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Abstract 

Associations between altered DNA methylation of the serotonin transporter 

(5-HTT)-encoding gene SLC6A4 and early life adversity, mood and anxiety disorders, and 

amygdala reactivity have been reported. However, few studies have examined epigenetic 

alterations of SLC6A4 in schizophrenia (SZ). We examined CpG sites of SLC6A4, whose 

DNA methylation levels have been reported to be altered in bipolar disorder, using three 

independent cohorts of patients with SZ and age-matched controls. We found significant 

hypermethylation of a CpG site in SLC6A4 in male patients with SZ in all three cohorts. We 

showed that chronic administration of risperidone did not affect the DNA methylation status 

at this CpG site using common marmosets, and that in vitro DNA methylation at this CpG 

site diminished the promoter activity of SLC6A4. We then genotyped the 5-HTT-linked 

polymorphic region (5-HTTLPR) and investigated the relationship among 5-HTTLPR, DNA 

methylation, and amygdala volume using brain imaging data. We found that patients 

harboring low-activity 5-HTTLPR alleles showed hypermethylation and they showed a 

negative correlation between DNA methylation levels and left amygdala volumes. These 

results suggest that hypermethylation of the CpG site in SLC6A4 is involved in the 

pathophysiology of SZ, especially in male patients harboring low-activity 5-HTTLPR alleles. 
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Introduction 

The serotonin transporter (5-HTT), encoded by SLC6A4, is a major monoamine transporter 

that regulates serotonin (5-HT) neurotransmission at the synaptic cleft, affecting emotions 

and stress responses;1 thus, 5-HTT is a target protein of antidepressants. SLC6A4 has a 

functional polymorphism at a promoter region known as the 5-HTT-linked polymorphic 

region (5-HTTLPR) that is classified into short (S) and long (L) alleles,2 with the S allele 

exhibiting weaker transcriptional activity.3,4 Caspi et al.5 reported that gene-by-environment 

(G x E) interactions between 5-HTTLPR and adverse life experiences are associated with the 

development of anxiety and depression. To date, numerous case-control association studies 

have been performed, and several meta-analyses have validated the G x E interactions.6-9 

However, their existence remains controversial,10,11 and the largest meta-analysis12 as well as 

the largest case-control study13 failed to replicate the findings. 

 In addition to 5-HTTLPR, altered DNA methylation of the promoter region of this 

gene has been reported to be associated with childhood maltreatment,14-17 bullying,18 low 

socioeconomic status,19,20 stressful life events,21,22 suicide,23 depressive symptoms,24-26 major 

depression,27-30 and bipolar disorder (BD).31 Although patients with schizophrenia (SZ) 
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frequently exhibit depressive symptoms in various stages of the illness, few studies have 

analyzed the DNA methylation status of SLC6A4 in SZ.32 

 We previously identified hypermethylation of SLC6A4 in the context of BD 

through promoter-wide screening using lymphoblastoid cell lines (LCLs) derived from 

monozygotic twins discordant for BD31. Hypermethylation was detected at two CpG sites 

(chr17:30,235,246-30,235,247 and chr17:30,235,271-30,235,272, named CpG3 and CpG4, 

respectively) within the CpG island shore (defined as the region within 2 kb of a CpG island) 

in the promoter region of SLC6A4. We confirmed that hypermethylation of the two CpG sites 

existed in LCLs and in postmortem prefrontal cortices from individuals with BD31. 

 In this study, we first confirmed the previous finding of hypermethylation of 

SLC6A4 in BD using peripheral blood cells (PBCs). We then examined DNA methylation 

levels in SZ and found that CpG3 was also hypermethylated in PBCs from patients with SZ 

in three cohorts. Animal model experiments using common marmosets suggested that this 

epigenetic change was unlikely to be the result of medication. In vitro methylation analysis 

revealed that DNA methylation of CpG3 resulted in loss of promoter activity in the cultured 

cell lines. To examine the relationship between 5-HTTLPR and CpG3 DNA methylation, we 

genotyped 5-HTTLPR in detail. Strikingly, we found that male patients with BD and SZ 
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harboring low-activity 5-HTTLPR alleles showed higher CpG3 DNA methylation than those 

harboring allele with high promoter activity. Furthermore, in vivo brain imaging analysis 

revealed a negative correlation between CpG3 DNA methylation and left amygdala volume 

in patients harboring low-activity alleles, suggesting a pathophysiological role of SLC6A4 

hypermethylation. 
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Materials and methods 

