Endophilin A1 promotes Actin Polymerization in response to Ca²⁺/calmodulin to Initiate Structural Plasticity of Dendritic Spines

Yanrui Yang^{1,2 †*}, Jiang Chen^{3†}, Xue Chen^{1,2}, Di Li⁴, Jianfeng He⁵, Shun Zhao⁶, Xiaoyu Yang⁶, Shikung Deng^{1,2}, Dou Wang¹, Zhenzhen Guo^{1,2}, Shaoxia Zhu¹, Dong Li⁴, Cong Ma⁶, Xin Liang⁵, Yun S. Shi³ and Jia-Jia Liu^{1,2,7*}

¹State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China

²College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100039, China

³State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center of Nanjing University, Nanjing, China

⁴National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.

⁵Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China

⁶Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, bioRxiv preprint doi: https://doi.org/10.1101/2020.05.07.082081; this version posted May 8, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

China

⁷CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy

of Sciences, Shanghai 200031, China

[†]These authors contributed equally to this work.

*Correspondence: <u>yryang@genetics.ac.cn</u>, <u>jjliu@genetics.ac.cn</u>

Abstract

Dendritic spines of excitatory neurons undergo activity-dependent structural and functional plasticity, which are cellular correlates of learning and memory. However, mechanisms underlying the rapid morphological changes immediately after NMDAR-mediated Ca^{2+} influx into spines remain poorly understood. Here we report that endophilin A1, a neuronal N-BAR protein, orchestrates membrane dynamics with actin polymerization to initiate spine enlargement in the induction phase of long-term potentiation (LTP). Upon LTP induction, $Ca^{2+}/calmodulin$ enhances its binding to both membrane and p140Cap, a cytoskeleton regulator. As a result, endophilin A1 rapidly associates with the relaxed plasma membrane and promotes actin polymerization, leading to acute expansion of spine head. Moreover, not only the p140Cap-binding, but also calmodulin- and membrane-binding capacities of endophilin A1 are required for LTP and long-term memory. Thus, endophilin A1 functions as calmodulin effector to drive spine enlargement in response to Ca^{2+} influx in the initial phase of structural plasticity.

Keywords: endophilin A1; calcium; calmodulin; dendritic spines; synaptic plasticity; actin polymerization; membrane expansion

1 Introduction

2	Long-term potentiation (LTP) of synaptic strength contributes to neural mechanisms
3	underlying learning and memory (Nabavi et al., 2014). In the mammalian brain, most
4	glutamatergic synapses are located on dendritic spines, micron-sized protrusions from
5	dendrites. In response to input activity, spines undergo changes in both morphology
6	(structural plasticity) and function (functional plasticity), which are tightly correlated during
7	LTP (Harvey and Svoboda, 2007; Matsuzaki et al., 2001; Matsuzaki et al., 2004). Imaging
8	studies have revealed that induction of LTP triggers a large transient increase in spine volume
9	(1-5 min after stimulation, early or transient phase) that decays to a long-lasting spine size
10	expansion (> 40 min, late or sustained phase) (Harvey and Svoboda, 2007; Matsuzaki et al.,
11	2004), a process termed structural LTP (sLTP), which would allow physical enlargement of
12	glutamatergic synapses to accommodate more
12	graumatergie synapses to decommodate more
13	α -amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) for synaptic
13	α -amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) for synaptic
13 14	α -amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) for synaptic potentiation (Herring and Nicoll, 2016). Moreover, recent studies have established a direct
13 14 15	α -amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) for synaptic potentiation (Herring and Nicoll, 2016). Moreover, recent studies have established a direct link between spine morphological changes and memory trace <i>in vivo</i> by demonstrating
13 14 15 16	α -amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) for synaptic potentiation (Herring and Nicoll, 2016). Moreover, recent studies have established a direct link between spine morphological changes and memory trace <i>in vivo</i> by demonstrating disruption of acquired motor learning by optical shrinkage of potentiated spines in the motor
13 14 15 16 17	α -amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) for synaptic potentiation (Herring and Nicoll, 2016). Moreover, recent studies have established a direct link between spine morphological changes and memory trace <i>in vivo</i> by demonstrating disruption of acquired motor learning by optical shrinkage of potentiated spines in the motor cortex (Hayashi-Takagi et al., 2015). Although sLTP has been studied intensively, with
13 14 15 16 17 18	α -amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) for synaptic potentiation (Herring and Nicoll, 2016). Moreover, recent studies have established a direct link between spine morphological changes and memory trace <i>in vivo</i> by demonstrating disruption of acquired motor learning by optical shrinkage of potentiated spines in the motor cortex (Hayashi-Takagi et al., 2015). Although sLTP has been studied intensively, with calcium signaling-regulated actin remodeling being the central process that governs the
13 14 15 16 17 18 19	α -amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) for synaptic potentiation (Herring and Nicoll, 2016). Moreover, recent studies have established a direct link between spine morphological changes and memory trace <i>in vivo</i> by demonstrating disruption of acquired motor learning by optical shrinkage of potentiated spines in the motor cortex (Hayashi-Takagi et al., 2015). Although sLTP has been studied intensively, with calcium signaling-regulated actin remodeling being the central process that governs the stabilization and consolidation of spine enlargement (Nakahata and Yasuda, 2018),

23	Endophilin A1 is a member of the endophilin A protein family characterized by an
24	N-terminal BIN/amphiphysin/Rvs (BAR) domain and a C-terminal Src homology 3 (SH3)
25	domain. The gene encoding endophilin A1 (EEN1, a.k.a sh3gl2) is almost exclusively
26	expressed in brain (Ringstad et al., 1997) and has been implicated in epilepsy, Alzheimer's
27	disease and schizophrenia (Corponi et al., 2019; Ren et al., 2008; Yu et al., 2018a; Yu et al.,
28	2018b). Originally identified as a component of the endocytic machinery, endophilin As
29	function in synaptic vesicle recycling at the presynaptic site in two distinct processes: ultrafast
30	endocytosis from the plasma membrane following synaptic vesicle fusion and clathrin
31	uncoating of regenerated synaptic vesicles (Milosevic et al., 2011; Ringstad et al., 1997;
32	Schuske et al., 2003; Verstreken et al., 2003; Watanabe et al., 2018). Recently endophilin A2
33	has also been found to mediate fast clathrin-independent endocytosis in mammalian epithelial
34	cells (Boucrot et al., 2015; Renard et al., 2015). Other studies have implicated endophilin As
35	in autophagosome formation and protein homeostasis at presynaptic terminals (Murdoch et al.,
36	2016; Soukup et al., 2016). In dendrites, both endophilin A2 and A3 interact with Arc/Arg3.1
37	to accelerate endocytosis of AMPARs at the postsynaptic membrane during late-phase
38	synaptic plasticity (Chowdhury et al., 2006).

Previously we found that during synaptic development, endophilin A1 contributes to dendritic spine morphogenesis and stabilization through interaction with p140Cap, an actin cytoskeleton regulator (Yang et al., 2015). We also found that *EEN1* gene knockout (KO) in the hippocampal CA1 region of mouse brain causes impairment of LTP of the Schaffer collateral-CA1 pathway and long-term memory (Yang et al., 2018). At the cellular level, endophilin A1, not A2 or A3, is required for N-methyl-D-aspartate receptor

45	(NMDAR)-mediated synaptic potentiation of dendritic spines in mature CA1 pyramidal cells
46	(Yang et al., 2018). Intriguingly, overexpression of p140Cap, its downstream effector, fails to
47	rescue the structural and functional plasticity of spines in <i>EEN1</i> KO (<i>EEN1</i> ^{-/-}) neurons (Yang
48	et al., 2018), suggesting the necessity of spatiotemporal coordination of membrane expansion
49	and actin polymerization during synaptic potentiation. In this study, we investigated the
50	mechanistic role(s) of endophilin A1 in sLTP with a combination of cell biological,
51	biochemical, electrophysiological and genetic approaches. We present evidence that
52	endophilin A1 serves as an immediate effector of Ca2+/calmodulin to promote actin
53	polymerization-dependent membrane expansion in the initial phase of spine structural
54	plasticity.
54	plusterty.
55	
	Results
55	
55 56	Results
55 56 57	Results Endophilin A1 is Required for the Acute Structural Plasticity of Dendritic Spines
55 56 57 58	Results Endophilin A1 is Required for the Acute Structural Plasticity of Dendritic Spines Knockout of the <i>EEN1</i> gene causes inhibition of structural and functional plasticity of
55 56 57 58 59	Results Endophilin A1 is Required for the Acute Structural Plasticity of Dendritic Spines Knockout of the <i>EEN1</i> gene causes inhibition of structural and functional plasticity of dendritic spines in hippocampal neurons (Yang et al., 2018). To investigate the mechanistic
55 56 57 58 59 60	Results Endophilin A1 is Required for the Acute Structural Plasticity of Dendritic Spines Knockout of the <i>EEN1</i> gene causes inhibition of structural and functional plasticity of dendritic spines in hippocampal neurons (Yang et al., 2018). To investigate the mechanistic role(s) of endophilin A1 in synaptic plasticity, first we determined at which temporal stage(s)

64 enlargement as early as 1 minute after application of the NMDAR co-agonist glycine (Figure

65 1B and 1C).

Actin polymerization in dendritic spines is crucial for not only spine morphogenesis

67	during synaptic development but also sLTP of mature neurons. Imaging studies on
68	hippocampal neurons have shown that actin polymerization in spines starts as early as 20 s
69	after LTP induction (Okamoto et al., 2004). As endophilin A1 is required for acute
70	LTP-induced spine enlargement, we reasoned that it might function to promote actin
71	polymerization in the initial phase of structural plasticity. To monitor morphological changes
72	and actin dynamics of spines simultaneously, we performed super-resolution live imaging of
73	EEN1 wild-type (WT) and KO neurons expressing membrane-anchored GFP (mGFP) and the
74	F-actin probe LifeAct-mCherry by Grazing Incidence Structured Illumination Microscopy
75	(GI-SIM) (Guo et al., 2018). In WT neurons, consistent with our previous study (Guo et al.,
76	2018), we observed rapid increase in both spine size and F-actin signal intensity in dendritic
77	spines within 1 minute upon glycine application (Video 1 and Figure 1D-1F). In contrast, no
78	significant changes in spine size were detected in EEN1 KO neurons even though the shape of
79	spines changed constantly (Video 2, Figure 1D and 1E). These live imaging data indicate that
80	endophilin A1 is required for spine head enlargement during the initial phase of sLTP. Notably,
81	although the spine heads of EEN1 KO neurons were as motile as those of WT cells, the
82	LTP-induced net increase in F-actin content was also abolished (Figure 1D and 1F), indicating
83	that endophilin A1 is also required for spine actin polymerization in the initial phase of sLTP.
84	Consistent with previous findings (Guo et al., 2018; Honkura et al., 2008), we observed
85	membrane expansion of spine head accompanied by local increase in F-actin content in the
86	initial phase of sLTP (Figure 1G and Video 1). Quantitative analysis of the images clearly
87	revealed that actin polymerization and plasma membrane protrusion of spine head are tightly
88	coupled spatially and temporally (Figure 1H-K and Video 3), suggesting that local actin

89	polymerization provides propulsive force for spine growth. Notably, compared with WT, the
90	membrane protrusion of spine head and increase in F-actin content was much less coupled in
91	EEN1 KO neurons (Figure 1H-1K and Video 4), implicating endophilin A1 in actin
92	polymerization-dependent membrane expansion in the initial phase of sLTP.

93

94 Membrane Unfolding and Branched Actin Polymerization are Required for Acute 95 Structural Plasticity

96 The observation that endophilin A1 is required for rapid spine membrane expansion upon 97 glycine application prompted us to investigate mechanism(s) underlying initiation of sLTP. 98 Although it was postulated that the membrane source for LTP-induced spine enlargement 99 comes from transport of intracellular recycling endosomes to the neuronal plasma membrane 100 (Park et al., 2004), imaging studies revealed that spine head expansion precedes most of the 101 AMPAR exocytotic events during the early phase of cLTP (Kopec et al., 2006), and that the 102 light chain of botulinum toxin type B (BoTox), a neurotoxin that binds to the SNARE 103 complex and inhibits exocytosis, had no effect on the initial spine expansion after the theta 104 burst paring protocol of LTP induction (Yang et al., 2008). To determine whether spine 105 membrane expansion requires fusion of exocytosed vesicles with the plasma membrane in 106 cLTP, we tested the effect of Tetanus toxin (TeTx), another inhibitor of SNARE-mediated 107 membrane fusion, on glycine-induced acute increase in spine size. Consistent with previous 108 studies (Hiester et al., 2018), treatment of hippocampal neurons with TeTx did not affect spine 109 enlargement in the first 3 minutes of glycine treatment (Figure 2A and 2B), indicating that 110 vesicle fusion is not the direct source of membrane supply for the rapid structural expansion

111 of spines in the initial phase of sLTP.

