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Abstract 18 

Motivation: The global human population has experienced an explosive growth from a few million 19 

to roughly 7 billion people in the last 10,000 years. Accompanying this growth has been the 20 

accumulation of rare variants that can inform our understanding of human evolutionary history. 21 

Common variants have primarily been used to infer the structure of the human population and 22 

relatedness between two individuals. However, with the increasing abundance of rare variants 23 

observed in large-scale projects, such as Trans-Omics for Precision Medicine (TOPMed), the use 24 

of rare variants to decipher cryptic relatedness and fine-scale population structure can be 25 

beneficial to the study of population demographics and association studies. Identity-by-descent 26 

(IBD) is an important framework used for identifying these relationships. IBD segments are broken 27 

down by recombination over time, such that longer shared haplotypes give strong evidence of 28 

recent relatedness while shorter shared haplotypes are indicative of more distant relationships. 29 

Current methods to identify IBD accurately detect only long segments (> 2cM) found in related 30 

individuals. Algorithm: We describe a metric that leverages rare-variants shared between 31 

individuals to improve the detection of short IBD segments. We computed IBD segments using 32 

existing methods implemented in Refined IBD where we enrich the signal using our metric that 33 

facilitates the detection of short IBD segments (<2cM) by explicitly incorporating rare variants. 34 

Results: To test our new metric, we simulated datasets involving populations with varying 35 

divergent time-scales. We show that rare-variant IBD identifies shorter segments with greater 36 

confidence and enables the detection of older divergence between populations. As an example, 37 

we applied our metric to the Old-Order Amish cohort with known genealogies dating 14 38 

generations back to validate its ability to detect genetic relatedness between distant relatives. 39 

This analysis shows that our method increases the accuracy of identifying shorter segments that 40 

in turn capture distant relationships. Conclusions: We describe a method to enrich the detection 41 

of short IBD segments using rare-variant sharing within IBD segments. Leveraging rare-variant 42 

sharing improves the information content of short IBD segments better than common variants 43 
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alone. We validated the method in both simulated and empirical datasets. This method can benefit 44 

association analyses, IBD mapping analyses, and demographic inferences. 45 

  46 
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Introduction 47 

Relatedness is the estimation of shared ancestry between individuals and is a fundamental 48 

concept in genetics that plays an integral role in many fields ranging from animal breeding, human 49 

disease gene mapping, and forensic science. For example, studies involving population structure 50 

(Pritchard et al. 2000; Novembre et al. 2008; Biswas et al. 2009; Lawson et al. 2012; Elhaik et al. 51 

2014) make inferences about shared ancestry based on estimates of genetic relatedness. 52 

Population structure often closely agrees with geography under the assumption that populations 53 

can be partitioned into “islands” of individuals with increased intra-island mating and decreased 54 

inter-island migrations (Astle and Balding 2009). Seminal work by Novembre and colleagues 55 

(Novembre et al. 2008) showed that genetic markers mirror geography in Europe allowing for 56 

accurate inference of geographic origin using an individual’s DNA. 57 

 58 

Failure to estimate cryptic relatedness among study subjects in genetic association studies can 59 

inflate statistical evidence for association. Relatedness estimates are thus integral to the 60 

performance of genetic association studies that have traditionally been estimated from pedigrees 61 

and more recently from genomic data in large populations lacking pedigree information (Purcell 62 

et al. 2007; Manichaikul et al. 2010; Thornton et al. 2012). Mixed linear models are commonly 63 

used in genetic association studies in order to incorporate a genetic relationship matrix (GRM) 64 

that help to prevent false-positive associations due to population structure or relatedness (Kang 65 

et al. 2010; Price et al. 2010; Zhang et al. 2010). More recently, commercial products such as 66 

those provided by AncestryDNATM, use genetic information to identify recent relatedness between 67 

its consumers allowing them to discern distant relatives who may not be represented in their 68 

documented pedigrees (Han et al. 2017). Similarly, the field of forensic science has utilized large 69 

public repositories to identify relatives of forensic samples since the alleged suspect may share 70 
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genetic information inherited from a common ancestor with relatives represented in these 71 

repositories (Jobling and Gill 2004; Weir et al. 2006; Kayser and de Knijff 2011). 72 

 73 

Genetic relatedness between two individuals can be defined as the probability that their alleles 74 

were inherited from a common ancestor, in other words the alleles are identical-by-descent (IBD). 75 

Traditionally, relatedness was estimated directly from known pedigrees and was limited by the 76 

generational depth of the pedigree. However, datasets from modern sampling procedures are 77 

often not accompanied with any pedigree information or have incomplete pedigrees (Wellcome 78 

