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ABSTRACT 

Accurate prediction of the optimal catalytic temperature (Topt) of enzymes is vital in biotechnology, as 
enzymes with high Topt values are desired for enhanced reaction rates. Recently, a machine-learning 
method (TOME) for predicting Topt was developed. TOME was trained on a normally-distributed dataset 
with a median Topt of 37˚C and less than five percent of Topt values above 85˚C, limiting the method's 
predictive capabilities for thermostable enzymes. Due to the distribution of the training data, the mean 
squared error on Topt values greater than 85°C is nearly an order of magnitude higher than the error on 
values between 30 and 50°C. In this study, we apply ensemble learning and resampling strategies that 
tackle the data imbalance to significantly decrease the error on high Topt values (>85˚C) by 60% and 
increase the overall R2 value from 0.527 to 0.632. The revised method, TOMER, and the resampling 
strategies applied in this work are freely available to other researchers as a Python package on GitHub. 
 
 
1. INTRODUCTION 

Enzymes that are stable and active at high temperatures are especially desirable for industrial 
applications, as they enable biochemical processes to be conducted at higher temperatures yielding 
faster reaction rates. Hence, researchers have long sought to develop tools for accurate in silico prediction 
of enzyme thermostability. Accordingly, many tools have been developed over the past two decades to 
predict the enzyme melting temperature (Tm),1-3 the change in thermodynamic stability (∆∆G) upon point 
mutations,4-12 or the optimal growth temperature (OGT) of the source organism.13-21 Unfortunately, for 
prediction purposes, higher OGT or thermal stability do not necessarily indicate substantial catalytic 
activity at high temperatures.22, 23 Hence, a tool that directly predicts the optimal catalytic temperature 
(Topt) of enzymes is desirable. 

Recently, Li et al. developed a machine-learning tool, TOME (Temperature Optima for 
Microorganisms and Enzymes), for predicting the OGT of microorganisms and the Topt of enzymes.23 
TOME uses a support vector regressor to predict OGT from the dipeptide composition of the proteome, 
and a random forest regressor to predict Topt from the OGT and the amino acid composition. In predicting 
OGT, TOME achieved an R2 value of 0.88 in cross validation tests, which is superior to other published 
models.24, 25 However, the R2 value of Topt prediction was only 0.51, providing impetus for further 
improvement. More recently,26 Li et al. incorporated feature engineering to improve the accuracy of Topt 
prediction. They extracted 5,494 and 5,700 sequence features, using the packages, iFeature and UniRep, 
respectively.27, 28  However, these features did not provide a significant improvement in performance 
compared to using only the amino acid composition and OGT, even when deep learning was applied. As 
a result, the authors concluded that more informative features, such as features from the three-
dimensional structure, may be necessary to markedly improve Topt prediction performance. Yet, a tool 
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that accurately predicts Topt from sequence-data alone remains valuable to the biotechnology community, 
since it can be readily applied to the vast number of proteins in the databases that lack structural 
characterizations. 

In this work, we sought to improve the accuracy of Topt prediction, not by customary feature 
engineering, but by mitigating the adverse impact of the non-uniform distribution of the training data 
used in the machine learning model. It is recognized that an imbalanced data distribution is highly 
unfavorable in machine learning problems, as it biases the learning algorithms towards the abundant data 
regions at the expense of the poorly sampled regions, and, thus, leads to higher error on the rare values 
and overall sub-optimal model performance.29-31 In classification problems, data imbalance has been 
extensively studied, and numerous techniques for dealing with imbalance problems have been 
proposed.32, 33 These methods are generally classified into three groups: algorithm-level methods, which 
specifically modify the learning algorithm to address the bias; data-level methods, which resample the 
data in a preprocessing step to decrease the unevenness of the data; and hybrid methods, which combine 
both algorithm- and data-level methods.30, 34 Data-level methods modify the data distribution primarily by 
either undersampling the majority class, oversampling the minority class, or a combination of both.34 
Researchers have developed multiple resampling methods for classification problems such as 
neighborhood cleaning rule (NCL),35 synthetic minority oversampling technique (SMOTE),36 selective 
preprocessing of imbalanced data (SPIDER),37 and majority undersampling technique (MUTE).38 The 
combination of resampling strategies with ensemble learning (the integration of the outcomes of multiple 
base models) has proven remarkably successful in dealing with class imbalance.34, 39, 40 

On the contrary, less attention has been paid to imbalance in regression problems.30, 32 Few methods 
have been proposed for working with imbalanced distributions in regression domains including: SMOTE 
for regression (SMOTER),41 SMOGN,42 meta learning for utility maximization (MetaUtil),43 resampled 
bagging (REBAGG),44 and weighted relevance-based combination strategy (WERCS).45 In many 
bioinformatic and cheminformatic supervised-learning regression problems, the data often follows a 
normal distribution, and the rare extreme values may be more important to the user than the abundant 
values centered about the median of the distribution. For example, in predicting Topt for practical 
applications, higher Topt values are generally more relevant since thermostable enzymes are desired for 
enhanced biochemical reaction rates. Still, a majority of studies do not address the issue of data 
imbalance,10, 11, 46, 47 resulting in models with reduced predictive accuracy at tails of the normal 
distribution.32, 45 Additionally, standard metrics used in assessing regression model performance, such as 
mean squared error (MSE) and mean absolute deviation (MAD), are heavily biased towards the abundant 
values centered about the median so that the reported performance fails to capture the poorer 
performance on rare values at the tails of the distribution.48 Consequently, a model could demonstrate 
excellent performance on non-uniform datasets and, yet, might have little ability to accurately predict 
extreme values. 