112	Both electron microscopy and super-resolution imaging reveal that the surface of mature
113	spines is not smooth but rather convoluted (Arellano et al., 2007; Harris and Stevens, 1989;
114	Smith et al., 2014). To determine whether the membrane folds or invaginations in spine head
115	contribute to structural expansion, we increased membrane tension by exposing neurons to
116	hypo-osmotic buffer and found that cLTP-induced spine enlargement was abolished (Figure
117	2C and 2D). As membrane tension increases fusion efficiency (Kliesch et al., 2017), these
118	findings corroborate that membrane fusion does not contribute to rapid spine enlargement.
119	Conversely, incubation of neurons with hyper-osmotic buffer, which shrunk the spines and
120	generated membrane folds, also antagonized cLTP-induced spine enlargement (Figure 2C and
121	2D). These data together indicate that, similar to the formation of membrane expansion in
122	migrating primordial germ cells (Goudarzi et al., 2017), the membrane supply for rapid spine
123	enlargement in the initial phase of sLTP comes from plasma membrane invaginations, which
124	are local unfolding of spine surface convolutions.

125 Previous studies on activity-dependent structural remodeling of dendritic spines indicate 126 that glutamate uncaging-induced rapid spine enlargement requires NMDAR, calmodulin and 127 actin polymerization, whereas long-lasting spine enlargement also requires the activity of 128 Ca²⁺/calmodulin-dependent protein kinase II (CaMKII) (Matsuzaki et al., 2004). Indeed, 129 inhibition of calmodulin but not CaMKII abolished glycine-induced spine enlargement of 130 hippocampal neurons during the initial phase of sLTP (Figure 2E and 2F). The 131 Ca²⁺/calmodulin CaMKII pathway triggers several signaling cascades to promote actin 132 polymerization and AMPAR trafficking to the plasma membrane during synaptic potentiation (Murakoshi and Yasuda, 2012). In line with previous studies (Honkura et al., 2008; Matsuzaki
et al., 2004), inhibition of actin polymerization with latrunculin A (LatA) abolished
enlargement of spine head during the initial phase of sLTP (Figure 2G and 2H). Moreover,
inhibition of Arp2/3 had a similar effect to that of LatA, whereas inhibition of Formin had no
effect (Figure 2G and 2H), indicating that branched rather than linear actin polymerization is
required for acute spine expansion.

139 The Rho family members of small GTPases are known downstream effectors of 140 Ca²⁺/calmodulin and regulators of actin reorganization and structural plasticity (Hedrick and 141 Yasuda, 2017; Spiering and Hodgson, 2011). Next we determined whether they are required 142 for cLTP-induced acute spine enlargement by treating hippocampal neurons with inhibitor for 143 RhoA, Rac1 or Cdc42. In agreement with previous findings that rapid structural remodeling 144 requires actin severing and nucleation by ADF/cofilin, inhibition of RhoA, the upstream 145 activator of ADF/cofilin (Hedrick et al., 2016; Murakoshi et al., 2011), abolished 146 glycine-induced spine enlargement (Figure 2G and 2H). Notably, although both Rac1 and 147 Cdc42 can activate actin polymerization (Hedrick and Yasuda, 2017), only Rac1 is required 148 for the initial spine growth of sLTP (Hedrick et al., 2016; Murakoshi et al., 2011) (Figure 2G 149 and 2H, this study). Moreover, inhibition of Rac1 only partially inhibited acute spine 150 expansion (Figure 2G and 2H), suggesting the presence of other factor(s) that promotes 151 branched actin polymerization in response to Ca^{2+} influx immediately upon sLTP induction. 152 Collectively, these data indicate that Ca^{2+} /calmodulin-regulated branched actin polymerization 153 plays an essential role in acute spine membrane expansion in the initial phase of sLTP.

155 Ca²⁺/calmodulin Enhances Endophilin A1-p140Cap Interaction to Promote Actin

156 **Polymerization in Spines**

157 Having established that endophilin A1 is required for both spine head enlargement and actin 158 polymerization in the initial phase of sLTP, we speculated that endophilin A1 promotes actin 159 polymerization in spines to provide pushing force for membrane expansion. Since CaMKII is 160 not required for acute spine enlargement, we reasoned that endophilin A1 might function earlier than CaMKII in molecular events triggered by NMDAR-mediated Ca²⁺ influx upon 161 LTP induction. Previously studies reported that Ca^{2+} binding changes the conformation of 162 endophilin A2 and regulates its interaction with dynamin and voltage-gated Ca^{2+} channels 163 (VGCC) (Chen et al., 2003). Nevertheless, no direct binding between endophilin A1 and Ca²⁺ 164 165 was detected by isothermal titration calorimetry (ITC) and fluorescence spectrometry (Figure 166 3-figure supplement 1).

167 Recent studies reported that calmodulin binds to mammalian N-BAR proteins including 168 endophilin A1 and A2 (Myers et al., 2016). Indeed, GST-pull down assay showed that 169 endophilin A1 binds to calmodulin via its N-terminal BAR domain and the interaction is strengthened by Ca^{2+} (Figure 3A-3F). We reasoned that Ca^{2+} /calmodulin might function as 170 171 upstream regulator of endophilin A1 function(s). As expected, co-immunoprecipitation (co-IP) 172 from both transiently transfected HEK293 cells and mouse hippocampal neurons showed that the interaction between endophilin A1 and p140Cap is Ca^{2+} -dependent (Figure 3G-3J). 173 174 Moreover, co-IP from cultured hippocampal neurons revealed that LTP induction enhanced the interaction between endophilin A1 and p140Cap in a Ca²⁺- and NMDAR-dependent 175 176 manner (Figure 3K and 3L). Further, the association of endophilin A1 with not only

calmodulin but also p140Cap was enhanced acutely upon LTP induction, which was abolished
with the calmodulin inhibitor W-7 (Figure 3M and 3N), indicating that Ca²⁺/calmodulin
enhances endophilin A1–p140Cap interaction during the initial phase of LTP.

180	As regulator of actin remodeling, p140Cap recruits cortactin to drive Arp2/3-mediated
181	branched actin polymerization (Jaworski et al., 2009; Schnoor et al., 2018; Yang et al., 2015).
182	Indeed, co-IP of not only p140Cap but also cortactin by antibodies against endophilin A1 was
183	enhanced by Ca^{2+} (Figure 3I and 3J). To test the idea that endophilin A1 functions via
184	p140Cap and cortactin during the initial phase of sLTP, first we determined whether they are
185	recruited to dendritic spines in an LTP- and endophilin A1-dependent manner. Quantitative
186	analysis of immunofluorescence confocal images indicated that enrichment of p140Cap and
187	cortactin in spines upon LTP induction requires not only endophilin A1 but also activities of
188	calmodulin and NMDAR (Figure 3O-3R).

Next, to determine whether Ca²⁺/calmodulin promotes actin polymerization via the 189 190 endophilin A1 p140Cap pathway, we generated a calmodulin-binding deficient mutant of 191 endophilin A1 (I154AL158A, DM) that has much lower affinity for calmodulin than the WT 192 protein (Figure 4A and 4B; and Figure 4-figure supplement 1), and tested whether it can 193 rescue the sLTP phenotype of EEN1 KO neurons. Indeed, WT but not the DM mutant of 194 endophilin A1 restored the rapid increase in spine size and F-actin content in spines upon LTP 195 induction (Figure 4C-4F). Moreover, Y343A, the p140Cap-binding deficient mutant of 196 endophilin A1 (Yang et al., 2015), also failed to rescue the sLTP phenotype of EENI KO neurons (Figure 4G-4I). Together, these data indicate that Ca²⁺/calmodulin enhances the 197

recruitment of p140Cap by endophilin A1 to promote actin polymerization during the initial

199 phase of sLTP.

200

201 Ca²⁺/calmodulin-Dependent Increase in Plasma Membrane-Associated Endophilin A1

202 Nanodomains Correlates with Spine Size During the Initial Phase of sLTP

203 Single protein tracking and super-resolution imaging revealed dynamic changes in the 204 nanoscale organization of branched F-actin regulators in spines during synaptic plasticity 205 (Chazeau et al., 2014). Intriguingly, although the interaction between endophilin A1 and 206 p140Cap is required for sLTP, overexpression of p140Cap could not rescue plasticity phenotypes of EEN1 KO neurons (Yang et al., 2018), suggesting the existence of 207 208 spatiotemporal regulation of their interaction during LTP induction. To this end, we analyzed 209 the sub-spine localization of endophilin A1 by immunofluorescence staining and 210 3D-structured illumination microscopy (3D-SIM). Interestingly, in spines endophilin A1 was 211 organized into nanoscale objects (mean area 0.014 μ m², referred to as nanodomains) which 212 did not overlap with PSD95, marker for the postsynaptic density (PSD) structure (Figure 213 5-figure supplement 1A). Quantitative analysis revealed an NMDAR-dependent increase in 214 the number of endophilin A1 nanodomains in spines undergoing sLTP (Figure 5-figure 215 supplement 1A-1C). Moreover, the size of spine head correlated with the number but not the 216 area of endophilin A1 nanodomains (F Figure 5-figure supplement 1E and 1F). In contrast, the 217 number of endophilin A1 nanodomains did not correlate with the size of the PSD95-labeled 218 PSD structures (Figure 5-figure supplement 1D and 1G). Further, treatment of hippocampal 219 neurons with inhibitor of calmodulin but not CaMKII abolished the increase in not only spine

size but also the number of endophilin A1 puncta in spines (Figure 5-figure supplement
1H-1J). These data together suggest that the calmodulin-regulated subsynaptic localization of
endophilin A1 is required for spine enlargement.

223 As endophilin A1 contains the positive membrane curvature-sensing and binding N-BAR 224 domain (Gallop et al., 2006) that enables it associate with invaginated plasma membrane, next 225 we investigated whether its association with the spine plasma membrane is also regulated in 226 the initial phase of sLTP. To distinguish plasma membrane-localized endophilin A1 from 227 those localized to intracellular structures, we permeabilized cell membrane with the mild 228 detergent saponin to limit access of antibodies to the cytosolic leaflet of the plasma membrane. 229 Indeed, most endophilin A1 nanodomains were plasma membrane-localized (Figure 5A). 230 Moreover, there was an increase in the number of plasma membrane-localized endophilin A1 231 nanodomains as early as 1 minute after LTP induction (Figure 5B). Further, the number but 232 not the area of the nanodomains correlated with the size of spine head (Figure 5B-5D). As 233 endophilin A1 functions via p140Cap and its downstream effector cortactin (Yang et al., 2015) 234 to activate Arp2/3 which in turn induces branched actin polymerization (Uruno et al., 2001; 235 Weaver et al., 2001), these data suggest that upon LTP induction, endophilin A1 localizes to 236 the periphery of spine head and promotes local actin polymerization underneath the plasma 237 membrane. 238 Given that sub-spine accumulation of endophilin A1 requires activation of NMDAR and

240 influx, binding of Ca^{2+} -activated calmodulin to endophilin A1 not only enhances its 241 interaction with p140Cap, but also facilitates its association with the invaginated plasma

239

calmodulin (Figure 5-figure supplement 1), we reasoned that upon NMDAR-mediated Ca^{2+}

242	membrane. Indeed, inhibition of NMDAR or calmodulin, not CaMKII, abolished
243	glycine-induced increase in the number of plasma membrane-localized endophilin A1
244	nanodomains (Figure 5A, 5C and 5E). Notably, although latrunculin A treatment inhibited
245	spine enlargement, it had no effect on LTP-induced increase in plasma membrane-localized
246	endophilin A1 (Figure 5F-5I), indicating that Ca2+/calmodulin-enhanced association of
247	endophilin A1 with the plasma membrane precedes actin polymerization during sLTP
248	initiation.

To corroborate that Ca²⁺/calmodulin regulates the association of endophilin A1 with the 249 250 plasma membrane, we performed in vitro liposome sedimentation assays and found that, 251 whilst calmodulin alone did not change the membrane-binding capacity of WT endophilin A1, Ca²⁺/calmodulin enhanced it significantly (Figure 5J and 5K). In contrast, Ca²⁺/calmodulin 252 253 had no effect on the membrane association ability of the calmodulin-binding deficient DM 254 mutant of endophilin A1 (Figure 5J and 5K). Collectively, these data indicate that Ca²⁺/calmodulin enhances association of endophilin A1 with the plasma membrane of 255 256 dendritic spines in the initial phase of sLTP.

