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Abstract 

How do students understand and remember new information? Despite major advances in 

measuring human brain activity during and after educational experiences, it is unclear how 

learners internalize new content, especially in real-life and online settings. In this work, we 

introduce a neural measure for predicting and assessing learning outcomes. Our approach 

hinges on the idea that successful learning involves forming the “right” set of neural 

representations, which are captured in “canonical” activity patterns shared across individuals. 

Specifically, we hypothesized that understanding is mirrored in “neural alignment”: the degree 

to which an individual learner’s neural representations match those of experts, as well as those 

of other learners. We tested this hypothesis in a longitudinal functional MRI study that regularly 

scanned college students enrolled in an introduction to computer science course. We 

additionally scanned graduate student “experts” in computer science. We found that alignment 

among students successfully predicted overall performance in a final exam. Furthermore, within 

individual students, concepts that evoked better alignment with the experts and with their fellow 

students were better understood, revealing neural patterns associated with understanding 

specific concepts. These results provide support for a novel neural measure of concept 

understanding that can be used to assess and predict learning outcomes in real-life contexts.  
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Introduction 

Learning plays a central role in shaping our cognition. As we gain new knowledge, our thinking 

changes: as physicist Richard Feynman observed, “The world looks so different after learning 

science” (Feynman, 1969). Recently, multivariate “brain reading” analysis techniques have 

significantly advanced our understanding of how knowledge is represented in neuronal activity 

(Bauer and Just, 2019; Norman et al., 2006; O’Toole et al., 2007). These methods, together with 

representational similarity analysis (RSA), have made it possible to delineate the fine-grained 

structure of neural representations of learned knowledge, and to link neural patterns to specific 

knowledge across multiple domains (Bauer and Just, 2019; Haxby et al., 2014; Hsu et al., 2014; 

Mahon and Caramazza, 2011; Musz and Thompson-Schill, 2019; Parkinson et al., 2017). For 

the most part, this body of work has examined well-established concept representations rather 

than newly acquired concepts.  

Recent imaging work has begun addressing this gap, examining the process of learning 

new concepts and extending a large body of work that has studied changes in neuronal circuits 

during and after learning (Karuza et al., 2014; McCandliss, 2010). Cetron et al. (2019) 

successfully used a multivariate neuroimaging approach to show that brain activity patterns 

recorded while students learned new categories in a Newtonian physics task can predict 

performance in a subsequent behavioral test. In an earlier study, Mason and Just (2015) 

reported a progression of activation throughout the cortex during learning, providing “snapshots” 

of the various cortical networks activated as participants progressed through explanations about 

different mechanical systems.  

By design, these studies were conducted under carefully controlled experimental 

conditions. These required repeatedly exposing participants to a small set of static, discrete 

stimuli during a limited time, often within a single MRI scan. However, it is unclear whether results 

obtained under these conditions generalize to real-world settings. In a typical college course, 
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students are required to communicate with instructors and peers; actively use a variety of static 

and dynamic learning resources inside and outside of class; assimilate multiple new concepts 

simultaneously; integrate course material over a prolonged period of several weeks; and often 

master new skills. Furthermore, selecting a course and taking it for credit is arguably different in 

terms of students’ motivation and interest than participating in a lab study. Therefore, a major 

goal of the current work was to examine learning in a real-life setting: a “flipped” introduction to 

computer science course in which students watched lecture videos outside of class.  

A key part of learning is the communication of new information and its integration in 

students’ memory. Communication between individuals has been linked to neural “coupling”, 

such that (a) the brains of speakers and listeners show joint response patterns, and (b) more 

extensive speaker–listener neural coupling enables better communication (Hasson et al., 2012; 

Silbert et al., 2014; Stephens et al., 2010). Likewise, when people watch the same video, shared 

activity patterns emerge across the brain (Hasson et al., 2004). Recent imaging studies have 

shown that memories of this shared experience are encoded in a similar way across individuals, 

particularly in Default Mode Network (DMN) regions (Chen et al., 2017; Zadbood et al., 2017). 

Notably, specific concepts have also been shown to evoke similar neural activity patterns across 

individuals, suggesting a shared structure for neural representations (Bauer and Just, 2019; 

Mason and Just, 2016; Nguyen et al., 2019; Shinkareva et al., 2012; Yeshurun et al., 2017). This 

body of work suggests that shared neural responses reflect “thinking alike”. In the context of 

learning, the students’ goal could be viewed as laying the neural foundation that would allow 

them to think like experts. 

Here, we sought to use shared neural activity patterns across learners and experts to 

quantify and predict understanding in a popular STEM course at Princeton University. We used 

class and expert patterns to model “canonical” representations and tested the hypothesis that 

alignment to these patterns reflected understanding. Our findings demonstrate that alignment 
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during video lectures over the course of a semester successfully predicted final exam 

performance. We further found that, while verbally answering open exam questions, alignment 

between students and experts and alignment between students and classmates in medial 

cortical regions were both positively correlated with performance across questions, within 

individual students. Strikingly, a consistent set of relationships between topics emerged across 

students, correlating with performance within individual students and revealing how different 

concepts were integrated together. We thus show that approximating canonical neural 

representations supports understanding of STEM concepts learned in a college course setting. 

Our results provide support for a novel neural measure of concept understanding that is 

applicable in real life and online settings. 

Results 

Did alignment to canonical neural representations emerge during learning, and did alignment 

reflect understanding of learned material? To address these questions, we examined neural 

activity patterns and learning outcomes in undergraduate students and in graduate “experts”. In 

collaboration with the Department of Computer Science at Princeton University, we recruited 

undergraduate students enrolled in COS 126: Computer Science - An Interdisciplinary 

Approach. The course introduces basic concepts in programming and computer science using 

a “flipped” classroom model, with lecture videos watched outside of class. Students underwent 

functional MRI (fMRI) scans five times during a 13-week semester while watching a subset of 

that week’s  video lectures in the scanner. Subjects were asked not to view these lecture videos 

online before the scans. The subset of lectures shown in each scan was approximately 40 

minutes long and comprised 3-5 segments (21 segments, 197 minutes in total). On the final 

week of the semester, students were shown - in the scanner - five 3-minute lecture recap videos 

with the highlights from previous weeks, followed by a final exam (Fig. 1a). To establish a 
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baseline, the same exam was also given to students at the beginning of the semester, in written 

form. Graduate “experts” underwent the final scan only, watching the recap videos from all 

lectures and completing the final exam. The exam was self-paced, with exam questions (16 in 

total) spanning a variety of course topics from programming to theory. In the final exam, 

participants were asked to give verbal responses to visually presented questions (mean 

response length 31.9 seconds, s.d. 24.7). Questions were scored individually by course staff, 

providing a fine-grained measure of understanding.  

