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Abstract 
Gene transfer agents (GTAs) are virus-like elements integrated into bacterial genomes, 

particularly, those of Alphaproteobacteria. The GTAs can be induced under nutritional stress, 

incorporate random fragments of bacterial DNA into mini-phage particles, lyse the host cells and 

infect neighboring bacteria, thus enhancing horizontal gene transfer. We show that the GTA 

genes evolve under pronounced positive selection for the reduction of the energy cost of protein 

production as shown by comparison of the amino acid compositions with both homologous viral 

genes and host genes. The energy saving in GTA genes is comparable to or even more 

pronounced than that in the genes encoding the most abundant, essential bacterial proteins. In 

cases when viruses acquire genes from GTAs, the bias in amino acid composition disappears in 

the course of evolution, showing that reduction of the energy cost of protein is an important 

factor of evolution of GTAs but not bacterial viruses. These findings strongly suggest that GTAs 

are bacterial adaptations rather than selfish, virus-like elements. Because GTA production kills 

the host cell and does not propagate the GTA genome, it appears likely that the GTAs are 

retained in the course of evolution via kin or group selection. Therefore, we hypothesize that 

GTA facilitate the survival of bacterial populations under energy-limiting conditions through the 

spread of metabolic and transport capabilities via horizontal gene transfer and increase of 

nutrient availability resulting from the altruistic suicide of GTA-producing cells. 

 
  

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 8, 2020. ; https://doi.org/10.1101/2020.05.06.081315doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.06.081315
http://creativecommons.org/licenses/by-nd/4.0/


 

 

3 

 

Importance 
Kin and group selection remain controversial topics in evolutionary biology. We argue that these 

types of selection are likely to operate in bacterial populations by showing that bacterial Gene 

Transfer Agents (GTAs), but not related viruses, evolve under positive selection for the 

reduction of the energy cost of a GTA particle production. We hypothesize that GTAs are 

dedicated devices for the survival of bacteria under the conditions of nutrient limitation. The 

benefits conferred by GTAs under nutritional stress appear to include horizontal dissemination of 

genes that could provide bacteria with enhanced capabilities for nutrient utilization and the 

increase of nutrient availability through the lysis of GTA-producing bacteria.  
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Introduction 
 

Gene transfer agents (GTAs) are phage-like entities that are known to be produced by 

several groups of bacteria and archaea (1, 2). Unlike phages, GTAs do not package genes 

encoding their own structural proteins, and instead package pieces of DNA of the cell that 

produces them. The biological functions of the GTAs are not well understood, but the leading 

hypothesis is that GTAs are dedicated vehicles for horizontal gene transfer (HGT) (3, 4). The 

GTAs can be induced by stress (5) and, after packaging host DNA and lysing the host cell, can 

infect neighboring cells (1, 6). These cells can integrate the DNA contained within the GTAs, 

and thus can acquire new alleles, some of which could increase their fitness (7). GTAs are 

thought to have evolved from different viral ancestors on at least five independent occasions (2), 

and in Alphaproteobacteria, GTAs appear to have been maintained for many millions of years 

(8). Such convergent acquisition and long-term persistence of these elements suggests that GTAs 

provide a selective advantage for their host populations (2). 

The best-studied GTA (RcGTA) comes from the alphaproteobacterium Rhodobacter 

capsulatus (9). Its production is directed by at least five loci that are scattered across the R. 

capsulatus genome, with 17 genes that encode most of the proteins necessary for the production 

of the RcGTA particles located in one locus (Table S1) (10). This locus, also known as the 

‘head-tail’ cluster (2), is detectable in many alphaproteobacterial genomes (8, 11). Across 

Alphaproteobacteria, the RcGTA-like ‘head-tail’ clusters appear to evolve relatively slowly (1), 

have an elevated GC-content relative to the host genome (8), and have skewed amino acid 

composition when compared to their viral homologs (11). 

Because bacteria and archaea occupy diverse ecological niches, they face different levels 

and directions of selective pressures and have different mutation rates, skewed GC-content and 
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amino acid composition that emerged from multiple, intertwined processes. As a result, the 

genomic GC-content of bacterial and archaeal species varies in the wide range from less than 

20% to more than 75% (12) and cannot be explained solely by the universal mutational AT-bias 

(13). Several studies have shown that the availability of different nutrients in the environment 

can act as a selective force and is involved in shaping the GC content of genomes and amino acid 

content of the encoded proteins. For example, inhabitants of nitrogen-poor environments tend to 

have a low content of G and C nucleotides and of amino acids containing nitrogen in their side 

chains (14, 15). Because A and T each contain one nitrogen atom less than G and C, 

respectively, the reduced usage of the G and C allows an organism to minimize the demand for 

the limiting nitrogen during replication and transcription. By contrast, carbon limitation could 

drive long-term elevation of the genomic GC-content (16, 17), likely, because small (carbon-

poor) amino acids are preferentially encoded by GC-rich codons (18). 