257

Endophilin A1 Promotes Branched Actin Polymerization Underneath the Plasma Membrane

Based on the findings that endophilin A1 accumulates into spine plasma membrane-associated nanodomains and recruits p140Cap and cortactin in the initial phase of sLTP, we further reasoned that it might transduce the Ca^{2+} signals instantaneously to enable plasma membrane expansion of spines by promoting branched actin polymerization. If it is true, we should be

264	able to detect more endophilin A1 associated with both membranes and the actin cytoskeleton
265	upon LTP induction. To test this possibility, first we analyzed subcellular fractions of mouse
266	hippocampi from animals subjected to fear conditioning, a physiological learning paradigm
267	associated with synaptic plasticity. Indeed, compared with naïve mice, we detected significant
268	increase in the amount of endophilin A1 and p140Cap in both membrane and cytoskeletal
269	fractions from trained animals (Figure 6A and 6B). Consistently, although the levels of either
270	protein remained unchanged (Figure 6C and 6D), their association with membrane and
271	cytoskeleton fractions also increased in dissociated cultured hippocampal neurons in the
272	initial phase of cLTP (Figure 6E and 6F). Moreover, the enhanced association of endophilin
273	A1 and p140Cap with both membrane and cytoskeleton was inhibited by W-7 but not KN-62
274	(Figure 6E and 6F), indicating that calmodulin is the immediate upstream regulator of their
275	subcellular redistribution. Notably, subcellular distribution of endophilin A2, another member
276	of the endophilin A family, was not affected by either neural activity or Ca ²⁺ /calmodulin
277	(Figure 6A-6F).

We then determined whether the membrane-binding capacity of endophilin A1 is required for the rapid spine enlargement of neurons undergoing sLTP. Compared with WT, the membrane-binding deficient mutant of endophilin A1 (KKK-EEE) (Gallop et al., 2006) was unable to rescue the deficit in acute spine enlargement of glycine-treated *EEN1* KO neurons (Figure 6G-6I). All together, these data indicate that rapid enlargement of spines in the initial phase of sLTP requires $Ca^{2+}/calmodulin-dependent$ enhancement of not only endophilin A1-p140Cap interaction but also the association of endophilin A1 with membrane.

285

Since the small size of dendritic spines and the wide distribution of F-actin and actin

286	polymerization regulators in spines prevent us to better visualize the spatiotemporal
287	relationship between plasma membrane association of endophilin A1 and its effectors, we
288	tested whether there are changes in the subcellular distribution of endophilin A1and Arp2/3 in
289	response to Ca ²⁺ /calmodulin using HeLa cell as a heterologous model system. In HeLa cells
290	ectopically co-expressing endophilin A1 and p140Cap, upon Ca^{2+} influx induced by the
291	calcium ionophore ionomycin, we detected enrichment of endophilin A1 signals underneath
292	the plasma membrane by confocal microscopy (Figure 6-figure supplement 1A). Moreover,
293	preincubation with W-7 but not latrunculin or CK-666 abolished ionomycin-induced
294	endophilin A1 recruitment to the cell periphery (Figure 6-figure supplement 1A), indicating
295	that Ca ²⁺ -activated calmodulin directly regulates accumulation of endophilin A1 at the plasma
296	membrane. Further, although the strong intrinsic signals for cortical actin did not allow us to
297	quantify changes in F-actin content underneath the plasma membrane, the Arp2/3 complex
298	(labeled with fluorescently tagged Arp1b) was also enriched in the cell periphery upon
299	ionomycin application (Figure 6-figure supplement 1B). In contrast, ionomycin treatment
300	failed to cause recruitment of either the membrane-binding (KKK-EEE) or the
301	calmodulin-binding deficient mutant of endophilin A1 to the cell periphery (Figure 6-figure
302	supplement 1B). Intriguingly, although ionomycin treatment increased plasma membrane
303	association of the p140Cap-binding mutant Y343A, no enrichment of Arp1b signals at the cell
304	periphery was observed (Figure 6-figure supplement 1B), indicating that recruitment of the
305	Arp2/3 complex underneath the plasma membrane requires the interaction between
306	endophilin A1 and p140Cap. Collectively, these results support that Ca ²⁺ /calmodulin enhances
307	association of endophilin A1 with the plasma membrane and promotes branched actin

308 polymerization in spines.

309

310 Ca²⁺/calmodulin-Regulated Functions of Endophilin A1 is Required for LTP and

311 Long-term Memory

312 It was proposed that spine enlargement enables formation of a stable F-actin:cofilin complex 313 that serves as a synaptic tag to capture postsynaptic constituent proteins for maintenance and 314 consolidation of the potentiated state (Bosch et al., 2014). To determine the functional 315 significance of endophilin A1-mediated structural plasticity, next we tested whether the 316 molecular functions of endophilin A1 in structural plasticity are also required for LTP by 317 electrophysiological analyses. To this end, we performed molecular replacement in a small subset of neurons by injection of the hippocampal CA1 region of *EEN1*^{fl/fl} mice with 318 319 adeno-associated viral vectors encoding the Cre recombinase (AAV-mCherry-Cre) together 320 with those encoding either WT or mutant endophilin A1 (AAV-EGFP-2A-EEN1 WT, Y343A, 321 KKK-EEE or DM) at postnatal day 0 (P0), and induced LTP in Schaffer-collateral synapses by double patch whole-cell recording of non-infected (control, *EENI*^{fl/fl}) and virus-infected 322 323 CA1 pyramidal cells in acute slices from virus-injected animals at P14-21. In line with our 324 previous findings (Yang et al., 2018), Cre-mediated knockout of EEN1 caused significant 325 impairment of LTP, which was fully rescued by re-expression of WT endophilin A1 (Figure 326 7A, 7B and 7F). In contrast, none of the mutants could rescue the magnitude or the maintenance of LTP in *EEN1-¹⁻* neurons (Figure 7C-7F), indicating that indeed, molecular 327 328 functions of endophilin A1 to initiate sLTP is required for expression and stabilization of 329 synaptic potentiation.

330	Finally, we determined the physiological significance of the mechanistic roles of
331	endophilin A1 in LTP by testing whether endophilin A1 mutants can rescue the learning and
332	memory deficits in EEN1 KO mice. Indeed, whilst AAV-mediated expression of WT
333	endophilin A1 in the CA1 region restored the long-term memory in KO mice in both Morris
334	water maze and fear conditioning tests, neither of the three mutants ameliorated the
335	phenotypes (Figure 7G-O). Collectively these data indicate that in CA1 pyramidal cells, not
336	only the p140Cap-binding, but also the calmodulin-interaction and membrane association
337	capacities of endophilin A1 are required for long-term synaptic potentiation and memory.

338

339 Discussion

340 The temporal phases of sLTP include initiation of spine expansion (≤ 1 min after LTP 341 stimulation, initial phase), transient (early phase) and sustained spine enlargement (late phase) 342 (Harvey and Svoboda, 2007; Matsuzaki et al., 2004). Although actin polymerization is 343 essential for sLTP (Matsuzaki et al., 2004; Obashi et al., 2019), little is known about the 344 relationship between actin remodeling and membrane dynamics during the initial phase due to 345 limited spatiotemporal resolution of light microscopy. Moreover, although imaging studies 346 have revealed subspine organization and dynamics of F-actin pools as well as nanoscale 347 segregation of branched F-actin regulators in dendritic spines and suggested that their 348 localization might be spatially and temporally controlled during activity-dependent 349 morphological changes (Chazeau et al., 2014; Honkura et al., 2008), the precise sequence of 350 molecular events leading to rapid structural expansion of spines remains to be defined. In this 351 work, we uncover a novel mechanism for initiation of sLTP. We show that in direct response

to Ca²⁺/calmodulin, endophilin A1 drives acute spine enlargement in NMDAR-mediated sLTP
by localizing to spine plasma membrane and recruiting p140Cap to promote branched actin
polymerization (Figure 8).

355 Endophilin A2 and A3, two other members of the endophilin A family, have been found 356 to interact with the immediate early protein Arc/Arg3.1 to accelerate AMPAR endocytosis and 357 might contribute to late-phase synaptic plasticity (Chowdhury et al., 2006). The impairment of 358 structural and functional plasticity of potentiated dendritic spines caused by ablation of 359 endophilin A1 cannot be rescued by overexpression of endophilin A2 or A3 (Yang et al., 360 2018). Although both endophilin A1 and A2 interact with calmodulin (Myers et al., 2016) 361 (and Figure 3, this study), only endophilin A1, but not A2 or A3, binds to and recruits 362 p140Cap to dendritic spines to promote actin polymerization (Yang et al., 2015). Moreover, in 363 vivo and in vitro LTP stimuli induce increased association of endophilin A1, but not 364 endophilin A2, with both membrane and cytoskeleton (Figure 6, this study). Together these 365 findings indicate that different interaction partners for the endophilin A family members 366 confer them distinct mechanistic roles in the induction and expression of synaptic plasticity in 367 dendritic spines.

Consistent with previous reports (Yang et al., 2008), we found that SNARE-mediated membrane fusion is not required for rapid spine expansion in the initial phase of sLTP (Figure 2). Upon LTP induction, Ca²⁺ influx through the NMDAR ion channel activates calmodulin, which in turn activates CaMKII and its downstream signaling cascades to trigger various subcellular events including actin remodeling (Chazeau et al., 2014). Previous live imaging studies have revealed calmodulin-dependent formation of an F-actin pool that associates with

374	spine enlargement (hence referred to as "enlargement pool") (Honkura et al., 2008). Although
375	the observation that the membrane ruffling of the spine head synchronizes with the
376	enlargement pool of F-actin has prompted the authors to conclude that spine enlargement is
377	induced by the propulsive force generated by calmodulin-regulated actin polymerization
378	(Honkura et al., 2008), the mechanistic link between $Ca^{2+}/calmodulin$ and actin
379	polymerization was still missing. In this study, we demonstrate that membrane-associated
380	endophilin A1 is the direct molecular target of $Ca^{2+}/calmodulin$, which enhances both its
381	membrane association and its interaction with the downstream effector p140Cap (Figure 3
382	and 5). Our data further indicate that coordination of the membrane-association and
383	p140Cap-binding capacities of endophilin A1 provides the protrusive force for rapid structural
384	remodeling of dendritic spines by promoting actin polymerization underneath the plasma
385	membrane (Figure 4, 6, 7 and 8), which is also in good agreement with most recent studies
386	that the interplay between membrane tension and branched actin polymerization could
387	produce membrane deformations (Simon et al., 2019).

388 Most recent studies revealed that although Rac1 activity is not required for the initial 389 spine expansion induced by glutamate uncaging, formation of a "reciprocally activating 390 kinase-effector complex" (RAKEC) between CaMKII, and Tiam1, a guanine exchange factor for Rac (RacGEF), converts the transient Ca²⁺ signal triggered by LTP induction into a 391 392 persistent kinase signal required for the maintenance of sLTP (Saneyoshi et al., 2019). Given 393 the spinous dynamic reorganization of nanoscale distribution of various F-actin regulators that are downstream of Ca²⁺/calmodulin and CaMKII (Chazeau and Giannone, 2016; Chazeau et 394 al., 2014), including the F-actin severing protein cofilin (Noguchi et al., 2016), there might be 395

396 crosstalk between $Ca^{2+}/calmodulin-dependent$, endophilin A1-mediated actin polymerization 397 and other $Ca^{2+}/calmodulin$ and/or CaMKII effector-regulated pathways (e.g., Rac1 and 398 ADF/cofilin), which enables spatiotemporally controlled actin reorganization during the 399 initial phase and/or the transition to the early phase of sLTP.

Copine-6, a Ca^{2+} sensor, relocalizes from the cytosol of dendrites to lipid raft-enriched 400 postsynaptic plasma membrane in response to NMDAR-mediated Ca^{2+} influx, and activates 401 402 Rac1 to spines during synaptic potentiation (Reinhard et al., 2016). It is also required for spine structural plasticity and LTP, probably contributing to stabilization of the actin 403 404 cytoskeleton by inhibiting ADF/cofilin via the Rac1-PAK-LIMK1 pathway (Reinhard et al., 405 2016). In addition, by keeping cortactin active to prevent branched actin filaments from severing by ADF/cofilin, the fast Ca^{2+} sensor caldendrin stabilizes an F-actin pool at the spine 406 407 base required for the structural remodeling of spines in the transition from early to late phase 408 LTP (Mikhaylova et al., 2018). In our study, while repetitive expansion and shrinkage of spine 409 heads were also observed in EEN1 KO neurons, the F-actin content and spine size remained 410 constant during the initial phase of sLTP (Figure 1). Rather than stabilizing F-actin, 411 endophilin A1 responds to Ca²⁺/calmodulin and promotes branched actin polymerization 412 beneath the plasma membrane to achieve rapid spine enlargement. While they all function via 413 CaMKII-independent mechanisms to regulate actin dynamics, how Colpine-6, caldendrin and 414 endophilin A1 coordinate with each other to ensure spine potentiation and stabilization awaits 415 further investigation.