Samples 

All subjects were unrelated to each other and were ethnically Japanese. We used genomic 

DNA of PBCs derived from patients with SZ (N = 440) and age-matched controls (CTs) (N = 

488). We also used genomic DNA of PBCs derived from an independent SZ group (N = 100), 

a first-episode SZ (FESZ) group (N = 16), and a group of the same number of age-matched 

CTs. The details of the samples before and after quality control, which involved removal of 

subjects with low signal intensity in pyrosequencing or with genotyping errors, are 

summarized in supplementary table S1. Details of selection criteria for FESZ and CTs were 

described in supplementary methods. 

 

Animals 

Six adult male common marmosets (CLEA Japan, Inc., Tokyo, Japan) were used to test the 

effects of antipsychotics. The detailed methods have been previously described33 and are 

described in the supplementary methods. In brief, three marmosets were administered 

risperidone at a dose of 0.1 mg/kg (Wako Chemical, Tokyo, Japan), and the other 3 were 

given only vehicle. The substances were administered orally once a day for 28 days. All 
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experiments were approved by the Institutional Animal Care and Use Committee and were 

conducted in accordance with the guidelines of the Central Institute for Experimental 

Animals (CIEA, Kanagawa, Japan), which comply with the Guidelines for Proper Conduct of 

Animal Experiments published by the Science Council of Japan Animal Care. 

 

Molecular methods 

Detailed descriptions of the following molecular methods can be found in the 

supplementary methods: DNA preparation from PBCs of humans and animals, bisulfite 

modification of genomic DNA, pyrosequencing assays, 5-HTTLPR genotyping, and 

luciferase reporter assays for the 5-HTTLPR allele and for an in vitro-methylated CpG 

construct. 

 

Brain imaging analysis 

Brain images were acquired using 1.5- and 3.0-tesla MRI scanners (Signa Horizon 1.5 T, 

Signa HDxt 3.0 T; GE Healthcare, Milwaukee, WI, USA) at the University of Tokyo Hospital 

as part of the Cognitive Genetics Collaborative Research Organization (COCORO) 

consortium.34 In this study, 41 CTs (32 males and 9 females) and 57 SZ patients (33 males 
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and 24 females; 3 first-episode and 54 chronic) who had valid DNA methylation and 

5-HTTLPR genotyping data were chosen for further analysis. A detailed description of the 

method can be found in the supplementary methods. 

 

Statistics 

Comparisons of DNA methylation levels were conducted using a nonparametric 

Mann-Whitney U-test. The DNA methylation level in marmoset was independently measured 

5 times, and the trimmed means were compared using Welch’s t-test. Differences in luciferase 

activity among the constructs were evaluated using the Tukey-Kramer test. The correlation 

between the DNA methylation and the amygdala volume was assessed with Pearson’s 

correlation. All statistical comparisons were two-sided. Statistical significance was set at P < 

0.05. 
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Results 

Hypermethylation of the CpG island shore of SLC6A4 in male patients with BD 

We previously identified hypermethylation at two CpG sites (named CpG3 and CpG4) within 

the CpG island shore of SLC6A4 in BD using LCLs31 (figure 1A). Because the sample sizes 

were relatively small and because LCLs contain artificial epigenetic modifications,35,36 we 

tried to replicate our previous findings in a large number of PBCs from patients with BD (N 

= 447) and from CTs (N = 454) by pyrosequencing. We validated hypermethylation at one of 

the two CpG sites, CpG3 (P = 3.84x10-4, supplementary table S2). Consistent with a 

previous report,27 we observed apparent DNA methylation differences between male and 

female subjects (supplementary figure S1). Subgroup analysis considering sex revealed 

significant hypermethylation at CpG3 in male patients with BD (P = 0.003) but not in female 

patients with BD (figure 1B, supplementary table S2). 

 

Hypermethylation in PBCs of male patients with SZ 

We then examined the DNA methylation levels at two CpG sites of SLC6A4 in PBCs from 

patients with SZ (N = 407) and from CTs (N = 468) (set 1). Similar to the case for BD, 

hypermethylation at CpG3 was also found in male patients with SZ (figure 1C, 
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supplementary table S3). Male-specific CpG3 hypermethylation was robustly replicated in 

the independent group of patients with SZ (set 2, figure 1D, supplementary table S4) and in 

the group of patients with FESZ (figure 1E, supplementary table S5). 