In this study, we apply resampling and ensemble methods to enzyme Topt prediction. Our results show 
that without resampling (i.e., TOME), the error (MSE) in predicting high temperature values (>65°C) was 
more 500% higher than the error in predicting Topt values centered about the median (30-50°C). By 
applying resampling strategies alone, without the introduction of new features, we were able to reduce 
the error on high temperature values (>65°C) by more than 50% and, consequently, increase the overall 
performance (R2) by 20%. We make available the machine-learning tool for improved Topt prediction, 
TOMER (Temperature Optima for Enzymes with Resampling), through GitHub. We anticipate TOMER will 
prove valuable in accurately predicting Topt values of industrially-relevant, thermostable enzymes. To 
facilitate minimizing the impact of data imbalance in other regression applications, we have also provided 
the resampling strategies employed here as a Python package, resreg (Resampling for Regression). 
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2. METHODS 

2.1. Dataset and machine learning implementation 
The dataset used in training TOMER was obtained from Li et al., consisting of 2,917 enzymes with 

experimental Topt measurements and OGT data from the BRENDA database.26, 49 Throughout this work, 
all machine learning regressors were trained on the same 21 features used in TOME, which include the 
frequencies of the 20 amino acids and the OGT. The features were normalized by subtracting the mean 
and dividing by the standard deviation before fitting the regressors. Machine learning was implemented 
with the scikit-learn package (v0.21.2)50 in Python (v3.6.6).  
 
2.2. Evaluation of performance 

In evaluating the performance of the regressors, we did not use the conventional k-fold cross 
validation technique. Since the data are normally distributed, randomly splitting the data into folds will 
result in similarly imbalanced folds and, as a result, the performance metrics (R2, MSE) will overly weight 
the frequent data and will not sufficiently capture the performance at the distribution tails. Hence, we 
evaluated performance of the regressors on a testing set that was nearly uniformly distributed. A uniform 
testing set was formed by splitting the entire dataset into five bins based on the target values (Topt). Then, 
70 samples were randomly selected from each bin to constitute the testing set, with the remaining data 
forming the training set (Table 1, Figure 1A). We selected only 70 samples from each bin so that at least 
half of the data in the smallest bin (85-120°C) was used in training. This way, 88% of the entire dataset 
was used in training (2,567 samples) and 12% in testing (350 samples). The dataset was repeatedly split 
into training and testing sets 50 times, and each time, resampling strategies were applied to the training 
set before fitting the regressors. The performance on the testing set was measured as an average over 
the 50 iterations, i.e., Monte Carlo cross validation (MCCV).51 
 
Table 1. Formation of a uniform testing set by selecting equal samples from five bins. 

Bins Range (°C) Samples  
in bin 

Percent of  
total dataset 

Testing 
size 

Training 
 size 

0-30 0 ≤ y < 30 461 15.8% 70 391 
30-50 30 ≤ y < 50 1427 48.9% 70 1357 
50-65 50 ≤ y < 65 519 17.8% 70 449 
65-85 65 ≤ y < 85 361 12.4% 70 291 

85-120 85 ≤ y ≤ 120 149 5.1% 70 79 

 Total 2,917 100% 350  
(12%) 

2,567  
(88%) 

 
 

Four metrics were used to assess the predictive performance. The coefficient of determination (R2) 
on a uniformly-distributed test set was used to assess the overall performance, and was the primary metric 
for selecting the best resampling strategy. Both real and predicted Topt values were converted to 
categorical values (0-30 is 1, 30-50 is 2, 50-65 is 3, etc., see Table 1), and the Matthew’s correlation 
coefficient (MCC)52 was determined as for a multiclass classification problem.53 The mean squared error 
(MSE) was calculated for each bin to evaluate the variation in the performance across the range of Topt 
values and to examine the error on rare high values relative to the error on abundant values . Finally, we 
measured the F1 score as a way to assess the predictive performance on high Topt values at the 
distribution’s tail (≥ 65°C). The F1 score, which is the weighted harmonic mean of precision and recall, is 
typically a classification performance metric, but has been adapted for regression problems.41, 48 For 
regression, recall and precision has been defined as:48 
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Figure 1. Distribution of Topt values in the dataset of 2,917 proteins. The density plots were derived using a Gaussian kernel density 
estimation (KDE). (A) Distribution of testing set in 50 iterations of Monte Carlo cross validation. A normally-distributed testing set 
formed by random selection of 350 samples is shown in blue, and the nearly uniform testing set formed by selecting 70 samples 
from five bins is shown in red. (B) A one-sided sigmoid relevance function that maps Topt values to relevance values between 0 and 
1 (left-hand y-axis). By setting the value of c in the relevance function (eq 5) to the 90th percentile (72.2), Topt values greater than 
72.2°C form the rare domain (shaded region) and all other values form the normal domain. The Topt distribution density is shown on 
the right-hand -axis. (C) A two-sided relevance function mapping Topt values to relevance values between 0 and 1. By setting the 
values of cL and cH in the relevance function (eq 6) to be the 10th and 90th percentile (25 and 72.2, respectively), Topt values less than 
25°C and greater than 72.2°C form the rare domain, and the complement of the rare domain forms the normal domain. The Topt 
distribution density is shown on the right-hand y-axis. 
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𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 	
∑ -𝛼𝛼(𝑦𝑦! , 𝑦𝑦2!) × 𝜙𝜙(𝑦𝑦2!)6"($%!)'("