All students received a score of zero on the baseline exam (Fig. 1b). This confirmed that 

students had no prior knowledge of course material. By the end of the course, all students 

demonstrated knowledge gains (two-sided t-test, t(19) = -12.6, p < 0.001), with substantial 

variance across students (range 22-76 out of 100, median 53, s.d. 17.1). 
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Figure 1. Study design and exam scores. A. Study design. Students enrolled in an introduction 
to computer science course underwent six fMRI scans throughout the course. During the first 
five scans, students were shown course lecture videos. On the final scan (bottom), students 
were shown lecture recaps and given a final exam. Experts underwent the final scan only. See 
table 1 for stimuli and task details. B. Exam scores. Pretest (left) was performed prior to 
scanning, posttest (right) was performed during scan 6. Individual students are shown in grey. 
Error bar, ±1 SEM. 
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Stimulus Participants Task 
Length of time bin  
for neural pattern 

Total stimulus 
length 

Lecture videos Students 
Passive 
viewing 30s of video (fixed) 197 min 

Recap videos Students + Experts 
Passive 
viewing 30s of video (fixed) 16 min 

Exam  
(in scanner) Students + Experts 

Verbal 
response 

Entire question 
(variable) 10-22 min 

 
Table 1. Stimuli and tasks. 
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Prediction of learning outcomes from neural activity during lectures 

Our first goal was to predict learning outcomes from brain activity during lecture videos. To this 

end, we calculated neural alignment-to-class across all lectures, comparing each student’s 

response patterns to the mean response patterns across all other students (Fig. 2A and 

Methods). Alignment values varied across the cortex, with the strongest values recorded in 

visual occipital regions, auditory and language regions, and parts of the default-mode and 

attention networks (Fig. 2B). The alignment map was in line with the body of literature showing 

that watching the same video elicits shared activity patterns across individuals (Hasson et al., 

2004; Nastase et al., 2019). However, in the current work, alignment maps were not thresholded 

(i.e. statistical analysis for alignment effects was not performed), and all voxels were included in 

the subsequent searchlight analysis correlating alignment and exam scores. Correlation 

between alignment and exam scores was done using a between-participants design, first in eight 

anatomically-defined regions of interest (ROIs) in the DMN and hippocampus, and then across 

the entire cerebral cortex using a searchlight analysis. Our selection of ROIs was motivated by 

findings that activity in the DMN during memory encoding of new content (real-life stories or 

audio visual movies) predicted recall success for that material (Bird et al., 2015; Chen et al., 

2017; Zadbood et al., 2017). The searchlight analysis enabled us to look for regions showing a 

correlation between alignment and learning outcomes in a data-driven manner. Throughout the 

manuscript, searchlight size was 5 x 5 x 5 voxels (15 x 15 x 15 mm cubes), and statistical 

significance evaluated using a one-sided permutation test (creating null distributions by shuffling 

labels 1000 times), controlling the false discovery rate (FDR) to correct for multiple comparisons 

at q = .05 (Benjamini and Hochberg, 1995; Kriegeskorte et al., 2008). 

Alignment-to-class in ROIs during lecture videos showed a significant positive correlation 

with final exam scores in the angular gyrus, precuneus, anterior cingulate cortex (ACC) (all 

overlap with the DMN), and the hippocampus, as well as early visual and auditory areas (Fig. 
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2C-D, Table 2). Across ROIs, the highest correlation values were observed in the hippocampus, 

allowing the most reliable prediction of learning outcomes. Our cortical searchlight analysis 

showed multiple brain regions where students’ alignment-to-class predicted their final exam 

scores (Fig. 2D). In line with the ROI analysis results, these regions included anterior and 

posterior medial areas as well as the bilateral angular gyrus, key nodes of the DMN. In addition, 

we observed significant correlations in temporal and insular cortex. A power analysis revealed 

that prediction improved as more data was aggregated across lectures (Fig. S1 and 

Supplementary Information).  
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Figure 2. Alignment-to-class during lectures predicts final exam scores. A. Calculation of 
alignment-to-class during lecture videos. B. Alignment-to-class across the entire cerebral cortex. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 6, 2020. ; https://doi.org/10.1101/2020.05.05.079384doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.05.079384
http://creativecommons.org/licenses/by-nc-nd/4.0/


For demonstration purposes, this non-thresholded map shows mean alignment-to-class values 
across time and across students. C. Prediction of exam scores from neural alignment in example 
ROIs. Mean alignment-to-class across lectures (x-axis) is correlated exam scores (y-axis) using 
a between-participant design. Blue dots represent individual students. See table 2 for a summary 
of ROI results. D. Prediction of exam scores from neural alignment across the cortex. Searchlight 
analysis results shown. Voxels showing significant correlation are shown in color. LH, left 
hemisphere, RH, right hemisphere, Ant., anterior, Post., posterior. 
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Table 2. Prediction of exam scores from neural alignment in ROIs.  Correlation between 
alignment measures and exam score during lectures and during the final exam. Results are 
shown in DMN ROIs as well as in control regions in sensory cortex (visual, intracalcarine cortex; 
auditory, Heschl's gyrus) and subcortex (amygdala). Green, significant correlation (permutation 
test, p<0.05, FDR corrected across ROIs). n.s., not significant.  
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Neural alignment between students and experts  

Neural alignment-to-class was strongly correlated with alignment-to-experts. Experts were 

scanned during recap videos (16 minutes in total) and while taking the final exam. We separately 

calculated alignment-to-class and alignment-to-experts for each student in each task and then 

correlated these measures using a between-participants design (see Methods). Figure 3A shows 

the results of this analysis in an example ROI in anterior cingulate cortex (ACC) during recaps, 

while Fig. 3B shows results in the same ROI during the exam. In both tasks, alignment-to-class 

and alignment-to-experts were positively correlated across all ROIs (Table 3). A searchlight 

analysis revealed that these effects extended to large parts of cortex, including the default-mode 

and attention networks. Cortical maps for recaps and the exam are shown in Fig. 3C and 3D 

respectively. These results indicate that the mean responses across all students converge to the 

average, or “canonical”, responses seen in experts during both recaps and the final exam. 