Trust Case Control Consortium 2007; International HapMap Consortium et al. 2007; Auton et al. 79 

2009; Henn et al. 2010; Ralph and Coop 2013; Carlson et al. 2018). With the introduction of high-80 

throughput genotyping and sequencing technologies, the relatedness estimates can be made 81 

directly from genotype information without prior information about the genealogy of the samples. 82 

 83 

Over the past decade, multiple methods have been developed to estimate relatedness from single 84 

nucleotide polymorphism (SNP) information. Software tools such PLINK (Purcell et al. 2007; 85 

Chang et al. 2015), KING (Manichaikul et al. 2010), REAP (Thornton et al. 2012), and PC-Relate 86 

(Conomos et al. 2016) use allele frequencies across multiple loci to estimate the probabilities of 87 

sharing zero, one, or two alleles at a given genetic locus corresponding to the number of copies 88 

that are in IBD. When summed across multiple loci these estimates can be transformed into a 89 

kinship coefficient estimate for a pair of individuals. Allele frequency-based kinship estimates 90 

utilize genome-wide averages of single-SNP statistics that do not take the lengths of genomic 91 

regions shared between two individuals into account. However, software tools like Germline 92 

(Gusev et al. 2009), Beagle (Browning and Browning 2010), fastIBD (Browning and Browning 93 

2011), and Refined IBD (Browning and Browning 2013b) detect IBD segments in the genome 94 

shared between pairs of individuals that have been used to infer the degree of relatedness 95 
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between individuals. More recently, the KING software has incorporated IBD-based kinship 96 

estimates. 97 

 98 

Alternatively, other software tools such as RelateAdmix (Moltke and Albrechtsen 2014), ERSA 99 

(Huff et al. 2011; Li et al. 2014), and HaploScore (Durand et al. 2014) combine multiple statistics 100 

to improve these estimates of relatedness. RelateAdmix uses a maximum likelihood estimator 101 

that combines allele frequencies with admixture proportions while ERSA utilizes a maximum 102 

likelihood method to estimate recent shared ancestry from the number and length of IBD 103 

segments. HaploScore takes a different approach in order to improve the accuracy of segments 104 

detected as IBD by incorporating different error statistics. All of the above methods have high 105 

accuracy when detecting first-degree to third-degree relationships (Ramstetter et al. 2017) and 106 

haplotype-based methods perform better than allele frequency-based methods (Gattepaille and 107 

Jakobsson 2012; Gusev et al. 2012; Palamara et al. 2012). However, other software tools such 108 

as PRIMUS (Staples et al. 2014) and PADRE (Staples et al. 2016) were developed to estimate 109 

more distant relationships by reconstructing pedigrees from existing relatedness estimates. 110 

 111 

The scale of human sequencing studies has grown exponentially in recent years with the initiation 112 

of large-scale projects such as DiscovEHR (Dewey et al. 2016), UK Biobank (Sudlow et al. 2015), 113 

Precision Medicine Initiative (Collins and Varmus 2015), TOPMed (Taliun et al. 2019), MVP 114 

(Gaziano et al. 2016), and the All of Us Research Program that involve hundreds of thousands of 115 

samples. These studies include large number of related individuals between whom cryptic 116 

relatedness can be uncovered using their genetic data. For example, nearly 30% of the UK 117 

Biobank participants were found to be related (3rd order or closer) to another person in the cohort 118 

(Bycroft et al. 2018). Estimates of cryptic relatedness would help in building a better GRM and in 119 

turn improve analyses that are sensitive to inaccurate estimates of relationships and incorrect 120 
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pedigrees in large-scale genetic association cohorts. A feature of large-scale human sequencing 121 

projects is the presence of numerous rare variants with minor allele frequencies as low as 1 x 10-122 

5. Rare variants have typically arisen as de-novo mutations concurrent with the explosion of 123 

population size in recent generations (Keinan and Clark 2012).  Their recent origins compared to 124 

common variants make them a powerful resource for delineating fine-scale population structure 125 

(Baye et al. 2011; Keinan and Clark 2012; Tennessen et al. 2012; O’Connor et al. 2015). 126 

 127 

IBD segments resulting from shared ancestry are detected mainly as large segments (2cM and 128 

larger) with greater accuracy of detection as the length increases (Chapman and Thompson 2003; 129 

Moltke et al. 2011; Gusev et al. 2009; Browning and Browning 2013b; Ralph and Coop 2013). 130 

