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Summary1

Although the role of evolutionary processes in cancer progression is widely accepted, increasing attention2

is being given to evolutionary mechanisms that can lead to differences in clinical outcome. Recent studies3

suggest that the temporal order in which somatic mutations accumulate during cancer progression is im-4

portant. Single-cell sequencing provides a unique opportunity to examine the mutation order during cancer5

progression. However, the errors associated with single-cell sequencing complicate this task. We propose a6

new method for inferring the order in which somatic mutations arise within a tumor using noisy single-cell7

sequencing data that incorporates the errors that arise from the data collection process. Using simulation, we8
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2 Y. Gao et al.

show that our method outperforms existing methods for identifying mutation order in most cases, especially9

when the number of cells is large. Our method also provides a means to quantify the uncertainty in the10

inferred mutation order along a fixed phylogeny. We apply our method to empirical data for colorectal and11

prostate cancer.12

Key words: Bayesian inference; Cancer evolution; Error effects quantification; Mutation order; Single-cell sequencing.13

1. Introduction14

Cancer progression is a dynamic evolutionary process that occurs among the individual cells within each15

patient’s tumor. Cancer develops from a single cell in normal tissue whose genetic alterations endow a growth16

advantage over the surrounding cells, allowing that cell to replicate and to expand, resulting in the formation17

of a clonal population of identical cells. Cells within this clonal population may then undergo their own18

somatic mutations, followed by replication and formation of subclones. During this complex process, many19

competitive and genetically diverse subpopulations may be formed, resulting in intratumoral heterogeneity20

(ITH) depicted in Fig. 1(a) (O’Sullivan and others, 2003; Ishwaran and others, 2009; Jamal-Hanjani and21

others, 2017; Ascolani and Liò, 2019). Ortmann and others (2015) demonstrate that the type of malignancy22

and the response to treatment of myeloproliferative neoplasm patients are affected by the order in which23

somatic mutations arose within the patients’ tumors. Though this study is specific to one type of cancer,24

the timing and organization of somatic mutations are crucial to clinical outcomes for other cancers as well.25

Determining the temporal order of mutations required for tumor progression is thus critical, especially in26

the field of targeted therapeutics. However, this information cannot be observed directly, since genomic data27

is most often collected at one snapshot in time. Consequently, use of computational methods that infer the28

order of mutations from DNA sequence data is the approach of choice.29

Most studies on cancer phylogenetics utilize bulk high-throughput sequencing data, but signals from30

bulk sequencing only reflect the overall characteristics of a population of sequenced cells, rather than the31

characteristics of individual cells. Variation in the mutational signatures among different cells in a tumor is32

thus difficult to evaluate from bulk sequencing data. Single-cell sequencing (SCS) data is promising because33

it enables sequencing of individual cells, thus providing the highest possible resolution available on the34

mutational history of cancer. However, the high error probabilities associated with SCS data complicate the35
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Bayesian inference of mutation order 3

development of methods for inference of the mutational history. The whole-genome amplification (WGA)36

process used to produce SCS data results in a variety of errors, including allelic dropout (ADO) errors, false37

positives (FP), non-uniform coverage distribution, and low coverage regions. ADO contributes a considerable38

number of false negatives (FN) in point mutations (Navin, 2014).39

Recently, several studies have proposed various mathematical methods to infer mutation order (Fig. 1(c)40

- Fig. 1(e)) from data arising from single-cell somatic mutations. Of particular interest are the methods of41

Jahn and others (2016) and Zafar and others (2017), called SCITE and SiFit, respectively. SiFit uses an42

MCMC approach as a heuristic to find the maximum likelihood tree from imperfect SCS data. Based on the43

inferred tumor phylogenetic tree, SiFit estimates the mutation order by estimating the most likely mutation44

status of the tips and the internal nodes using a dynamic programming algorithm. Although both SCITE and45

SiFit by default output only the order of the mutations, both can be used to account for uncertainty in the46

inferred order. For example, because SCITE uses an MCMC algorithm for inference, the posterior probability47

associated with various mutation orders can be obtained by examining the frequency with which these orders48

are sampled by the MCMC algorithm. Similarly, the authors of SiFit recently developed a method called49

SiCloneFit (Zafar and others, 2019) that utilizes MCMC to sample trees, and thus the algorithm from SiFit50

for inferring mutation order on a fixed tree could be applied to a posterior sample of trees to measure the51

uncertainty in the mutation order that results from uncertainty in the true tumor phylogeny.52

In this paper, we propose a novel method for inferring the order in which mutations arise within an53

individual tumor given SCS data from the tumor at a single time point. Our approach utilizes models for54

both the mutational process within the tumor and the errors that arise during SCS data collection in a55

Bayesian framework, thus allowing us to quantify the uncertainty in the inferred mutation orders along56

a fixed tumor phylogeny. Our approach thus represents a conceptually distinct and practically important57

extension of earlier methods.58

2. Methods59

We assume that we are given a phylogenetic tree with branch lengths that displays the evolutionary rela-60

tionships among a sample of J cells within a tumor. To infer the locations (branches) on which a set of61

somatic mutations are acquired in the tree, we need to model the evolutionary process of the somatic mu-62
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tations and quantify the technical errors that arise from the SCS data collection process. We assume that63

during the evolutionary process, somatic mutations evolve independently across sites, and each mutation64

evolves independently on different branches. We also assume that each somatic mutation occurs once along65

the phylogeny and that no back mutation occurs, so that all descendant cells linked by the mutation branch66

will harbor the corresponding mutation. When quantifying the effect of errors, we assume that SCS technical67

errors for mutations are independent of one another.68

2.1 Notation and terminology69

Consider somatic mutations of interest at I loci across the genome for a sample of J single cells. The J70

single cells are sampled from different spatial locations (clones) within the tumor. The mutation data can71

be either binary or ternary. For binary data, 0 denotes the absence of mutation and 1 means that mutation72

is present, while for ternary data, 0, 1 and 2 represent the homozygous reference (normal), heterozygous73

(mutation present) and homozygous non-reference (mutation present) genotypes, respectively.74

The I somatic mutations evolve along the tumor evolutionary tree T . Each tip in T represents one single75

cell Cj , where j = 1, . . . , J . Let C = {C1, . . . , CJ} be the set of the J single cells under comparison. T = (T, t)76

includes two parts: the tree topology T and a vector of branch lengths t. The tree topology T = (V,E) is77

a connected graph without cycles and is composed of nodes and branches, where V is the set of nodes and78

E is the set of branches. Trees are rooted, and the root r represents the common ancestor (a normal cell79

without somatic mutations) for all the single cells under comparison. In the context of this paper, all the80

definitions in the following sections will apply to rooted bifurcating trees. There are 2J − 2 branches in a81

rooted bifurcating tree with J tips, i.e., E = {e1, e2, . . . , e2J−2}. Let v and w be two nodes in the node set V82

that are connected by the branch x in the branch set E (i.e., x = {v, w}: v is the immediate ancestor node of83

w, and x connects v and w). Then the set Ux(w), which includes the node w and all nodes descended from84

w in T , is called the clade induced by w. The branch x connects the ancestor node v and the clade induced85

by w, and we define branch x as the ancestor branch of clade Ux(w). Ex(w) is a subset of E that includes86

branches connecting nodes in Ux(w), and Cx(w) are the tips in Ux(w).87

Let Gij denote the true genotype for the ith genomic site of cell Cj . The ith genomic site will then have88

a vector Gi ∈ {0, 1}J (for binary data) or {0, 1, 2}J (for ternary data) representing its true genotype for all89
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Bayesian inference of mutation order 5

the J cells represented by the tips in the tree, where i = 1, . . . , I. Let Sij denote the observed data for the90

ith genomic site of cell Cj . Due to the technical errors associated with SCS sequencing, the observed data91

Sij does not always equal the true genotype Gij . For both binary and ternary data, the observed state Sij92

might be flipped with respect to the true mutation Gij due to FP or FN. Missing states (“-”) or low-quality93

states (“?”) may be present for some genomic sites, as well. Fig. 2 shows an example of true and observed94

binary genotype data for the mutations in Fig. 1. In Fig. 2, the observed state is highlighted in red color95

if it is not consistent with the true genotype. The red numbers are those mutations with flipped observed96

mutation states relative to the true mutation states. The red dash (“-”) indicates a missing value and the red97

question mark (“?”) represents a low-quality value.98

Mathematically, we represent the observed mutation states of the J single cells at I different genomic99

sites by an I × J mutation matrix S for convenience,100

S =


S1

S2

...
SI

 =


S11 . . . S1J

S21 . . . S2J

...
. . .