Furthermore, it indicates that the individual differences seen across subjects in their ability to be 

aligned to class are preserved when we look at their ability to converge to canonical expert 

responses. Next, we asked whether the ability of each student to converge to these canonical 

responses predicted learning outcomes during the final exam. 
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Figure 3. Alignment-to-class and alignment-to-experts are positively correlated across 
the brain. Correlation between alignment-to-class and alignment-to-expert during recap videos 
(left) and during final exam (right) are shown.  A. Between-subjects correlation during recap 
videos, in a single ROI. Top, correlation in a single 30-second time bin. Orange dots represent 
individual students. Bottom, mean across all time bins (solid black line). Trendlines for individual 
time-bins are shown in grey, with the example time bin shown in red. B. Between-subjects 
correlation during the final exam, in a single ROI. Top, correlation during the first question. 
Orange dots represent individual students. Bottom, mean across all exam questions (solid black 
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line). Trendlines for individual questions are shown in grey, with the example question shown in 
red. See table 3 for a summary of ROI analysis results. C. Correlation during recap videos across 
the cortex, searchlight analysis results shown. D. Correlation during the final exam across the 
cortex. Voxels showing significant correlation are shown in color. LH, left hemisphere, RH, right 
hemisphere, Ant., anterior, Post., posterior. 
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Table 3. Alignment-to-experts is positively correlated with alignment-to-class during 
recaps and during final exam. Correlation between alignment-to-class and alignment-to-
experts is shown during lectures and during the exam. Results are shown in DMN ROIs as well 
as in control regions in sensory cortex (visual, intracalcarine cortex; auditory, Heschl's gyrus) 
and in subcortex (amygdala). Green, significant correlation (permutation test, p<0.05, FDR 
corrected across 7 ROIs). n.s., not significant.  
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Think like an expert: assessing understanding during exam using expert canonical 

responses  

We hypothesized that better alignment to experts and to peers during question answering would 

be linked to better answers. To test this hypothesis, we obtained spatial activity patterns during 

each question and calculated “same-question” alignment-to-experts and alignment-to-class 

scores (Fig. 4A, see Methods for details). These scores allowed us to quantify how the neural 

patterns evoked by each question were related to the neural patterns evoked by the same 

question in other participants. We correlated alignment and question scores separately (across 

questions) within each student (see Fig. 4B for an example from a single student in a single 

ROI), and then took the mean across all students (Fig. 4C). Importantly, this within-participant 

design allowed us to capitalize on between-questions variability while controlling for individual 

differences.  

Alignment-to-experts and alignment-to-class were both positively correlated with exam 

scores across several ROIs. In the ACC and superior temporal ROIs, alignment-to-class and 

alignment-to-experts were both positively correlated with exam scores (Fig. 4D, Table 2). Exam 

scores were also significantly correlated with alignment-to-experts in the precuneus and 

alignment-to-class in the hippocampus, angular gyrus and visual ROIs. Our searchlight analysis 

results supported these findings, highlighting regions across anterior and posterior medial cortex 

bilaterally (Fig. 4D). Importantly, both alignment-to-experts and alignment-to-class searchlight 

results highlighted these medial cortical regions. These findings show that neural alignment of 

specific question-by-question patterns was associated with better learning outcomes, indicating 

that concepts that were represented more similarly to the experts (and the class) were the 

concepts that students better understood. The results further highlight the ACC and medial 

prefrontal (mPFC) regions as areas where both alignment-to-class and alignment-to-experts 

were significantly correlated with behavior. 
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We then turned to examine the link between neural alignment and behavior while 

controlling for response length. This was motivated by the possibility that (i) longer answers 

might have yielded more stable spatial patterns, and that (ii) response length and quality could 

be linked (e.g. better answers could be longer). Therefore, a possible alternative explanation for 

our results is that they were driven by response length. To address this, we used a within-

participant regression model to predict question scores from answer length. This model yielded 

a residual error term for each question (“residual score”, predicted score minus true score). We 

then repeated our original analysis using the “residual score” instead of the true score for each 

question. This procedure yielded cortical maps that were highly similar to those shown here (Fig. 

S2 A,B). Thus, across all brain areas showing a link between alignment and exam performance, 

effects were robust to response length.  
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Figure 4. Same-question alignment during the exam correlates with performance. A. Left, 
student and class patterns are correlated on a question-by-question basis to derive alignment-
to-class during exam. Right, student and expert patterns are similarly correlated to derive 
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alignment-to-experts. B. Within-subject correlation between alignment and exam score in a 
single ROI, in a single student. Violet dots represent individual exam questions. Left, correlation 
between alignment-to-class and exam score. Right, correlation between alignment-to-experts 
and exam score. C. Within-subject correlation between alignment and exam score in a single 
ROI, trendlines for all students shown. Red, the trendline of the student shown in panel B. Black, 
mean across all students. Left, correlation between alignment-to-class and exam score. Right, 
correlation between alignment-to-experts and exam score. For all ROI analysis results, see table 
3. D. Correlation across the cortex, searchlight analysis results shown. Voxels showing 
significant correlation are shown in color. Left, correlation between alignment-to-class and exam 
score. Right, correlation between alignment-to-experts and exam score. Control analyses for 
response length are shown in Fig. S2A and S2B. Note the correspondence between the two 
maps in major DMN nodes on the medial surface. LH, left hemisphere, RH, right hemisphere, 
Ant., anterior, Post., posterior.  
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“Knowledge Structure” reflects learning in individual students 

In the next set of analyses, we asked how individual concepts were integrated together in 

learners’ brains. Specifically, we hypothesized that learning new concepts also entails learning 

their contextual relations to other concepts. For example, the concepts “binary tree” and “linked 

list” are related in a specific way (a linked list can be used to implement a binary tree). To test 

this, we first created a “knowledge structure” for each participant, capturing the set of 

relationships between neural patterns evoked by different questions. For each question in each 

participant, we measured the similarity of the neural pattern evoked by that question to the 

canonical patterns evoked by other questions (in the class average or in the experts). That is the 

knowledge structure for that question for that participant. To predict performance, we then 

compared that question-specific knowledge structure (for that participant) to the question-

specific knowledge-structure for the experts (alignment-to-experts) or for the class as a whole 

(alignment-to-class) (Fig. 5A). The resulting alignment scores were then correlated with question 

scores using a within-participant design (Fig. 5B).  