∑ 𝜙𝜙(𝑦𝑦2!)"($%!)'("
 (1) 

 

𝑝𝑝𝑝𝑝𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟 = 	
∑ -𝛼𝛼(𝑦𝑦! , 𝑦𝑦2!) × 𝜙𝜙(𝑦𝑦!)6"($!)'("

∑ 𝜙𝜙(𝑦𝑦!)"($!)'("
 (2) 

where 𝑦𝑦! and 𝑦𝑦2! are the true and predicted Topt values, respectively; 𝜙𝜙(𝑦𝑦2!) is the relevance function which 
maps the target values to a relevance scale from 0 to 1 (discussed below); 𝑡𝑡) is the relevance threshold 
that forms the subdomain of relevant rare values, and 𝛼𝛼(𝑦𝑦! , 𝑦𝑦2!) is a function that defines the accuracy of a 
prediction. Hence, the precision and recall are measures of the predictive accuracy on rare values, 
weighted by the relevance function. The accuracy function was defined as:48  

𝛼𝛼(𝑦𝑦! , 𝑦𝑦2!) = 𝐼𝐼(𝐿𝐿(𝑦𝑦! , 𝑦𝑦2!) ≤ 	 𝑡𝑡*) × =1 − 𝑝𝑝𝑒𝑒𝑝𝑝 A
−𝑘𝑘(𝐿𝐿(𝑦𝑦! , 𝑦𝑦2!) − 𝑡𝑡*)+

𝑡𝑡*+ CD	 (3) 

where 𝐿𝐿(𝑦𝑦! , 𝑦𝑦2!) is the loss function and is equal to the absolute error of the prediction; 𝐼𝐼 is the indicator 
function, which returns 1 if the absolute error is less than a threshold loss, 𝑡𝑡*, but zero otherwise; and 𝑘𝑘 is 
an integer that defines the steepness of the accuracy curve. We set 𝑘𝑘 to be 104 and	𝑡𝑡* to be 5 so that 
predictions within error limits of 5°C are regarded as accurate. A right-sided relevance function was used, 
with 𝑡𝑡) ≥ 0.5 for all 𝑦𝑦 ≥ 65 (see eq 5 and eq6), and the F1 score was calculated from precision and recall 
as: 

𝐹𝐹, =
2 × 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 × 𝑝𝑝𝑝𝑝𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑝𝑝𝑝𝑝𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟  (4) 

 
2.3. The relevance function 

In classification problems, resampling strategies can be readily applied since the target values are 
clearly divided into discrete classes. Resampling is not as straightforward in regression problems, 
however, since the target variable is continuous. The concept of a relevance function was introduced in 
previous works to simplify resampling in regression problems.41, 48, 54 The relevance function is a user-
defined function that maps the domain of target values to a scale from 0 to 1, where 1 indicates maximum 
relevance. By specifying a relevance function, 𝜙𝜙(𝑦𝑦), and a relevance threshold, 𝑡𝑡), the domain of target 
values, 𝐷𝐷, can be split into two sub-domains: a domain of rare values, 𝐷𝐷), which is of greater importance 
to the user, and the domain of normal values, 𝐷𝐷- (Figure 1B and 1C). Consequently, 𝐷𝐷) and 𝐷𝐷- can be 
resampled accordingly. 

In this work, we use a sigmoid relevance function defined as:48  

𝜙𝜙(𝑦𝑦) = 	
1

1 + 	𝑝𝑝𝑒𝑒𝑝𝑝-−𝑝𝑝(𝑦𝑦	 − 	𝑝𝑝)6
 (5) 

where y is the target variable, and s and c are constants that determine the shape and center of the 
sigmoid, respectively. By defining 𝑝𝑝 as ± ./01,2#3,4

|6|
, it follows that 𝑝𝑝 > 0	implies that 𝜙𝜙(𝑦𝑦) ≥ 0.5		for all 	𝑦𝑦 ≥

𝑝𝑝, and 𝑝𝑝 < 0	implies that 𝜙𝜙(𝑦𝑦) ≥ 0.5 for all 𝑦𝑦 ≤ 𝑝𝑝.48 Hence, 𝑝𝑝 can be specified so that extreme target values 
beyond 𝑝𝑝 have relevance values above a threshold (𝑡𝑡)) of 0.5 and, thus, form the domain of rare values, 
𝐷𝐷). Otherwise stated,  𝐷𝐷) =	 {𝑦𝑦:			𝜙𝜙(𝑦𝑦) ≥ 	 𝑡𝑡)} and 𝐷𝐷- =	 {𝑦𝑦:			𝜙𝜙(	𝑦𝑦) < 	𝑡𝑡)}. Equation 5 is used to determine 
𝜙𝜙(𝑦𝑦) in the case that the rare domain is formed from extreme values at the left or right of the normal 
distribution (one-sided). For a two-sided rare domain formed from both left and right extremes, we define 
the relevance function as: 