In addition to the GC-content fluctuation between species, there is also a considerable 

GC-content heterogeneity within single bacterial and archaeal genomes. For example, bacterial 

genomes can be subject to GC-biased gene conversion and thus recombination hotspots within a 

genome can have elevated GC-content compared to the rest of the genome (19). Also, highly 

expressed genes tend to have an elevated GC-content and, accordingly, their highly abundant 

protein products have a skewed amino acid composition (20). Because highly abundant proteins 

appear to be optimized for low cost of production (21, 22), the elevated GC-content of highly 

expressed genes can be explained by selection for GC-rich codons that tend to encode small, 

energetically cheap amino acids. Generally, molecular composition of genes and proteins 

appears to reflect various selection pressures, among which those associated with energy savings 

are prominent. 
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Thus, there are two possible explanations for the observed skew in both the GC-content 

and amino acid composition of the RcGTA-like genes and proteins. Under one scenario, 

selection and mutational biases act on the base composition, so that the amino acid bias is a 

byproduct of the skewed GC-content. Under the second scenario, selection could favor the 

skewed amino acid composition, resulting in a biased GC-content due to the structure of the 

genetic code. Here, we present evidence for the second scenario and show that the observed 

amino acid bias is driven by selection to reduce carbon utilization and biosynthetic cost of 

production of the RcGTA-like proteins. We show that the energy expense of the production of 

RcGTA-like proteins is comparable to that of the highly expressed housekeeping genes. For 

some of the amino acid changes, we identify clear signatures of positive selection towards amino 

acids with a smaller number of carbons in their side chains. We hypothesize that evolution of 

RcGTA-like elements was affected by selection to minimize cellular energy investment into their 

production under nutrient-poor conditions. 

 

Results 
 
Elevated GC-content in RcGTA-like regions is due to the higher GC-content in the first 

and second codon positions of the coding genes. Because of the degeneracy of the genetic 

code, GC3-content is known to track the overall GC-content of genomic regions (23). Hence, if 

the GC-content of RcGTA-like ‘head-tail’ clusters is elevated because they reside in GC-rich 

genomic regions, the GC-content in the third, primarily synonymous codon positions (GC3-

content) of the RcGTA-like genes is expected to be higher compared to the genomic average of 

the GC3-content. Moreover, the elevated GC3-content would not be limited to the genes in the 

RcGTA-like region but would be apparent in the adjacent genes as well. To test this hypothesis, 
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we examined homologs of one RcGTA locus (‘head-tail’ cluster) in 212 alphaproteobacterial 

genomes (see Materials and Methods) (8, 11). Although we analyzed homologs of only one 

locus from one GTA only, for brevity, we hereafter refer to these regions simply as “GTA 

regions”, and to genes and encoded proteins in these regions as “GTA genes” and “GTA 

proteins”. Contrary to the aforementioned expectation, we found no significant difference 

between the GC3-content of GTA genes of the 212 alphaproteobacterial genomes, their 

neighboring genes and all genes in the genome (Kruskal-Wallis H test, p-value = 0.62; Figure 

1). By contrast, the GC1- and GC2-content of GTA genes are significantly higher than the 

corresponding values for both the neighboring genes (Dunn’s test, p-value < 0.0001) and the 

genes across the entire genome (Dunn’s test, p-value < 0.0001) (Figure 1). Furthermore, the 

genes adjacent to the GTA regions do not have elevated GC1- and GC2-content when compared 

to the genes in the entire genome (Dunn’s test, p-value = 1), indicating that the elevated GC1- 

and GC2-content is limited to the GTA genes. Due to the relationship between codons and amino 

acids in the genetic code, the elevated GC1- and GC2- content of an open reading frame (ORF) 

translates into a biased amino acid composition of the encoded protein. Indeed, a significant 

amino acid composition bias in the GTA proteins has been demonstrated previously (11). 

Specifically, the relative abundance of amino acids encoded by GC-rich codons is significantly 

higher in the GTA genes than the genomic average (Figure S1; Student’s t-test, p-value < 

0.0001; See Materials and Methods for definition of GC-rich codons). Taken together, these 

findings suggest that the GC-content of GTA regions in Alphaproteobacteria is driven by 

selection for a specific amino acid composition of the encoded proteins. 
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Proteins encoded in GTA regions contain smaller number of carbons and are energetically 

cheaper than their viral homologs. The RcGTA production has been experimentally 

demonstrated to be stimulated by carbon depletion (5). Furthermore, knockout of the RcGTA-

like genes in three alphaproteobacterial strains (24) resulted in a significant decrease in fitness of 

the mutants under growth conditions with alternative carbon sources that might not be utilized by 

these strains (11). If GTAs are indeed produced under conditions of limited carbon availability, 

the observed amino acid bias in the GTA genes might represent an adaptation in the GTA-

containing lineages to utilize energetically cheaper amino acids for GTA particle production. To 

test this hypothesis, we compared the number of carbons in amino acid side chains and costs of 

amino acid biosynthesis (measured as the number of high-energy phosphate bonds) in GTA 

proteins and by their viral homologs. We assumed that (a) all amino acids are produced by 

bacteria de novo, as at least 174 of the analyzed genomes can produce 19 or all 20 amino acids 

(Figure S2), and (b) viral infections are not specifically associated with the carbon-limited 

conditions, and therefore, viral homologs of RcGTA genes should not be subject to selection for 

energy saving. Consistent with the proposed hypothesis, for all of the 12 genes with sufficient 

number of viral homologs to estimate statistical significance (Table S1), GTA proteins have both 

a significantly smaller number of carbons (Mann-Whitney U test, all 12 Bonferroni-corrected p-

values < 0.01; Figure 2A) and a significantly reduced cost of amino acid biosynthesis than their 

viral homologs (Mann-Whitney U test, all 12 Bonferroni-corrected p-values < 0.01; Figure 2B). 