...
SI1 . . . SIJ

 · (2.1)

Each entry (i, j) denotes the state observed for mutation i in cell Cj , so Si gives the observed data for genomic101

site i as a vector with J values corresponding to the J single cells. Column j represents the mutations of102

interest for cell Cj . In T , let B be the vector of locations (branches) on which the I mutations occur, i.e.,103

B = {B1, . . . , BI}, where Bi is the branch on which mutation i is acquired. Note that Bi takes values in104

{e1, e2, . . . , e2J−2}.105

2.2 Somatic mutation process106

To model the somatic mutation process, we consider continuous-time Markov processes, which we specify by107

assigning a rate to each possible transition between states. We consider point mutations. Once a mutation i108

is acquired on a branch x ∈ E, all the branches in the set Ex(w) will harbor mutation i but those branches109

in the set E\(x ∪ Ex(w)) will not carry this mutation. Specification of the rates of mutation among states110

allows for flexibility in the modeling procedure.111

2.2.1 Binary genotype data For binary genotype data, the mutation process can be modeled by the112

2× 2 instantaneous rate matrix113
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Qλ =


0 1

0 −λ λ

1 0 0

, (2.2)

where λ denotes the instantaneous transition rate per genomic site. The transition probability matrix P (t)114

along a branch of length t is then computed by matrix exponentiation of the product of Qλ and the branch115

length t, which gives116

P (t) =


0 1

0 P00(t) P01(t)

1 P10(t) P11(t)

 =


0 1

0 exp (−λt) 1− exp (−λt)

1 0 1

· (2.3)

Note that P01(t) is the probability that mutation i is acquired along a branch of length t. Under this117

model and recalling that each mutation evolves independently along different branches in T , the marginal118

probability that mutation i is acquired on branch x ∈ E, denoted by P (Bi = x|T ,Qλ), is thus given by119

P (Bi = x|T ,Qλ) =

[∏
B∈[E\(x∪Ex(w))] P00(tB)

]
P01(tx)

[∏
B∈Ex(w) P11(tB)

]
∑
z∈E

([∏
B∈[E\(z∪Ez(h))] P00(tB)

]
P01(tz)

[∏
B∈Ez(h) P11(tB)

]) , (2.4)

where tB is length of branch B. In the numerator, the first term is a product of probabilities over all branches120

without the mutation, the second term is the probability that the mutation is acquired on branch x, and the121

third term is a product of probabilities over all branches with the mutation, i.e., all branches in Ex(w). The122

denominator is needed to create a valid probability distribution over all possible branches, and is obtained123

by summing the numerator over all valid branches z ∈ E. The P (Bi = x|T ,Qλ) term is normalized by the124

denominator because we exclude two possible outcomes: a mutation is not acquired on any branch in T , or125

a mutation is acquired more than once on different branches in T .126

As an example, Fig. 3 depicts the observed and true binary genotype for mutation i = 1 shown in127

Fig. 2. The set of branches is E = {e1, . . . , e8} and the corresponding set of branch lengths would be128

t = {t1, . . . , t8}. If mutation i is acquired on branch e1, the cell descending along branch e8 will not carry129

the mutation, while those descending from the blue branches would carry this mutation. The marginal130

probability that mutation i = 1 is acquired on branch e1 would be proportional to its numerator, i.e.,131

P (B1 = e1|T ,Qλ) ∝ P00(t8)P01(t1)[P11(t2)P11(t3)P11(t4)P11(t5)P11(t6)P11(t7)].132
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2.2.2 Ternary genotype data The mutation model for ternary data is complex and includes three pos-133

sible ways that mutation i originates on a branch x in T :134

1. The status of mutation i transitions from 0→ 1 on a branch x and there is no further mutation at this135

genomic site in T .136

2. The status of mutation i transitions directly from 0→ 2 on a branch x in T .137

3. The status of mutation i transitions from 0 → 1 on a branch x and then transitions from 1 → 2 on a138

branch y ∈ Ex(w) in T .139

We let Bi be the location at which mutation i originates, B0→1
i would be the branch on which mutation140

status transitions from 0 to 1, B0→2
i is the branch on which mutation status transitions from 0 to 2, and141

B1→2
i is the branch on which mutation status transitions from 1 to 2. If the mutation i occurs on branch x,142

all cells belonging to Cx(w) will carry 1 or 2 mutations. In other words, Gij = 1 or 2 for all Cj ∈ Cx(w) and143

Gij = 0 for all Cj ∈ C\Cx(w). We define the instantaneous rate matrix Qλ as144

Qλ =



0 1 2

0 −(λ1 + λ1λ2) λ1 λ1λ2

1 0 −λ2 λ2

2 0 0 0

, (2.5)

where λ1 and λ2 denote the instantaneous transition rate per genomic site of the transitions 0 → 1 and145

1 → 2, respectively. Studies have provided evidence that direct mutation of 0 → 2 at rate λ1λ2 is possible146

in principle, although it is extremely rare (Iwasa and others, 2004). If λ2 is 0 in Expression (2.5), the model147

will be reduced to the infinite sites diploid model. The transition probability matrix P (t) = exp(Qλt) is then148

given by149

P (t) =



0 1 2

0 exp (−(λ1 + λ1λ2)t)
λ1(exp (−(λ1+λ1λ2)t)−exp (−λ2t))

λ2−(λ1+λ1λ2)
(λ1λ2−λ2) exp (−(λ1+λ1λ2)t)+λ1 exp (−λ2t)

λ2−(λ1+λ1λ2)
+ 1

1 0 exp (−λ2t) 1− exp (−λ2t)

2 0 0 1


·

(2.6)

The marginal probability that mutation i originates on branch x ∈ E for these three possible conditions is150

thus given by151
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P (B0→1
i = x|T ,Qλ) =

Q(B0→1
i = x)∑

z1∈E [Q(B0→1
i = z1) +Q(B0→2

i = z1) +
∑
z2
Q(B0→1

i = z1, B1→2
i = z2)]

, (2.7)

P (B0→2
i = x|T ,Qλ) =

Q(B0→2
i = x)∑

z1∈E [Q(B0→1
i = z1) +Q(B0→2

i = z1) +
∑
z2
Q(B0→1

i = z1, B1→2
i = z2)]

, (2.8)

P (B0→1
i = x,B1→2

i =y|T ,Qλ) =

Q(B0→1
i = x,B1→2

i = y)∑
z1∈E [Q(B0→1

i = z1) +Q(B0→2
i = z2) +

∑
z2
Q(B0→1

i = z1, B1→2
i = z2)]

,
(2.9)

where152

Q(B0→1
i = x) =

 ∏
B∈[E\(x∪Ex(w))]

P00(tB)

P01(tx)

 ∏
B∈Ex(w)

P11(tB)

 , (2.10)

153

Q(B0→2
i = x) =

 ∏
B∈[E\(x∪Ex(w))]

P00(tB)

P02(tx)

 ∏
B∈Ex(w)

P22(tB)

 , (2.11)

154

Q(B0→1
i = x,B1→2

i = y) =

 ∏
B∈[E\(x∪Ex(w))]

P00(tB)

P01(tx) ∏
B∈[Ex(w)\(y∪Ey(b))]

P11(tB)


P12(ty)

 ∏
B∈Ey(b)

P22(tB)

 ·
(2.12)

As for binary data, we normalize the marginal probabilities to exclude scenarios in which mutations are155

acquired more than once or in which mutations are not acquired in T . As an example, Fig. S1 in the156

Supplementary Material depicts the same mutation as in Fig. 3, but considers ternary data, leading to the157

following:158

1. The marginal probability that mutation i transitions from 0→ 1 on branch e1 is P (B0→1
i = e1|T ,Qλ) ∝159

P00(t8)P01(t1)[P11(t2)P11(t3)P11(t4)P11(t5)P11(t6)P11(t7)].160

2. The marginal probability that mutation i transitions from 0→ 2 on branch e1 is P (B0→2
i = e1|T ,Qλ) ∝161

P00(t8)P02(t1)[P22(t2)P22(t3)P22(t4)P22(t5)P22(t6)P22(t7)].162

3. The marginal probability that mutation i transitions from 0 → 1 on e1, and from 1 → 2 on e3 is163

P (B0→1
i = e1, B

1→2
i = e3|T ,Qλ) ∝ P00(t8)P01(t1)P11(t2)P12(t3)P22(t4)P22(t5)P22(t6)P22(t7).164
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The probability P (B0→1
i = e1, B