416

418 Acknowledgements

419	We thank Dr. Anbing Shi (Huazhong University of Science and Technology) for critical
420	comments on the manuscript. This work was supported by funding from the National Natural
421	Science Foundation of China (31530039 and 91954126 to J-J. Liu, 31571056 to Y. Yang,
422	91849112 to Y. S. Shi and 81901161 to J. Chen, 91754202 to Dong Li and 31670846 to C.
423	Ma), Ministry of Science and Technology of China (2016YFA0500100 to J-J. Liu and
424	2019YFA0801603 to Y.S. Shi), and the Strategic Priority Research Program of Chinese
425	Academy of Science (XDB32020100).
426	
427	Author Contributions
428	Conceptualization, Y.Y. and J-J.L.; Investigation, Y.Y., J.C., X.C., Di.L., S.Z., X.Y., S.D.,
429	D.W., Z.G., and S.Z.; Formal analysis, Y.Y., J.C., X.C., J.H., S.Z., and S.D.; Visualization,
430	Y.Y., J.C., X.C., J.H., S.Z., S.D., X.L. and S.D.; Writing – Original Draft, Y.Y., J.C., S.Z., X.Y.,
431	X.L., Y.S.S., and J-J.L.; Funding Acquisition, Y.Y., J.C., Dong L., C.M., Y.S.S. and J-J.L.;
432	Supervision, Dong.L., C.M., X.L., Y.S.S., and J-J.L.; Project Administration, J-J.L.
433	
434	Declaration of Interests
435	The authors declare no competing interests.
436	
437	Materials and Methods
438	Ethics statement
439	All animal experiments were approved by and performed in accordance with the guidelines of

440	the Animal Care and Use Committee of Institute of Genetics and Developmental Biology,
441	Chinese Academy of Sciences (Approval code: AP2013003 and AP2015002), and the Animal
442	Care and Use Committee of the Model Animal Research Center, the Host for the National
443	Resource Center for Mutant Mice in China, Nanjing University (Approval code: AP#SY06).
444	All animals were housed in standard mouse cages at 22-24 $^{\circ}$ C on a 12 h light/dark cycle with
445	access to food and water freely.
446	
447	Animals
448	Generation of <i>EEN1</i> ^{fl/fl} and <i>EEN1</i> ^{-/-} mice on the C57BL/6J background was as previously
449	described (Yang et al., 2018). Briefly, the targeting vector for EENI was obtained from
450	European Mouse Mutant Cell Repository (EuMMCR, PRPGS00060_A_A02). The endophilin
451	A1 KO first and <i>EEN1</i> ^{fl/fl} C57BL/6J mice were generated at Nanjing Model Animal Research
452	Center of Nanjing University. Genotyping of mouse lines was performed by genomic PCR of
453	tail prep DNA from offspring with the following primer pairs: loxPF/loxPR:
454	5'-CAAGGACTCCCAGAGACCTAGCATC-3' and
455	5'-GAGATGGCGCAACGCAATTAAT-3' (A PCR product of 375 base pairs in EEN1 KO
456	first mice but none in wild-type mice).
457	zptF/zptR: 5'-GTAAGCGGCTCTAGCGCATGTTCT-3' and
458	5'-GCAGGGGGCATGTAGGTGGCTCAAC-3' (A PCR product of 466 base pairs in WT mice,
459	none in EEN1 KO first mice, and of 627 base pairs in <i>EEN1</i> ^{fl/fl} mice).
460	

461 Constructs

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.07.082081; this version posted May 8, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

462	The putative amino acid residues of EEN1 involved in calmodulin binding were predicated
463	using the Binding Site Search and Analysis tool provided at the Calmodulin Target Database:
464	http://calcium.uhnres.utoronto.ca/ctdb/ctdb/home.html. pCMV-Tag2B-EEN1 DM and
465	pET28a(+)-EEN1 single mutants and DM (mutation I154 and L158 to A) were created by
466	site-directed mutagenesis using pCMV-Tag2B-EEN1 and pET28a(+)-EEN1 as template,
467	respectively. pET28a(+)-EEN1 \triangle BAR (\triangle aa 6-242) and pET28a(+)-EEN1 \triangle SH3 (\triangle aa
468	295-346) were subcloned from pGEX4T-1-EEN1 Δ BAR and pGEX4T-1-EEN1 Δ SH3. The
469	pAAV-CaMKII\alpha-EGFP-2A-MCS-3FLAG-EEN1 or mutant of EEN1 AAV viral constructs
470	(KKK-EEE, Y343A and DM) were generated by cloning EEN1 cDNA amplified from
471	pCMV-Tag2B-EEN1 or mutant constructs into the pAAV-CaMKIIα-EGFP-2A-MCS-3FLAG.
472	The bacterial expression construct for His-tagged p140Cap fragment (aa 351-1051) was
473	generated by PCR amplification of the cDNA encoding p140Cap (aa 351-1051) and insertion
474	into pET-28a(+). Bacterial expression constructs for calmodulin were generated by PCR
475	amplification of cDNA for mouse calmodulin from mouse brain by RT-PCR and insertion into
476	pGEX4T-1 and pET28a(+). Arp1b-mCherry construct was a generous gift from Drs. Na Mi
477	and Li Yu (Tsinghua University, China). All other constructs used in this study
478	(pCMV-Tag2B-EEN1 WT, pCMV-Tag2B-EEN1 Y343A, pCMV-Tag2B-EEN1 KKK-EEE,
479	mGFP and LifeAct-mCherry) were described previously (Guo et al., 2018; Yang et al., 2018).
480	Viral particles of adeno-associated virus (AAV) carrying pAOV-CaMKIIα-EGFP-2A-Cre,
481	pAAV-CaMKII\alpha-EGFP-2A-MCS-3FLAG-EEN1 or mutants of EEN1 and the control
482	construct pAAV-CaMKIIa-EGFP-2A-MCS-3FLAG were purchased from OBiO Technology
483	(Shanghai) Corp. Ltd., (Shanghai, China).

484

485 Antibodies

486	The following antibodies were obtained from commercial sources: goat anti-endophilin A1
487	(S-20), endophilin A2 (E-15), mouse anti-SYP (D-4), and mouse anti-cortactin (E-4) (Santa
488	Cruz Biotechnology, Santa Cruz, CA, USA) for WB and anti-cortactin (EMD Millipore,
489	Temecula, CA, USA) for staining; rabbit anti-endophilin A1 (Synaptic Systems GmbH,
490	Germany); rabbit anti-Myc, mouse anti-GST, rabbit and mouse anti-GFP, rabbit and mouse
491	anti-RFP which recognizes DsRed and mCherry (Medical & Biological Laboratories,
492	Naka-ku Nagoya, Japan); mouse anti-M5 DYKDDDDK-Tag (Mei5 Biotechnology, Beijing,
493	China), mouse anti- α -tubulin and mouse anti- β -actin (Sigma-Aldrich, St. Louis, MO, USA);
494	mouse anti-His (CoWin Biosciences, Jiangsu, China), rabbit anti-calmodulin (Boster
495	Biological Technology, Pleasanton, CA, USA) for WB and mouse anti-calmodulin (Invitrogen,
496	Carlsbad, CA, USA) for IP; Rabbit anti-p140Cap was described previously (Yang et al., 2015).
497	Secondary antibodies for immunofluorescence staining were from Molecular Probes
498	(Invitrogen, Carlsbad, CA, USA).

499

500 Cell culture, transfection and drug treatment

Primary hippocampal neurons were cultured as previously described (Yang et al., 2018).
Briefly, mouse hippocampi were dissected from P0 C57BL/6J mice, dissociated with 0.125%
trypsin in Hank's balanced salt solution without Ca²⁺ and Mg²⁺ at 37°C for 15 min, triturated
in DMEM, 10% F12, and 10% FBS (Gibco, Carlsbad, CA, USA). Hippocampal neurons were
plated on poly-D-lysine-coated coverslips in 24-well plates or 30-mm dishes at a density of

506	$2.5-3.0 \times 10^4$ cells/well in 24-well plate or $1.0-1.2 \times 10^5$ cells/35 mm dish. The medium was
507	replaced with the serum-free Neurobasal A (NB-A) media supplemented with 2% B27
508	supplement, GlutaMAX (Gibco, Carlsbad, CA, USA) and 0.3% glucose 4 h after plating. Half
509	of the media were replaced every 3 days until use.
510	For neuronal morphology and immunofluorescence staining, neuronal transfections were
511	performed using Lipofectamine LTX according to the manufacturer's instructions (Invitrogen,
512	Carlsbad, CA, USA) on 12-14 days in vitro (DIV) after plating. Briefly, DNA (0.5 µg/well)
513	was mixed with 0.5 μl PLUS reagent in 50 μl Neurobasal A medium, then mixed with 1.0 μl
514	Lipofectamine LTX in 50 μl NB-A medium, incubated for 20 min and then added to the
515	neurons in NB-A at 37 $^\circ C$ in 5% CO_2 for 1 h. Neurons were then rinsed with NB-A and
516	incubated in the original medium at 37 $^\circ C$ in 5% CO_2 for 4-5 days. For co-transfection,
517	neurons were transfected with 1.0 μ g of DNA consisting of two plasmids (0.50 μ g each).
518	For HeLa cell culture or HEK293T cell culture, DMEM supplemented with 10% FBS
519	were used. Cell transfections were performed using Lipofectamine2000 according to the
520	manufacturer's instructions (Invitrogen) after plating.
521	For inhibitor treatment, HeLa cells or primary neurons cultured on coverslips were
522	pre-incubated with MK801 (10 μ M, Sigma-Aldrich), Latruculin A (100 nM, Sigma-Aldrich),
523	NSC 23766 trihydrochloride (100 μ M, Abcam), CK-666 (100 μ M, Sigma-Aldrich), W-7 (20
524	$\mu M,$ TOCRIS), KN-62 (4 $\mu M,$ TOCRIS), BAPTA-AM (10 $\mu M,$ Sigma-Aldrich) for 30 min.
525	Neurons were pre-incubated with ML141 (15 $\mu M,$ Sigma-Aldrich) or SMIFH2 (30 $\mu M,$
526	Millipore) for 2 h or with CT04 (2 μ g/ml, Cytoskeleton) for 3 h. For tetanus toxin treatment
527	(10 nM, Sigma-Aldrich), neurons were pre-incubated for 10 min. These drugs were

528 maintained during glycine or ionomycin application.

529	For ionomycin treatment of HeLa cells, cells were pre-incubated with modified
530	Krebs-Ringer Hepes buffer (containing 120 mM NaCl, 4.8 mM KCl, 1.2 mM KH ₂ PO ₄ , 1.2
531	mM MgSO ₄ , 1.3 mM CaCl ₂ , 5.5 mM glucose, 25 mM HEPES, pH 7.4, at 37 °C) for 30 min
532	then treated with ionomycin (2 μ M, Beyotime Biotechnology) in KRH buffer for 20 min.
533	

534 Chemically-induced LTP (cLTP)

- 535 Chemical induction of LTP was performed as previously described (Fortin et al., 2010; Park
- et al., 2006). Briefly, neurons were treated with glycine (200 μ M) in Mg²⁺-free extracellular
- 537 iso-osmotic solution (mM: 125 NaCl, 2.5 KCl, 2 CaCl₂, 5 HEPES, 33 glucose, 0.2 glycine,
- 538 0.02 bicuculline, and 0.003 strychnine, pH 7.4) (Yang et al., 2018). For experiments
- 539 performed in the absence of extracellular Ca²⁺, 10 μ M BAPTA-AM was substituted for 2 mM
- 540 CaCl₂ in the Mg²⁺-free extracellular solution.

541 For experiment to determine the role of membrane tension in spine expansion, neurons

were pretreated with the hypo-osmotic solution (mM: 80 NaCl, 2.5 KCl, 2 CaCl₂, 5 HEPES,

543 33 glucose, pH 7.4, OSM 210) or hyper-osmotic solution (mM: 125 NaCl, 2.5 KCl, 2 CaCl₂,

- 5 HEPES, 33 glucose, 250 mM sucrose, pH 7.4, OSM 600) for 20 min and chemically
- 545 induced LTP in the same solution.