To demonstrate that the observed differences in the carbon content of the GTA and viral 

proteins are not simply due to the compositional bias present in the ancestor of the 

alphaproteobacterial GTA elements (8), we sought to examine only a subset of viral homologs 

that are presumed to be horizontally acquired from the GTA regions. Genes with significant 
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sequence similarity to GTA genes have been previously found in viruses and inferred to be 

horizontally acquired from GTAs on the basis of phylogenetic reconstruction (10, 25). In our 

phylogenetic analyses, we examined several viral genes of this apparent origin (Table 1, Figure 

S3; also see Materials and Methods for details). Under the assumption of no selection for 

energy saving in viruses, we expect the carbon content of the GTA genes acquired by viruses to 

increase after their relocation to the virus genomes. Indeed, in all cases, the carbon content of the 

now-viral homologs consistently (and, overall, significantly) increased compared to the inferred 

ancestral state at the time of acquisition (Table 1, SI Figure S3). 

 

Energetic cost of the GTA proteins is as low as that of essential bacterial proteins. Highly 

expressed genes have been demonstrated to evolve under selection to decrease the energetic cost 

of the encoded protein production (20). Indeed, 20 single-copy housekeeping genes involved in 

translation ([J] COG category; (26)) (Table S2), and therefore presumed to be expressed at 

relatively high levels under any conditions, collectively, have a significantly lower energetic cost 

than the average of all proteins encoded in a genome, as measured by both side chain carbon 

utilization and biosynthetic cost of production per amino acid (Figure S4; Mann-Whitney U test, 

p-values < 0.0001). The biosynthetic cost per amino acid of the GTA proteins was found to be 

statistically indistinguishable from that of the products of the 20 highly expressed genes (α of 

0.01; Mann-Whitney U test, p-value = 0.3372), and remarkably, utilize even less carbon (α of 

0.01; Mann-Whitney U test , p-value < 0.0001) (Figure S4). 

 

Reduction in carbon utilization varies among GTA genes and across bacterial taxa. To 

investigate how reduction of carbon content evolved from the common ancestor of the examined 
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GTA genes to the extant forms, we reconstructed the number of carbons per amino acid at the 

ancestral nodes of individual evolutionary trees of 14 GTA genes (those with at least one 

detectable viral homolog; Table S1). To correct for differences in the GC-content across taxa 

(which affects the carbon content of the encoded proteins), for each taxon we normalized the 

number of carbons per amino acid of GTA proteins by that of 26 housekeeping proteins (Table 

S2). No unifying pattern of directional selection towards the lower carbon content was detected 

across all genes and all taxa (Figure S5). This lack of an overall signal was not surprising 

because GTA genes can be horizontally transferred across taxa (8), have different evolutionary 

rates among and within taxa (8), and are likely to reach unequal translation levels during GTA 

production (27). These differences would make the carbon content optimization gene- and taxon- 

specific, blurring the net effect. However, members of the order Sphingomonadales show the 

most pronounced reduction in carbon utilization for the GTA regions overall, as well as for the 

majority of individual genes (Figure 3). Notably, many Sphingomonadales species can live 

under nutrient-depleted conditions (28). 

 

In Sphingomonadales, the decrease in carbon content of GTA proteins is driven by positive 

selection. To evaluate whether diversifying (positive) selection plays a role in the observed 

reduction of carbon utilization in the GTA genes in Sphingomonadales, we tested for evidence of 

positive selection in individual sites on the branch leading to this clade. For 9 of the 14 evaluated 

genes, the model of positive selection on the branch was a significantly better fit than the neutral 

null model (Table S3). For 8 of these 9 genes, members of the Spingomonadales clade showed 

significant decrease in the carbon utilization relative to three other orders (Mann-Whitney U 

Test; α of 0.01, p -values < 0.01; Table S4; Figure 3). Conversely, for 4 of the 5 genes that did 
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not show evidence of positive selection, there was no significant decrease in the carbon content 

of proteins in the Sphingomonadales genomes (Figure 3). 

To assess how the specific sites that are inferred to be subject to positive selection 

contribute to the carbon content of the Sphingomonadales’ GTA genes, we examined carbon 

content of amino acids in the sites with >0.95 posterior probability of being subject to positive 

selection. For 8 of the 9 positively selected genes, these sites substantially contributed to the 

decrease in carbon utilization in Sphingomonadales (Table 2, Table S5). This trend is 

manifested, in particular, by the observed replacements of aromatic amino acids, which contain 

relatively high numbers of carbons and have excessive biosynthetic costs, with non-aromatic 

amino acids (Figure S6). The observed replacements of tryptophan with phenylalanine indicate 

that, under a constraint of maintaining an amino acid with similar physicochemical properties, 

there is selection for utilization of a cheaper amino acid (Figure S6). Mapping of the positively 

selected sites in the Sphingomonadales’ g5 homolog onto a structural model of the T5 

bacteriophage major capsid protein shows that these sites tend to be located on the surface of the 

protein (Movie S1). This example suggests that carbon-saving replacements preferentially occur 

in sites that are not involved in the folding of GTA proteins, allowing the GTAs to preserve the 

functionality of their proteins at reduced production costs. 