We found that “knowledge structure alignment” was positively correlated with exam 

scores across the hippocampus, ACC, angular gyrus and temporal ROIs when derived for the 

student cohort (alignment-to-class, Table 2). In line with this, our searchlight analysis showed 

robust results for alignment-to-class, highlighting medial cortical regions (Fig. 5C). Furthermore, 

the searchlight analysis showed a remarkable correspondence between knowledge structure 

and same-question results, with both maps highlighting similar medial regions (Fig. 4D, 5C). ROI 

and searchlight analysis results for alignment-to-experts were not significant across all regions 

(p>0.05, corrected). While alignment-to-experts searchlight results were qualitatively similar to 

alignment-to-class results (Fig. S3, p<0.01, uncorrected), no voxels survived multiple 

comparisons correction. In sum, these results showed that (i) students’ exam performance was 

significantly tied to their ability to create - and reinstate - a specific set of relationships between 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 6, 2020. ; https://doi.org/10.1101/2020.05.05.079384doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.05.079384
http://creativecommons.org/licenses/by-nc-nd/4.0/


neural representations; and that (ii) the anatomical regions involved in knowledge structure 

alignment showed high correspondence with regions involved in same-question alignment. As 

a control, we repeated this analysis while controlling for response length, again obtaining highly 

similar results (Fig. S2C).   
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Figure 5. “Knowledge Structure” alignment during the exam correlates with performance. 
A. Left, student and class knowledge structures are correlated on a question-by-question basis 
to derive knowledge structure alignment during exam. Cell i,j in the student’s knowledge 
structure is the correlation between the student’s pattern for question i with the class pattern for 
question j (left). Student and mean class knowledge structures are then correlated on a row-by-
row (question-by-question) basis. B. Within-subject correlation between alignment-to-class and 
exam score in a single ROI, in a single student. Each violet dot represents a single question. 
Left, correlation between alignment-to-class and exam score. Right, within-subject correlation 
between alignment-to-class and exam score in a single ROI, trendlines for all students shown. 
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Red, the trendline of the student shown in panel B. Black, mean across all students.  
C. Correlation between knowledge structure alignment-to-class and exam score, searchlight 
analysis results shown. Voxels showing significant correlation are shown in color. Left, 
correlation. A control analysis for response length is shown in Fig. S2C. Searchlight results for 
alignment-to-experts are shown in Fig. S3. Note the correspondence between the alignment-to-
class maps here and in Fig. 4. LH, left hemisphere, RH, right hemisphere, Ant., anterior, Post., 
posterior. 
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Effects in DMN regions across tasks 

Across our dataset, we repeatedly observed a link between learning outcomes and neural 

alignment in medial prefrontal regions, posterior medial regions, left angular gyrus, and medial 

temporal gyrus. We therefore performed an intersection analysis to substantiate this observation 

and determine whether the same, or different, voxels in these regions emerged across tasks. 

This analysis highlighted voxel clusters in anterior medial cortex, as well as in posterior medial 

cortex and superior temporal cortex, that showed significant effects across all alignment-to-class 

analyses (Fig. 6A). This set of regions overlaps in large part with the DMN. Furthermore, the 

intersection of the correlation map of same-question alignment-to-experts with exam scores and 

the correlation map of same-question alignment-to-class with exam scores yielded a similar map 

(Fig. 6B). These results indicated a key role for DMN regions across different phases of learning 

and further emphasized the link between alignment-to-experts and alignment-to-class 

measures. 
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Figure 6. Robust neural alignment effects in medial and temporal cortical regions emerge 
across all analyses. A. Overlap regions across all three datasets and analyses for alignment-
to class. Blue color indicates voxels in the intersection set of the following maps: (i) correlation 
between alignment-to-class during lectures and exam scores (shown in Fig. 2D), (ii) correlation 
between alignment-to-class and alignment-to-experts during recaps (shown in Fig. 3C), (iii) 
correlation between same-question alignment-to-class during the final exam and exam score 
(shown in Fig. 4D, left panel), and (iv) correlation between knowledge structure alignment-to-
class during the exam and exam score (shown in Fig. 5C). B. Overlap regions for same-question 
analyses, blue color indicates voxels in the intersection set of the following maps: (i) correlation 
between same-question alignment-to-class during the final exam and exam score (shown in Fig. 
4D, left panel), (ii) correlation between same-question alignment-to-experts during the final exam 
and exam score (shown in Fig. 4D, right panel). 
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Discussion 

The rapid changes in the field of education and the recent push towards online learning triggered 

by the recent pandemic have highlighted the need for novel teaching and assessment tools. In 

this work, we introduce a neural approach to predicting and assessing learning outcomes in real-

life settings. This approach hinges on the idea that successful learning involves forming the 

“right” neural representations, which are captured in canonical activity patterns shared across 

learners and experts. In the current study, we put forward the notion that understanding is 

mirrored in “neural alignment”: the degree to which individual learners’ neural representations 

match canonical representations observed in experts. We tested this hypothesis in students 

enrolled in an introduction to computer science course and in graduate student “experts”, using 

a longitudinal fMRI design. Our findings show that across regions involved in memory encoding 

and reinstatement in the DMN and hippocampus, alignment successfully predicted overall 

student performance in a final exam. Furthermore, within individual students, concepts that 

evoked better alignment were better understood. We discuss the role of neural alignment in 

learning and understanding below.  

Neural alignment successfully predicts learning outcomes 

During learning, neural activity patterns in each student participant comprised both common and 

idiosyncratic components. This is in line with a growing body of work showing that neural 

alignment across individuals watching the same video or listening to the same audio narrative is 

positively correlated with the level of shared context-dependent understanding (Chen et al., 

2017; Nguyen et al., 2019; Yeshurun et al., 2017; Zadbood et al., 2017). Our results show that 

alignment-to-class was strongly correlated with exam score: across students, stronger similarity 

to the class predicted better performance (Fig. 2). This observation held  across the Default 

Mode Network, implicated in internally focused thought and memory (Buckner et al., 2008; 
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Hassabis and Maguire, 2007; Rugg and Vilberg, 2013). These results dovetail with findings that 

better alignment to common patterns in these regions supports better memory for shared 

experiences (Chen et al., 2017; Zadbood et al., 2017). The current results are also in line with 

recent EEG findings linking higher temporal synchrony (inter-subject correlation, ISC) during 

short educational videos with higher motivation and better learning outcomes (Cohen et al., 

2018; Zhu et al., 2019). Importantly, our results extend this line of work to a real-world college 

course setting, allowing us to directly assess understanding and predict student performance.  

A key point here is that, in our “flipped” class, a significant part of learning occurred 

outside of lectures. Given the structure of the course, it is unlikely that alignment-to-class during 

any specific lecture directly reflected the understanding of lecture topics at the end of the course. 