 

Effects of antipsychotics on DNA methylation at CpG3 in common marmosets 

To assess the effects of antipsychotics, we examined CpG3 methylation levels in the blood of 

common marmosets treated chronically with risperidone. Notably, the genomic context 

around CpG3, but not CpG4, was found to be evolutionarily conserved among primates but 

not among rodents (supplementary figure S2). CpG3 DNA methylation levels were not 

detectable in the risperidone-treated group (N = 3) compared to the control group (N = 3, 

mean ± SD: 4.4 ± 0.7%). 

 

In vitro DNA methylation at CpG3 represses promoter activity 

We next performed a luciferase reporter assay using constructs containing the sequences 

around the CpG3 region in the rat serotonergic RN46A cell line.37 We detected significant 

promoter activity around the CpG3 region. This promoter activity was abolished upon 

introduction of CpG3 DNA methylation (P < 0.01, Tukey-Kramer test) (figure 2). 
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Genotyping of 5-HTTLPR and promoter assay of the Asian-specific L allele 

To assess the effect of 5-HTTLPR on DNA methylation, we genotyped 5-HTTLPR in CTs 

and patients with BD and SZ (set 1) in detail. Consistent with a previous report on a Japanese 

population,2 the subjects showed a complex distribution of allele frequencies (AFs) 

(supplementary table S6).2 In addition to the predominant S allele (AF: 75.0%), there were 

three evenly distributed L alleles: LA, LG, and L16-C (AFs: 8.1%, 6.9%, and 6.4%, 

respectively). It should be noted that L16-C has not been reported in the Caucasian population. 

Given that LA has the highest promoter activity and that LG shows low promoter activity 

equal to that of SA,38,39 we determined the promoter activity of L16-C. We found that L16-C 

showed low promoter activity, similar to SA (supplementary figure S3). 

 

Patients harboring low-activity 5-HTTLPR alleles showed high DNA methylation levels 

at CpG3 

We then conducted a case-control DNA methylation analysis considering the 5-HTTLPR 

genotype. Consistent with previous reports,24,31 we observed significant hypermethylation in 

patients with SZ harboring homozygous SA compared to CTs with the same alleles (P = 0.040, 
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table 1). While patients harboring LA did not show any DNA methylation differences, those 

harboring L16-C or LG showed hypermethylation compared to CTs (P = 0.049). Given that 

only LA showed high promoter activity, while the others showed similar levels of low activity, 

we then conducted a promoter activity-based case-control analysis. We found that patients 

with low-activity alleles (SA, L16-C, or LG alleles) showed more robust hypermethylation than 

CTs (P = 0.006, table 1). The same relationship was also maintained in BD, though the effect 

of the low-activity alleles seemed to be different from that in SZ, likely due to the limited 

sample sizes (supplementary table S7). We examined CpG3 DNA methylation in females in 

the same datasets but did not find any significant differences in patients with SZ or BD 

compared to CTs (supplementary table S8). 

 

Data from patients with SZ harboring low-activity 5-HTTLPR alleles showed a negative 

correlation between DNA methylation levels and amygdala volumes 

The amygdala is essential for emotional processing, and its activation is thought to be 

associated with 5-HTTLPR.40 Recently, large-scale cross-sectional studies have revealed that 

amygdala volumes are significantly reduced in patients with SZ compared to healthy 

subjects.34,41 Furthermore, previous studies have reported an association between SLC6A4 
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promoter region methylation and increased threat-related activity in the left amygdala.20,42 

Using three-dimensional brain images from our samples, we found that CpG3 DNA 

methylation levels were negatively correlated with left amygdala volumes in male patients 

with SZ harboring low-activity alleles (n = 24, Pearson's R = -0.454, P = 0.026) but not in 

male CTs (n = 26, Pearson's R = -0.099, P = 0.631) (figure 3). A significant negative 

correlation was observed only in male patients with SZ (supplementary figure 4). 
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Discussion 

In this study, we identified hypermethylation of the promoter region of SLC6A4 in blood 

samples from male patients with SZ. Hypermethylation was evident in male patients with 

low-activity 5-HTTLPR alleles and was inversely correlated with amygdala volume. It 

should be noted that we could not apply multiple testing corrections in our analyses because 

performing stratified comparisons reduced the sample sizes. Instead, we used several 

independent sample groups to corroborate the results. 