 
Discussion 
 

We show here that the elevated GC-content of GTA regions is driven by selection 

towards encoding proteins with energetically cheaper amino acids. Although GC-rich genes have 

an increased cost of mRNA expression, cells spend much more energy on the synthesis of amino 

acids than on the synthesis of ribonucleotides (20, 29). Hence, the elevation of GC-content in 
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non-synonymous codon positions (GC1 and GC2) reduces the energetic expenses on the 

production of the respective proteins. Consistent with this notion, energy savings for GTA 

proteins are as pronounced or even greater than those for highly expressed housekeeping genes 

that are known to utilize cheaper and smaller amino acids (20). Given that production of 

RcGTA-like particles in Alphaproteobacteria occurs in the stationary phase (2, 30) and is 

associated with carbon depletion (5, 11), the shift in GC-content of GTA genes and amino acid 

composition of their products likely reflects the adaptation for their efficient expression under 

such conditions. 

The change in the amino acid composition of GTA proteins was not uniform across the 

examined alphaproteobacterial lineages. These differences are not unexpected because GTA-

carrying bacteria live in different environments and under different selection pressures. We 

demonstrated that, on the branch leading to Sphingomonadales, the decrease in carbon content of 

the GTA proteins is driven by positive selection for the use of cheaper amino acids. We 

hypothesize that the last common ancestor of Sphingomonadales evolved in a nutrient-depleted 

environment that selected for the reduction in the use of energetically expensive amino acids in 

the GTA proteins. 

Although bacterial viruses also spend disproportionate amounts energy on translation 

(31), our analysis of viral genes that apparently were acquired by viruses from bacterial GTAs 

shows a decrease in GC1 and GC2 content, with the concomitant increase in protein production 

energy cost. Thus, positive selection for cost saving, probably ceases to substantially affect the 

evolution of these genes once they are transferred to virus genomes. Lytic bacteriophages 

reproduce rapidly, with a typical burst size of about 200 virions that hijacks about 30% of the 
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host energy budget (31). Under the conditions of such brief, explosive growth, energy saving 

might not be an important selective factor. Differences in the viral burst sizes imply that 

selection for energy saving could play some role. However, such selection is expected to be 

weak due to other constraints affecting the lytic viruses, such as fluctuations in the host energy 

budget, often error-prone viral replication machinery, and the main evolutionary pressure being 

evasion of host defense systems (32, 33). Thus, our observations provide additional evidence that 

GTAs are not selfish, virus-like agents but rather microbial adaptations. 

Taken together, our findings, and in particular, the evidence of positive selection for 

energy saving in Sphingomonadales, are in line with the previous suggestions that maintenance 

of GTAs and production of GTA particles confers some advantage to the bacterial hosts (2, 7). 

Because GTA-producing cell lyses, the reduction of energy utilization for the production of GTA 

particles has to be beneficial at the population or community level, that is, it needs to involve 

some form of kin or group selection (34, 35). The nature of such benefit(s) is not entirely clear, 

but it appears likely that the GTAs, effectively, are devices for survival under energy- or 

nutrient-limited conditions that are common in bacterial ecology. More specifically, GTAs could 

provide two types of adaptations. Previous studies suggest that oligotrophic conditions do not 

interfere with the capacity of bacteria to engage in genetic exchange (36). Moreover, the nutrient 

limitation can upregulate horizontal gene transfer via transformation (37), suggesting potential 

benefits of gene exchange under adverse conditions of energy or nutrient limitations. 

Conceivably, HGT mediated by the GTAs can confer additional metabolic or transport capacities 

to the recipient bacteria. Additionally, GTAs could be perceived as a mechanism bacterial 

programmed cell death (38, 39). Under this type of adaptation, the GTA-mediated lysis of a 
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fraction of the bacterial community would decrease the population density and increase the 

nutrient availability per cell, by supplying additional nutrients released from the lysed cells. 

 
Materials and Methods 
 
Generation of GTA and viral datasets. The initial dataset of 422 GTA regions in 419 

alphaproteobacterial genomes consisted of 88 regions identified by Shakya et al (8) and 334 

regions in complete alphaproteobacterial genomes predicted by Kogay et al. (11). Four GTA 

regions from the Methylobacterium nodulans ORS2060 genome were removed due to their 

questionable assignment as GTAs (8). Because our previous GTA prediction procedure (11) 

screened for the presence of only 11 of the 17 homologs of the RcGTA head-tail cluster (1), the 

remaining 6 homologs were identified using BLASTP (40) (version 2.6.0, e-value = 0.1, 

manually curated homologs from Kogay et al. (11) as queries), with subsequent restriction of the 

hits to the regions with previously identified GTA genes. To reduce the computational cost of the 

downstream analyses, highly similar GTA regions were excluded. To this end, genomes that 

contained the 418 GTA regions were clustered into OTUs using furthest neighbor clustering and 

Average Nucleotide Identity (ANI) cutoff of 95%. The ANI values were calculated using 

fastANI v.1.1 (41). From each of the identified 215 OTUs, only the GTA region with the largest 

number of the relevant genes was retained. Further removal of the regions that contained less 

than 9 genes resulted in the final dataset of 212 GTA regions. 