1→2
i = e3|T ,Qλ) is the marginal probability that two mutations at the same165

locus along the genome mutate on two branches e1 and e3, respectively. After the first mutation occurs on166

branch e1, the second mutation can occur on any branch except e1 and e8.167

2.3 Quantification of SCS errors168

To account for FPs and FNs in the observed SCS data, our method applies the error model for binary and169

ternary data from Kim and Simon (2014), Jahn and others (2016), and Zafar and others (2017). Let αij be170

the probability of a false positive error and βij be the probability of a false negative error for genomic site i171

of cell Cj .172

For binary data, if the true genotype is 0, we may observe a 1, which is a false positive error. If the173

true genotype is 1, we may observe a 0, which is a false negative error. The conditional probabilities of the174

observed data given the true genotype at genomic site i of cell Cj are175

Nij =


Sij = 0 Sij = 1

Gij = 0 1− αij αij

Gij = 1 βij 1− βij

, (2.13)

where Nij
01 = P (Sij = 1|Gij = 0) = αij , and other entries are defined similarly. Under the assumption that176

sequencing errors are independent, if mutation i is acquired on branch x, we can precisely quantify the effect177

of SCS technical errors for mutation i as178

P (Si|Bi = x, T ,Ni) =
J∏
j=1

P (Sij |Gij), (2.14)

whereNi = {Ni1, . . . ,NiJ}. Using the example in Fig. 3, the error probability of the observed genotype condi-179

tioning on the mutation i = 1 occurring on branch e1 would be P (S1|B1 = e1, T ,N1) = N11
11N

12
10N

13
11N

14
10N

15
00,180

where N1 = {N11, . . . ,N15} for this binary data example.181

For ternary data, the conditional probabilities of the observed data given the true genotype are given by182

Nij =



Sij = 0 Sij = 1 Sij = 2

Gij = 0 1− αij − αijβij/2 αij αijβij/2

Gij = 1 βij/2 1− βij βij/2

Gij = 2 0 0 1

, (2.15)

where Nij
01 = P (Sij = 1|Gij = 0) = αij , and the other entries are defined similarly. Under the same assump-183
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tions as for binary genotype data, we can precisely quantify the effect of SCS technical errors as in Equation184

(2.14) if mutation i is acquired on branch x. Using the example in Fig. S1 in the Supplementary Material,185

the error probabilities for the three possible ways that mutation i = 1 may arise on branch e1 are186

1. The error probability under the condition that the true mutation transitions from 0→ 1 on branch e1187

is P (S1|B0→1
i = e1, T ,N1) = N11

12N
12
10N

13
11N

14
10N

15
00.188

2. The error probability under the condition that the true mutation transitions from 0→ 2 on branch e1189

is P (S1|B0→2
i = e1, T ,N1) = N11

22N
12
20N

13
21N

14
20N

15
00.190

3. The error probability under the condition that the true mutation transitions from 0→ 1 on branch e1,191

and transitions from 1→ 2 on branch e3 is P (S1|B0→1
i = e1, B

1→2
i = e3, T ,N1) = N11

12N
12
20N

13
21N

14
20N

15
00.192

And N1 = {N11, . . . ,N15} for this ternary data example. The term P (S1|B0→1
i = e1, B

1→2
i = e3, T ,N1)193

gives the error probability for the case in which the two mutations at the same locus occur on branches e1194

and e3.195

2.4 Missing and low-quality data196

In real data, missing and low-quality states are observed and must be taken into account. For each mutation197

i, we exclude cells with missing states, and a subtree Ti from T is extracted. The number of tips Ji in subtree198

Ti is less than or equal to J . Let Ei be the set of branches in subtree Ti. The probability that mutation199

i occurs on branch x is then given by P (Bi = x|T ,Qλ) = P (Bi = x|Ti,Qλ), where P (Bi = x|Ti,Qλ) is200

computed based on branches in the subtree Ti, and P (Bi = x|Ti,Qλ) is 0 for those branches x ∈ E\Ei. We201

quantify the effect of the SCS technical errors as202

P (Si|Bi = x, T ,Ni) =

Ji∏
j=1

(∑
Sijk

wijkP (Sijk|Gijk)
)
, (2.16)

where wijk is the weight for each possible genotype state at a mutation site. For a site with an observed203

state that is not missing or ambiguous, wijk is 1 for the observed state and 0 for all other states. For204

an ambiguous site, we can assign equal weight for each possible state, or we can assign weight based on205

sequencing information or other biological characteristics.206

2.5 Inferring the location of a mutation in T207

Once the observed status matrix S = [S1 . . .SI ]
T of the I mutations has been collected, the next step is to208

infer the branch on which mutation i takes place, conditioning on S. Given the observed data matrix S, the209
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tumor phylogenetic tree T , the error probability matrix N = {Nij |1 6 i 6 I, 1 6 j 6 J}, and the mutation210

process Qλ, we can assign a posterior probability distribution P (Bi|S, T ,N,Qλ) to the location of mutation211

i using Bayes’ Theorem,212

P (Bi = x|S, T ,N,Qλ) =
P (Si|Bi = x, Ti,Ni)P (Bi = x|Ti,Qλ)

P (Si|Ti,Ni,Qλ)
· (2.17)

For mutation i, P (Bi = x|Si, Ti,Ni,Qλ) is computed for all x in set Ei. For example, there are 8 branches in213

the tree in Fig. 3, so the branch on which mutation i = 1 occurs, B1, can be any of the 8 branches. For the214

binary example, the posterior probability that mutation i = 1 occurs on e1 is P (B1 = e1|S1, T1,N1,Qλ) ∝215

P00(t8)P01(t1)[P11(t2)P11(t3)P11(t4)P11(t5)P11(t6)P11(t7)] · N11
11N

12
10N

13
11N

14
10N

15
00. In this way, the posterior216

probability that the mutation occurs on each of the 8 branches can be computed, giving the probability217

distribution for the location of mutation i = 1, i.e. P (B1 = x|S1, T1,N1,Qλ) for x ∈ {e1, . . . , e8}.218

To summarize this probability distribution, we construct a (1− θ)× 100% credible set for the location of219

mutation i as follows. First, the branches are ranked by their posterior probabilities, and then branches are220

added to the credible set in the order of decreasing posterior probability until the sum of their probabilities221

reaches (1 − θ). The number of branches in the credible set is informative about the level of certainty222

associated with the inferred location for the mutation. To obtain a point estimate, we pick the branch that223

maximizes the posterior probability, i.e., the maximum a posteriori (MAP) estimate. The MAP estimator224

for the location of mutation i is given by225

B̂iMAP
= argmax
Bi∈{e1,...,e2J−2}

P (Bi|Si, T ,Ni,Qλ)· (2.18)

For the example in Fig. 3, the branch with the largest posterior probability is B̂1MAP
for mutation i = 1.226

2.6 Inferring the mutation order in T227

We now consider the joint posterior probability distribution of the locations for the I mutations in the228

sample of J single cells, which is a distribution on a set of cardinality (2J − 2)I . Based on the assumption229

of independence among the I mutations being considered, the posterior distribution for B is given by230

P (B|S, T ,N,Qλ) =
I∏
i=1

P (Bi|Si, T ,Ni,Qλ), (2.19)

where Ni = {Ni1, . . . ,NiJ}. From this distribution, we can extract information on the ordering of mutations231

of interest. For example, if we are interested in the order of mutation i = 1 and mutation i = 2 in Fig. 2,232
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the joint posterior probability distribution that mutation i = 1 occurs on branch x ∈ E and mutation i = 2233

occurs on branch y ∈ E can be used to find the probability that mutation i = 1 occurs earlier in the tree than234

mutation y. Note that PB1=x,B2=y = P (B1 = x,B2 = y|S, T ,N,Qλ) = P (B1 = x|S, T ,N,Qλ) · P (B2 =235

y|S, T ,N,Qλ). This joint distribution can be represented in a matrix given by236



B1 = e1 B1 = e2 . . . B1 = e8

B2 = e1 PB1=e1,B2=e1 PB1=e2,B2=e1 . . . PB1=e8,B2=e1

B2 = e2 PB1=e1,B2=e2 PB1=e2,B2=e2 . . . PB1=e8,B2=e2

...
...

...
. . .

...