The first viewing of a course lecture, like the first reading of a textbook chapter, is just the 

beginning of a learning process that includes repetition and practice. Furthermore, only a fraction 

of course lecture segments (~1/7 of total) was shown to student participants in the scanner, while 

performance was measured using an exam deliberately designed to span the entire course. 

Therefore, to explain the predictive power of alignment-to-class, we need to go beyond lecture-

specific effects. We submit that neural alignment to common patterns reflects the online, 

moment-to-moment process of learning within individuals. Furthemore, the results indicate that 

monitoring such a process can predict to some extent the outcome of the learning process. This 

claim is supported by the finding that it is possible to reliably predict learning outcomes from 

neural activity during the early weeks of the course (Fig. S1). Other evidence pointing in the 

same direction can be found in an imaging study that linked children’s math IQ score with neural 

synchrony with adults during brief math videos (Cantlon and Li, 2013). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 6, 2020. ; https://doi.org/10.1101/2020.05.05.079384doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.05.079384
http://creativecommons.org/licenses/by-nc-nd/4.0/


Class patterns reflect expert patterns 

To understand why alignment with the class leads to improved performance, we need to consider 

what shared class patterns may reflect. One possibility is that these patterns reflect group 

understanding. According to this view, when individual patterns are averaged and idiosyncratic 

differences cancel out, what emerges is a good approximation of an ideal “canonical” 

representation. Thus, the mean is a reflection of the fact that most students, most of the time, 

follow the lecture as intended: what they share is the correct interpretation of course material. A 

caveat is that common misunderstandings would also be reflected in the common signal. These 

misunderstandings, however, would not be shared by experts. Thus, if shared class patterns are 

“canonical”, we should expect them to match expert patterns. We tested this hypothesis during 

recaps (short summaries of the lecture videos, shown just prior to the exam) and during the 

exam. Our findings confirmed that alignment-to-class and alignment-to-experts were positively 

correlated across large swaths of the cerebral cortex, including in DMN regions (Fig. 3). The 

tight link between alignment-to-class and alignment-to-experts suggests that students and 

experts may converge on a single set of shared neural states. 

Alignment tracks understanding of specific topics 

In direct support of our alignment-as-understanding hypothesis, we found that alignment and 

understanding were correlated on a fine-grained, question-by-question basis, within individual 

students. Our results show that during the exam, alignment-to-experts and alignment-to-class 

were both positively correlated with question scores (Fig. 4). Importantly, these results were 

specific to the neural patterns observed in the experts for each particular question and thus were 

robust to individual differences. In other words, our results could not emerge due to some 

students being better learners than others, or having better working memory, for example. The 
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effects tested here could only emerge if, in individual students, answers that evoked better 

alignment-to-experts obtained higher scores and vice versa. 

To our knowledge, this is the first demonstration of shared structure in neural responses across 

individuals during open question answering. Formulating an answer required participants to call 

upon their memory and understanding of question-specific concepts, as well as more general 

cognitive processes such as language production. The correlation of alignment and performance 

emerged most strongly in medial DMN regions, suggesting that the aligned neural patterns in 

these areas supported introspection and memory (figure 6B). It is therefore possible that 

successful alignment reflected understanding, particularly in light of the body of work linking 

similarity in DMN regions to better understanding of narratives (Chen et al., 2017; Zadbood et 

al., 2017). This opens up the future possibility of using alignment to assess understanding, 

offering a different perspective than traditional performance measures.  

Learning the right “knowledge structure” 

The more abstract a concept, the less it is grounded in physical reality. This has posed a 

challenge to teachers, who need to build a structure of interrelated ideas from the ground up. In 

a course like “Introduction to Computer Science”, the understanding of basic concepts (e.g. 

“algorithms”) later facilitates the introduction of more advanced theoretical concepts (e.g. 

“intractability”). The alignment of knowledge structures across students provides a fine-grained 

measure of understanding specific topics. It shows how each topic is grounded in others, 

revealing the interaction between mental representations. This result could therefore allow 

examining understanding in individual learners in high resolution. While same-question 

alignment-to-class could show, for example, that the concept of “intractability” was not well 

understood, knowledge structure alignment could show that the underlying reason is difficulty 

with the more basic concept of “recursion”. Our knowledge structure analysis results further 
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suggest that, even at the end of the course, students’ knowledge structure did not converge on 

that of experts. We speculate that, unlike specific topic knowledge, experts’ knowledge structure 

draws more heavily on their broader understanding of the field. Another possibility is that this 

null result is due to lack of power (fewer experts than students in our dataset). In sum, these 

results show that the set of relationships between mental representations of abstract concepts 

is behaviorally relevant, and point to medial DMN regions as key nodes supporting these 

representations. Future work will focus on delineating the exact relationship between student 

and expert knowledge structures. 

A key role for medial DMN regions during learning 

The significance of DMN cortical structures in our results is in line with previous work that 

localized behaviorally-relevant, memory-related shared representations to these areas (Chen et 

al., 2017; Zadbood et al., 2017). They are also consistent with earlier findings that specific 

patterns of activity during memory encoding in DMN regions predicted recall performance (Bird 

et al., 2015), as well as with a recent report of hippocampal changes triggered by learning the 

structures and names of organic compounds (Just and Keller, 2019). The posterior medial (PM) 

cortical system plays a key role in episodic memory (Ranganath and Ritchey, 2012) as well as 

forming part of the DMN. However, studies that examined the neuronal correlates of math and 

science have generally highlighted cortical areas outside the DMN. For example, parietal and 

frontal regions have been shown to play a key role in mathematical cognition (Anderson et al., 

2011; Dehaene et al., 2004). In physics, concepts such as gravity and frequency have each 

been associated with a distinctive set of cortical regions, mostly on the lateral cortical surface 

(Mason and Just, 2016), and  recent work using multivariate methods has localized 

representations of physics concepts to dorsal fronto-parietal regions and ventral visual areas 

(Cetron et al., 2019). One way to account for these apparent discrepancies and for the 
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prominence of DMN regions in our outcome-based results is to consider the likely role of different 

cortical regions in learning. While specific types of cognitive operations may well be subserved 

by distinct sets of cortical regions, long-term learning requires forming the correct neural 

representations, encoding them in memory and retrieving them in the right context, all hallmarks 

of the DMN and its associated structures.  

An unexpected finding is that, during lectures, we also observed correlations between 

exam scores and alignment-to-class in early sensory areas (Fig. 2, Table 2). A possible 

explanation for such correlations during lectures is that these correlations reflected top-down 

effects that interacted with the way students processed visual and auditory information (for 

example, it is possible that stronger learners attended to specific details in the lectures video 

which were missed by less attentive students).  