To obtain viral homologs of the GTA genes, genes from the 212 GTA regions were used 

as queries in BLASTP searches (40) (version 2.6.0, e-value = 0.001, query and subject coverage 

of at least 60%) against the viral RefSeq database (release 96, accessed on October 2019) (42). 
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The numbers of identified alphaproteobacterial and viral homologs for the 17 RcGTA 

genes are shown in Table S1. 

 

Calculation of GC-content for the 212 alphaproteobacterial genomes. The GTA region’s 

neighborhood was defined as 51 genes upstream and 51 genes downstream of the region. Each 

neighborhood was divided into 6 non-overlapping regions with 17 genes each. For each 

neighborhood region, the GTA region, and all annotated genes in the genome, GC1-, GC2-, and 

GC3-content values were calculated using an in-house script. The significance of the GC-content 

differences among the obtained 8 groups was assessed using the Kruskal-Wallis H test followed 

by the Dunn’s test (43). The p-values were adjusted for multiple testing using the Bonferroni 

correction. 

 

Calculation of the relative abundance of amino acids encoded by GC-rich codons for 212 

alphaproteobacterial genomes. The amino acids that are encoded by GC-rich codons were 

defined as those that have G or C in the first and second codon positions (alanine, arginine, 

glycine and proline). For each genome, the amino acid frequencies were calculated for the 

pooled set of proteins encoded by genes in the GTA region, as well as for the pooled set of 

proteins encoded by all genes in a genome. The significance of the difference in relative 

abundances of the 4 amino acids encoded by GC-rich codons in the two sets was assessed using 

the Student’s t-test. 

 

Calculation of carbon content and biosynthetic cost of amino acids in the encoded proteins. 

Because differences in the carbon-content of amino acids are determined solely by the 
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composition of their side chains, for each amino acid sequence encoded by a GTA gene (or its 

viral homolog), the number of carbons in the side chains of the amino acids was counted and 

normalized by the length of the encoded polypeptide. Additionally, for each amino acid sequence 

encoded by a GTA gene (or its viral homolog), the average biosynthetic cost of protein 

production per amino acid, defined as the number of high-energy phosphate bonds needed to 

produce a particular amino acid, was calculated. Because almost all of the 212 

alphaproteobacteria containing the GTA regions are either obligate or facultative aerobes, the 

individual costs of amino acid production already computed for Escherichia coli by Akashi and 

Gojobori (44) were used. The significance of the differences in the carbon utilization and 

biosynthetic cost between GTA proteins and viral homologs was assessed using the Mann-

Whitney U test, followed by the Bonferroni correction of p-values to account for multiple 

testing. 

 

Verification of amino acid biosynthesis pathways in the alphaproteobacterial genomes. 

Presence of the amino acid biosynthesis pathways in the genomes was evaluated using the 

KEGG database release 92 (45). For 189 of the 212 alphaproteobacteria, either its own genome 

(186 genomes) or the genome of a close relative (ANI > 95%; 3 genomes) were examined. For 

the remaining 23 genomes, no information from the closely related genomes was available in 

KEGG. For each of the 189 genomes, the map of amino acid biosynthesis (map number = 01230) 

was examined for completeness. If key enzymes were missing, additional maps (map number = 

00250 – 00400) were evaluated to identify alternative enzymes that could catalyze the same 

reactions. If alternative enzymes were not found, Escherichia coli homologs that catalyze the 
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missing steps were used as queries for a BLASTP search of the genome (version 2.6.0, e-value 

0.001, query coverage of at least 50%) and the RefSeq annotations of the obtained matches were 

examined. If a complete biosynthetic pathway of an amino acid could not be reconstructed, the 

genome was designated as “auxotrophic” for the biosynthesis of the given amino acid. 

 

Exclusion of divergent viral homologs. To minimize possible misplacement of viral homologs 

due to long branch attraction, we have identified and excluded divergent viral homologs using 

the following procedure. Amino acid sequences of GTA genes and their viral homologs were 

aligned using MAFFT v 7.305 with the ‘auto’ setting (46). Phylogenetic trees from individual 

gene alignments were reconstructed in the IQ-TREE v 1.6.7 (47) using the best substitution 

model detected by ModelFinder (48). The obtained trees were used as guides for the 

reconstruction of more accurate trees, using the profile mixture model “LG+C60+F+G” and the 

site-specific frequency models that were approximated by the posterior mean site frequency (49), 

as implemented in IQ-TREE. 