546

547 Immunostaining, image acquisition and analysis

548 Neurons were fixed in 4% PFA/4% sucrose in PBS at RT for 15 min. After blocking with 1%

549 BSA in PBS containing 0.4% Triton X-100 for 40 min at RT, neurons were incubated with

primary antibodies for 1 h at RT or overnight at 4°C, and appropriate secondary antibodies
conjugated with Alexa Fluor 488, Alexa Fluor 555, or Alexa Fluor 647 were applied for
detection.

553 Confocal images were collected using the Spectral Imaging Confocal Microscope Digital 554 Eclipse C1Si (Nikon, Tokyo, Japan) with a $100 \times$ Plan Apochromat VC (NA 1.40) oil 555 objective. Images were z projections of images taken at 0.2 µm step intervals. The number of 556 planes, typically 4-6, was chosen to encompass the entire dendrite from top to bottom.

The procedure for morphometric analysis of dendritic spines was described previously (Yang et al., 2015) (Yang et al., 2018). DsRed was used as a cell-fill. The final reconstructed spines were obtained using a maximum-intensity projection strategy provided by NIS-Elements AR software (Nikon). DsRed-labeled spines were outlined manually. Dendritic segments 40-120 μ m from the neuronal cell body were selected for analysis. All morphological experiments were repeated at least three times with an n \geq 11 for individual experiments.

564

565 Super-resolution live cell imaging and data analysis

The GI-SIM live imaging experiments were performed as described by Guo et al (Guo et al., 2018). Briefly, mouse hippocampal neurons cultured on 25-mm coverslips were transfected with constructs expressing membrane-bound GFP (mGFP) and LifeAct-mCherry on DIV12 and imaged on DIV16 in Mg^{2+} -free extracellular solution (Yang et al., 2018). Time-lapse images were obtained with acquisition time of 110 ms for each channel at 5 s intervals. To quantify the area of each spine head and enrichment of F-actin in spines, we measured the fluorescence mean intensity of LifeAct-mCherry within the spines and normalized each
measurement by the fluorescence signal along the adjacent dendritic shaft with the NIH
ImageJ software. The mGFP-labeled dendrites or spines were outlined manually.

575 For analysis of the spatiotemporal relationship between actin polymerization and 576 membrane expansion in dendritic spines, spines were segmented from raw GI-SIM images 577 using Otsu's method (Otsu, 1979). The area of each spine and the mean fluorescence signal of 578 F-actin inside each spine were then quantified using NIH ImageJ. To facilitate the 579 visualization of instantaneous spine growth and localized actin polymerization, differential 580 images of both membrane (mGFP) and actin (LifeAct-mCherry) channels were calculated by 581 subtracting the image at time point t from that at t+1 through the entire time lapse movie (1) 582 min duration before and 3 min duration post glycine application with 5 s intervals) using 583 Matlab (R2018a, Mathworks). To highlight the regions with spine growth or increased F-actin 584 signals, only pixels with a positive difference were displayed in the final differential images. 585 We then measured the overlap between differential images in the membrane channel and 586 those in the actin channel at individual time points, and determined the extent of overlap by 587 calculating the ratio of overlapped to total changes in the membrane channel using the JACoP 588 plug-in of the ImageJ software. Then we obtained fluctuations in the extent of overlap at 589 different time points before or post glycine treatment to evaluate the randomness of overlap 590 between membrane expansion and actin polymerization.

591

592 Immunohistochemical analyses

593 Mice were anesthetized with 1% sodium pentobarbital and transcardially perfused with

normal saline followed by 4% paraformaldehyde (PFA) in 0.01 M phosphate-buffered saline
(PBS). Mouse brain was dissected out and post-fixed with 4% PFA/PBS for 4 h at 4 °C. Fixed
brain was incubated with 20% sucrose overnight and then 30% sucrose overnight. The brain
was embedded in OCT and stored at -80°C until usage. Thirty-micron cyrosections were
made using cryostat and collected.

599 For immunostaining of brain sections, floating 30 µm-thick slices were rinsed with PBS 600 and permeabilized in 0.4% Triton X-100 in 0.01M PBS for 30 min. Cyrosections were 601 blocked with 1% BSA in PBS containing 0.4% Triton X-100 for 1 h at RT, then incubated 602 with primary antibodies overnight at 4 °C. Secondary antibodies conjugated with Alexa Fluor 603 555 were used for detection. Sections were then incubated with DAPI (Roche, 604 Grenzach-Wyhlen, Germany) for nuclear staining for 5 min at RT. Following rinsing, 605 cyrosections were mounted on gelatin-coated slides and covered with coverslip with 606 mounting medium. Confocal images were collected using the Spectral Imaging Confocal 607 Microscope Digital Eclipse C1Si (Nikon, Tokyo, Japan) with a 10×Plan Apochromat DIC N1 608 0.45 objective or 40×Plan Fluo (NA 1.30) oil objective (Yang et al., 2018).

609

610 **Protein expression and purification**

611 His-EEN1, His-calmodulin, His-p140Cap fragment (aa 351-1051) or GST-Calmodulin was 612 expressed in *E. coli* BL21 (DE3). Cells were grown at 37 °C in LB (g/L: tryptone 10, yeast 613 extract 5, NaCl 10) supplemented with ampicillin or kanamycin. Cells were induced at OD_{600} 614 of ~0.6 with 0.4 mM isopropyl β-D-1-thiogalactopyranoside (IPTG) for 4 h at 30 °C or 16 h 615 at 16 °C. Cells were harvested and stored at -80 °C until purification.

616	For His-tagged proteins, cells were resuspended in lysis buffer (50 mM NaH ₂ PO ₄ , 300
617	mM NaCl, 15 mM imidazole, pH 8.0) supplemented with 1% Triton X-100 and 0.1 mM
618	PMSF. Protein were purified with Ni-NTA resin according to the manufacturer's instructions
619	(R90115, Invitrogen). For GST-tagged proteins, cells were resuspended in PBS supplemented
620	with 0.2% Triton X-100 and 0.1 mM PMSF. Protein were purified with Glutathione
621	Sepharose 4B (GE17-0756-01, Sigma-Aldrich, St. Louis, MO, USA) according to the
622	manufacturer's instructions.

For liposome sedimentation assay, purified His-calmodulin was dialyzed in a Spectra/PorTM 4 RC Dialysis Membrane Tubing (08-667D, Thermo Fisher Scientific, Waltham, MA, USA) against 1,000 volumes of PBS supplemented with 0.5 mM EGTA at $4 \,^{\circ}$ C for 4 h and replaced with fresh 1,000 volumes of PBS twice.

627

628 Isothermal titration calorimetry (ITC)

629 ITC was performed on a MicroCal PEAQ-ITC ((Malvern Panalytical, U.S.A) calorimeter. 630 Calmodulin and EEN1 were purified on a Superdex-200 16/600 column (GE Healthcare, 631 U.S.A) in solution buffer containing 20 mM Tris-Cl at pH 7.0, 150 mM NaCl. Solution buffer 632 containing 1 mM calcium was injected into the calorimeter cell fullfilled with 633 protein1solution, cell temperature set to 25°C. Each analysis involved 20 injections of 4 s 634 duration (2 µL per one injection), 120 s spacing, stir with 750 rpm, 5 µcal/s reference power 635 and high gain feedback mode. Data were processed by Origin software to obtain 636 thermodynamic profiles.

637

638 GST-pull down, co-immunoprecipitation (IP) and immunoisolation

639	For GST-pull down assays, 5 μ g of GST-tagged protein conjugated with
640	glutathione-Sepharose beads was incubated with 1 μ g of His-tagged protein in 0.01 M PBS
641	supplemented with 1% NP-40 at 4°C for 1 h. Beads then was washed five times with PBS
642	supplemented with 0.3% Triton-X 100 and was boiled in SDS sample buffer.
643	For co-IP experiments, HEK293T cells, cultured neurons or mouse brain were lysed with
644	lysis buffer 1 (0.05% [vol/vol] NP-40, 15 mM Tris-HCl, pH 7.4, 50 mM NaCl) supplemented
645	with protease inhibitors for IP of endogenous proteins (endo-IP), or with lysis buffer 2 (0.1%
646	[vol/vol] NP-40, 50 mM Tris-HCl, pH 7.4, 150 mM NaCl) supplemented with protease
647	inhibitors for Flag-IP. Lysates were then centrifuged at $16,000 \times g$ for 15 min at 4°C. For Flag
648	IP, cell lysates were incubated with anti-Flag Affinity Gel (Sigma-Aldrich) at 4°C for 4 h on a
649	roller mixer. For endo-IP, antibody (1 $\mu g)$ was added to the cell lysates and incubated at 4 \square
650	for 2 h on a roller mixer, followed by incubation with Protein G agarose (Santa Cruz)
651	pre-equilibrated in lysis buffer overnight at 4°C. Immunoprecipitates were washed four times
652	in lysis buffer and boiled in SDS sample buffer, then subjected to SDS-PAGE s and
653	immunoblotting.

For immunoisolation of membrane proteins, cultured neurons were homogenized with lysis buffer (mM: Tris-HCl 20, HEPES pH 7.4 10, NaCl 150, sucrose 250) supplemented with protease inhibitors and centrifuged at $800 \times g$ for 15 min. The supernatants were collected and subjected to high-speed centrifugation at $100,000 \times g$ for 1h (TLS-55 rotor, OptimaTMMAX Ultracentrifuge; Beckman Coulter, Germany). The supernatants (S100) and pellets (p100, the membrane fraction) resuspended in lysis buffer were subjected to immunoisolation with

660	Dynabeads Protein G (Invitrogen, Carlsbad, CA, USA) coupled with 2 µg of mouse
661	anti-calmodulin antibody. Bound proteins were eluted by boiling in $2 \times SDS$ gel loading buffer
662	and subjected to SDS-PAGE and immunoblotting.
663	
664	Subcellular fractionation
665	Cultured neurons or mouse hippocampi were homogenized to isolate the membrane and
666	cytoskeleton fractions with Subcellular Protein Fractionation Kit for Cultured Cells (Thermo,
667	77840) or for tissues (Thermo, 87790) according to the manufacturer's instructions. Proteins
668	in different fractions were subjected to SDS-PAGE and immunoblotting.
669	
670	Liposome co-sedimentation assay
671	Brain extract from bovine brain (Sigma-Aldrich, B1502) were dissolved in chloroform and
672	dried under vacuum for 30 min. The solvent-free lipid films were rehydrated with liposome
673	buffer (150 mM NaCl, 20 mM Tris-HCl pH 7.4, 1 mM DTT) and subjected to 7 cycles of
674	flash freezing in liquid nitrogen and thawing in a 37°C bath. Liposomes were then extruded
675	21 times through a polycarbonate membrane with a 50 nm pore size (Mini-Extruder, Avanti
676	Polar Lipids). Extruded liposomes were centrifuged at 18,000 g for 5 min to remove insoluble
677	material and stored at 4°C. Liposomes (0.5 mg/ml) were then incubated with freshly purified
678	recombinant proteins (1 μM His-EEN1 or 1 μM His-EEN1 and 2 μM His-calmodulin), in
679	100 \Box µl liposome buffer for 10 min at 30°C before sedimentation at 140,000g for 30 min at
680	4°C. The supernatant (unbound) and pellet (bound) were subjected to SDS-PAGE. Ratios of
681	binding to liposomes were determined using NIH ImageJ software.

682

683 Three-dimensional Structured Illumination Microscopy (3D-SIM) imaging and image 684 analysis

685 3D-SIM images were acquired as previously described (Niu et al., 2013) on the DeltaVision 686 OMX V4 imaging system (Applied Precision Inc, USA) with a 100×1.4 oil objective 687 (Olympus UPlanSApo), solid state multimode lasers (488, 593 and 642 nm) and 688 electron-multiplying CCD (charge-coupled device) cameras (Evolve 512×512, Photometrics, 689 USA). Serial Z-stack sectioning was done at 125 nm intervals. The microscope is routinely 690 calibrated with 100 nm fluorescent spheres to calculate both the lateral and axial limits of 691 image resolution. SIM image stacks were reconstructed using softWoRx 5.0 (Applied 692 Precision) with the following settings: pixel size 39.5 nm; channel-specific optical transfer 693 functions; Wiener filter 0.001000; discard Negative Intensities background; drift correction 694 with respect to first angle; custom K0 guess angles for camera positions. Pixel registration 695 was corrected to be less than 1 pixel for all channels using 100 nm Tetraspeck beads. For 696 clarity of display, small linear changes to brightness and contrast were performed on 697 three-dimensional reconstructions.