Current haplotype sharing methods for estimation of relatedness use common variants (minor 131 

allele frequency > 5%) since phasing of variants into haplotypes is critical to IBD detection and it 132 

is difficult to phase rare variants. Hence, these methods have the disadvantage of not using 133 

information available from the sharing of rare variants between two individuals. Since the 134 

underlying principle of IBD detection is based on the sharing of very low frequency haplotypes, 135 

rare variants can be highly informative for IBD detection. While common variants can be shared 136 

between two individuals by chance without the presence of a common ancestor, sharing of rare 137 

variants between two individuals without a common ancestor is less likely. Hence, shared rare 138 

variants provide additional evidence of haplotype sharing that will increase the odds of IBD vs 139 

identity-by-state (IBS) due to rarity of co-ancestry and in turn improve the accuracy of IBD 140 

detection especially for short segments with lengths less than 2cM. 141 

 142 

In the Algorithm and Implementation section, we describe a novel method for enriching the 143 

detection of haplotype sharing between two individuals by leveraging shared rare variants. In the 144 

Results section, we evaluate the method in simulated datasets as well as an empirical dataset 145 
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involving a 14-generation founder population of Old Order Amish (OOA) individuals, 1,100 of 146 

whom were sequenced as part of the TOPMed initiative (Mitchell et al. 2008; Taliun et al. 2019). 147 

We then describe the assessment of the rare-variant IBD metric (rvIBD) in the simulated dataset 148 

and evaluate its performance in detecting higher-order relatedness using prior knowledge about 149 

the different degrees of relationships ascertained from the OOA pedigree (Agarwala et al. 1998).  150 
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Algorithm and Implementation 151 

We present the rare-variant IBD (rvIBD) metric, which identifies short IBD segments by leveraging 152 

shared rare variants between individuals from a large sequencing cohort. The implementation of 153 

the rvIBD metric involves three stages (Supplementary Figure S1). The first stage is the detection 154 

of IBD segments using common variants and existing methods such as Refined IBD (Browning 155 

and Browning 2013b) with relaxed filtering criteria to allow for the detection of short IBD segments 156 

(<2cM). The second stage is the identification of rare variants with minor allele frequency < 1%, 157 

that are shared between two samples. The third stage utilizes the combination of rare variant 158 

genotype and allele frequency within a Bayesian framework to update the odds of distinguishing 159 

IBD from IBS. 160 

 161 

Rare-variant IBD (rvIBD) Metric 162 

The first step involves the detection of IBD segments between all pairs of samples from large-163 

scale cohorts that include participants who have been sequenced or densely genotyped. We used 164 

Refined IBD (Browning and Browning 2013b), an accurate and computationally efficient algorithm, 165 

for IBD segment detection. Refined IBD uses a two-step process that first identifies shared 166 

haplotypes greater than a user-defined length threshold and then evaluates the evidence for IBD 167 

using a hidden Markov model. Using markers with a minimum minor allele frequency of 5%, we 168 

identified IBD segments using default parameters except for lowering the length threshold and 169 

the log-odds threshold. The second step involves the identification of rare variants shared 170 

between two samples. Excluding singletons, bi-allelic markers are first filtered to retain variants 171 

with a maximum minor allele frequency of 1%. The lower bound of the allele count for rare variants 172 

could be increased to control for genotyping errors depending on the yield of the different filters. 173 

For each IBD segment identified between two samples, we extract the genotypes for the rare 174 

variants within the endpoints of the segment. Finally, in the third step, we iterate over the set of 175 
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rare variants and estimate the rvIBD metric by enriching the original log-odds (LOD) score from 176 

Refined IBD using the following equation based on the Bayesian approach for odds ratios, 177 

𝑟𝑣𝐼𝐵𝐷!" = 	𝑂𝑑𝑑𝑠+𝐼𝐵𝐷!",𝐺! 	, 𝐺"/																																																	…… (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛	1) 178 

=	 <
𝑃+𝐺#$! 	, 𝐺#$

" ,𝐼𝐵𝐷!" = 1/

𝑃+𝐺#$	! , 𝐺#$
" ,𝐼𝐵𝐷!" = 0/#$	∈	'!"