𝜙𝜙(𝑦𝑦) = 	
1

1 + 𝑝𝑝𝑒𝑒𝑝𝑝-−|𝑝𝑝*|(𝑦𝑦	 −	𝑝𝑝*)6
+	

1
1 + 	𝑝𝑝𝑒𝑒𝑝𝑝-|𝑝𝑝7|(𝑦𝑦	 −	𝑝𝑝7)6

 (6) 

where the subscripts, L and H, indicate low and high extreme values, respectively (Figure 1B and C).  
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2.4. Resampling strategies 
Having defined a relevance function to split the dataset into a rare and normal domain, we tested 

several resampling methods that alter the lopsidedness of the rare domain, relative to the normal domain. 
The resampling methods were applied to the training set to mitigate the adverse effects of the data 
imbalance, and then a random forest regressor with default settings was fitted to the resampled training 
set. We adapted and implemented the following resampling strategies in this work: random oversampling 
(RO), introduction of Gaussian noise (GN), synthetic minority oversampling technique for regression 
(SMOTER), weighted relevance-based combination strategy (WERCS), and WERCS with Gaussian noise 
(WERCS-GN).41, 45 We give a brief description of these methods below. See the Supporting Information 
for the pseudocode of these methods. 
 
2.4.1. Random oversampling (RO) 

With the random oversampling strategy,45, 55 the rare values are oversampled by duplicating randomly 
selected data points, while the normal values are left unchanged. The amount of oversampling is to be 
specified by the user and can significantly affect the results. Branco et al. suggested two automatic 
methods of oversampling: balance and extreme.45 The balance option oversamples the rare domain so 
that it is equal in size to the normal domain. The extreme option oversamples the rare domain so that the 
proportion of the size of the rare domain to the size of the normal domain is reversed. For example, if the 
normal domain is five times larger than the rare domain, the extreme option oversamples the rare domain 
so that it is five times larger than the normal domain. Here, we introduced a new automatic oversampling 
method that is intermediate between balance and extreme, which we dub “average”. According to the 
method selected, the size of the rare domain after oversampling, |𝐷𝐷)

89:|, is determined from the size of 
the rare and normal domain before resampling (|𝐷𝐷)| and |𝐷𝐷-|, respectively) as follows: 

balance: |𝐷𝐷)
89:| = 	 |𝐷𝐷-| 

extreme: |𝐷𝐷)
89:| = 	

|𝐷𝐷-|+

|𝐷𝐷)|  

average: |𝐷𝐷)
89:| = 	

1
2 A|𝐷𝐷-| +	

|𝐷𝐷-|+

|𝐷𝐷)| C 

Additionally, the values of 𝑝𝑝* and 𝑝𝑝7, which determine the points at which the target value is split to 
normal and rare values, can have significant effects on the performance. Hence, we implemented a grid 
search to determine the optimal combination of hyperparameters for the resampling strategies. We 
defined the hyperparameter space as 𝑝𝑝* ∈ (25, 30, 𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝), 𝑝𝑝7 ∈ (72.2, 60), and 𝑚𝑚𝑝𝑝𝑡𝑡ℎ𝑝𝑝𝑜𝑜 ∈ (𝑏𝑏𝑟𝑟𝑟𝑟𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝,
𝑟𝑟𝑎𝑎𝑝𝑝𝑝𝑝𝑟𝑟𝑎𝑎𝑝𝑝, 𝑝𝑝𝑒𝑒𝑡𝑡𝑝𝑝𝑝𝑝𝑚𝑚𝑝𝑝) (Table 2). The values for 𝑝𝑝* correspond to the 10th and 20th percentile of Topt, and the 
values of 𝑝𝑝7 correspond to the 90th and 80th percentile, respectively. A right-sided rare domain is indicated 
by 𝑝𝑝* = 𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝 (Figure 1B and 1C).  
 
2.4.2. Synthetic minority oversampling technique for regression (SMOTER) 

Applying the SMOTER strategy undersamples the normal values and oversamples the rare values by 
generating synthetic data points through interpolation between each rare value and a random selection 
of one of its k-nearest neighbors.41, 42, 55 The feature vector and target value of a synthetic instance, 𝑋𝑋+ 
and 𝑦𝑦+, respectively, are determined as follows:41 

𝑋𝑋+ =	𝑋𝑋, + 𝑝𝑝(𝑋𝑋88 −	𝑋𝑋,) (7) 

𝑦𝑦+ =	
𝑦𝑦,. 𝑜𝑜88 +	𝑦𝑦88. 𝑜𝑜,

𝑜𝑜88 +	𝑜𝑜,
 (8) 
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Table 2. Hyperparameters of resampling strategies tested with a grid search 

Strategy Hyperparameter range 

Random oversampling (RO)45, 55 cL = (25, 30, None), cH = (72.2, 60), method = (balance, average, 
extreme) 

