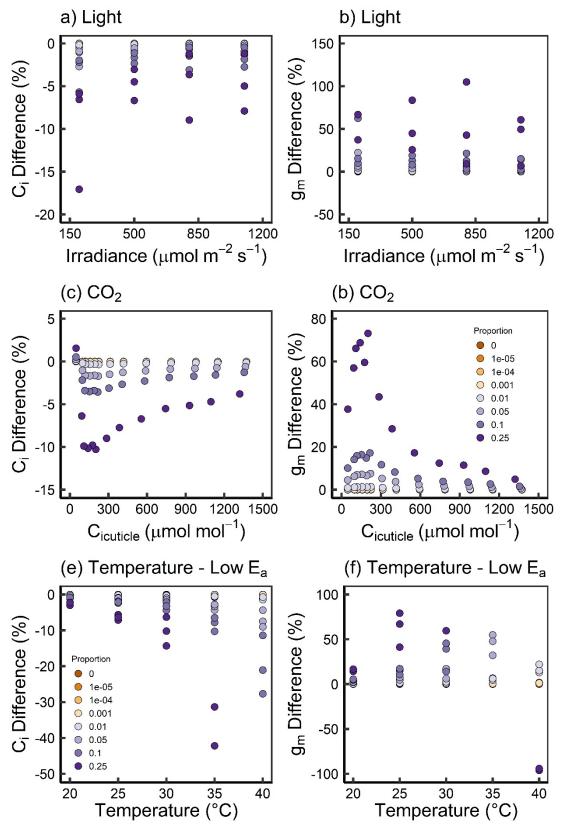



Figure 4

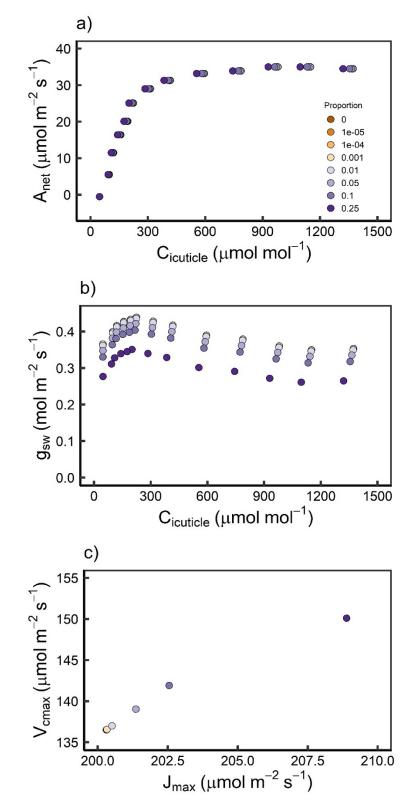



Figure 5

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.05.079053; this version posted May 7, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license.

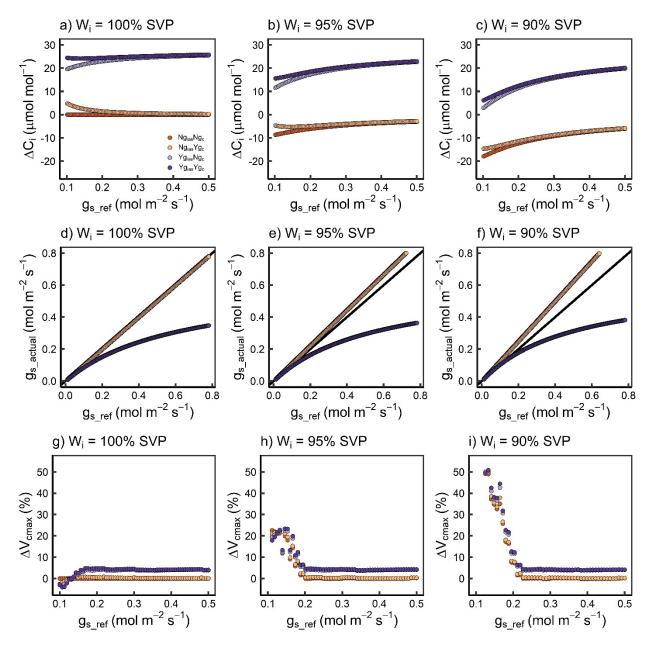



Figure 6

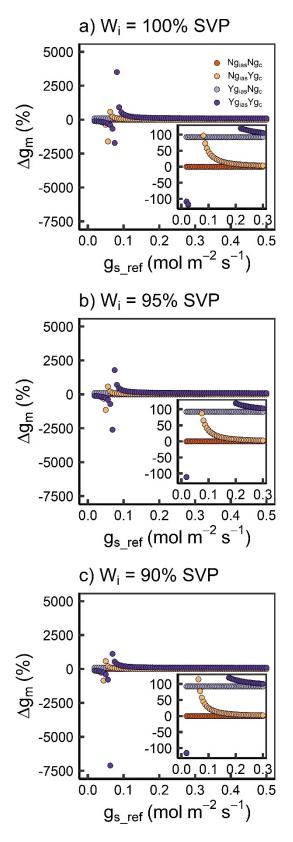



Figure 7

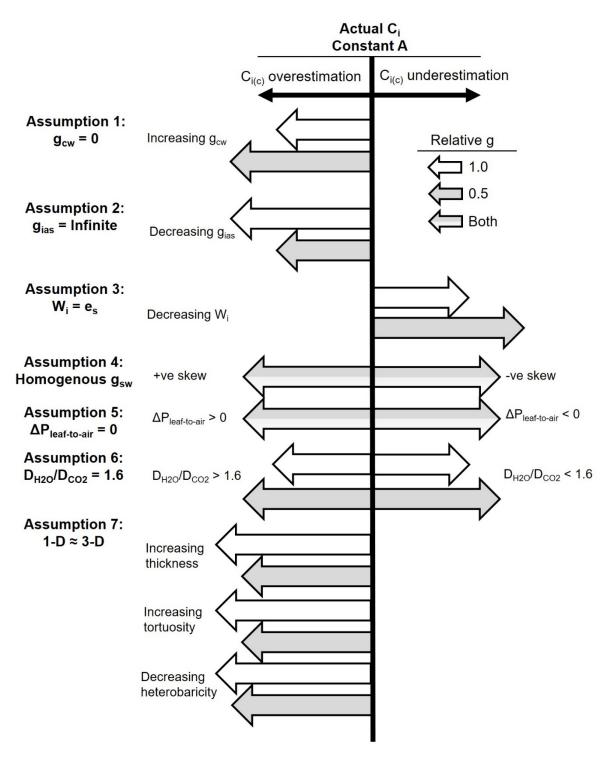



Figure 8