698

699 Electrophysiology

700 $EENI^{n/n}$ mice within 24 h after birth were co-injected with high-titer AAV stock carrying701pAOV-CAMKII-mCherry-2A-Cre(AAV-mCherry-2A-Cre)and702pAAV-CaMKIIa-EGFP-2A-MCS-3FLAG-EEN1 or mutants of EEN1 (about 1 ~ 5 x 10¹³TU/ml). Newborns were anesthetized on ice for 5 minutes and then mounted in a custom

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.07.082081; this version posted May 8, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

704	ceramic mold to make the head level in the X - and Y- axes. Lambda was set as $(X, Y) = (0, 0)$.
705	Zero point of Z - axis was the position at which the injecting needle penetrated the skin.
706	About 10 nl viral solution was injected at each of the seven sites ((X, Y, Z) = (1.2, 1.2, 1.4/
707	1.0/ 0.6) and (1.5, 1.0, 1.7/ 1.3/ 0.9/ 0.5)) targeting the hippocampus at each cerebral
708	hemisphere with microsyringe (Sutter Instrument) and a beveled glass injection pipette.
709	Injected pups were returned to home cage and used for recording two to three weeks
710	afterward. Transverse 350 μ m hippocampal slices were cut from viral injected <i>EEN1</i> ^{fl/fl} mice
711	on a Leica vibratome (VT1000 S) in high sucrose cutting solution containing (in mM): KCl
712	2.5, NaH ₂ PO ₄ 1.25, NaHCO ₃ 25, CaCl ₂ 0.50, MgSO ₄ 7, sucrose 210, glucose 10, Na-ascorbic
713	acid 1.3. Freshly cut slices were placed in an incubating chamber containing ACSF, and
714	recovered at 32°C for about 20 min followed by 60 min at room temperature before recording.
715	The slices were perfused with ACSF containing GABAA receptor antagonists PTX (100 μ M)
716	/ Bic (10 μM) and saturated with 95% $O_2/5\%~CO_2$ in whole-cell LTP experiments. CA1
717	pyramidal cells were voltage-clamped at -70 mV and AMPAR EPSCs were evoked by
718	stimulation at SC with concentric electrode (FHC CBBRC75). LTP was induced by
719	stimulating SC axons at 2 Hz for 90 s while clamping the cell at 0 mV, after recording a stable
720	3- to 5-min baseline, but no more than 6 min after breaking into the cell (Diaz-Alonso et al.,
721	2017; Granger et al., 2013). To minimize run-up of baseline responses during LTP, cells were
722	held cell-attached for about 1 to 2 min before breaking into the cell.

723

724 Stereotaxic injection and Behavioral tests

725 Nine-week-old sexually naive male and female mice were anesthetized and stereotactically

726	injected with viral	particles in the	hippocampal CA	A1 region as de	scribed (Yang et al., 2	.018).

- 727 The virus-injected mice were tested for behavior two weeks later. Morris water maze and fear
- 728 conditioning tests were performed as previously described (Yang et al., 2018). We observed
- no sex-related difference in behaviors and the results were pooled together.

730

731 Statistical analysis

All data were presented as the mean \pm SEM. GraphPad Prism 5 (GraphPad Software, LaJolla, CA) was used for statistical analysis. For two-sample comparisons vs. controls, unpaired Student's t-test was used except where noted. One-way analysis of variance with a Dunnett's multiple-comparison or Newman-Keuls multiple comparison *hoc* test was used to evaluate statistical significance of three or more groups of samples. A *p* value of less than 0.05 was considered statistically significant.

738

739 **References**

- 740 Arellano, J.I., Benavides-Piccione, R., Defelipe, J., and Yuste, R. (2007). Ultrastructure of dendritic
- 741 spines: correlation between synaptic and spine morphologies. Front Neurosci 1, 131-143.
- 742 Bosch, M., Castro, J., Saneyoshi, T., Matsuno, H., Sur, M., and Hayashi, Y. (2014). Structural and
- 743 Molecular Remodeling of Dendritic Spine Substructures during Long-Term Potentiation. Neuron 82,
- 744 444-459.
- 745 Boucrot, E., Ferreira, A.P., Almeida-Souza, L., Debard, S., Vallis, Y., Howard, G., Bertot, L., Sauvonnet, N.,
- and McMahon, H.T. (2015). Endophilin marks and controls a clathrin-independent endocytic pathway.
- 747 Nature 517, 460-465.

- 748 Chazeau, A., and Giannone, G. (2016). Organization and dynamics of the actin cytoskeleton during
- dendritic spine morphological remodeling. Cellular and molecular life sciences : CMLS 73, 3053-3073.
- 750 Chazeau, A., Mehidi, A., Nair, D., Gautier, J.J., Leduc, C., Chamma, I., Kage, F., Kechkar, A., Thoumine, O.,
- 751 Rottner, K., et al. (2014). Nanoscale segregation of actin nucleation and elongation factors determines
- dendritic spine protrusion. Embo j 33, 2745-2764.
- 753 Chen, Y., Deng, L., Maeno-Hikichi, Y., Lai, M., Chang, S., Chen, G., and Zhang, J.F. (2003). Formation of
- an endophilin-Ca2+ channel complex is critical for clathrin-mediated synaptic vesicle endocytosis. Cell
- 755 *115,* 37-48.
- 756 Chowdhury, S., Shepherd, J.D., Okuno, H., Lyford, G., Petralia, R.S., Plath, N., Kuhl, D., Huganir, R.L., and
- 757 Worley, P.F. (2006). Arc/Arg3.1 interacts with the endocytic machinery to regulate AMPA receptor
- 758 trafficking. Neuron *52*, 445-459.
- 759 Corponi, F., Bonassi, S., Vieta, E., Albani, D., Frustaci, A., Ducci, G., Landi, S., Boccia, S., Serretti, A., and
- 760 Fabbri, C. (2019). Genetic basis of psychopathological dimensions shared between schizophrenia and
- 761 bipolar disorder. Prog Neuropsychopharmacol Biol Psychiatry 89, 23-29.
- 762 Diaz-Alonso, J., Sun, Y.J., Granger, A.J., Levy, J.M., Blankenship, S.M., and Nicoll, R.A. (2017).
- 763 Subunit-specific role for the amino-terminal domain of AMPA receptors in synaptic targeting. Proc Natl
- 764 Acad Sci U S A *114*, 7136-7141.
- 765 Fortin, D.A., Davare, M.A., Srivastava, T., Brady, J.D., Nygaard, S., Derkach, V.A., and Soderling, T.R.
- 766 (2010). Long-term potentiation-dependent spine enlargement requires synaptic Ca2+-permeable
- 767 AMPA receptors recruited by CaM-kinase I. J Neurosci *30*, 11565-11575.
- 768 Gallop, J.L., Jao, C.C., Kent, H.M., Butler, P.J., Evans, P.R., Langen, R., and McMahon, H.T. (2006).
- 769 Mechanism of endophilin N-BAR domain-mediated membrane curvature. EMBO J 25, 2898-2910.

- 770 Goudarzi, M., Tarbashevich, K., Mildner, K., Begemann, I., Garcia, J., Paksa, A., Reichman-Fried, M.,
- 771 Mahabaleshwar, H., Blaser, H., Hartwig, J., et al. (2017). Bleb Expansion in Migrating Cells Depends on
- 577 Supply of Membrane from Cell Surface Invaginations. Dev Cell 43, 577-587.e575.
- 773 Granger, A.J., Shi, Y., Lu, W., Cerpas, M., and Nicoll, R.A. (2013). LTP requires a reserve pool of
- glutamate receptors independent of subunit type. Nature 493, 495-500.
- Guo, Y., Li, D., Zhang, S., Yang, Y., Liu, J.J., Wang, X., Liu, C., Milkie, D.E., Moore, R.P., Tulu, U.S., et al.
- 776 (2018). Visualizing Intracellular Organelle and Cytoskeletal Interactions at Nanoscale Resolution on
- 777 Millisecond Timescales. Cell *175*, 1430-1442.e1417.
- 778 Harris, K.M., and Stevens, J.K. (1989). Dendritic spines of CA 1 pyramidal cells in the rat hippocampus:
- 779 serial electron microscopy with reference to their biophysical characteristics. J Neurosci 9, 2982-2997.
- 780 Harvey, C.D., and Svoboda, K. (2007). Locally dynamic synaptic learning rules in pyramidal neuron
- 781 dendrites. Nature *450*, 1195-1200.
- 782 Hayashi-Takagi, A., Yagishita, S., Nakamura, M., Shirai, F., Wu, Y.I., Loshbaugh, A.L., Kuhlman, B., Hahn,
- 783 K.M., and Kasai, H. (2015). Labelling and optical erasure of synaptic memory traces in the motor cortex.
- 784 Nature.
- 785 Hedrick, N.G., Harward, S.C., Hall, C.E., Murakoshi, H., McNamara, J.O., and Yasuda, R. (2016). Rho
- 786 GTPase complementation underlies BDNF-dependent homo- and heterosynaptic plasticity. Nature 538,
- 787 104-108.
- 788 Hedrick, N.G., and Yasuda, R. (2017). Regulation of Rho GTPase proteins during spine structural
- plasticity for the control of local dendritic plasticity. Curr Opin Neurobiol 45, 193-201.
- 790 Herring, B.E., and Nicoll, R.A. (2016). Long-Term Potentiation: From CaMKII to AMPA Receptor
- 791 Trafficking. Annual review of physiology 78, 351-365.

792	Hiester, B.G., E	Becker, M.I.,	Bowen, A.B	., Schwartz,	S.L., a	and Kennedy,	M.J.	(2018).	Mechanisms	and

793 Role of Dendritic Membrane Trafficking for Long-Term Potentiation. Frontiers in cellular neuroscience

794 *12*, 391.

- 795 Honkura, N., Matsuzaki, M., Noguchi, J., Ellis-Davies, G.C., and Kasai, H. (2008). The subspine
- 796 organization of actin fibers regulates the structure and plasticity of dendritic spines. Neuron 57,
- 797 719-729.
- Jaworski, J., Kapitein, L.C., Gouveia, S.M., Dortland, B.R., Wulf, P.S., Grigoriev, I., Camera, P., Spangler,
- 799 S.A., Di Stefano, P., Demmers, J., et al. (2009). Dynamic microtubules regulate dendritic spine
- 800 morphology and synaptic plasticity. Neuron *61*, 85-100.
- 801 Kliesch, T.T., Dietz, J., Turco, L., Halder, P., Polo, E., Tarantola, M., Jahn, R., and Janshoff, A. (2017).
- 802 Membrane tension increases fusion efficiency of model membranes in the presence of SNAREs.
- 803 Scientific reports 7, 12070.
- 804 Kopec, C.D., Li, B., Wei, W., Boehm, J., and Malinow, R. (2006). Glutamate receptor exocytosis and
- spine enlargement during chemically induced long-term potentiation. J Neurosci 26, 2000-2009.
- 806 Matsuzaki, M., Ellis-Davies, G.C., Nemoto, T., Miyashita, Y., lino, M., and Kasai, H. (2001). Dendritic
- 807 spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons. Nat
- 808 Neurosci 4, 1086-1092.
- 809 Matsuzaki, M., Honkura, N., Ellis-Davies, G.C., and Kasai, H. (2004). Structural basis of long-term
- 810 potentiation in single dendritic spines. Nature 429, 761-766.
- 811 Mikhaylova, M., Bar, J., van Bommel, B., Schatzle, P., YuanXiang, P., Raman, R., Hradsky, J., Konietzny, A.,
- Loktionov, E.Y., Reddy, P.P., et al. (2018). Caldendrin Directly Couples Postsynaptic Calcium Signals to
- 813 Actin Remodeling in Dendritic Spines. Neuron 97, 1110-1125 e1114.