B2 = e8 PB1=e1,B2=e8 PB1=e2,B2=e8 . . . PB1=e8,B2=e8


·

Adding entries of the matrix for which branch e1 is earlier in the tree than branch e2 thus gives the probability237

that mutation 1 occurs before mutation 2. To measure the uncertainty of the ordering of the mutations, we238

rank all possible mutation orders by their posterior probabilities, and construct a (1 − θ) × 100% credible239

set by adding orders with decreasing probability until their sum exceeds 1− θ. The MAP estimator for the240

order of I mutations is thus given by241

B̂MAP = argmax
B∈{e1,...,e2J−2}I

P (B|S, T ,N,Qλ)· (2.20)

3. Simulation Study242

To evaluate the ability of our method, which we call MO (Mutation Order), to correctly identify the locations243

and the order of a set of mutations under different conditions, we conduct a series of simulation studies with244

data simulated under different assumptions. The goal is to assess the effect of data quality (complete or245

incomplete, high or low error probabilities), number of cells, branch lengths, number of mutations and type246

of genotype data on the performance of our method. We consider a total of 12 scenarios, with 100 replicates247

for each setting within each scenario. Scenarios 1 - 4 involve data generated under our model for either 10248

cells (scenarios 1 and 2) or 50 cells (scenarios 3 and 4) for either long branch lengths (scenarios 1 and 3) or249

short branch lengths (scenarios 2 and 4) data. Scenarios 5 - 8 consider data simulated under various models250

implemented in the CellCoal software (Posada, 2020). Scenarios 9 and 10 involve data generated under251

our model, but with mutations placed on branches with varying (rather than equal) probabilities. Finally,252

scenarios 11 and 12 consider data simulated under the finite sites assumption (all other simulation settings253

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 8, 2021. ; https://doi.org/10.1101/2020.05.06.081398doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.06.081398
http://creativecommons.org/licenses/by-nc-nd/4.0/


Bayesian inference of mutation order 13

used the infinite sites assumption). The methods used to simulate data under these different scenarios are254

described in detail in Sections A.1 to A.4 of the Supplementary Materials, and Section D of the Supplementary255

Materials provides information about computational requirements.256

3.1 Accuracy of MAP estimates257

We assess the accuracy of the MAP estimates in MO across the 100 trees within each simulation setting in258

several ways, including whether the mutation is inferred to occur on the correct branch (“location accuracy”),259

whether any pair of mutations are inferred to occur in the correct order (“order accuracy”), and whether a260

pair of mutations that occur on adjacent branches are inferred to occur in the correct order (“adjacent order261

accuracy”). In evaluating both the order accuracy and adjacent order accuracy, if two sequential mutations262

are inferred to occur on the same branch, then it is counted as ordering the mutations incorrectly. In addition,263

pairs of mutations that occur on the same branch are also included in the computation of order accuracy264

and adjacent order accuracy. The details of how the MAP estimates are assessed are given in Section B of265

the Supplementary Material. Tables 1 to 4 in the Supplementary Material show the location accuracy for266

scenarios 1 to 4 with each cell entry corresponding to a unique setting of α, β, type of genotype and missing267

data percentage. In most cases, the location accuracy of MO is high except when the error probabilities are268

high. Comparing the effect of the size of the tree (i.e., the number of cells), the accuracy of settings with269

50 cells (Tables 3 and 4) is as good as for settings with 10 cells (Tables 1 and 2) in most cases. When error270

probabilities are large, the accuracy of settings with 50 cells in Tables 3 and 4 are slightly lower than those271

with 10 cells in Tables 1 and 2. Within one table, the accuracy of MAP estimation with ternary genotype272

data tends to be higher than that of binary genotype data when fixing other parameters. With the same type273

of genotype and same error probability setting, the accuracy decreases as the percentage of missing values274

increases. When α (or β) is fixed, accuracy tends to decrease as β (or α) increases. Comparing Tables 1 and275

2, the accuracy of MAP estimation in Table 1 (each tree has 10 cells and longer branch lengths) tends to276

be slightly lower than that in Table 2 (each tree has 10 cells and shorter branch lengths) within the same277

setting with a few exceptions for large α and β, although the difference is very small. Comparing Tables 3278

and 4, the effects of branch lengths are flipped and the accuracy of MAP estimation in Table 3 tends to be279

higher than that in Table 4.280
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The results for order accuracy (Tables 5 to 8 in the Supplementary Material) and adjacent order accuracy281

(Tables 9 to 12 in the Supplementary Material) are similar. In addition to the same overall trends due to282

number of cells, data type, percentage of missing data and error probabilities, the magnitudes of the order283

accuracies are higher than the corresponding adjacent order accuracies.284

The results for location accuracy, order accuracy and adjacent order accuracy of MO in scenarios 5 to285

10 have similar patterns to those observed for scenarios 1 to 4. The accuracy in scenarios 5 to 10 is not286

affected by the number of mutations. In addition to the same overall trends due to the number of cells, type287

of genotype, missing data percentage and error probabilities, the magnitudes of the accuracies in scenarios288

5 to 10 are higher than the corresponding accuracies in scenarios 1 to 4. Especially when error probabilities289

are low, the accuracies can be as high as 99%.290

3.2 Credible set accuracy291

The credible set accuracy of the inferred mutation branch is assessed as well. If the true mutation branch292

is within the credible set, we count this as correct; otherwise, it is incorrect. We use 95% credible set for293

computation (Tables 13 to 16 in the Supplementary Material). The credible set accuracies have the same294

overall trends as the accuracies of MAP estimates due to the number of cells, type of genotype, missing295

data percentage and error probabilities, though the accuracies are much higher than for the corresponding296

MAP estimates, especially for settings with large error probabilities and higher missing data percentages.297

As for the MAP estimates, the overall trends for scenarios 5 to 10 are similar to scenarios 1 to 4, but the298

corresponding magnitudes of the accuracies in scenarios 5 to 10 are higher than those in scenarios 1 to 4.299

3.3 Comparison with competing approaches300

To further assess the performance of MO, we compare its performance with the methods SCITE (Jahn and301

others, 2016) and SiFit (Zafar and others, 2017) for the simulation data in scenarios 1 to 12. SCITE can302

estimate the order of mutations for either binary or ternary genotype data. We use the maximum likelihood303

mutation order inferred by SCITE with 1,000,000 iterations given the true error probabilities. SiFit can304

use either binary or ternary genotype data when inferring the phylogenetic tree, but it can only use binary305

genotype data when inferring mutation order. We estimate the most likely mutational profiles for the tips,306

the internal nodes, and the mutation locations by SiFit given the true phylogenetic tree, error probabilities307

and mutation rates. We then extract the mutation order information from the output. The three methods are308
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compared with respect to the order accuracy and adjacent order accuracy for the above simulation settings.309

3.3.1 Scenarios 1 to 4 Fig. 4 to Fig. 7 plot the order accuracy and the adjacent order accuracy for the310

three methods for scenarios 1 to 4, respectively. In each figure, the top row shows the results for binary data311

and the bottom row shows the results for ternary data. In each panel, different methods are highlighted with312

different colors.313

In scenarios 1 to 4, order accuracy and adjacent order accuracy show general decreasing trends as data314

quality becomes worse for all three methods. For results estimated from the trees with 10 cells (scenarios 1315

and 2), MO is comparable to SCITE in terms of order accuracy estimated from binary and ternary data.316

Only when both α and β are large does SCITE have higher order accuracy rates than MO. Comparing317

adjacent order accuracy when there are 10 cells in each tree, MO has comparable adjacent order accuracy318

when estimated from ternary data. MO has lower adjacent order accuracy than SCITE when estimated from319

binary data but the discrepancies of adjacent order accuracies between MO and SCITE are only 7% on320

average. When there are 50 cells in each tree (scenarios 3 and 4), MO is superior to SCITE in all settings321

in terms of order accuracy and adjacent order accuracy estimated from both binary and ternary genotype322

data. Specifically, the order accuracy for MO is 25% higher than SCITE on average, and the adjacent order323

accuracy for MO is 20% higher than SCITE on average. In all settings, SiFit has the worst performance since324

only a subset of the input mutations are inferred to occur on the tree. Although the output partial mutation325

orders from SiFit are mostly correct, the accuracy is low due to the small number of inferred mutation orders.326

MO thus dominates SiFit when assessing the performance using order accuracy and adjacent order accuracy.327