Synthetic minority oversampling 
technique for regression (SMOTER)41, 42, 55 

cL = (25, 30, None), cH = (72.2, 60), method = (balance, average, 
extreme), k = (5, 10, 15) 

Introduction of Gaussian noise (GN)42, 45, 55 cL = (25, 30, None), cH = (72.2, 60), method = (balance, average, 
extreme), 𝛿𝛿 = (0.1, 0.5, 1.0) 

Weighted relevance-based combination 
strategy (WERCS)45 

cL = (25, 30, None), cH = (72.2, 60), over = (0.5, 0.75), under = (0.5, 
0.75) 

Weighted relevance-based combination 
strategy with introduction of Gaussian 
noise (WERCS-GN)42, 45, 55 

cL = (25, 30, None), cH = (72.2, 60), over = (0.5, 0.75), under = (0.5, 
0.75), 𝛿𝛿 = (0.1, 0.5, 1.0) 

Resampled bagging with random 
oversampling (BAGG-RO)44, 55 

cL = (25, 30, None), cH = (72.2, 60), method = (balance, variation), 
s = (300, 600) 

Resampled bagging with SMOTER 
(BAGG-SMT)41, 44, 55 

cL = (25, 30, None), cH = (72.2, 60), method = (balance, variation), 
k = (5, 10, 15), s = (300, 600) 

Resampled bagging with introduction of 
Gaussian noise (BAGG-GN)44, 55 

cL = (25, 30, None), cH = (72.2, 60), method = (balance, variation), 
𝛿𝛿 = (0.1, 0.5, 1.0), s = (300, 600) 

Resampled bagging with WERCS (BAGG-
WR)44, 45 

cL = (25, 30, None), cH = (72.2, 60), over = (0.5, 0.75), under = (0.5, 
0.75), s = (300, 600) 

Resampled bagging with WERCS-GN 
(BAGG-WRGN)44, 45, 55 

cL = (25, 30, None), cH = (72.2, 60), over = (0.5, 0.75), under = (0.5, 
0.75), 𝛿𝛿 = (0.1, 0.5, 1.0), s = (300, 600) 

 
 
where 𝑋𝑋, is the feature vector of an instance in 𝐷𝐷), 𝑋𝑋88 is one of k-nearest neighbors of 𝑋𝑋,, 𝑝𝑝 ∈ [0, 1] is a 
random number, 𝑦𝑦, and 𝑦𝑦88 are the target values of 𝑋𝑋, and 𝑋𝑋88, respectively, and 𝑜𝑜, and 𝑜𝑜88 are the 
Euclidean distances between 𝑋𝑋+ and 𝑋𝑋,, and between 𝑋𝑋+ and 𝑋𝑋88, respectively. The amount of 
undersampling and oversampling was automatically determined according to the following options: 

balance: |𝐷𝐷-
89:| = 	 |𝐷𝐷)

89:| =
|𝐷𝐷-| +	 |𝐷𝐷)|

2  
extreme: |𝐷𝐷-

89:| = 	 |𝐷𝐷)| 
 |𝐷𝐷)

89:| = 	 |𝐷𝐷-| 

average: |𝐷𝐷-
89:| =

1
2 A

|𝐷𝐷-| +	 |𝐷𝐷)|
2 + |𝐷𝐷)|C 

 |𝐷𝐷)
89:| =

1
2 A

|𝐷𝐷-| +	 |𝐷𝐷)|
2 + |𝐷𝐷-|C 

Optimal hyperparameters were similarly determined by a grid search (Table 2). 
 
2.4.3. Introduction of Gaussian noise (GN) 

The GN strategy is identical to SMOTER in every way except that synthetic points are generated by 
addition of Gaussian noise rather than interpolation.42, 45, 55 Noise based in 𝑁𝑁-0, 𝛿𝛿 × 𝑝𝑝𝑡𝑡𝑜𝑜(𝑟𝑟)6 is separately 
added to each feature and to the target value of a rare instance, where 𝑝𝑝𝑡𝑡𝑜𝑜(𝑟𝑟) is the standard deviation 
of the attribute (i.e., feature or target value), and 𝛿𝛿 is a user-defined parameter that determines the 
amplitude of the noise.  
 
2.4.4. Weighted relevance-based combination strategy (WERCS) 

Rather than using a relevance threshold to split the data into rare and normal domains as with the 
previous strategies, the WERCS strategy uses the relevance values as weights to select data points for 
undersampling and oversampling.45 The data are oversampled and then undersampled by selecting 
instances to be duplicated and instances to be removed, respectively. Selection for oversampling and 
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undersampling is performed using probabilities determined from the relevance function. For each target 
value in the dataset, 𝑦𝑦!, we defined the probability that the value is selected for oversampling or 
undersampling (𝑝𝑝!

;<9= and 𝑝𝑝!
>8?9=, respectively) by eq 9 and eq 10. 