Limitations  

Despite the wealth of fMRI data in this study, our results were derived from scanning a cohort of 

students enrolled in a single course at a single campus. Further research is required in order to 

ensure that they generalize to other domains and learning settings. Although we see no a-priori 

reason why our findings should be limited to any particular type of course (e.g. courses in STEM, 

or introductory courses), or a particular type of college, further research is required to rule out 

these possibilities.  

Conclusions 

In this work, we tracked neural activity patterns in individual learners as they were taking a 

demanding STEM course. We found that neural activity converged on “canonical” patterns 

shared across learners and with experts. The degree of alignment to canonical patterns tracked 

understanding of individual highly abstract topics in individual students, and predicted success 
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in a final exam. While a wide application of neural measures outside the lab would require finding 

a suitable alternative to MRI scanning (or working around its limitations), measuring learners’ 

alignment to canonical neural representations has the power to potentially transform online 

learning and its typical one-lesson-fits-all approach. How best to achieve these goals remains a 

topic for future research. 
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Methods 

Participants and stimuli 

Twenty-four “student” and five “expert” participants (11 female) were recruited for the study. All 

participants were right-handed, had normal or corrected-to-normal vision and hearing, and 

reported no learning disabilities. All except one expert were native English speakers. Student 

participants reported having no prior knowledge or experience in computer science. Prior to 

scanning, all students completed the course placement exam (described under “Stimuli”) in 

written form and received 0 out of 3 points on all questions (see grading details below). Experts 

all had an undergraduate or graduate degree in computer science and reported significant 

knowledge in the field. Participants received monetary compensation for their time. All 

participants provided informed written consent in accordance with experimental procedures 

approved by the Princeton University IRB. 

Students were enrolled in COS 126: Computer Science - An Interdisciplinary Approach 

(lectures available at informit.com/title/9780134493831) and were taking the course for the first 

time. The course sets out to teach basic principles of computer science in the context of 

scientific, engineering, and commercial applications. It uses a “flipped” classroom model, with 

students viewing lecture videos on their own schedule and interacting with course staff in 

precepts and class meetings. All students took the course for credit and participated in the 

course normally, with the exception that they were asked to view part of the lecture videos (~3 

hours out of ~21 hours in total) in the scanner.  Subjects were asked not to view these lecture 

videos online before the scans. Students were scanned every 2-3 weeks during a single 

semester (Fig. 1). Four students dropped the course and were excluded from the experiment. 

Two student datasets were incomplete (one student skipped scan 3; one student’s exam scan 

data was not collected due to experimenter error). One expert did not complete the exam. The 
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final sample consisted of twenty datasets collected from undergraduate students (18 complete) 

and five expert datasets (four complete). No statistical methods were used to predetermine 

sample sizes. Our student sample size is similar to those reported in previous publications from 

our group (Chen et al., 2017; Honey et al., 2012; Regev et al., 2013). 

Stimuli included video lectures, recaps and a final exam, shown throughout a series of six 

scans. During each of the first five scans, students watched 3-5 segments of course lecture 

videos that were required viewing for the following week (mean segment length 9 minutes, total 

of ~40 minutes shown in each scan, total of 21 segments in all scans). At the end of each scan, 

students were given a set of questions about the lecture (question data not analyzed in the 

current manuscript). In addition, on scans 3-5, students were shown two 3-minute recap videos, 

summarizing the previous two lectures shown (this data was not analyzed in the current 

manuscript). On the final scan, students watched all five 3-minute recap videos, each 

summarizing a single lecture (“recaps”). This was followed by an exam that required verbal 

responses. The same stimuli were shown to all students. Experts underwent the final scan only. 

Each lecture segment and recap was shown in a separate scanner run. At the beginning and 

end of each run, we appended 20-30 seconds of unrelated “filler” audiovisual clips (from 

YouTube “oddly satisfying” compilations, featuring, for example, objects being assembled 

neatly). Filler clips were similarly added in previous studies from our group (Chen et al., 2017; 

Nguyen et al., 2019). This was done because the stimulus onset may elicit a global arousal 

response, which could add noise to the analysis. To avoid this, scan data collected during fillers, 

as well as during the first 12 seconds of each video, were omitted from analysis. Exam stimuli 

consisted of 16 written questions, shown in fixed order. We used the course placement exam, 

developed by course staff for the benefit of students wishing to demonstrate proficiency in course 

material without taking it. Questions were designed to span the breadth of material covered in 

the course; some required distilling large concepts into simple explanations and others were 
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more practical. Exam scores were not used by course staff to assess students’ performance. 

The same exam was used to assess students’ knowledge prior to scanning (in written form) and 

on the final scan (with verbal responses). 

Experimental procedures 

Participants were asked to watch lecture videos as they normally would. Lecture videos were 

shown at normal speed (first scan) or slightly accelerated (x1.15 speed, scans 2-5). Stimuli were 

projected using an LCD projector onto a rear-projection screen located in the scanner bore and 

viewed with an angled mirror. PsychoPy2 was used to display the stimuli and synchronize them 

with MRI data acquisition (Peirce et al., 2019). Audio was delivered via in-ear headphones 

(Sensimetrics S14), and the volume was adjusted for every participant before each scan. Video 

monitoring was used to monitor participants’ alertness in about 40% of scans at random (Eyelink, 

SR Research). Monitoring showed that no participants fell asleep during the experiment. Verbal 

responses to exam questions were recorded using a customized MR-compatible recording 

system (FOMRI III, OptoAcoustics). Motion during speech was minimized by instructing 

participants to remain still and by stabilizing participants’ heads with foam padding, as in previous 

studies from our group (Nguyen et al., 2019; Simony et al., 2016; Zadbood et al., 2017). 

Participants indicated end-of-answer using a handheld response box (Current Designs).  

No outside resources were available during the videos or the exam, and students could 

not take notes. No feedback was provided to participants during the exam. The exam was self-

paced with a “Please Wait” text slide presented for 12 seconds between questions. Question 

text was shown for the entire length of the answer at the center of the screen, and participants 

confirmed they could read it easily. Participants could start giving a verbal answer ten seconds 

after question onset, indicated by the appearance of a countdown clock at the bottom of the 

screen (90 seconds per question; no time-outs were recorded). Data collected between 
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questions and during the first 8 seconds of each question were truncated to avoid including non-

question responses. Verbal responses to exam questions were anonymized and transcribed by 

two of the authors (MM and HH) using open source software (Audacity, www.audacityteam.org). 