Comparing between settings with 10 cells and those with 50 cells, the performance of MO is consistently328

good, and the accuracy is slightly higher as the number of cells increases. SiFit performs better as the329

number of cells increases as well. However, the performance of SCITE becomes worse when the number of330

cells increases. Although the number of correct pairs inferred by SCITE increases, the accuracy decreases331

because the total number of true pairs increases.332

3.3.2 Scenarios 5 to 8 Fig. S2 and Fig. S3 in the Supplementary Material plot the order accuracy and333

adjacent order accuracy for scenarios 5 and 6, respectively. In scenarios 5 and 6 where mutations evolve by334

the infinite sites diploid model, order accuracy and adjacent order accuracy show general decreasing trends335

as data quality becomes worse for all three methods, as is observed for scenarios 1 to 4. MO is superior to336

SCITE in all settings in terms of adjacent order accuracy and order accuracy for both the complete and337
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missing data settings. In all the settings, SiFit has the worst performance with respect to order accuracy338

when there are 10 cells in each tree. However, SiFit has comparable adjacent order accuracy to SCITE when339

error probabilities are small. Similar to scenarios 1 to 4, only a proportion of mutations are inferred to occur340

on the tree. MO thus dominates SiFit in scenarios 5 and 6. In all settings for scenarios 5 and 6, the number341

of mutations and number of tips in the tree do not affect the order accuracy or adjacent order accuracy of342

MO and SiFit very much. However, the performance of SCITE is affected by the number of mutations. As343

the number of mutations increases, the accuracy of SCITE becomes worse. In addition, the adjacent order344

accuracy of SCITE increases as the number of cells increases.345

Fig. S4 and Fig. S5 in the Supplementary Material plot the order accuracy and the adjacent order accuracy346

for scenarios 7 and 8, respectively. In scenarios 7 and 8, mutations arise by the infinite sites diploid model,347

as was the case for scenarios 5 and 6, but now a small proportion of the mutations are lost. Compared to the348

complete settings in scenarios 5 and 6, the performance of all the three methods becomes worse. However,349

the performance of the three methods is comparable to settings with missing values in scenarios 5 and 6.350

In addition to the above comparisons, we also apply MO to data from scenarios 5 and 6 when transition351

rates are misspecified. Fig. S9 and Fig. S10 show the order accuracy and adjacent order accuracy when MO is352

applied with misspecified transition rates λ1 = 1 and λ2 = 105. In each panel, red, blue, and green correspond353

to MO, SCITE, and SiFit, respectively, when the true transition rates (λ1 = 1 and λ2 = 0) are used, as in354

the initial analysis in scenarios 5 and 6. Purple color corresponds to MO when the misspecified transition355

rates are used. The performance of SCITE is not affected by misspecified transition rates. Comparing the356

plots, we see that when binary data are used, the effect of misspecified transition rates are ignorable, and357

the accuracy with either the correct or the incorrect transition rates are nearly identical. However, when358

using ternary data, the differences are noticeable. In scenario 5, the order accuracy for MO with misspecified359

transition rates is comparable to SCITE when error probabilities are small and higher than SCITE when360

error probabilities are large. In scenario 6, the order accuracy inferred from ternary genotype data for MO361

with misspecified transition rates is lower than SCITE. Comparing the adjacent order accuracy with ternary362

data, the performance of MO with the misspecified transition rates is worse than when the transition rates363

are correctly specified in MO, but MO still performs better than SCITE.364
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3.3.3 Scenarios 9 to 10 In scenarios 9 and 10, mutations are simulated under the mutation process365

defined in Section 2.2. Although the transition rates are the same as in scenarios 1 to 4, each mutation is366

not equally likely to occur on all of the branches. In Fig. S6 and Fig. S7, we observe that MO has higher367

accuracy than SCITE and SiFit in all settings in terms of both order accuracy and adjacent order accuracy.368

3.3.4 Scenarios 11 to 12 In scenarios 11 and 12, mutations are simulated under the finite sites assump-369

tion. Because it is unclear how mutation order should be defined when mutations can arise multiple times370

along a phylogeny, we instead plot the location accuracy of MO and SiFit in Fig. S8. When there are only371

10 tips in the tree, most simulated mutations occur only once along the tree and MO has higher accuracy372

than SiFit. However, when there are 50 tips, most are back mutations and/or parallel mutations. SiFit per-373

forms better than MO when the data are complete and the missing percentage is low. When the missing374

percentage is high (e.g., 20%), neither MO nor SiFit identify the correct mutation location. MO is limited375

by its assumption that all mutations occur only once on the tree. Although SiFit can infer parallel/back376

mutations, it is not able to identify all the locations on which the mutations occur for the simulated data.377

4. Empirical examples378

We apply MO to two experimental single-cell DNA sequencing datasets, one for prostate cancer (Su and379

others, 2018) and one for metastatic colon cancer patients (Leung and others, 2017). For the prostate cancer380

dataset, we retrieve publicly available data from the single-cell study of Su and others (2018), which includes381

10 single-cell genomes for each patient. For the colon cancer dataset, we use the somatic single nucleotide382

variants (SNVs) after variant calling provided in the original study (16 SNVs for patient CRC1 and 36 SNVs383

for patient CRC2) of Leung and others (2017).384

4.1 Prostate cancer data385

4.1.1 Data analysis To infer tumor evolutionary trees for patients 1 and 2 (labeled P1 and P2), we386

use the SVDQuartets method of Chifman and Kubatko (2014) as implemented in PAUP* (Swofford, 1999)387

using the aligned DNA sequences for all somatic mutations as input with the expected rank of the flattening388

matrix set to 4. We specify the normal cell sample as the outgroup. We use the maximum likelihood method389

to estimate the branch lengths.390

We select common tumor suppressor genes and oncogenes for both P1 and P2 identified by Su and others391

(2018). In addition to these common cancer-associated genes across different cancers, we map mutations in392
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prostate cancer-specific genes (genes that are more commonly mutated in prostate cancer patients) suggested393

by Barbieri and others (2013) and Tate and others (2018). For both binary and ternary genotype data for394

these genes, we use MO to compute the posterior probability of mutation on each branch of the tumor395

phylogeny for each of the two patients. Su and others (2018) estimated the error probabilities to be (α, β) =396

(0·29, 0·02) for P1, and (α, β) = (0·31, 0·02) for P2. Although our method in Section 2 allows the assignment397

of varying error probabilities across genomic sites and cells, here we use same probabilities for all sites.398

To examine the effect of informativeness of the prior on the resulting inference, we consider two priors for399

each parameter with mean equal to the estimated error probability from the empirical data and with either400

a large or a small variance as described in Section C in the Supplementary Materials. For P1, we consider401

α|Si ∼ Beta(0·29, 0·71) (larger variance) and α|Si ∼ Beta(2·9, 7·1) (smaller variance). For P2, we consider402

α|Si ∼ Beta(0·31, 0·69) (larger variance) and α|Si ∼ Beta(3·1, 6·9) (smaller variance). For β for both P1403

and P2, we consider β|Si ∼ Beta(0·02, 0·98) (larger variance) and β|Si ∼ Beta(0·2, 9·8) (smaller variance).404

According to Iwasa and others (2004), the mutation rates for the first and second mutation are estimated405

to be λ1 = 10−7 and λ2 = 10−2, respectively. We use these values to specify the priors for the transition406

rates. Similar to the sequencing error parameter priors, we set two priors for each transition rate with equal407

means but different variances. The distribution of the transition rate λ1 (0→ 1 for ternary genotype) is set as408

λ1|Si ∼ Gamma(2, 5·0× 10−8) (larger variance) and λ1|Si ∼ Gamma(5, 2·0× 10−8) (smaller variance). The409

distribution of the transition rate λ2 (1 → 2 for ternary genotype) is set as λ2|Si ∼ Gamma(2, 5·0 × 10−3)410

(larger variance) and λ2|Si ∼ Gamma(5, 2·0 × 10−3) (smaller variance). The estimated probabilities of411

mutation do not vary substantially when the priors with larger or smaller variance are used for any of these412

parameters. The heatmaps of estimated probabilities with different priors (larger or smaller variance) are in413

the Supplementary Material.414

4.1.2 Results Fig. 8 and Fig. 9 show the tumor evolutionary tree estimated for P1 and P2, respectively.415

In both tumor trees, the trunk connects the tumor clone to the normal clone. We annotate the genes on their416

inferred mutation branches. The uncertainty in the inferred mutation locations is highlighted with colors.417