 

Effects of sex differences, age and medication 

Based on the apparent DNA methylation differences between males and females 

(supplementary figure S1), we decided to separately analyze DNA methylation levels with 

regard to sex rather than including sex as a covariate. Previous studies have also reported 

higher DNA methylation in females than males at the CpG island or CpG island shore of 

SLC6A4 in cord blood,43-45 PBCs,46 and postmortem prefrontal cortices.47 Although the 

underlying mechanism of the elevated DNA methylation in females remains elusive, choline, 

a precursor for the methyl group donor betaine, might be a key molecule given the enhanced 

endogenous reserves and de novo biosynthesis of choline by estrogen in females.48,49 Indeed, 
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dietary choline supplementation or deficiency in rats results in global and site-specific DNA 

methylation changes in metabolic-related and neural development-related genes,50-52 and 

some of these differences are sex-dependent.51 The reason for the allele-dependent DNA 

methylation differences between patients of different sexes also remains unclear. The 

significant hypermethylation of SLC6A4 in male patients suggests that this modification may 

be associated with differences in the clinical features and courses of psychosis between males 

and females.53 

To analyze the contributions of age and diagnosis to CpG3 DNA methylation status, 

we conducted a multiple linear regression analysis and identified significant contributions or 

tendencies toward contributions of diagnosis and age in the male BD-control analysis (P = 

0.011), the male SZ-control (set 1) analysis (P = 0.011), and the male SZ-control (set 2) 

analysis (P = 0.054). However, no significant contributions were detected in females. These 

observations indicate that CpG3 DNA methylation status is modulated not only by diagnosis 

but also by age in males. 

Age of disease onset may be a confounding factor for DNA methylation changes. 

To address this issue, we examined the DNA methylation levels of male SZ patients 

separated by age of disease onset: one group included patients less than 20 years old (the 
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“under-20 group”; n = 57, average onset age = 16.9 ± 1.5), and the other included patients 

from 20 to less than 40 years old (the “over-20 group”; n = 134, average onset age = 27.1 ± 

4.7). The average age at blood sampling was matched between the two groups (under-20 

group = 43.8 ± 11.7, over-20 group = 44.0 ± 10.4). The results revealed that the DNA 

methylation levels at CpG3 did not significantly differ between the two groups (under-20 

group = 26.8 ± 5.4, over-20 group = 26.6 ± 4.8), suggesting that the age of onset did not 

affect the DNA methylation changes at CpG3. 

 Regarding medication, we tested the influence of antipsychotics on the DNA 

methylation level of CpG3 using PBCs from common marmosets and found decreased rather 

than increased DNA methylation in the PBCs of antipsychotic-treated marmosets compared 

to those of control animals. A similar decrease in DNA methylation of CpG3 was previously 

reported in a cell line cultured with mood stabilizers.54 These findings suggest that 

medication is unrelated to the increased DNA methylation at CpG3 in patients. These results 

also suggest that medication may play a role in decreasing CpG3 methylation levels, though 

further mechanistic studies are needed to address this possibility. It should be noted that the 

number of animal samples was too small to reach a conclusion and that these findings should 

be independently replicated. 
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Complexity of 5-HTTLPR and its association with DNA methylation 

In this study, SA was present at a significantly higher frequency in cases than in controls 

(SZ-BD vs CT: P < 0.001, SZ vs CT: P < 0.008, BD vs CT: P < 0.003, Fisher’s exact test, 

supplementary table S6). This finding is consistent with previous reports.5-8 However, 

careful interpretation is needed because a recent large-scale studies did not support such 

associations with 5-HTTLPR.12,13 

Previous studies have revealed that DNA methylation changes in SLC6A4 are 

associated with childhood abuse, stressful life events, and depression in S allele 

carriers.15,21,24,26,55 Consistent with these findings, rhesus macaques harboring the S allele 

exhibit higher DNA methylation levels in SLC6A4 and lower SLC6A4 expression in PBCs 

when exposed to maternal or social separation than those not harboring the S allele.56 

However, other studies have failed to identify S allele-linked DNA methylation changes in 

depressed subjects.22,25,30 These inconsistent findings could partly stem from the complexity 

of 5-HTTLPR genotypes, which results in variable SLC6A4 promoter activity. Hu et al38 

revealed that the LG allele, which is the minor L allele with a G substitution (rs25531), 

exhibits lower promoter activity than the major L allele with an A substitution (LA) and that 
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the S and LG alleles exhibit nearly equivalent promoter activity. In addition to LG, we 

revealed that L16-C, one of the major L alleles in the Asian population2,57 but not in the 

European population (supplementary table S6), has low promoter activity similar to that of 

the S and LG alleles (supplementary figure S3). 