	× 	original	𝑂𝑑𝑑𝑠(𝐼𝐵𝐷)()*!+),	-./ 179 

where, 180 

𝑆#$ 							= 	𝑠𝑒𝑡	𝑜𝑓	𝑟𝑎𝑟𝑒	𝑣𝑎𝑟𝑖𝑎𝑛𝑡𝑠	𝑤𝑖𝑡ℎ𝑖𝑛	𝑡ℎ𝑒	𝑒𝑛𝑑𝑝𝑜𝑖𝑛𝑡𝑠	𝑜𝑓	𝑡ℎ𝑒	𝐼𝐵𝐷	𝑠𝑒𝑔𝑚𝑒𝑛𝑡 181 

𝐺#$! 							= 	𝑔𝑒𝑛𝑜𝑡𝑦𝑝𝑒	𝑓𝑜𝑟	𝑟𝑎𝑟𝑒	𝑣𝑎𝑟𝑖𝑎𝑛𝑡	𝑟𝑣	𝑖𝑛	𝑠𝑎𝑚𝑝𝑙𝑒	𝑖 182 

𝐺#$
" 							= 	𝑔𝑒𝑛𝑜𝑡𝑦𝑝𝑒	𝑓𝑜𝑟	𝑟𝑎𝑟𝑒	𝑣𝑎𝑟𝑖𝑎𝑛𝑡	𝑟𝑣	𝑖𝑛	𝑠𝑎𝑚𝑝𝑙𝑒	𝑗 183 

𝐼𝐵𝐷!" 			= 	𝐼𝐵𝐷	𝑠𝑡𝑎𝑡𝑢𝑠	𝑜𝑓	𝑙𝑜𝑐𝑢𝑠	𝑏𝑒𝑡𝑤𝑒𝑒𝑛	𝑠𝑎𝑚𝑝𝑙𝑒𝑠	𝑖	𝑎𝑛𝑑	𝑗 184 

  185 

The probabilities for a pair of genotypes 𝑃+𝐺#$! 	, 𝐺#$
" ,𝐼𝐵𝐷!" = 0	𝑜𝑟	1/ given IBD or non-IBD status 186 

are summarized in Figure 1. In order to incorporate allele error into the rvIBD metric, we replace 187 

the observed minor allele frequency 𝑓. with the corrected minor allele frequency 𝑝. =188 

	(𝑓. − 	𝜀) (1 − 2𝜀)⁄  and corrected major allele frequency  𝑝0 =	 (1 −	𝑝.) where 𝜀 is the allele error 189 

at the biallellic marker with major allele A and minor allele B. 190 

 191 
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 192 

Figure 1: Probability of rare variant genotype pairs given IBD states 193 
Probabilities for rare-variant genotype pairs with major allele A and minor allele B are computed using 194 
corrected allele frequencies given by 𝑝! and 𝑝" respectively and adjusted for allele error 𝜀 using error term 195 
𝜆# =	𝜀#(1 − 	𝜀)(%&#) for 𝑗 ∈ [0,1] (Browning and Browning 2013a). 2𝑔𝜇 is the probability of mutation since 196 
common ancestor 𝑔 generations ago with a mutation rate 𝜇 (Palamara et al. 2015). 𝑔 ≅ 3/2𝑙 where 𝑙 is IBD 197 
segment length in Morgans (Baharian et al. 2016). 198 
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 199 

We also adjusted the probabilities for genotype pairs for both allele errors and mutations acquired 200 

since most recent common ancestor (Palamara et al. 2015; Baharian et al. 2016; Smith et al. 201 

2018). Given that rare variants cannot be accurately phased, the rvIBD metric was designed 202 

specifically to use the rare variant genotype and the number of rare alleles shared between two 203 

individuals to enrich the odds of IBD vs non-IBD. The new rvIBD metric and number of shared 204 

rare variants can be used to assess accuracy of IBD detection, especially for short IBD segments. 205 

 206 

  207 
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Results 208 

In order to assess the performance of the rare-variant IBD metric (rvIBD), we evaluated its ability 209 

to detect short IBD segments between populations with older divergence using a simulated 210 

dataset. In addition, we applied the rvIBD metric to the Old Order Amish (OOA) cohort to assess 211 

detectability of distant relatedness using prior knowledge about the different degrees of 212 

relationships ascertained from the OOA pedigree (Agarwala et al. 1998). 213 

 214 

Simulated dataset 215 

We simulated a demographic model using the program msprime (Kelleher et al. 2016), a 216 

coalescent-based simulator. Our estimated demographic model started with an initial population 217 

size of 12,300 about 220,000 ya, with an out-of-Africa reduction to 2,100 occurring 140,000 ya 218 

(Gutenkunst et al. 2009). This population then diverged into two populations of size 1000 and 510 219 

respectively about TPOP2-POP3 generations ago where TPOP2-POP3 ranges from 5 generations (recent 220 

divergence) to 1000 generations ago (distant divergence) (Supplementary Figure S2). We used 221 

a mutation rate of 2 × 10−8 and a recombination rate of 2 × 10−8 (i.e. 1Mb @ 1cM). For each 222 

divergence time, we simulated 20 data sets consisting of 10 Mb segments and 1,500 diploid 223 

individuals (500 individuals per population). msprime outputs genotypes in VCF format as well as 224 

ancestry trees that can be queried to compute time to most recent common ancestor (TMRCA) 225 

for any genomic segment between any two individuals. Using markers with a minimum minor 226 

allele frequency of 5%, we identified IBD segments using default parameters except for lowering 227 

the length threshold to 0.15cM and the log-odds threshold to 1. Each IBD segment detected using 228 