Mutations with strong signal (defined to be a probability larger than 0.7 that the mutation occurred on a418

single branch) are colored red, while mutations with moderate signal (defined to be a total probability larger419

than 0.7 on two or three branches) are colored blue.420
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We also compare the estimated posterior probability distributions for each mutation of common cancer-421

associated genes for patients P1 and P2, which are used to construct credible sets and to measure the422

uncertainty of the inferred mutation order. Fig. S11 to Fig. S14 in the Supplementary Material are heatmaps423

for the posterior probability distribution of each mutation for patients P1 and P2 with different priors (larger424

or smaller variance).425

Fig. 12 shows heatmaps of the estimated posterior probabilities for prostate cancer-specific genes when the426

variance of the prior distributions are large for P1 and P2. The corresponding heatmaps for the cases in which427

the prior distribution has small variance are shown in Fig. S15 and Fig. S16 in the Supplementary Material.428

In agreement with the results of Su et al. (2018), we find that TP53, a mutation commonly associated with429

tumor initiation in many cancers (see, e.g., Yu and others (2014)), is inferred to occur on the trunk of the430

tree with high probability in patient P1, but not in patient P2. Gene ZFHX3 has a high probability of having431

mutated on the trunk of the tree in both patients. In addition, the data for patient P1 shows strong signal432

that FOXP1 mutates on the trunk of the tumor tree, while BRCA2 has a high probability of having mutated433

on the trunk of the tree for patient P2. Comparing the heatmaps of common cancer-associated genes with434

the prostate cancer-specific genes, mutations inferred to have occurred on the trunk of the tree tend to be435

those that are common across cancer types, while mutations known to have high frequency within prostate436

cancer are generally found closer to the tips of the tree in both patients.437

4.2 Metastatic colorectal cancer data438

4.2.1 Data analysis The SVDQuartets method of Chifman and Kubatko (2014) is also applied to these439

data to estimate each colorectal patient’s tumor phylogeny. The normal cells in each patient are merged into440

one normal sample and used as the outgroup. We also merge collections of cells with high similarity (similar441

mutations). We use the maximum parsimony method to compute the number of changes on each branch and442

scale the number of changes on each branch by the total number of changes to estimate the branch lengths.443

The original study of Leung and others (2017) reported 16 and 36 SNVs for patients CRC1 and CRC2444

after variant calling. Leung and others (2017) reported error probabilities of (α, β) = (0·0152, 0·0789) and445

(α, β) = (0·0174, 0·1256) for CRC1 and CRC2, respectively. For each patient, we use these values to specify446

the same priors across all sites. For CRC1, we consider α|Si ∼ Beta(0·015, 0·985) (larger variance) and447

α|Si ∼ Beta(0·15, 9·85) (smaller variance); and β|si ∼ Beta(0·078, 0·922) (larger variance) and β|Si ∼448
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Beta(0·78, 9·22) (smaller variance). For CRC2, we consider α|Si ∼ Beta(0·0174, 0·9826) (larger variance)449

and α|Si ∼ Beta(0·174, 9·826) (smaller variance); and β|Si ∼ Beta(0·1256, 0·8744) (larger variance) and450

β|Si ∼ Beta(1·256, 8·744) (smaller variance). The priors for the transition rates for CRC1 and CRC2 are451

same as for P1 and P2. As was found for the prostate cancer patients, the estimated probabilities do not452

vary substantially when we use priors with small or large variance.453

4.2.2 Results The inferred tumor tree and mutation order are depicted in Fig. 10 and Fig. 11. The poste-454

rior probabilities of the inferred mutation locations are indicated with colors as for the prostate cancer data,455

and agree overall with the findings of Leung and others (2017). Fig. S17 and Fig. S18 in the Supplementary456

Material are heatmaps for the posterior probability distribution of each mutation for patients CRC1 and457

CRC2 with different priors. For patient CRC1, mutations in APC, KRAS and TP53 are inferred to have been458

acquired on the trunk of the tumor phylogeny with high posterior probability, in agreement with Leung and459

others (2017) and in agreement with past studies. The studies of Fearon and Vogelstein (1990) and Powell460

and others (1992) have shown that the mutation order of these genes appears to be fixed in initializing col-461

orectal cancer, providing further support for our findings. In addition, we identify the five mutations specific462

to metastatic cells that are found by Leung and others (2017), with three (ZNF521, TRRAP, EYS) inferred463

to occur on branch 21 in Fig. 10 and the remaining two (RBFOX1, GATA1) inferred to occur on branch 29.464

For CRC2, we identify strong signals on branch 2 in Fig. 11 for 7 genes reported by Leung and others465

(2017) that are shared by primary and metastatic cells, including driver mutations in APC, NRAS and TP53.466

We also identify an independent lineage of primary diploid cells (colored in pink in Fig. 11) that evolved in467

parallel with the rest of the tumor with moderate to strong signals for mutations in ALK, ATR, EPHB6,468

SPEN and NR3C2 and that do not share the mutations listed in the previous sentence. Our analysis further469

agrees with that of Leung and others (2017) in that we also identify the subsequent formation of independent470

metastatic lineages. For example, on branch 124 we find strong support for mutations in FUS; on branch471

125 we find strong support for mutations in ATP7B and NR4A3; and on branch 133 mutations in HELZ472

and PRKCB are strongly supported. Many of the genes showing weaker or moderate support for mutation473

in these metastatic lineages agree with those identified by Leung and others (2017). The primary difference474

between our result and that of Leung and others (2017) is that we identify mutation in ATP7B along a475

second major metastatic lineage, rather than in the primary tumor.476
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5. Discussion477

Development of computational tools based on a phylogenetic framework for use in studying cancer evolution478

has the potential to provide tremendous insight into the mechanisms that lead to ITH, especially the role479

of the temporal order of mutations in cancer progression. For example, Ortmann et al. (2015) have shown480

differences in clinical features and the response to treatment for patients with different mutation orders,481

indicating that inference of the order in which mutations arise within an individual’s cancer may have direct482

implications in clinical oncology, both for diagnostic applications in measuring the extent of ITH and for483

improving targeted therapy. SCS data provide an unprecedented opportunity to estimate mutation order at484

the highest resolution. However, such data are subject to extensive technical errors that arise during the485

process of whole-genome amplification.486

To analyze such data, we introduce MO, a new Bayesian approach for reconstructing the ordering of487

mutational events from the imperfect mutation profiles of single cells. MO is designed to infer the temporal488

order of a collection of mutations of interest based on a phylogeny of cell lineages that allows modeling of489

the errors at each tip. MO can infer the mutation order that best fits single-cell data sets that are subject490

to the technical noise that is common for SCS data, including ADO, false positive errors, low-quality data,491

and missing data. The assumption of independence of mutations made by MO is the same as that made in492

other methods developed for inferring mutation order (e.g., Zafar and others (2017), Zafar and others (2019),493

and Jahn and others (2016)). Thus, MO does not presently account for possible interactions between the494

occurrences of mutations, though it could be extended to accommodate this if biological information about495

these interactions is available. However, recent work (Canisius and others, 2016) indicates that observed496

dependence typically takes the form of mutual exclusivity (i.e., only one gene in the group will be mutated497

in any given patient) rather than positive association, making the independence assumption of less concern498

here, as the set of mutations we study are assumed to be present within an individual patient. MO could499

also be extended to work on clonal trees and models that include errors in observed data for multiple cells500

in a tip instead of a single cell. In addition, MO could be modified to account for the accelerated mutation501

rates common in late-stage cancers, or to allow for back or parallel mutation.502

An important difference between MO and existing methods, such as SCITE (Jahn and others, 2016) and503

SiFit (Zafar and others, 2017), is the mechanism for quantifying uncertainty in the inferred order. Options504
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available within SCITE (Jahn and others, 2016) allow for estimation of the posterior probability distribution505

across orders. SiFit (Zafar and others, 2017), on the other hand, could be modified to account for uncertainty506

in the orders because the true tumor phylogeny is unknown and must first be estimated. In contrast, because507

MO uses a probabilistic model for inferring mutation locations along a fixed tree, it is able to provide an508

estimate of uncertainty in the inferred locations conditioning on the correct tumor phylogeny, thus capturing509

a source of uncertainty that differs from what SCITE and SiFit provide. MO performs accurately, as is510

evident from a comprehensive set of simulation studies that take into account different aspects of modern511