To exclude viral homologs that are not closely related to GTA genes, only viral homologs 

nested within the taxonomic rank of alphaproteobacterial order with ultrafast bootstrap support 

>= 60% (1,000 pseudoreplicates; (50)) were retained. Because, for genes g3, g4 and g8, large 

numbers of viral homologs were retained, only top 5 non-identical viral proteins most closely 

related to the alphaproteobacterial homologs were kept. The retained viral homologs were 

realigned with the GTA genes, and the phylogenetic trees were reconstructed and examined as 

described above. The process was repeated until all retained viral homologs grouped within 

alphaproteobacterial orders. 
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Reconstruction of ancestral amino acid sequences. Amino acid sequences of the ancestral 

nodes of the reconstructed phylogenetic trees were reconstructed using FastML v 3.11 (51). 

Indels in the ancestral sequences were inferred using the maximum likelihood and probability 

cutoff of 0.5. Ancestral amino acid states of non-gapped states were determined using marginal 

reconstruction under LG substitution matrix (52), with heterogeneity in substitution rates among 

sites modeled using Gamma distribution (53).  

 

Reconstruction of the alphaproteobacterial reference phylogeny. In each of the 212 genomes 

containing GTA regions, 31 phylogenetic markers were detected and retrieved using 

AMPHORA2 (54). Amino acid sequences of these markers were aligned using MAFFT v 7.305 

with the ‘auto’ setting (46). The best substitution matrix for each gene was determined using the 

ProteinModelSelection.pl script obtained from https://github.com/stamatak/standard-

RAxML/tree/master/usefulScripts (last accessed November 2019). The individual gene 

alignments were concatenated, and each gene was treated as a separate partition (55) in the 

subsequent phylogenetic reconstruction. The maximum likelihood tree was reconstructed by the 

IQ-TREE v 1.6.7 (47), and Gamma distribution with four categories was used to account for 

heterogeneity in substitution rates among sites (53). Although no outgroup sequences were 

included into the alignment, for presentation purposes, the tree was rooted to reflect the 

branching of Alphaproteobacteria as previously observed (11). 

 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 8, 2020. ; https://doi.org/10.1101/2020.05.06.081315doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.06.081315
http://creativecommons.org/licenses/by-nd/4.0/


 

 

19 

 

Retrieval of selected single-copy and highly-expressed genes. Twenty-six of the 120 

phylogenetically informative genes (56) were found to be present in a single copy in all 212 

genomes (SI Table S2). The 26 genes were extracted from each genome using hmmersearch v 

3.1b2 via modified scripts from AMPHORA2 (54). The functional annotations of the 26 genes 

were examined using the eggNOG-mapper (57) based on the eggNOG orthology database v. 4.5 

(58). Twenty of the 26 genes belong to the [J] COG category (“Translation, ribosomal structure 

and biogenesis”) and therefore were designated “highly-expressed” genes. 

 

Calculation of carbon utilization in extant and ancestral GTA genes. The relative carbon 

utilization of each extant protein encoded by a GTA gene was defined as the ratio of the average 

number of carbon atoms per site to that of the 26 single-copy genes. To calculate carbon 

utilization for the ancestral states, amino acid sequences of 14 GTA proteins with at least one 

viral homolog were aligned by MAFFT v 7.305 with the “auto” setting (46), and phylogenetic 

trees were reconstructed using IQ-TREE v 1.6.7 (47) using the best substitution model detected 

with ModelFinder (48). Using reconstructed phylogenies and carbon utilization data for extant 

proteins, carbon utilization at the internal nodes was inferred using the marginal maximum 

likelihood reconstruction, as implemented in the phytools package (59). The change of carbon 

utilization along the tree branches was deduced via equation 2 of Felsenstein (60), also as 

implemented in the phytools package (59). 

 To assess the significance in the increase of carbon content of the selected viral proteins 

in comparison to their inferred ancestral protein, for each of the seven GTA genes with such viral 

homologs, amino acid sequences of these extant viruses and their closest inferred ancestral 
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sequence were retrieved and aligned via MAFFT using “linsi” settings (46). For each gene 

alignment, 1000 bootstrap replicates were generated in RAxML v 8.2.11 (61). For each bootstrap 

replicate, the net change in the number of carbons per amino acid between the viral protein and 

the ancestral protein was calculated. The p-value was defined as the proportion of bootstrap 

replicates with a zero or negative net change in the number of carbons per amino acid. 

Additionally, the cumulative net change in the number of carbons per amino acid across all 7 

GTA proteins (Table 1) was calculated by adding up the net changes across individual genes. 

For genes with more than one viral homolog, the viral homolog with the smallest difference in 

the number of carbons per amino acid was selected to obtain a conservative estimate. The p-

values were calculated as they were for individual comparisons. 

 

Detection of positive selection on the branch leading to Sphingomonadales. Using the 

phylogenetic trees and amino acid sequence alignments of the GTA proteins (see “Calculation 

of carbon utilization states in contemporary and ancestral GTA genes” section), evidence of 

episodic events of positive selection in the Sphingomonadales clade was inferred under the 

branch site A model, as implemented in the codeml package of PAML version 4 (62). Codon 

alignments of nucleotide sequences were obtained using pal2nal (63). The branch lengths in the 

corresponding phylogenetic trees were re-estimated in PAML. Because g12 and g15 genes vary 

in length between Sphingomonadales and other alphaproteobacterial orders, codons that were 

present in less than 50% and 80% of sequences in g12 and g15 datasets, respectively, were 

removed. For the null model (no positive selection), ω2a and ω2b were fixed to 1, and the 

significance for the alternative model (positive selection) was tested using the likelihood ratio 

test with one degree of freedom and α of 0.01. P-values were adjusted for multiple testing using 
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the Bonferroni correction. A site was classified as being “under positive selection” if it had the 

probability of at least 0.95 in the Bayes Empirical Bayes estimation (64), and was present in at 

least of 50% of the Sphingomonadales branches and 50% of the remaining branches. 