Refined IBD was leveraged for the presence of shared rare variants (minor allele frequency < 1%) 229 

to compute the number of shared rare variants and the enriched rvIBD log-odds (rvLOD) score 230 

(see Equation 1). The IBD segments were further segregated in groups either based on the 231 

number of rare variants shared or based on the original LOD and enriched rvLOD scores. The 232 
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distributions of the segment lengths were compared between groups using the Wilcoxon rank 233 

sum test (for 2 groups) and Kruskal-Wallis test (for 3 groups). We also estimated the TMRCA (in 234 

generations) for each IBD segment using the ancestry tree generated by msprime for each 235 

simulation (Kelleher et al. 2016). The distributions of the TMRCA estimates were also compared 236 

between groups based on the LOD and rvLOD scores using the Kruskal-Wallis test. 237 

 238 

Shared rare variants capable of tagging short IBD segments 239 

For each simulation based on varying divergence times ranging from 5 to 1000 generations, we 240 

first binned the IBD segments into two categories, namely segments with no shared rare variants 241 

and segments with at least 1 shared rare variant within the endpoints of the segment. We then 242 

compared the distribution of IBD segment length between the two categories (Figure 2; 243 

Supplementary Figure S3). 244 

 245 

For all simulations, we see the density of segment lengths skewed towards shorter segments. 246 

However, when we focus on short IBD segments (< 2cM), we observe a significant shift in the 247 

mode of the distribution wherein IBD segments with shared rare variants are shorter than 248 

segments with no presence of shared rare variants. In addition, as we transition from a recent 249 

divergence time (i.e. ~750ya) to an older divergence time (i.e. ~25,000ya), we observe the 250 

expected decrease in the range of IBD segment lengths and prominent difference between the 251 

two categories. Hence, we conclude that shared rare variants would better tag short IBD 252 

segments and allow us to assess older divergence time between populations. 253 

 254 
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 255 

Figure 2: Distribution of IBD segment length grouped by presence/absence of shared rare variants 256 
IBD segment were binned based on presence (blue) or absence (red) of shared rare variants. The 257 
distributions of segment length were compared across the two bins. Analysis was repeated for varying 258 
divergence times from left to right ranging from recent (30 generations ago) to older (1000 generations ago) 259 
divergence between POP2 and POP3 (i.e. TPOP2-POP3). 260 
 261 

Shared rare variants within short IBD segments improve odds of IBD vs IBS 262 

Next, we binned the IBD segments based on the original log-odds (LOD) from Refined IBD and 263 

the enriched rvIBD log-odds (rvLOD) into those that satisfy one of LOD > 3 or rvLOD > 3 or both 264 

conditions. Since the log-odds is the base 10 logarithm scaled ratio of the likelihood of IBD to the 265 

likelihood of non-IBD, a threshold of 3 represents a 1000-fold difference increase in the likelihood 266 

of IBD. We then compared the distribution of IBD segment length between the three sets (Figure 267 

3; Supplementary Figure S3). Again, we observe a significant shift (skewed towards shorter 268 

segments) in the distribution of segment lengths for segments satisfying the rvLOD > 3 criterion 269 

than those that satisfy both or only the LOD > 3 criterion. We also see a decrease in the expected 270 

IBD segment lengths as expected and prominent differences between the three categories as we 271 

transition from a recent to older divergence time between the two populations. 272 

 273 
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 274 

Figure 3: Distribution of IBD segment length categorized by LOD and rvLOD thresholds 275 
IBD segment were binned based on satisfying one or both thresholds of LOD > 3 and/or rvLOD > 3. The 276 
distributions of segment length were compared across the three bins. Analysis was repeated for varying 277 
divergence times from left to right ranging from recent (30 generations ago) to older (1000 generations ago) 278 
divergence between POP2 and POP3 (i.e. TPOP2-POP3). 279 
 280 

Short IBD segments leveraged by shared rare variants identify older relatedness 281 

We compared the distribution of TMRCA estimates for the same three categories segregated 282 

based on LOD and rvLOD scores, as described above (Figure 4; Supplementary Figure S3). 283 

Since IBD segments are broken down over generations, the expected TMRCA estimates should 284 

be older as the IBD segment length decreases.  285 

 286 

For each of the simulated datasets, we do observe that the distribution of TMRCA estimates 287 

agrees with the divergence time utilized to simulate the dataset. While the distribution of the 288 