SCS data sets by examining a wide range of error probabilities, fractions of missing data, branch lengths,512

and numbers of cells in each tree. The simulation studies also demonstrate that MO outperforms the state-513

of-the-art methods when the number of cells is large and performs comparably to other methods when the514

number of cells is small. MO is robust to the technical errors that arise during whole-genome amplification.515

When applied to data from two prostate cancer patients and from two colorectal cancer patients, MO is able516

to not only provide insight into the locations of cancer-associated mutations, but also the level of certainty517

in the locations. However, MO does not provide estimates of transition rates and error probabilities as do518

SiFit and SCITE, but rather integrates over uncertainty in these parameters.519

The methodology underlying MO could be enhanced by incorporating models for copy number alterations,520

as well as by considering mutations that affect the same allele more than once. As SCS data collection521

becomes more advanced, enabling hundreds of cells to be analyzed in parallel at reduced cost and increased522

throughput, MO is poised to analyze the resulting large-scale data sets to make meaningful inference of523

the mutation order during tumor progression for individual patients. MO thus represents an important step524

forward in understanding the role of mutation order in cancer evolution and as such may have important525

translational applications for improving cancer diagnosis, treatment, and personalized therapy. If inferred526

mutation orders can be associated with clinical outcomes, future research can explore the cause of clinical527

outcomes given specific mutation orders with the goal of developing novel, targeted treatments. This will528

allow clinical providers to make decisions concerning treatment based on the mutation landscapes of patients.529

Although the current study focuses on cancer, MO can potentially also be applied to single-cell mutation530

profiles from a wide variety of fields. These applications are expected to provide new insights into our531

understanding of cancer and other human diseases.532
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6. Software533

MO has been implemented in R and is available at https://github.com/lkubatko/MO.534

7. Supplementary Material535

Supplementary material is available.536

8. Acknowledgments537

The simulation experiments and data analyses were carried out using the ASC Unity Cluster at The Ohio538

State University, USA. The authors thank two anonymous reviewers for helpful comments on an earlier draft539

of this manuscript.540

Conflict of Interest: None541

References542

Ascolani, Gianluca and Liò, Pietro. (2019). Modeling breast cancer progression to bone: how driver543

mutation order and metabolism matter. BMC Medical Genomics 12(6), 106.544

Barbieri, Christopher E, Bangma, Chris H, Bjartell, Anders, Catto, James WF, Culig, Zo-545

ran, Grönberg, Henrik, Luo, Jun, Visakorpi, Tapio and Rubin, Mark A. (2013). The mutational546

landscape of prostate cancer. European Urology 64(4), 567–576.547

Canisius, Sander, Martens, John W. M. and Wessels, Lodewyk F. A. (2016). A novel independence548

test for somatic alterations in cancer shows that biology drives mutual exclusivity but chance explains most549

co-occurrence. Genome Biology 17, 261.550

Chifman, Julia and Kubatko, Laura. (2014). Quartet inference from SNP data under the coalescent551

model. Bioinformatics 30(23), 3317–3324.552

Fearon, Eric R and Vogelstein, Bert. (1990). A genetic model for colorectal tumorigenesis. cell 61(5),553

759–767.554

Ishwaran, Hemant, Blackstone, Eugene H, Apperson-Hansen, Carolyn and Rice, Thomas W.555

(2009). A novel approach to cancer staging: application to esophageal cancer. Biostatistics 10(4), 603–620.556

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 8, 2021. ; https://doi.org/10.1101/2020.05.06.081398doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.06.081398
http://creativecommons.org/licenses/by-nc-nd/4.0/


24 REFERENCES

Iwasa, Yoh, Michor, Franziska and Nowak, Martin A. (2004). Stochastic tunnels in evolutionary557

dynamics. Genetics 166(3), 1571–1579.558

Jahn, Katharina, Kuipers, Jack and Beerenwinkel, Niko. (2016). Tree inference for single-cell data.559

Genome Biology 17(1), 86.560

Jamal-Hanjani, Mariam, Wilson, Gareth A, McGranahan, Nicholas, Birkbak, Nicolai J,561

Watkins, Thomas BK, Veeriah, Selvaraju, Shafi, Seema, Johnson, Diana H, Mitter,562

Richard, Rosenthal, Rachel and others. (2017). Tracking the evolution of non–small-cell lung cancer.563

New England Journal of Medicine 376(22), 2109–2121.564

Kim, Kyung In and Simon, Richard. (2014). Using single cell sequencing data to model the evolutionary565

history of a tumor. BMC Bioinformatics 15(1), 27.566

Leung, Marco L., Davis, Alexander, Gao, Ruli, Casasent, Anna, Wang, Yong, Sei, Emi, Vilar,567

Eduardo, Maru, Dipen, Kopetz, Scott and Navin, Nicholas E. (2017). Single-cell DNA sequenc-568

ing reveals a late-dissemination model in metastatic colorectal cancer. Genome Research 27, 1287–1299.569

Navin, Nicholas E. (2014). Cancer genomics: one cell at a time. Genome Biology 15(8), 452.570

Ortmann, Christina A, Kent, David G, Nangalia, Jyoti, Silber, Yvonne, Wedge, David C,571

Grinfeld, Jacob, Baxter, E Joanna, Massie, Charles E, Papaemmanuil, Elli, Menon, Suraj572

and others. (2015). Effect of mutation order on myeloproliferative neoplasms. New England Journal of573

Medicine 372(7), 601–612.574

O’Sullivan, Finbarr, Roy, Supratik and Eary, Janet. (2003). A statistical measure of tissue hetero-575

geneity with application to 3D PET sarcoma data. Biostatistics 4(3), 433–448.576

Posada, David. (2020). CellCoal: coalescent simulation of single-cell sequencing samples. Molecular Biology577

and Evolution 37(5), 1535–1542.578

Powell, Steven M, Zilz, Nathan, Beazer-Barclay, Yasmin, Bryan, Tracy M, Hamilton, Stan-579

ley R, Thibodeau, Stephen N, Vogelstein, Bert and Kinzler, Kenneth W. (1992). Apc muta-580

tions occur early during colorectal tumorigenesis. Nature 359(6392), 235–237.581

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 8, 2021. ; https://doi.org/10.1101/2020.05.06.081398doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.06.081398
http://creativecommons.org/licenses/by-nc-nd/4.0/


REFERENCES 25

Su, Fei, Zhang, Wei, Zhang, Dalei, Zhang, Yaqun, Pang, Cheng, Huang, Yingying, Wang, Miao,582

Cui, Luwei, He, Lei, Zhang, Jinsong and others. (2018). Spatial intratumor genomic heterogeneity583

within localized prostate cancer revealed by single-nucleus sequencing. European Urology 74(5), 551–559.584

Swofford, DL. (1999). Phylogenetic analysis using parsimony, PAUP* 4.0, beta version 4.0 b2. Sinauer585

Associates, Boston, Mass.586

Tate, John G, Bamford, Sally, Jubb, Harry C, Sondka, Zbyslaw, Beare, David M, Bindal,587

Nidhi, Boutselakis, Harry, Cole, Charlotte G, Creatore, Celestino, Dawson, Elisabeth588

and others. (2018). COSMIC: the catalogue of somatic mutations in cancer. Nucleic Acids Re-589

search 47(D1), D941–D947.590

Yu, Chang, Yu, Jun, Yao, Xiaotian, Wu, William K. K., Lu, Youyong, Tang, Senwei, Li,591

Xiangchun, Bao, Li, Li, Xiaoxing, Hou, Yong, Wu, Renhua, Jian, Min, Chen, Ruoyan, Zhang,592

Fan, Xu, Lixia, Fan, Fan, He, Jun, Liang, Qiaoyi, Wang, Hongyi, Hu, Xueda, He, Minghui,593

Zhang, Xiang, Zheng, Hancheng, Li, Qibin, Wu, Hanjie, Chen, Yan, Yang, Xu, Zhu, Shida,594

Xu, Xun, Yang, Huanming, Wang, Jian, Zhang, Xiuqing, Sung, Joseph J. Y., Li, Yingrui and595

others. (2014). Discovery of biclonal origin and a novel oncogene SLC12A5 in colon cancer by single-cell596

sequencing. Cell Research 24, 701–712.597

Zafar, Hamim, Navin, Nicholas, Chen, Ken and Nakhleh, Luay. (2019). SiCloneFit: Bayesian infer-598

ence of population structure, genotype, and phylogeny of tumor clones from single-cell genome sequencing599

data. Genome Research 29, 1–13.600

Zafar, Hamim, Tzen, Anthony, Navin, Nicholas, Chen, Ken and Nakhleh, Luay. (2017). SiFit:601

inferring tumor trees from single-cell sequencing data under finite-sites models. Genome Biology 18(1),602

178.603

[]604

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 8, 2021. ; https://doi.org/10.1101/2020.05.06.081398doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.06.081398
http://creativecommons.org/licenses/by-nc-nd/4.0/


26 REFERENCES

Fig. 1: Pictorial representation of tumor evolution. (a) - (b) A pictorial representation of the evolution
of a tumor from the first initiating mutation to the heterogeneous tissue at the time of sampling, which
consists of four different clones and normal tissue. (c) A phylogenetic tree with single cells as the tips. (d) A
clonal lineage tree inferred from sampled cells where each node represents a subclone (cluster of cells). (e) A
mutation tree inferred from sampled cells where each star represents the occurrence of one mutation. Boxes
underneath each tip show which mutations are present in the cell represented by the tip.