𝑝𝑝!
;<9= =

𝜙𝜙(𝑦𝑦!)
∑ 𝜙𝜙(𝑦𝑦!)-

!@,
 (9) 

𝑝𝑝!
>8?9= =

1 − 𝜙𝜙(𝑦𝑦!)
∑ -1 − 𝜙𝜙(𝑦𝑦!)6-

!@,
 (10) 

Hence, rare values with higher relevance are more likely to be selected for oversampling and less likely 
to be selected for undersampling. The amount of oversampling and undersampling are hyperparameters 
to be specified by the user in percent (over and under, respectively). 
 
2.4.5. WERCS with Gaussian noise (WERCS-GN) 

We modified the WERCS strategy by adding Gaussian noise to the values selected for oversampling 
by the WERCS strategy. Hence, with WERCS-GN, oversampling is done with synthetic data, instead of by 
duplicating data points. 
 
2.5. Combination of resampling strategies with ensemble learning 

Ensemble learning involves training different learners and combining their output to generate a final 
prediction that is more accurate than the individual learners. Branco et al. developed the resampled 
bagging algorithm (REBAGG) for implementing resampling and bagging in imbalanced regression 
problems.44, 56 In this work, we applied an adaptation of the REBAGG algorithm to the prediction of Topt 
values, by implementing the resampling methods described previously in the REBAGG algorithm (See 
the Supporting Information for the pseudocode).  

First, the dataset is split into rare and normal domains, 𝐷𝐷) and 𝐷𝐷-, using the relevance function, as 
described previously. Then 𝑚𝑚 models are trained on separately resampled bootstrap samples of 𝑝𝑝 items 
from the training dataset. Two modes of the REBAGG method are applied: balance or variation mode. In 
balance mode, an equal number of samples, 𝑝𝑝 2b , is randomly drawn from 𝐷𝐷) and 𝐷𝐷-. In the variation 
mode, however, 𝑝𝑝	 × 𝑝𝑝 samples are drawn from 𝐷𝐷), and (1	– 	𝑝𝑝) 	× 𝑝𝑝 samples are drawn from 𝐷𝐷-, where p 
is a randomly selected number from the set, (1/3, 2/5, 1/2, 3/5, 2/3). Hence, in the variation mode, the 𝑚𝑚 
models are trained on data that may contain either fewer, equal, or more rare samples than normal 
samples. If the number of samples to be drawn from 𝐷𝐷) is greater than |𝐷𝐷)|, then the extra samples are 
derived by oversampling the rare domain using RO, SMOTER, or GN, resampling methods as described 
previously. We refer to the REBAGG method in combination with these resampling methods as BAGG-
RO, BAGG-SMT, and BAGG-GN, respectively. A similar combination of REBAGG with WERCS and 
WERCS-GN (referred to as BAGG-WERCS and BAGG-WRGN) were also implemented. With BAGG-
WERCS and BAGG-WRGN, the data are resampled without splitting into rare and normal domains, as in 
the WERCS and WERCS-GN methods. Then, s samples are drawn from the resampled data for training a 
model in the ensemble. With these resampled bagging strategies, the resampling step is independently 
repeated for all 𝑚𝑚 models with replacement. Finally, each model is applied to the testing set, and the 
final prediction is determined by averaging the predictions of all 𝑚𝑚 models. We used a decision tree 
regressor with default settings as the base regressor and set 𝑚𝑚 to be 100. Other hyperparameters were 
optimized based on the values shown in Table 2. 
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3. RESULTS AND DISCUSSION 

3.1. Resampling strategies significantly improve predictive performance 
In this work, we applied machine learning to predict the Topt of 2,917 enzymes.23 The target values 

follow a normal distribution that creates a problem of data imbalance. Although the Topt values range 
from 0 to 120°C, about half of the values fall within 30 to 50°C, and high temperature data are scarce 
(Table 1). To deal with this data imbalance, we implemented ten strategies that abate the imbalance by 
resampling the training data. For each strategy, we tested several hyperparameters with a grid search 
(Table 2) and selected the hyperparameter combination that yielded the highest average R2 value on a 
uniformly-distributed testing set (Table 3). Without resampling the training data (i.e., TOME), the average 
R2 value over 50 MCCV iterations was 0.527. However, the best performance of the resampling strategies 
ranged from 0.567 (RO) to 0.632 (BAGG-RO). Similarly, all resampling strategies yielded significantly 
higher F1 scores (>0.178) and MCC values (>0.235) compared to TOME, which had an F1 score of 0.137 
and an MCC score of 0.212 (Figure 2). These results demonstrate that the resampling strategies improve 
the predictive performance on high Topt values (> 65°C), as illustrated by the higher F1 scores, and lead 
to superior overall performance, as illustrated by the higher R2 and MCC values. It is important to note 
that some hyperparameter combinations of the resampling strategies led to a reduction in the predictive 
performance compared to the model that was trained on non-resampled data (TOME) (Figure S1). Hence, 
it is imperative that one test a sufficiently wide range of hyperparameters to determine the optimal 
hyperparameter combination. 
 
Table 3: Best hyperparameter combination for each resampling strategy yielding the highest R2 
values as determined by a grid search. 