- 814 Milosevic, I., Giovedi, S., Lou, X., Raimondi, A., Collesi, C., Shen, H., Paradise, S., O'Toole, E., Ferguson,
- 815 S., Cremona, O., et al. (2011). Recruitment of endophilin to clathrin-coated pit necks is required for
- 816 efficient vesicle uncoating after fission. Neuron 72, 587-601.
- 817 Murakoshi, H., Wang, H., and Yasuda, R. (2011). Local, persistent activation of Rho GTPases during
- 818 plasticity of single dendritic spines. Nature 472, 100-104.
- 819 Murakoshi, H., and Yasuda, R. (2012). Postsynaptic signaling during plasticity of dendritic spines.
- 820 Trends Neurosci 35, 135-143.
- 821 Murdoch, J.D., Rostosky, C.M., Gowrisankaran, S., Arora, A.S., Soukup, S.F., Vidal, R., Capece, V.,
- 822 Freytag, S., Fischer, A., Verstreken, P., et al. (2016). Endophilin-A Deficiency Induces the Foxo3a-Fbxo32
- 823 Network in the Brain and Causes Dysregulation of Autophagy and the Ubiquitin-Proteasome System.
- 824 Cell reports 17, 1071-1086.
- 825 Myers, M.D., Ryazantsev, S., Hicke, L., and Payne, G.S. (2016). Calmodulin Promotes N-BAR
- Domain-Mediated Membrane Constriction and Endocytosis. Dev Cell 37, 162-173.
- 827 Nabavi, S., Fox, R., Proulx, C.D., Lin, J.Y., Tsien, R.Y., and Malinow, R. (2014). Engineering a memory with
- 828 LTD and LTP. Nature *511*, 348-352.
- 829 Nakahata, Y., and Yasuda, R. (2018). Plasticity of Spine Structure: Local Signaling, Translation and
- 830 Cytoskeletal Reorganization. Frontiers in synaptic neuroscience 10.
- 831 Niu, Y., Zhang, C., Sun, Z., Hong, Z., Li, K., Sun, D., Yang, Y., Tian, C., Gong, W., and Liu, J.J. (2013).
- 832 PtdIns(4)P regulates retromer-motor interaction to facilitate dynein-cargo dissociation at the
- trans-Golgi network. Nat Cell Biol 15, 417-429.
- 834 Noguchi, J., Hayama, T., Watanabe, S., Ucar, H., Yagishita, S., Takahashi, N., and Kasai, H. (2016).
- 835 State-dependent diffusion of actin-depolymerizing factor/cofilin underlies the enlargement and

- 836 shrinkage of dendritic spines. Scientific reports 6, 32897.
- 837 Obashi, K., Matsuda, A., Inoue, Y., and Okabe, S. (2019). Precise Temporal Regulation of Molecular
- 838 Diffusion within Dendritic Spines by Actin Polymers during Structural Plasticity. Cell Reports 27,

839 1503-1515.e1508.

- 840 Okamoto, K., Nagai, T., Miyawaki, A., and Hayashi, Y. (2004). Rapid and persistent modulation of actin
- 841 dynamics regulates postsynaptic reorganization underlying bidirectional plasticity. Nat Neurosci 7,
- 842 1104-1112.
- 843 Otsu, N. (1979). A Threshold Selection Method from Gray-Level Histograms. IEEE Transactions on
- 844 Systems, Man, and Cybernetics 9, 62-66.
- 845 Park, M., Penick, E.C., Edwards, J.G., Kauer, J.A., and Ehlers, M.D. (2004). Recycling endosomes supply
- 846 AMPA receptors for LTP. Science *305*, 1972-1975.
- 847 Park, M., Salgado, J.M., Ostroff, L., Helton, T.D., Robinson, C.G., and Harris, K.M. (2006).
- 848 Plasticity-Induced Growth of Dendritic Spines by Exocytic Trafficking from Recycling Endosomes.
- 849 Neuron 52.
- 850 Reinhard, J.R., Kriz, A., Galic, M., Angliker, N., Rajalu, M., Vogt, K.E., and Ruegg, M.A. (2016). The
- 851 calcium sensor Copine-6 regulates spine structural plasticity and learning and memory. Nature
- 852 communications 7, 11613.
- 853 Ren, Y., Xu, H.W., Davey, F., Taylor, M., Aiton, J., Coote, P., Fang, F., Yao, J., Chen, D., Chen, J.X., et al.
- 854 (2008). Endophilin | expression is increased in the brains of Alzheimer disease patients. J Biol Chem
 855 283, 5685-5691.
- 856 Renard, H.F., Simunovic, M., Lemiere, J., Boucrot, E., Garcia-Castillo, M.D., Arumugam, S., Chambon, V.,
- 857 Lamaze, C., Wunder, C., Kenworthy, A.K., et al. (2015). Endophilin-A2 functions in membrane scission

858 in clathrin-independent endocytosis. Nature 517, 493-496.

- 859 Ringstad, N., Nemoto, Y., and De Camilli, P. (1997). The SH3p4/Sh3p8/SH3p13 protein family: binding
- 860 partners for synaptojanin and dynamin via a Grb2-like Src homology 3 domain. Proc Natl Acad Sci U S

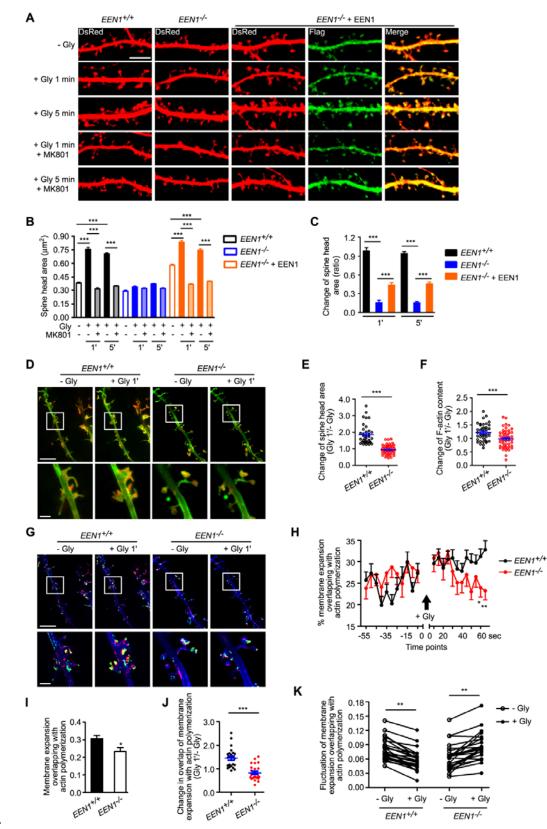
861 A *94*, 8569-8574.

- 862 Saneyoshi, T., Matsuno, H., Suzuki, A., Murakoshi, H., Hedrick, N.G., Agnello, E., O'Connell, R., Stratton,
- 863 M.M., Yasuda, R., and Hayashi, Y. (2019). Reciprocal Activation within a Kinase-Effector Complex
- Underlying Persistence of Structural LTP. Neuron *102*, 1199-1210 e1196.
- 865 Schnoor, M., Stradal, T.E., and Rottner, K. (2018). Cortactin: Cell Functions of A Multifaceted
- Actin-Binding Protein. Trends in cell biology 28, 79-98.
- 867 Schuske, K.R., Richmond, J.E., Matthies, D.S., Davis, W.S., Runz, S., Rube, D.A., van der Bliek, A.M., and
- Jorgensen, E.M. (2003). Endophilin is required for synaptic vesicle endocytosis by localizing
 synaptojanin. Neuron 40, 749-762.
- 870 Simon, C., Kusters, R., Caorsi, V., Allard, A., Abou-Ghali, M., Manzi, J., Di Cicco, A., Levy, D., Lenz, M.,
- Joanny, J.F., *et al.* (2019). Actin dynamics drive cell-like membrane deformation. Nature Physics *15*,
- 872 602-+.
- 873 Smith, K.R., Kopeikina, K.J., Fawcett-Patel, J.M., Leaderbrand, K., Gao, R., Schurmann, B., Myczek, K.,
- 874 Radulovic, J., Swanson, G.T., and Penzes, P. (2014). Psychiatric Risk Factor ANK3/Ankyrin-G
- 875 Nanodomains Regulate the Structure and Function of Glutamatergic Synapses. Neuron 84, 399-415.
- 876 Soukup, S.F., Kuenen, S., Vanhauwaert, R., Manetsberger, J., Hernandez-Diaz, S., Swerts, J.,
- 877 Schoovaerts, N., Vilain, S., Gounko, N.V., Vints, K., et al. (2016). A LRRK2-Dependent EndophilinA
- 878 Phosphoswitch Is Critical for Macroautophagy at Presynaptic Terminals. Neuron 92, 829-844.
- 879 Spiering, D., and Hodgson, L. (2011). Dynamics of the Rho-family small GTPases in actin regulation and

880 motility. Cell Adh Migr 5, 170-180.

- 881 Uruno, T., Liu, J., Zhang, P., Fan, Y., Egile, C., Li, R., Mueller, S.C., and Zhan, X. (2001). Activation of
- 882 Arp2/3 complex-mediated actin polymerization by cortactin. Nat Cell Biol 3, 259-266.
- 883 Verstreken, P., Koh, T.W., Schulze, K.L., Zhai, R.G., Hiesinger, P.R., Zhou, Y., Mehta, S.Q., Cao, Y., Roos, J.,
- and Bellen, H.J. (2003). Synaptojanin is recruited by endophilin to promote synaptic vesicle uncoating.
- 885 Neuron *40*, 733-748.
- 886 Watanabe, S., Mamer, L.E., Raychaudhuri, S., Luvsanjav, D., Eisen, J., Trimbuch, T., Söhl-Kielczynski, B.,
- 887 Fenske, P., Milosevic, I., Rosenmund, C., et al. (2018). Synaptojanin and Endophilin Mediate Neck
- 888 Formation during Ultrafast Endocytosis. Neuron *98*, 1184-1197.e1186.
- 889 Weaver, A.M., Karginov, A.V., Kinley, A.W., Weed, S.A., Li, Y., Parsons, J.T., and Cooper, J.A. (2001).
- 890 Cortactin promotes and stabilizes Arp2/3-induced actin filament network formation. Current Biology

891 *11*, 370-374.

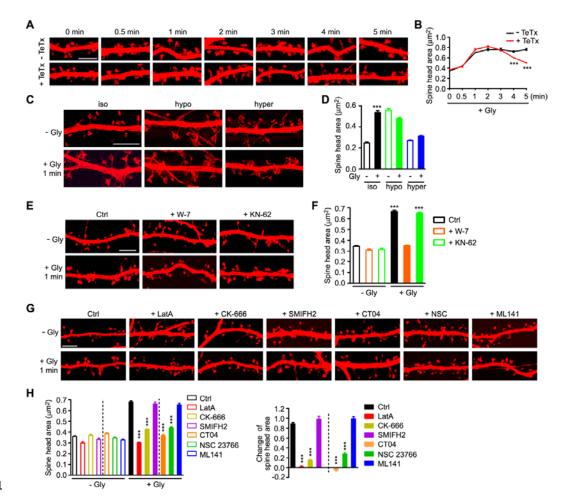

- 892 Yang, Y., Chen, J., Guo, Z., Deng, S., Du, X., Zhu, S., Ye, C., Shi, Y.S., and Liu, J.J. (2018). Endophilin A1
- 893 Promotes Actin Polymerization in Dendritic Spines Required for Synaptic Potentiation. Frontiers in
- molecular neuroscience 11, 177.
- 895 Yang, Y., Wang, X.B., Frerking, M., and Zhou, Q. (2008). Spine expansion and stabilization associated
- with long-term potentiation. J Neurosci 28, 5740-5751.
- 897 Yang, Y., Wei, M., Xiong, Y., Du, X., Zhu, S., Yang, L., Zhang, C., and Liu, J.J. (2015). Endophilin A1
- regulates dendritic spine morphogenesis and stability through interaction with p140Cap. Cell Res 25,
- **899** 496-516.
- 900 Yu, Q., Wang, Y., Du, F., Yan, S., Hu, G., Origlia, N., Rutigliano, G., Sun, Q., Yu, H., Ainge, J., et al. (2018a).
- 901 Overexpression of endophilin A1 exacerbates synaptic alterations in a mouse model of Alzheimer's

- 902 disease. Nature communications 9, 2968.
- 903 Yu, X., Xu, T., Ou, S., Yuan, J., Deng, J., Li, R., Yang, J., Liu, X., Li, Q., and Chen, Y. (2018b). Endophilin A1
- 904 mediates seizure activity via regulation of AMPARs in a PTZ-kindled epileptic mouse model. Exp Neurol
- 905 *304*, 41-57.
- 906
- 907

908 Additional files

- 909 Supplementary files:
- 910 (A) Figure supplements
- 911 **Figure 3** figure supplement 1. Endophilin A1 does not bind Ca^{2+} .
- 912 Figure 4 figure supplement 1. I154 and L158 are required for endophilin A1 binding to
- 913 calmodulin.
- 914 Figure 5 figure supplement 1. Calmodulin-dependent increase in the number of endophilin
- 915 A1 nanodomains correlates with spine size during the initial Phase of sLTP.
- **Figure 6** figure supplement 1. In response to $Ca^{2+}/calmodulin$, endophilin A1 localizes to
- 917 the plasma membrane and recruits Arp2/3 via p140Cap.
- 918 (B) Supplementary Videos
- 919 Video 1. Morphological changes and actin dynamics in *EEN1* WT dendrite before and during
- 920 glycine-induced sLTP.
- 921 Dendrites of DIV16 EEN1 WT mouse hippocampal neurons co-expressing mGFP (green) and
- 922 the F-actin probe LifeAct-mCherry (red) were imaged every 5 s by GI-SIM for 12 frames
- before and 48 frames after glycine treatment. Video plays at 5 frames/s. Scale bars, 5 μm (left)
- 924 and 1 μ m (right).
- **Video 2.** Morphological changes and actin dynamics in *EEN1* KO dendrite before and during
- 926 glycine-induced sLTP.
- 927 Dendrites of DIV16 EEN1 KO mouse hippocampal neurons co-expressing mGFP (green) and
- 928 the F-actin probe LifeAct-mCherry (red) were imaged every 5 s by GI-SIM for 12 frames
- before and 48 frames after glycine treatment. Video plays at 5 frames/s. Scale bars, 5 µm (left)

- 930 and 1 μ m (right).
- 931 Video 3. Spatiotemporal relationship of spine growth and actin polymerization in *EEN1* WT
- 932 spines before and during glycine-induced LTP.
- 933 Increases in spine head area and F-actin signal intensity are color coded green and red,
- 934 respectively. Video plays at 5 frames/s. Scale bars, 5 μ m (left) and 1 μ m (right).
- 935 Video 4. Spatiotemporal relationship of spine growth and actin polymerization in EEN1 KO
- 936 spines before and during glycine-induced LTP.
- 937 Increases in spine head area and F-actin signal intensity are color coded green and red,
- 938 respectively. Video plays at 5 frames/s. Scale bars, 5 μ m (left) and 1 μ m (right).