Fig. 2: True and observed binary data. (a) True binary mutation matrix representing the mutation status
of the sequenced tumor cells in the mutation tree in Fig. 1(e). Each row represents true genotypes for one
genomic site in all cells and each column represents the true genotypes of multiple genomic sites for one single
cell. (b) Observed mutation matrix with missing and ambiguous values (red), as well as genotypes that are
misrecorded with respect to the true mutation matrix (red numbers; these are either false positives or false
negatives). The red dash indicates a missing value since the sequencing process does not return signal at this
site of this cell, and the red question mark represents an ambiguous value. Each row represents observed
genotypes for one genomic site in all cells and each column represents the observed genotypes of multiple
genomic sites for one single cell.
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Fig. 3: Binary mutation process example. Example in which a mutation is acquired on branch e1 (marked
with red color). The cell descending from branch e8 (marked with black color) does not carry the mutation,
while the cells descending from the blue branches carry the mutation.
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Fig. 4: Order accuracy in scenarios 1 and 2 for MO, SCITE and SiFit. Each panel includes the results
from the specific type of genotype and missing data percentage. In each panel, red, blue and green colors
correspond to MO, SCITE and SiFit, respectively. Each plotting symbol on the line represents a different
probability of a false positive error, α. The x-axis is the probability of a false negative error, β, and the y-axis
is order accuracy.
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Fig. 5: Order accuracy in scenarios 3 and 4 for MO, SCITE and SiFit. Each panel includes the results
from the specific type of genotype and missing data percentage. In each panel, red, blue and green colors
correspond to MO, SCITE and SiFit, respectively. Each plotting symbol on the line represents a different
probability of a false positive error, α. The x-axis is the probability of a false negative error, β, and the y-axis
is order accuracy.
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Fig. 6: Adjacent order accuracy in scenarios 1 and 2 for MO, SCITE and SiFit. Each panel includes the
results from the specific type of genotype and missing data percentage. In each panel, red, blue and green
colors correspond to MO, SCITE and SiFit, respectively. Each plotting symbol on the line represents a
different probability of a false positive error, α. The x-axis is the probability of a false negative error, β, and
the y-axis is adjacent order accuracy.
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Fig. 7: Adjacent order accuracy in scenarios 3 and 4 for MO, SCITE and SiFit. Each panel includes the
results from the specific type of genotype and missing data percentage. In each panel, red, blue and green
colors correspond to MO, SCITE and SiFit, respectively. Each plotting symbol on the line represents a
different probability of a false positive error, α. The x-axis is the probability of a false negative error, β, and
the y-axis is adjacent order accuracy.
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FOXO1
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FOXO1

Fig. 8: P1 tumor phylogenetic tree and inferred temporal order of the mutations. The normal cell is set as
the outgroup. There are 18 branches in this tree. We do not assume the molecular clock when estimating
the branch lengths. Branch lengths in this figure are not drawn to scale. The color and tip shape represent
the spatial locations of the samples (normal tissue, location X3 or location X4; see Su and others (2018)).
The temporal order of the mutations is annotated on the branches of the tree. The uncertainty of mutation
locations is highlighted with colors. Mutations with very strong signals (probability of occurring on one
branch is greater than 0.7) are marked in red, while mutations with moderate signals (probabilities that sum
to more than 0.7 on two or three branches) are marked in blue. Mutation data for 30 genes corresponding
to the first 30 rows in Fig. S11 and Fig. S12 for each tip are shown in the heatmap matrix at the bottom.
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Fig. 9: P2 tumor phylogenetic tree and inferred temporal order of the mutations. Normal.R0 and Normal.L0
are normal cells from the right side and the left side of tissue, respectively, and are set as the outgroup. There
are 18 branches in this tree. We do not assume the molecular clock when estimating the branch lengths, and
branch lengths in this figure are not drawn to scale. The color and tip shape represent the spatial locations of
the samples (normal tissue, left-side locations L3 or L4, or right-side location R3; see Su and others (2018))
.The temporal order of the mutations is annotated on the branches of the tree. The uncertainty of mutation
locations is highlighted with colors. Mutations with very strong signals (probability of occurring on one
branch is greater than 0.7) are marked in red, while mutations with moderate signals (probabilities that sum
to more than 0.7 on two or three branches) are marked in blue. Mutation data for 30 genes corresponding
to the first 30 rows in Fig. S13 and Fig. S14 for each tip are shown in the heatmap matrix at the bottom.
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Fig. 10: CRC1 tumor phylogenetic tree and inferred temporal order of the mutations. The color and tip shape
represent the spatial locations of the samples (Normal - normal tissue; PA - primary aneuploid; PD - primary
diploid; MA - metastatic aneuploid; MD - metastatic diploid; see Leung and others (2017)). The temporal
order of the mutations is annotated on the branches of the tree. The uncertainty of mutation locations is
highlighted with colors. Mutations with very strong signals (probability of occurring on one branch is greater
than 0.7) are marked in red, while genes with moderate signals (probabilities that sum to more than 0.7
on two or three branches) are marked in blue. The branch lengths are not scaled. Mutation data for the 16
genes corresponding to each tip are shown in the heatmap matrix at the bottom.
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Fig. 11: CRC2 tumor phylogenetic tree and inferred temporal order of the mutations. The color and tip shape
represent the spatial locations of the samples (Normal - normal tissue; PA - primary aneuploid; PD - primary
diploid; MA - metastatic aneuploid; MD - metastatic diploid; see Leung and others (2017)). The temporal
order of the mutations is annotated on the branches of the tree. The uncertainty of mutation locations is
highlighted with colors. Mutations with very strong signals (probability of occurring on one branch is greater
than 0.7) are marked in red, while mutations with moderate signals (probabilities that sum to more than
0.7 on two or three branches) are marked in blue. The branch lengths are not scaled. Mutation data for the
36 genomic sites corresponding to each tip are shown in the heatmap matrix at the bottom.
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(a) P1 prostate cancer specific mutations with binary data

(b) P1 prostate cancer specific mutations with ternary data

Fig. 12: Heatmap of posterior probabilities of mutation branch for P1 using (a) binary or (b) ternary data.
This heatmap is for the prostate cancer-specific genes. Color indicates the magnitude of the probability, with
red indicating probability close to 1 and blue indicating probability close to 0. For P1, the prior for α is
set to α|Si ∼ Beta(0·29, 0·71) (larger variance). The prior for β is set to β|Si ∼ Beta(0·02, 0·98) (larger
variance). The distribution of transition rate λ1 is set to λ1|Si ∼ Gamma(2, 5·0 × 10−8) (larger variance).
The distribution of transition rate λ2 is set to λ2|Si ∼ Gamma(2, 5·0× 10−3) (larger variance) (cont.).
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 P2 prostate cancer specific mutations with binary data

P2 prostate cancer specific mutations with ternary data

(c)

(d)

Fig. 12: Heatmap of posterior probabilities of mutation branch for P2 using (c) binary or (d) ternary data.
This heatmap is for the prostate cancer-specific genes. Color indicates the magnitude of the probability, with
red indicating probability close to 1 and blue indicating probability close to 0. For P2, the prior distribution
for α is set to α|Si ∼ Beta(0·31, 0·69) (larger variance). The prior distribution for β is set to β|Si ∼
Beta(0·02, 0·98) (larger variance). The distribution of transition rate λ1 is set to λ1|Si ∼ Gamma(2, 5·0 ×
10−8) (larger variance). The distribution of transition rate λ2 is set to λ2|Si ∼ Gamma(2, 5·0×10−3) (larger
variance).
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