TMRCA estimates for segments with only LOD > 3 peaks close to the divergence time, we see 289 

that the distribution of the TMRCA estimates for segments with rvLOD > 3 extend to estimates 290 
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even older than the divergence time detecting inheritance of IBD segments from common 291 

ancestors before the separation of the two populations. 292 

 293 

 294 

Figure 4: Distribution of TMRCA estimates categorized by LOD and rvLOD thresholds 295 
The time to most recent common ancestor (TMRCA) was estimated for each IBD segment using the 296 
ancestry trees generated by msprime. IBD segment were binned based on satisfying one or both thresholds 297 
of LOD > 3 and/or rvLOD > 3. The distributions of TMRCA estimates were compared across the three bins. 298 
Analysis was repeated for varying divergence times from left to right ranging from recent (30 generations 299 
ago) to older (1000 generations ago) divergence between POP2 and POP3 (i.e. TPOP2-POP3). 300 
 301 

This demonstrates that the new rvIBD metric is not only able to enrich the detection of short IBD 302 

segments but also identify IBD segments corresponding to older relatedness as simulated by the 303 

different divergence times. 304 

 305 

Empirical dataset 306 

In order to assess the application of the rvIBD metric to detect distant relatedness, we used the 307 

high-coverage whole genome sequencing data from freeze3 dataset of the Trans-Omics for 308 
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Precision Medicine (TOPMed) Project (Taliun et al. 2019) that includes ~1,100 individuals from 309 

the Old Order Amish (OOA) cohort in Lancaster County, Pennsylvania. The OOA population 310 

immigrated to the Colonies from Western Europe in the early 1700’s to escape religious 311 

persecution (Cross 1976). There are now over 38,000 Amish individuals in the Lancaster County, 312 

nearly all of whom can trace their ancestry back 12-14 generations to approximately 200 founders 313 

(McKusick 1978; Beiler 1988; Lee et al. 2010). The complex multi-generational pedigree allows 314 

us to assess genetic sharing between 1st and 13th order related individual pairs. The inclusion of 315 

both closely-related (less than 3rd order) and higher order relatedness enables us to assess the 316 

accuracy of the rvIBD metric for different orders of relatedness. 317 

 318 

Using markers with a minimum minor allele frequency of 5%, we identified IBD segments using 319 

default parameters except for lowering the length threshold to 0.5cM and the log-odds threshold 320 

to 1. For the assessment of the rvIBD metric, we filtered the possible ~600,000 pairs of individuals 321 

to retain only individual-pairs with non-consanguineous common ancestors as inferred from the 322 

pedigree structure. Each IBD segment detected using Refined IBD was leveraged for the 323 

presence of shared rare variants (minor allele frequency < 1%) to compute the number of shared 324 

rare variants and the enriched rvIBD log-odds (rvLOD) score. 325 

 326 

For each pair of individuals, we filtered the set of IBD segments based on the different segment 327 

length thresholds, thresholds for LOD score and thresholds for rvLOD scores. The observed IBD 328 

proportion for each pair was computed as the ratio of the cumulative length of IBD segments (in 329 

cM) retained after the filtering process to the length of the genome (in cM). For each pair of 330 

individuals, we also estimated the order of relatedness inferred from the number of generations 331 

to their most recent common ancestor in the pedigree. The expected IBD proportion was 332 

computed as described by Manichaikul et. al (2010). Further, we estimated the precision of 333 
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detection of short IBD segments by comparing IBD segments shared between distant cousins to 334 

the IBD segments shared between one of the cousins and the parents/grandparents of the other 335 

cousin, when available. The precision was calculated for different segment bins and assessed for 336 

different orders of relatedness. 337 

 338 

Cryptic genetic relatedness in the Older Order Amish cohort 339 

Overall, in the OOA dataset, we illustrate large estimates of IBD sharing between individuals 340 

expected due to the cohort originating from a founder population. We compared the observed IBD 341 

proportions to the expected IBD proportions after using different sets of thresholds for IBD 342 

segment length, original LOD score and rvLOD score based on the rvIBD algorithm (Figure 5; 343 

Supplementary Figure S4). 344 

 345 

When using a minimum LOD score of 3 and minimum segment length of 5cM (Figure 5A), we 346 

observe more than the expected IBD sharing in 90% of pairs for relatedness order ranging from 347 

1st to 9th degree relatives with no IBD sharing estimated in the seemingly unrelated individuals. 348 

When we decrease the segment length threshold to 2cM (Figure 5B), we observe similar results 349 

with IBD sharing among some unrelated individuals while a lenient length threshold of 0.5cM 350 