Transcripts were then scored by two independent raters (teaching assistants on the course staff) 

on a scale of 0-3, and the mean was taken. Written exams taken by the students prior to scanning 

were rated in a similar way. Expert responses rated below 2 were omitted from analyses (6 out 

of 64 responses in total). This was done to ensure expert brain activity patterns reflected correct 

answers. No student responses were omitted. Students’ total exam score (sum of all 16 

questions) was normalized to a standard 0-100 scale.  

fMRI acquisition 

MRI data were collected on two 3-T full-body scanners (Siemens Skyra and Prisma) with 64 

channel head coils. Scanner-participant pairing was kept constant throughout the experiment. 

Functional images were acquired using a T2*-weighted echo-planar imaging (EPI) pulse 

sequence (TR 2000 ms, TE 28 ms, flip angle 80 deg, FOV 192 × 192 mm2, whole-brain coverage 

with 38 transverse slices, 3 mm3 voxels, no gap, GRAPPA iPAT 2). Anatomical images were 

acquired using a T1-weighted MPRAGE pulse sequence (1 mm3 resolution). 

fMRI preprocessing 

Preprocessing was performed in FSL 6.0.1 (http://fsl.fmrib.ox.ac.uk/fsl), including slice time 

correction, motion correction, linear detrending, high-pass filtering (100 s cutoff) and gaussian 

smoothing (6mm FWHM) (Jenkinson et al., 2002, 2012). Functional volumes were then 

coregistred and affine transformed to a template brain (Montreal Neurological Institute). Motion 

parameters (3 translations and 3 rotations) were regressed out from functional data using linear 

regression. All calculations were performed in volume space. Data were analyzed using Python 
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3 (www.python.org) and R (www.r-project.org), using the Brain Imaging Analysis Kit 

(http://brainiak.org) and custom code. Eight regions of interest (ROIs) were anatomically defined 

using the probabilistic Harvard-Oxford cortical and subcortical structural atlases (Desikan et al., 

2006). ROIs were defined across major Default Mode Network (DMN) nodes in the angular 

gyrus, precuneus, and anterior cingulate cortex (ACC), as well as in the hippocampus and 

posterior superior temporal gyrus, and control regions in early visual cortex (intracalcarine 

sulcus), early auditory cortex (Heschl’s gyrus) and in sub-cortex (amygdala). Bilateral ROIs were 

created by taking the union of voxels in both hemispheres. A liberal threshold of >20% probability 

was used. To avoid circularity, all voxels within the anatomical mask were included and no 

functional data was used to define ROIs. Projections onto a cortical surface for visualization 

purposes were performed, as a final step, with Connectome Workbench (Marcus et al., 2011).  

Alignment during lectures  

Multi-voxel BOLD patterns during lectures were obtained as follows. First, we used 30-second 

non-overlapping bins to extract multi-voxel activity (table 1). This yielded a single pattern for 

every bin in every participant. Then, to examine spatial similarities between participants during 

videos, we  employed an inter-subject pattern correlation framework, which has been 

successfully used to uncover shared memory-related responses (Chen et al., 2017; Nastase et 

al., 2019; Zadbood et al., 2017). For each pattern in each student, we obtained an alignment-to-

class measure by directly comparing the student pattern and the mean class pattern (average 

across all other students), using Pearson correlation. Then, correlation values were averaged 

within video segments. Throughout the manuscript, correlation values were transformed by 

Fisher's z prior to averaging and then back-transformed in order to minimize bias (Silver and 

Dunlap, 1987). Finally, we averaged across segments to obtain a single alignment-to-class 

measure for every student during all lectures. Alignment was derived independently for each 
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ROI and each searchlight. We then used alignment to predict student performance in the 

placement exam. To this end, we used a between-participants design, correlating alignment and 

overall exam scores (mean across questions). Statistical significance values were derived using 

a one-sided permutation test, with a null distribution created for each searchlight by shuffling 

score labels 1000 times.  

Power analysis across lectures 

We defined a “stable prediction index” across the cortex by considering the effect of information 

accumulation throughout the lectures on prediction success. To this end, we used the alignment-

to-class values calculated for each one of our 21 individual lecture segments. We started by 

correlating exam scores with alignment-to-class in the first video (scan 1, segment 1). We then 

proceeded in sequence, correlating exam scores with the mean of alignment-to-class values 

across segments 1 and 2, and finally with the mean across all lecture segments. We performed 

this process for every cortical voxel using searchlight, to obtain a series of 21 r-values for each 

voxel (one for each added segment). As before, a p-value was calculated for each r-value using 

a one-sided permutation test by randomizing score labels. Using a liberal threshold of p<0.01 

(uncorrected), we considered all voxels that showed a significant correlation between exam 

scores and alignment-to-class as calculated above. Lowering the threshold allowed us to include 

all potentially predictive voxels. For each voxel, we then defined the “stable prediction index” as 

the number of segments required to (a) reach a significant correlation between exam score and 

alignment and (b) maintain significance for all subsequently added segments (no “breaks”). By 

design, a high index number (21) showed that data from all lecture segments was required to 

achieve a significant correlation and thus reflected late prediction. In contrast, a low index 

number (1) showed that significant prediction could be obtained by considering data from the 
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first lecture segment alone, affording early prediction of exam score. Index values were 

calculated independently for each ROI and each searchlight.  

Correlation between alignment-to-class and alignment-to-experts  

Alignment-to-class during recaps was derived similarly to lectures. For each 30-second time bin 

in each student, we obtained an alignment-to-class measure by directly comparing the student 

pattern and the mean class pattern (average across all other students), using Pearson 

correlation. In addition, we obtained an alignment-to-experts measure by comparing the student 

pattern and the mean pattern across experts (“canonical” pattern). We thus obtained an 

alignment-to-class and alignment-to-experts pattern for each student, in each bin. We used 

Pearson correlation to correlate these alignment measures using a between-participants design, 

obtaining a single correlation value in each time bin. Finally, we took the mean across all time 

bins within each recap, and then across recaps. Statistical significance values were derived 

using a one-sided permutation test, with a null distribution created for each time bin by shuffling 

student labels 1000 times. Correlation between alignment-to-class and alignment-to-experts 

during the exam was performed in an analogous manner, with questions used in place of time 

bins (see below). 