Strategy Hyperparameter 
RO cL =None, cH=60.0, method=balance 
SMOTER cL=None, cH=60.0, method=average, k=10 
GN cL=None, cH=72.2, method=balance, 𝛿𝛿=0.5 
WERCS cL=None, cH=72.2, over=0.5, under=0.5 
WERCS-GN cL=None, cH=72.2, over=0.5, under=0.5, 𝛿𝛿=0.1 
BAGG-RO cL=None, cH=72.2, method=variation, s=600 
BAGG-SMT cL=None, cH=72.2, method=variation, k=5, s=600 
BAGG-GN cL=None, cH=72.2, method=variation, 𝛿𝛿=1.0, s=600 
BAGG-WERCS cL=25.0, cH=72.2, over=0.5, under=0.75, s=600 
BAGG-WRGN cL=25.0, cH=72.2, over=0.75, under=0.75, 𝛿𝛿=0.1, s=600 

 
 

From the results shown in Figure 2A-C, we observed that resampling by simple duplication of rare 
values, as is done in the random oversampling strategy (RO), led to lower R2, F1, and MCC values than 
the strategies that oversample rare values by using the relevance as weights (WERCS, WERCS-GN), or by 
generating synthetic data through interpolation (SMOTER) or addition of noise (GN, WERCS-GN). 
However, this trend was not observed when the resampling methods were combined with bagging 
(BAGG-RO, BAGG-SMT, BAGG-GN, BAGG-WERCS, BAGG-WRGN). We anticipate that duplication 
performs worse than generating synthetic values because duplication causes the learning algorithms to 
overfit to the replicated values. Introducing synthetic values, on the other hand, would cause the 
algorithms to be more general in the rare data region.32, 36, 57 Our results indicate that generating synthetic 
values does not outperform duplication techniques when combined with bagging in the REBAGG 
strategy, likely because aggregating multiple learners overcomes the overfitting that arises due to 
replicated values.  
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Figure 2. Performance of the resampling strategies. The resampling strategies were applied to the training dataset, regressors were 
fitted on the resampled data, and the performance was evaluated on a uniformly distributed test set with 50 iterations of Monte 
Carlo cross validation. Error bars indicate 95% confidence interval of the mean over 50 iterations. (A) Highest R2 value of the 
resampling strategies determined from a grid search of hyperparameter combinations. Combining bagging with the resampling 
strategies via the REBAGG algorithm outperforms the resampling strategies alone. See Figure S1 for the performance of all 
hyperparameter combinations. (B) MCC and (C) F1 scores of the best hyperparameter combinations of the resampling strategies, 
i.e., combinations that yielded the highest R2 value. (D) Mean squared error on different ranges of the target values. Without 
resampling (TOME), the error is highest in the 85-120°C range, but all the resampling strategies significantly reduce this error. The 
lowest overall error is achieved by the BAGG-RO strategy. (E) Distribution (KDE) of the dataset after applying the resampling 
methods with optimal hyperparameters. (F) Mean squared error when regressors trained on resampled data are applied to the 
training set and the testing set. The integration of resampling strategies with bagging decreases the variance as shown by an 
increase in training error and decrease in testing error. 
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Analysis of the MSE as a function of the true Topt values indicates that there is significant variation in 
the MSE across the range of target values (Figure 2D). Without resampling (TOME), the error inversely 
correlates with the frequency of the data, with lower error in regions of abundant data (30-50°C) and 
higher error in regions of rare data (0-30°C, 65-120°C). Moreover, error in the 65-85°C and 85-120°C 
ranges was 3.7 and 9.7 times higher, respectively, than the error in the 30-50°C range. Hence, without 
resampling, the regressor (TOME) overfits to abundant values and demonstrates inferior performance on 
high temperature values. In applications that rely on TOME for identifying high Topt enzymes, the large 
error on high temperature values may lead to misleading results. By applying resampling strategies to the 
training set, we altered the distribution of the training dataset to prevent the learning algorithm from 
overfitting to abundant values and to improve performance on rare high temperature values (Figure 2E). 
As Figure 2D shows, all the resampling strategies led to a reduction of the error in the high temperature 
ranges (65-120°C) and an increase of the error in the abundant data range (30-50°C), which indicates a 
decrease in the overfitting of abundant values. Moreover, the error in the abundant data range is the 
lowest error for TOME as well as for all the resampling strategies. This suggests that there is an upper 
limit to the performance gain from resampling rare data, and more experimental data which sample 
unexplored regions of the rare data space may be necessary for further improvement in performance. 

Furthermore, the combination of resampling methods with bagging, such that each base regressor 
was trained on independently resampled datasets, yielded significantly higher overall performance scores 
(R2 and MCC) than resampling methods alone (Figure 2A and B). Other researchers have similarly 
observed that ensemble learning methods, such as bagging and boosting, considerably enhance the 
effect of resampling techniques.34, 39, 58-60 In this work, the resampling methods without bagging (i.e., RO, 
SMOTER, GN, WERCS, and WERCS-GN) simply increased the proportion of rare values (Figure 2E), which 
decreased the overfitting of the regressors to abundant data, and, consequently, led to a reduction of 
both training error and testing error (Figure 2F). However, the difference between the testing and training 
error was substantial, indicating that the regressors were overfitting to the resampled training data (high 
variance). On the other hand, when the resampling methods were repeatedly applied to multiple decision 
trees in an ensemble (i.e., the REBAGG strategies) such that each base tree was trained on differently 
sampled datasets, a much lower testing error and a higher training error was observed. This outcome 
indicates that the integration of bagging with the resampling methods (i.e., BAGG-RO, BAGG-SMT, 
BAGG-WERCS, and BAGG-WRGN) reduces the variance of individual regressors and prevents overfitting 
to the resampled training data, leading to improved generalization.61 Moreover, all REBAGG strategies 
yielded similar overall performance (R2 and MCC), which suggests that the specific resampling method 
applied in the REBAGG strategy had little effect on the overall performance. The BAGG-RO strategy led 
to the highest R2 value of 0.632 and the lowest MSE of 218.6. 
 