(Figure 5C) results in IBD sharing detected in over 90% pairs across all orders of relatedness as 351 

well as over 80% of the seemingly unrelated pairs. This sizeable increase in observed IBD sharing 352 

proportions could be caused by the introduction of false positive IBD segments ranging from 353 

0.5cM to 2cM in length. 354 

 355 
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 356 

Figure 5: Performance of relatedness estimation using different sets of IBD segment thresholds 357 
Comparisons of observed IBD proportion using genetic data was made to the expected IBD proportion 358 
estimated from the pedigree for different degrees of relatedness using (A) IBD segments > 5cM with LOD 359 
> 3, (B) IBD segments > 2cM with LOD > 3, (C) IBD segments > 0.5cM with LOD > 3, and (D) IBD segments 360 
> 2cM with LOD > 3 and IBD segments < 2cM with rvLOD > 3. Area of the circles indicates the percentage 361 
of individual pairs with specific proportions of observed IBD sharing segregated by the estimated degrees 362 
of relationship. The solid line represents bins where the observed IBD proportions were comparable to the 363 
expected IBD proportions while the dotted line represents a lower threshold used to estimate the proportion 364 
of individual pairs with detectable relatedness based on genetic IBD sharing illustrated in Supplementary 365 
Figure S4. 366 
 367 
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In order to reduce these false positives, we implemented a composite threshold of LOD > 3 for 369 

segment lengths greater than 2cM and rvLOD > 3 for segment lengths less than 2cM (Figure 5D) 370 

and observed IBD sharing in 90% of pairs for relatedness order ranging from 1st to 9th degree 371 

relatives with greater than 10% increase in the detection rate of 5th cousins (10th order) and more 372 

distant relatedness. IBD sharing in the seemingly unrelated individuals rose from a single 373 

individual sharing IBD with other individuals. Detection of possible cryptic relatedness among the 374 

seemingly unrelated individuals with potential common ancestors older than 14 generations ago 375 

cannot be assessed due to limited pedigree information and lack of knowledge regarding the 376 

relatedness among founders of the Old-Order Amish community. 377 

 378 

Lastly, we assessed the precision of detecting short IBD segments using the original LOD 379 

estimates and the rvLOD estimates. For each degree of relationships ranging from 4th to 13th order 380 

relatedness, we segregated the IBD segments by length into 7 groups. For a given IBD segment 381 

between a pair of cousins, we assessed if an overlapping segment was also detected between 382 

one of the cousins and the parents or grandparents of the other cousin under the premise that 383 

the genomic region was inherited from one of the two parents or one of the 4 grandparents, when 384 

present in the sequenced OOA cohort. We considered the IBD to be true if overlapping IBD 385 

segments were detected and false if overlapping segments were not found. The precision of 386 

detecting IBD segments of a particular length was computed based on the count of true IBD and 387 

false IBD segments. The count of false IBD segments was scaled when full pedigree information 388 

was unavailable. We repeated the analysis for the different thresholds defined in Figure 5. We 389 

show an improvement in the precision of detecting short segments (< 2cM) detected using the 390 

rvIBD metric over the original IBD callset (Supplementary Figure S5). The precision of shorter 391 

segments based on rvIBD is comparable to the precision of longer segments using the original 392 

IBD callset which are already known to have higher accuracy as demonstrated by previous work 393 



in the field (Browning and Browning 2010; Genovese et al. 2010; Browning and Browning 2012; 394 

Browning and Browning 2013b). 395 

  396 



Discussion 397 

Here we have described an approach, rvIBD, for leveraging the presence of shared rare-variants 398 

between two individuals to better assess their genetic relatedness. Genetic relatedness is a 399 

fundamental concept in population genetics and genealogical studies and traditionally described 400 

as the probability of sharing alleles that are identical-by-descent from common ancestors in a 401 

pedigree. Identity-by-descent is the phenomenon whereby two individuals inherit a genomic 402 

region from a common ancestor without an intervening detectable recombination event (Weir et 403 

al. 2006). With the onset of dense genotyping and next-generation sequencing, genetic 404 

relatedness has been computed directly from single nucleotide polymorphism (SNP) data using 405 

maximum likelihood estimates (Milligan 2003). Using averages of single SNP-based estimates, 406 

matrices of genetic relatedness have been computed and incorporated in to genome wide 407 

association studies (GWAS) (Forni et al. 2011; Yang et al. 2011; Yang et al. 2013; Chang et al. 408 

2015). However, single SNP-based estimates do not take into account linkage disequilibrium 409 

(LD), discard SNPs based on minor allele frequency thresholds, and ignore the length of shared 410 

genomic regions between two individuals. 411 

 412 

More recently, methods detecting haplotype sharing have been developed (Gusev et al. 2009; 413 