 We found that low-activity 5-HTTLPR alleles were robustly associated with higher 

DNA methylation levels in patients through a promoter activity-based case-control 

association approach. Our findings will be important for future 5-HTTLPR studies across 

different ethnic populations and may contribute to understanding the contradictory results of 

5-HTTLPR genetic association studies. The molecular mechanism that connects genotype to 

DNA methylation status remains unclear. One hypothesis involves the participation of the 

G-quadruplex within 5-HTTLPR,58 which is a four-stranded noncanonical B-form DNA 

structure and is known to interact directly with DNA nucleotide methyltransferase enzymes.59 

 

Functional and pathophysiological role of CpG3 DNA methylation 

We confirmed the existence of CpG3 hypermethylation in a group of male patients with SZ 

(set 1), an independent group of patients with SZ (set 2), a group of patients with FESZ and a 

group of patients with BD (supplementary tables 2, 3, 4, and 5), implicating the existence 
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of common DNA methylation changes in individuals with psychosis. Hypermethylation was 

found in both the first episode and in chronic stages of SZ, suggesting that this epigenetic 

change occurs at an early stage and lasts for a long time during the course of the illness. 

Future studies will include longitudinal assessments of patients with consideration of their 

ratings of symptom severity.  

 Associations between SLC6A4 DNA methylation and SLC6A4 expression have 

previously been reported,16,27,42,60,61 and we previously demonstrated an inverse correlation 

between CpG3 DNA methylation levels and SLC6A4 expression levels in LCLs.31 In this 

study, we could not assess SLC6A4 expression levels in PBCs because of the unavailability of 

RNA samples. However, we found that DNA methylation of CpG3 was sufficient for gene 

silencing in a cell culture model using a CpG3-specific in vitro-methylated reporter. 

Although the DNA methylation changes at CpG3 in patients were subtle, our in 

vitro luciferase assays suggested the importance of the patterns of methylated alleles. If two 

CpG3 alleles in a cell are methylated, that cell does not express SLC6A4 at all. Elevations in 

the numbers of such cells may cause more dysfunction than elevations in the numbers of cells 

with only one methylated allele, even though the apparent DNA methylation changes seemed 

to be subtle. 
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The genomic region around CpG3 is conserved among primates but not among 

rodents (supplementary figure S2). Using the JASPAR transcription factor binding profile 

database (http://jaspar.genereg.net/) and the Genotype-Tissue Expression (GTEx) gene 

expression database (https://www.gtexportal.org/), we found that the putative binding sites of 

Elk-1 (ELK1) and Meis homeobox 3 (MEIS3), which are highly expressed in the brain, were 

predicted to overlap with the sequence containing CpG3 (data not shown). Interestingly, 

MEIS3 is strongly expressed in the amygdala and anterior cingulate cortex, suggesting a 

possible link between the function of the CpG3 site and the development of the primate brain. 

 Recent large-scale cross-sectional analyses have revealed significant alterations in 

amygdala volume in patients with SZ.34,41 Previous studies have suggested that S allele 

carriers have smaller amygdala volumes than L homozygotes do.62-64 Another study reported 

reduced volumes and excessive threat-related reactivity in the amygdalae of depressed 

patients.65 In addition, two studies have shown increased threat-related left amygdala 

reactivity is positively correlated with DNA methylation changes in SLC6A4.20,42 Taken 

together, these findings suggest that amygdala volume may be associated with DNA 

methylation in SLC6A4 and 5-HTTLPR alleles. We therefore specifically examined this 

association and found a significant inverse correlation between CpG3 DNA methylation 
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levels and left amygdala volumes in male patients with SZ harboring low-activity alleles 

(figure 3). Although it remains unclear about the mechanisms by which DNA methylation 

status in PBCs correlates with the brain volume, a recent epigenome-wide meta-analyses 

indicated their relationship.66 Besides, previous findings that LCLs and postmortem brain 

from patients with BD share a common CpG3 hypermethylation31 and that SLC6A4 DNA 

methylation status in amygdala tissue is indeed associated with its expression42 could support 

our observations. Given that increases in DNA methylation of SLC6A4 are followed by 

increases in threat-related left amygdala reactivity,20 the reduced amygdala volumes we 

observed may have been accompanied by altered threat-related reactivity in the patients. 