3.2. Effect of base learners on ensemble performance 

We examined the influence of different base learners in the BAGG-RO ensemble to assess whether 
further performance enhancement could be attained. Using the optimal resampling hyperparameters 
determined with decision trees (Table 3), we applied four additional base regressors in the BAGG-RO 
ensemble: support vector regressor (SVR), k-neighbor regressor (KNR), elastic net (ENET) regressor, and 
Bayesian ridge regressor (BAYR). For each of these regressors, we used a grid search to determine optimal 
hyperparameters that yielded the best R2 value (Table 4), and the performance was measured as an 
average over 50 MCCV iterations. The results indicate that, although each alternative regressor 
outperformed TOME, the decision tree base regressor yielded the highest R2 value and lowest overall 
MSE. Interestingly, the decision tree regressor showed the lowest F1 score (Figure 3). These results 
suggest that, while other regressors possibly perform better on high temperature values, tree-based 
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Figure 3. Performance of BAGG-RO ensemble with different base learners. The optimal hyperparameters for the base learners were 
determined by a grid search. (A) Highest R2 value achieved for different base learners in the BAGG-RO ensemble. (B) Matthew’s 
correlation coefficient and (C) F1 scores of BAGG-RO strategy with different base learners using the optimal hyperparameters, i.e., 
hyperparameters that yielded the highest R2 value. 
 
 
Table 4: Hyperparameters for base learners in BAGG-RO ensemble 

Base learner Hyperparameter range Optimal 
hyperparameters 

Support vector 
regressor (SVR) 

C = [10-3, 10-2, 10-1, 100, 101, 102],  
gamma=[10-3, 10-2, 10-1, 100, 101, 102] 

C=102, 
gamma=10-2 

k-neighbor 
regressor (KNR) k=[3, 5, 7, 10, 15, 20, 30] k=3 

Elastic net 
regressor (ENET) alpha=[10-3, 10-2, 10-1, 100, 101, 102] alpha=10-2 

Bayesian ridge 
regressor (BAYR) None (default) None (default) 

 
 
regressors exhibit the best overall performance in predicting Topt values from amino acid composition and 
OGT.23, 26 
 
3.3. Final model, data and code availability 

We identified the BAGG-RO strategy with decision tree base learners as the optimal resampling 
strategy for predicting enzyme optimum temperatures across the entire range of experimental Topt values 
because it led to the highest R2 value and lowest overall MSE. A final model was prepared by applying 
the BAGG-RO resampling strategy with optimal hyperparameters (Table 3) to the entire dataset of 2,917 
proteins. The final model is available to researchers as a Python package, TOMER (Temperature Optima 
for Enzymes with Resampling), on the Python package index, http://pypi.org/project/tomer/ with the 
source code publicly available at http://github.com/jafetgado/tomer/. Compared to TOME, TOMER 
provides a 20% improvement in the overall predictive performance (R2), and a 25% and 60% decrease in 
MSE on Topt values in the 65-85°C and 85-120°C ranges, respectively. All data and code used and 
produced in this study are available at https://github.com/jafetgado/tomerdesign/. We have also 
prepared a Python package, resreg (resampling for regression), for applying the resampling strategies 
discussed in this work to other regression problems. It is available on the Python repository, 
http://pypi.org/project/resreg, with the source code at http://github.com/jafetgado/resreg. 

A B C
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4. CONCLUSIONS 

In this study, we applied resampling strategies to improve the performance of predicting enzyme 
optimum temperatures with machine learning. The resampling strategies were implemented to modify 
the imbalanced distribution of the training set and improve performance on regions with sparse data. 
Compared with TOME, which at the time of this study is the only available machine-learning tool for 
predicting enzyme optimum temperatures, our method (TOMER) yields a significant improvement in 
predictive accuracy, particularly in the thermophilic regimes. We expect that TOMER will find useful 
application in high-throughput  

prospecting of enzymes that are both stable and active at high temperatures. TOMER requires the 
user to provide the amino acid sequence of the enzyme and the OGT of the source organism. If the OGT 
is unknown, it may be predicted using TOME.23 For future considerations, the incorporation of higher-
level features or the addition of more experimental data may prove useful strategies for further improving 
the performance of TOMER. Ultimately, this study highlights the critical need to consider data imbalance 
in regression problems, especially when the rare, extreme data range is of greater scientific interest than 
the abundant data region. We anticipate that our Python tool for readily implementing resampling 
strategies in regression problems (resreg) will be a valuable resource for other researchers in dealing with 
the challenges of data imbalance. 
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