Browning and Browning 2010; Browning and Browning 2013b) and utilize more sophisticated 414 

methods involving hidden Markov models to differentiate IBD from IBS, which have been shown 415 

to perform better (Ramstetter et al. 2017). We specifically focus on the detection of short IBD 416 

segments (<2cM) that have been previously unreliable and are more indicative of older co-417 

ancestry between individuals. We demonstrated through our simulations of populations with 418 

varying divergence times, the capability of rare variants to better tag short IBD segments over 419 

common variants and subsequently improve the assessment of IBD vs IBS. 420 

 421 



In the last decade, there has been an increasing focus on the existence of cryptic relatedness in 422 

both isolated and cosmopolitan genetic samples (Voight and Pritchard 2005; Pemberton et al. 423 

2010; Henn et al. 2012; Fedorova et al. 2016; Staples et al. 2018). Cryptic relatedness refers to 424 

the presence of relatives in a sample of seemingly unrelated individuals. Voight and Pritchard 425 

showed that cryptic relatedness has a significant inflation of association p-values from genetic 426 

association studies involving small and isolated populations resulting in false positives. First, 427 

Pemberton and colleagues were able to infer previously unidentified relationships in phase III of 428 

the HapMap Project (Pemberton et al. 2010). Later, Henn and colleagues detected thousands of 429 

higher-order relationships in a heterogeneous European population (Henn et al. 2012). Recently, 430 

Staples and colleagues highlighted the prevalence of cryptic relatedness in large healthcare 431 

studies (Staples et al. 2018). 432 

 433 

Through our analyses of simulated data, we show the ability of detecting short IBD segments by 434 

leveraging shared rare variants. We demonstrated that these short segments when enriched with 435 

shared rare variants are indicative of older relatedness between individuals from populations that 436 

diverged many thousands of years in the past. Furthermore, using the empirical dataset from the 437 

multi-generational Older Order Amish cohort, we illustrate the improvement in the detection of 438 

higher-order relationships greater than fifth-cousins after the inclusion of the rvIBD metric for short 439 

IBD segments. Using the short segments leveraged by shared rare variants, we were also able 440 

to identify genetic relatedness between the seemingly unrelated individuals which will need further 441 

investigation. If left undetected, these higher-order relationships contribute to the prevalence of 442 

confounding due to cryptic relatedness in large healthcare studies. 443 

 444 

Recent large-scale human sequencing projects have identified tens of millions of variants (1000 445 

Genomes Project Consortium et al. 2012; 1000 Genomes Project Consortium et al. 2015; Sudlow 446 



et al. 2015; Dewey et al. 2016; Gaziano et al. 2016; Taliun et al. 2019), most of which are rare 447 

variants (minor allele frequency < 1%). Common variants are often shared by chance with no 448 

underlying IBD segments. Based on the infinite-site model and the low rates of mutation, the 449 

possibility of a rare variant shared between two individuals without common ancestry is less likely. 450 

Hence, the sharing of rare variants is more indicative of co-ancestry than the sharing of common 451 

variants. Recent explosive population growth has resulted in a deluge of rare genetic variants due 452 

to the increased mutational capacity of recent human populations (Coventry et al. 2010; Keinan 453 

and Clark 2012; Fu et al. 2013). Fu and colleagues showed that a majority of the variants are 454 

predicted to have arisen in the last 10,000 to 50,000 years (Fu et al. 2013). Work by O’Connor 455 

and colleagues further demonstrated that rare variants have more information content than 456 

common variants when making inferences of fine-scale population structure since they can 457 

accurately detect recent demographic changes in the last 25,000 years (O’Connor et al. 2015). 458 

Other works focused on rare variants also showed the ability to identify distant relatedness within 459 

and between cohorts (Hochreiter 2013; Mathieson and McVean 2014; Al-Khudhair et al. 2015). 460 

 461 

Overall, we show that leveraging shared rare variants, which were previously ignored, allows for 462 

the detection of older co-ancestry. Detection of older co-ancestry will help identify distant 463 

relatedness between populations and will provide new insights in to population structure using 464 

rare variants. In addition, detection of older co-ancestry will also help identify cryptic relatedness 465 

in large-scale studies involving cohorts ranging from ten to hundred thousand individuals which if 466 

left unidentified could lead to spurious results in downstream association analyses. Indirectly, the 467 

detection of shorter IBD segments would augment other applications for IBD segments involving 468 

the estimation of population demographic parameters, inferring fine-scale population structure, 469 

detecting migratory events, IBD mapping and forensic science (Palamara et al. 2012; Browning 470 

and Browning 2012; Thompson 2013; Palamara and Pe’er 2013; Palamara et al. 2015).  471 
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