 

Visualization of positively selected sites on the 3D model of capsomer. The amino acid 

sequences of the RcGTA genes were used in a BLASTP search (e-value < 0.01, low-complexity 

masking, and query coverage of at least 50%) against the PDB database (65) (last accessed 

November 2019). Only the g5 gene query returned significant matches to the PDB database. The 

amino acid sequence of the top-scoring match (PDB ID – 5TJT) was retrieved and aligned with 

the representative g5 homolog from Sphingomonadales (Sphingobium amiense DSM 16289) 

using the Needleman-Wunsch algorithm (66). Of the 12 sites classified as being under positive 

selection in the Sphingobium amiense DSM 16289 homolog, 2 sites did not have homologous 

positions in the 5TJT sequence. The remaining 10 sites were mapped onto the 5TJT PDB 

structure using PyMol version 2.3 (The PyMOL Molecular Graphics System, Version 2.0 

Schrödinger, LLC.) 

 

Data Availability 

List of accession numbers of 212 alphaproteobacterial genomes with GTA regions, amino acid 

sequences of identified GTA proteins in alphaproteobacteria and viruses, as well as sequence 

alignments and phylogenetic trees used in the described analyses have been deposited to 

FigShare under the doi: 10.6084/m9.figshare.12071223. 
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Figures and Tables 
 

Figure 1. The GC1-, GC2- and GC3-content of GTA regions, their immediate 

neighborhoods and all protein-coding genes in 212 alphaproteobacterial genomes. The 

neighborhoods immediately upstream and downstream of a GTA region consists of 17 genes 

each. Boxplots represent median values bounded by the first and third quartiles. Whiskers show 

the values that lie in the range of 1.5*interquartile rule. Dots outside of the whiskers are the 

outliers. 
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Figure 2. Carbon content (A) and biosynthetic cost (B) of proteins encoded by GTA genes 

in 212 alphaproteobacterial genomes and their viral homologs. Boxplots represent median 

values that are bounded by the first and third quartiles. Whiskers show the values that lie in the 

range of 1.5*interquartile rule. Dots outside of the whiskers are the outliers. The number of data 

points in each boxplot is listed in Table S1. 
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Figure 3. Carbon content of GTA proteins for four orders of the class Alphaproteobacteria. 

For each GTA protein, the heatmap visualizes the number of carbons per the side chain in amino 

acid averaged across taxonomic order. The numbers are shown either as raw values (panel A), or 

as values normalized by the carbon content of proteins encoded by 26 single-copy genes (panel 

B). The asterisks mark GTA proteins with significantly lower numbers of carbons per amino acid 

in the Sphingomonadales order than in the other three orders combined (α of 0.01; Mann-

Whitney U test, all p-values < 0.01). Boxplots summarize the distribution of carbon content 

within each alphaproteobacterial order averaged across the examined GTA genes. Median values 

are bounded by the first and third quartiles. Whiskers show the values that lie in the range of 

1.5*interquartile rule and dots outside of the whiskers are the outliers. The phylogenetic tree is 

the reference alphaproteobacterial phylogeny (see Materials and Methods for details), in which 

branches are collapsed at the taxonomic rank of order. Numbers at the tree nodes represent 

bootstrap support values. Scale bar, number of substitutions per site.  
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Table 1. Change in the carbon content between viral homologs of the GTA proteins and their 
closest GTA ancestral node. 

 
GTA 
gene 

Virus name Change in the 
number of 
carbons per 
side chain of 
an amino acid  

p-value Alignment 
length 

g6 Cellulophaga phage phi10 1 +0.605 <0.001 193 

g7 Cellulophaga phage phi18 1 +0.394 0.001 147 
g7 Streptomyces phage phiSASD1 +0.167 0.179 147 

g7 Salmonella phage ST64B +0.222 0.048 147 
g7 Salmonella phage 118970 sal3 +0.229 0.042 147 
g7 Shigella phage SfIV +0.184 0.115 147 
g7 Enterobacteria phage SfV +0.244 0.083 147 
g7 Shigella phage SfII +0.191 0.107 147 
g10 Rhizobium phage 16-3 +0.105 0.271 123 

g12 Rhodobacter phage RcCronus +0.123 0.081 228 

g13 Paracoccus phage vB PmaS R3 +0.048 0.226 304 

g13 Dinoroseobacter phage vB DshS R5C +0.027 0.383 304 
g13 Roseobacter phage RDJL Phi 1 +0.005 0.447 304 
g13 Roseobacter phage RDJL Phi 2 +0.019 0.388 304 
g14 Rhodobacter phage RcRhea +0.191 0.108 166 
g15 Rhodobacter phage RcRhea +0.147 <0.001 1369 
g15 Rhodobacter phage RcCronus +0.143 <0.001 1369 
Cumulative across 7 genes +0.163 <0.001 2530 
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Table 2. Contribution of positively selected sites to the reduction of carbon utilization in GTA 
proteins of Sphingomonadales. 