Neural alignment to experts during the exam 

Students’ and experts’ multi-voxel activity patterns during the exam were obtained by taking the 

mean fMRI BOLD signal during each question, in each participant. Each spatial pattern thus 

reflected neural responses associated with the specific subset of course topics included in that 

question. To compare student and class patterns, we again used the inter-subject pattern 

correlation framework. We derived an alignment-to-class score by correlating each question 

pattern in each student with the class average of the same question (mean across all other 
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students) and then taking the mean across all students (Fig. 4A). We performed this on a 

question-by-question basis to obtain a vector of 16 alignment-to-class values for each student 

(one value for each question). Similarly, we derived an alignment-to-experts score by correlating 

each question pattern in each student with the mean pattern across experts, and obtained a 

vector of 16 alignment-to-expert values (one value for each question). Alignment was derived 

independently for each ROI and each searchlight. We then correlated alignment and question 

scores within students using Pearson correlation, obtaining a single r-value for each student. 

Finally, we took the mean across students. Statistical significance values were derived using a 

one-sided permutation test. We created a null distribution for each student by shuffling score 

labels 1000 times and then compared the mean across students to the mean null distribution. 

“Knowledge structure” alignment 

We defined “knowledge structures” as similarity matrices aimed at capturing the set of 

relationships between question representations. In the following, we describe how a student-

specific knowledge structure was constructed and correlated with a class-derived template and 

an expert-derived template to derive (i) alignment-to-class and (ii) alignment-to-expert scores. 

Finally, we describe how within-participant correlation was used to examine the link between 

alignment and performance in individual students. First, we used the canonical class average 

and expert average patterns calculated for each question (see above) and constructed two 

templates. A class template was constructed by correlating “canonical class” question patterns 

with each other. This yielded a 16 question x 16 question symmetric similarity matrix comprising 

the distances between pairs of question patterns (r-values) (figure 5A). Similarly, an expert 

template was constructed by correlating “canonical expert” question patterns with each other. 

This yielded two 16 question x 16 question symmetric similarity matrices comprising the 

distances between pairs of question patterns (r-values). We then constructed a “knowledge 
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structure” matrix for every student by correlating each question pattern (in that student) with the 

template pattern of all other questions. A single row in this structure thus represented the 

similarity between a student’s neural response to a specific question and the template 

(class/expert) responses to every other question. Next, we correlated student and template 

matrices, row by row, excluding the diagonal, and obtained a question-by-question alignment 

score for each student. For each student, we thus derived a vector of 16 alignment-to-class 

values (one value for each question), and a vector of 16 alignment-to-expert values. Lastly, we 

correlated alignment and question scores within students using Pearson correlation, obtaining a 

single r-value for each student, and took the mean across students. A null distribution was 

created for each student and a one-sided permutation test was used to determine statistical 

significance as before.  

Intersection analysis 

Intersection maps across data-driven searchlights were created by examining statistically 

significant voxels across analyses (p<0.05, corrected). Figure 6A shows the intersection of the 

following maps: (i) correlation between alignment-to-class during lectures and exam scores 

(shown in Fig. 2D), (ii) correlation between alignment-to-class and alignment-to-experts during 

recaps (shown in Fig. 3C), (iii) correlation between same-question alignment-to-class during the 

final exam and exam score (shown in Fig. 4D, left panel), and (iv) correlation between knowledge 

structure alignment-to-class during the exam and exam score (shown in Fig. 5C). Figure 6B 

shows voxels in the intersection set of the following maps: (i) correlation between same-question 

alignment-to-class during the final exam and exam score (shown in Fig. 4D, left panel), (ii) 

correlation between same-question alignment-to-experts during the final exam and exam score 

(shown in Fig. 4D, right panel). 
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Supplementary Information 

Supplementary Results 

Prediction of learning outcomes prediction improves with number of lecture segments 

We performed a power analysis across lectures to determine the amount of neural data required 

in order to obtain robust correlations with exam scores (i.e. how early in the course we could 

predict learning outcomes). This was motivated by our desire to inform future studies and 

applications of our measures to real-world scenarios, where resource optimization (i.e. less 

scanning) may be desired. To this end, we first obtained alignment-to-class values for each 

student in each lecture segment (21 in total). Then, we correlated exam scores with alignment 

in the first segment, the first two segments, and so forth until information from all segments was 

accumulated. This has allowed us to examine changes in score prediction quality due to the 

accumulation of information across lectures. An ROI analysis showed that, in the hippocampus, 

prediction quality increased steadily as more data was added, and afforded significant prediction 

after a single scan (Fig. S1). To test whether this was the case across the cortex, we calculated 

a “Stable Prediction Index” for every voxel in the brain using searchlight (see Methods). On this 

index, a low number corresponded to regions where few data points were required to achieve 

significant correlation with behavior (i.e. early prediction), and a higher number to regions where 

more data points were required (i.e. late prediction). We found significant variance within and 

across cortical regions. Thus, while alignment-to-class in some parts of the angular gyrus 

afforded early prediction, only late prediction was possible in other parts (i.e. given the entire 

dataset).  
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Supplementary Figures 

 

 
Figure S1. Variance across the brain in the number of lectures required for performance 
prediction. A. Searchlight analysis results. Per-voxel “predictability index” values shown. Note 
the low index scores across major DMN nodes, indicating prediction of exam score can be 
achieved with a small number of lecture segments. B. Number of lectures required for stable 
prediction in the hippocampus. Yellow rectangles, prediction result for individual lecture 
segments (correlation between exam scores and alignment-to-class in that segment). Brown 
line, prediction of exam score from data accumulated over lecture segments. 
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Figure S2. “Same-question” and “Knowledge structure” effects controlled for response 
length. Searchlight analysis results shown. Voxels showing significant correlation are shown in 
color. A. Correlation between  same-question alignment-to-class and exam score, controlled for 
response length. B. Correlation between same-question alignment-to-experts and exam score, 
controlled for response length. C. Correlation between “knowledge structure” alignment-to-class 
and exam score, controlled for response length. Note the close correspondence between these 
maps and the results of the original analyses in Fig. 4D and Fig.5C. LH, left hemisphere, RH, 
right hemisphere, Ant., anterior, Post., posterior. 
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Figure S3. Correlation of “knowledge structure” alignment-to-experts and performance.  
Searchlight analysis results shown. Map thresholded using a liberal statistical threshold (p<0.01, 
uncorrected). No voxels survived multiple comparisons correction (p<0.05, FDR). Note the 
qualitative similarities to knowledge structure alignment-to-class results in medial cortical 
structures (Fig. 5C). LH, left hemisphere, RH, right hemisphere, Ant., anterior, Post., posterior. 
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