More comprehensive studies involving large-scale in vivo imaging experiments are needed to 

elucidate the effects of altered DNA methylation on other brain regions. 

 

Considerations of cell type and blood-brain correlations 

Blood cell type affects DNA methylation status67 and has been proposed to be a confounding 

factor for SLC6A4 DNA methylation.68 In this study, we could not consider the effect of 

blood cell composition. However, considering that CpG3 hypermethylation was initially 

identified and replicated in LCLs,31 which are established from B cells, blood cell type may 
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not be a major confounding factor in this study. Besides, we confirmed that CpG3 

hypermethylation affected SLC6A4 promoter activity in the rat serotonergic cell line, 

implicating the blood-brain DNA methylation correlations for CpG3. However, cell 

type-specific analysis is needed to determine whether other cell types have common DNA 

methylation changes. 

 

Conclusion 

We report that male patients with SZ and BD harboring low-activity 5-HTTLPR alleles 

exhibited increased DNA methylation levels at the CpG island shore of SLC6A4. This 

epigenetic change started at a very early psychotic stage and could associate with reduced 

amygdala volume via SLC6A4 downregulation. Further mechanistic studies and in vivo 

imaging studies would be useful for elucidating the pathophysiology of epigenetic alteration 

of SLC6A4. 
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Table 1. Case-control DNA methylation analysis of SZ considering the promoter activity of 

5-HTTLPR. 

Allele 

(SA background) 
Diagnosis N 

CpG 3 

DNA methylation 

level (%) 

(mean±SD) 

P-value 

(Cohen's d) 

SA 
CT 149 25.5±4.9 0.040 

(0.200) SZ 145 26.5±5.0 

LA 
CT 34 26.2±4.2 0.822 

(0.031) SZ 21 26.3±4.5 

L16-C/LG 
CT 50 25.1±4.3 0.049 

(0.377) SZ 37 26.8±5.2 

SA/L16-C/LG 

(All low-activity 

alleles) 

CT 199 25.4±4.7 0.006 

(0.240) SZ 182 26.6±5.0 

CT: control, SZ: schizophrenia, 5-HTTLPR: serotonin transporter-linked 

polymorphic region. Significant P-values are shown in bold. 
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Figure legends 

Fig. 1. Altered DNA methylation of SLC6A4 in male patients with BD and SZ. (A) Gene 

structure of SLC6A4 and the targeted CpGs (CpG3: chr17:30,235,246-30,235,247 and CpG4: 

chr17:30,235,271-30,235,272). Comparison of DNA methylation levels was performed 

between male CTs and male patients with BD (B), SZ (set 1) (C), SZ (set 2) (D), or FESZ 

(E). The number of subjects is given in parentheses. *P < 0.05. 5-HTTLPR: serotonin 

transporter-linked polymorphic region, CT: control, BD: bipolar disorder, SZ: schizophrenia, 

FESZ: first-episode schizophrenia. 

 

Fig. 2. Luciferase promoter assay of a construct containing in vitro-methylated CpG3. Left, in 

vitro-methylated (or unmethylated) plasmid constructs including the CpG3 sequence were 

cotransfected with internal control plasmids into RN64A cells. Right, DNA methylation at 

CpG3 suppressed promoter activity. *P < 0.01. n.s.: not significant. 

 

Fig. 3. Correlation between DNA methylation levels at CpG3 and left amygdala volumes. 

DNA methylation levels at CpG3 were negatively correlated with left amygdala volumes in 
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male patients with SZ carrying low-activity alleles (solid line) but not in male CTs (broken 

line). CT: control, SZ: schizophrenia.
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Figure 1. Altered DNA methylation of SLC6A4 in male patients with BD and SZ.
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Figure 2. Luciferase promoter assay of a construct containing in vitro-methylated CpG3.
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Figure 3. Correlation between DNA methylation levels at CpG3 and left amygdala volumes. 
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