 

  
GTA 
protein 

Number of sites 
under the positive 
selection 

Average change in 
number of carbons by 
the contribution of all 
sites under the positive 
selection 

Number of sites that 
contribute to the decrease 
in number of carbons 

g2 13 -0.22 6 
g3 33 -0.72 22 
g4 29 -0.42 13 
g5 12 -0.39 8 
g6 11 +0.16 5 
g9 29 -0.68 16 
g12 23 -0.52 13 
g13 31 -0.44 16 
g15 27 -0.55 15 
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Supplementary materials for this manuscript include the following: 

 Figures S1 to S6 

 Tables S1 to S5 

Movie S1 

Data in the FigShare repository at doi 10.6084/m9.figshare.12071223. 

 

Supplementary Figure Legends: 

Figure S1. The relative abundance of amino acids encoded by GC-rich codons in all 

proteins in 212 alphaproteobacterial genomes and in proteins from GTA regions. Boxplots 

represent median values that are bounded by the first and third quartiles. Whiskers show the 

values that lie in the range of 1.5*interquartile rule. Dots outside of the whiskers represent the 

outliers. 

Figure S2. The reference phylogeny of 212 analyzed alphaproteobacterial genomes and 

presence/absence of amino acid biosynthetic pathways in these genomes. The phylogenetic 

tree represents the reference phylogeny of the analyzed genomes (see Materials and Methods 

for details). The presence (in green) and absence (in blue) of amino acid biosynthetic pathways 

in a genome is shown next to the taxon name of the genome. For 23 genomes with pathway data 

shown in black, no pathway information was available in the KEGG database. Scale bar, number 

of substitutions per site. 
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Figure S3. Carbon content and GC content of proteins and genes, respectively, from GTAs 

and select viral homologs mapped onto phylogenetic trees. The carbon content per amino acid 

side chain and GC1-, GC2-content of the whole genomes are visualized in heatmaps. The 

branches leading to viral homologs are highlighted in red or green to depict the increase and 

decrease, respectively, in number of carbons in the viral homolog in comparison to the number 

of carbons in the ancestral state (located on the other end of the colored branch). The actual 

change in number of carbons is shown above the branches. The tree was rooted to correspond to 

the reference phylogeny (Figure S2). Scale bar, number of substitutions per site. GC content, in 

percent. Carbon content, in number of carbons per amino acid. 

Figure S4. The number of carbons and number of high-energy phosphates in proteins 

encoded by all protein-coding genes in 212 genomes, highly expressed genes, and GTA 

genes. Boxplots represent median values that are bounded by the first and third quartiles. 

Whiskers show the values that lie in the range of 1.5*interquartile rule. Dots outside of the 

whiskers are outliers. 

Figure S5. Change in relative carbon utilization during the evolutionary histories of GTA 

genes. Each tree represents the phylogeny of a GTA gene. The branches are colored to show the 

dynamics of change in carbon utilization along the branches, which was inferred using the 

ancestral state reconstruction (see Materials and Methods for details). The number in 

parentheses next to the protein name shows the protein length in the Rhodobacter capsulatus 

GTA. Relative carbon utilization is the ratio of the average number of carbons per amino acid in 

a GTA gene and in the 26 single-copy genes. Scale bar, number of substitutions per site. 
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Figure S6. The relative abundance of amino acids at sites that are inferred to be under the 

positive selection and contribute to the decrease in the carbon utilization in 

Sphingomonadales. For each GTA protein, the site number corresponds to the position of the 

site in the multiple sequence alignment. For each site, the height of an amino is proportional to 

its frequency in the site. Each amino acid is color-coded by the number of carbons in the side 

chain of the amino acid (see color legend). For each protein, the lower and upper panels 

correspond to the amino acid abundances in Sphingomonadales and in other three orders. Sites 

that reduce carbon utilization by more than 3 atoms are outlined with a red rectangle. Arrows 

indicate sites that were discussed in Results. 

 

Supplementary Table Captions: 

Table S1. The number of detected GTA genes in 212 alphaproteobacterial genomes and viruses 

from the RefSeq database. 

Table S2. Functional annotations of 26 single-copy genes that were used to calculate the 

normalized carbon utilization value.  

Table S3. The likelihood ratio test for the branch site A model. 

Table S4. The average number of carbons per amino acid side chain in Sphigomonadales and 

three other orders combined together. 

Table S5. Contribution of sites under the positive selection to the carbon utilization in 

Sphingomonadales’ GTA genes. 
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Supplementary Movie Caption: 

Movie S1. Visualization of the inferred positively selected sites in Sphingomonadales on a 

3D structural model of the T5 bacteriophage major capsid protein. The hexamer structure is 

shown in green as a cartoon of secondary structure elements. Atoms of the amino acids that are 

inferred to be under the positive selection in Sphingomonadales are highlighted as pink spheres. 

The structure is rotated to facilitate visualization of the position of the positively selected amino 

acids. 
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