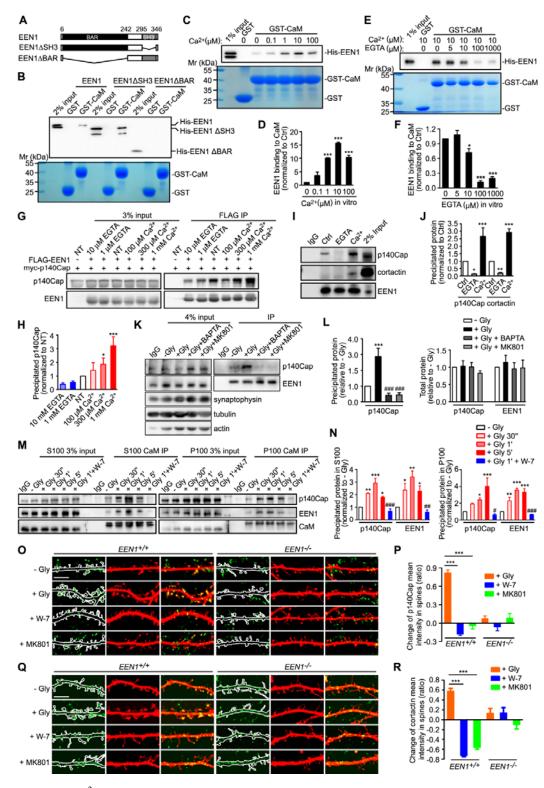


940 Figures

942 Figure 1. Endophilin A1 is required for spine expansion and actin polymerization in the initial943 Phase of sLTP.

944	(A) Mouse hippocampal neurons were co-transfected with pLL3.7-DsRed (volume marker)
945	and pCMV-Tag2B (Flag vector) or pCMV-Tag2B-endophilin A1 (Flag-EEN1) on DIV12,
946	pre-treated with DMSO (vehicle control) or MK801 (NMDAR antagonist) and chemically
947	induced LTP with glycine (Gly) on DIV16. Neurons were fixed 1 min or 5 min after glycine
948	application, stained with antibodies to Flag and imaged by confocal microscopy. Bar = 5 μ m.
949	(B) Quantification of spine size in (A). N \ge 13 cells, n \ge 563 spines per group. (C) Changes of
950	spine size in (A). (D) GI-SIM imaging of <i>EEN1</i> WT and KO hippocampal neurons expressing
951	mGFP and LifeAct-mCherry. Glycine was applied after imaging for 1 min and imaging was
952	continued for 5 more minutes. Shown are representative still images right before and 1 min
953	after glycine application. Lower panels are magnification of boxed areas in upper panels. Bars:
954	5 μm (upper) and 1 μm (lower). (E, F) Quantitative analysis of spine size increase (E) or
955	F-actin enrichment (F) in spines imaged by GI-SIM. (G) Spine membrane expansion
956	overlapping with actin polymerization in D. Spine growth and increase in F-actin signals are
957	color coded green and red, respectively. Bars: 5 μm (upper) and 1 μm (lower). (H)
958	Quantification of fractions of expanded membrane overlapping with actin polymerization in
959	individual spines of EEN1 WT and KO neurons before and after glycine application at 5 s
960	intervals. (I) Quantification of fractions of membrane expansion overlapping with actin
961	polymerization at 1 min after glycine application in individual spines of EEN1 WT and KO
962	neurons. (J) Changes in the extent of overlap between membrane expansion and actin
963	polymerization 1 min after glycine application in individual spines of EENI WT and KO

964	neurons. Data are normalized to the time point right before glycine application. (K) Mean
965	fluctuation of the overlap between membrane expansion and actin polymerization in
966	individual spines within 1 min before and after glycine application for <i>EEN1</i> WT and KO
967	neurons. Data represent mean \pm SEM in (B), (C) and (I). WT: N = 5 neurons and n = 24
968	spines; KO: N = 6 neurons and n = 27 spines in (E), (F) and (H-K). * $p < 0.05$, ** $p < 0.01$,
969	*** $p < 0.001$.

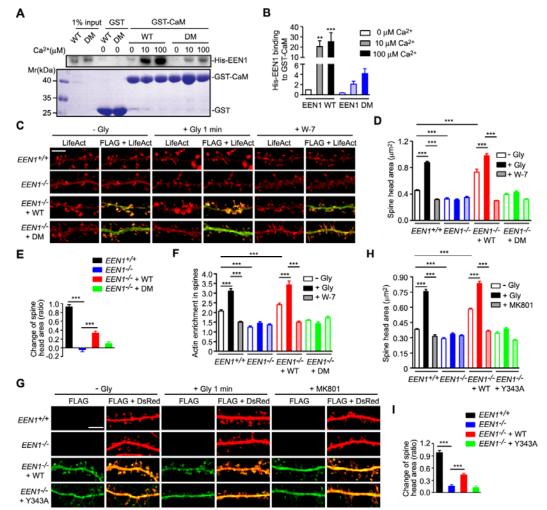


971

972 Figure 2. Membrane unfolding and branched actin polymerization are required for initiation973 of sLTP.

974 (A) Mouse hippocampal neurons transfected with pLL3.7-DsRed on DIV12 were pre-treated 975 with DMSO or tetanus toxin (TeTx) for 10 min and chemically induced LTP with glycine on 976 DIV16. Neurons were fixed at different time points after glycine application and imaged by 977 confocal microscopy. Bar = 5 μ m. (B) Quantification of spine size in (A). N \ge 12 neurons, n 978 \geq 530 spines per group, *** p < 0.001. (C) Effect of osmotic shock on spine enlargement 1 979 min after glycine application. Neurons were pre-treated with iso-osmotic, hypo-osmotic or 980 hyper-osmotic solution respectively for 10 min and chemically induced LTP in the same 981 solution on DIV16. Neurons were fixed 1 min after glycine application and imaged by

982	3D-SIM microscopy. Bar = 4 μ m. (D) Quantification of spine size in (C). N \ge 12 neurons, n \ge
983	382 spines per group. (E) Effects of W-7 (calmodulin inhibitor) and KN-62 (CaMKII
984	inhibitor) on spine enlargement 1 min after glycine application. Bar = 5 μ m. (F)
985	Quantification of spine size in (E). N \geq 12 neurons, n \geq 504 spines per group. (G) Effects of
986	inhibitors for actin remodeling regulators on spine enlargement 1 min after glycine
987	application. Shown are representative confocal images. Bar = 5 μ m. CK-666: Arp2/3 inhibitor.
988	SMIFH2: Formin inhibitor. CT04: RhoA inhibitor. NSC 23766: Rac1 inhibitor. ML 141:
989	Cdc42 inhibitor. (H , I) Quantification of spine size (left) and changes in spine size (right) in
990	(G). N \geq 12 neurons, n \geq 516 spines per group. Data represent mean \pm SEM in (B), (D), (F)
991	and (H). *** $p < 0.001$.


Figure 3. $Ca^{2+}/calmodulin enhances the interaction between endophilin A1 and p140Cap.$

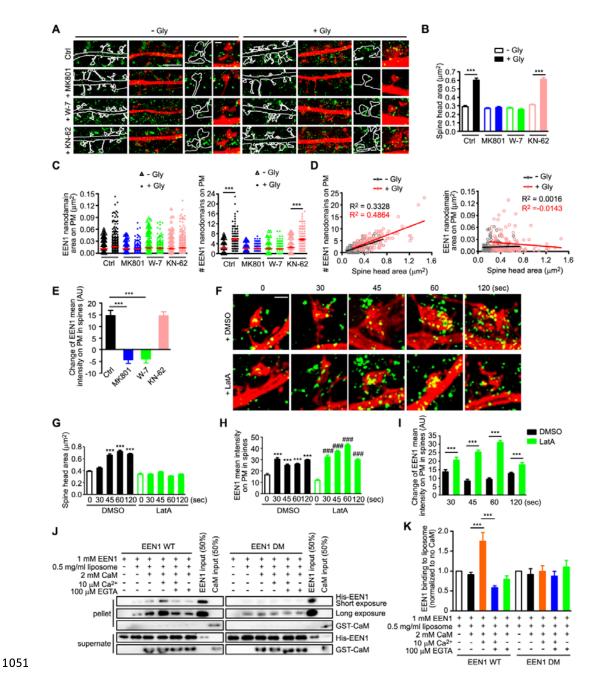
995 (A) Diagram showing the domain structure and fragments of endophilin A1 used in this study.

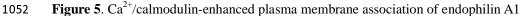
996 (B) Binding of His-tagged endophilin A1 full length, Δ SH3 and Δ BAR fragments to

997	GST-tagged calmodulin (CaM) in GST-pull down assay. (C) Effect of Ca ²⁺ on binding of
998	endophilin A1 to calmodulin in GST-pull down assay. (D) Quantification of Ca^{2+} -regulated
999	endophilin A1 binding to calmodulin in (C). $N = 3$ independent experiments. (E) Effect of
1000	EGTA on binding of endophilin A1 to calmodulin in GST-pull down assay. (F) Quantification
1001	of endophilin A1 binding to calmodulin in E. N = 5. (G) Effect of EGTA or Ca^{2+} on binding of
1002	endophilin A1 to p140Cap in transiently transfected HEK293 cells in Flag IP assay. (H)
1003	Quantification of endophilin A1 binding to p140Cap in (G). N = 4. (I) Effect of EGTA or Ca^{2+}
1004	on binding of endophilin A1 to p140Cap in cultured neurons. Endogeneous IP assay was
1005	performed from lysates of mouse neurons with antibodies to endophilin A1. (J) Quantification
1006	of endophilin A1 binding to p140Cap in (I). $N = 3$. (K) Effect of BAPTA or MK801 on the
1007	binding of endophilin A1 to p140Cap in neurons upon cLTP induction. (L) Quantification of
1008	endophilin A1 binding to p140Cap and total protein levels of endophilin A1 or p140Cap in
1009	(K). N = 5. (M) Effect of W-7 on interactions between calmodulin and endophilin
1010	A1/p140Cap upon cLTP induction. DIV16 neurons were collected and the cytosolic (S100)
1011	and membrane (P100) fractions were used for immunoisolation with antibodies to calmodulin.
1012	(N) Quantification of endophilin A1 and p140Cap precipitated by antibodies to calmodulin in
1013	(N). N = 3. (O) Effects of W-7 and MK801 on the amount of p140Cap in spines upon LTP
1014	induction. Neurons transfected with pLL3.7-DsRed on DIV12 were pre-treated with DMSO,
1015	W-7 or MK801 and chemically induced LTP on DIV16. Neurons were fixed 1 min after
1016	glycine application, immunostained with antibodies to p140Cap (green) and imaged by
1017	confocal microscopy. Bar = 5 μ m. (P) Quantification of changes in p140Cap mean intensity
1018	in spines as compared with the control (- Gly) group in (O). N \geq 12 cells, n \geq 464 spines per

- 1019 group. (Q) Same as (O) except that neurons were immunostained with antibodies to cortactin.
- 1020 Bar = 5 μ m. (**R**) Quantification of changes in cortactin mean intensity in spines as compared
- 1021 with the control (- Gly) group in (Q). N \ge 11 cells, n \ge 431 spines per group. Data represent
- 1022 mean \pm SEM in (**D**), (**F**), (**H**), (**J**), (**L**), (**N**), (**P**) and (**R**). * p < 0.05, ** p < 0.01, *** p < 0.01,
- 1023 0.001, when compared with Ctrl, NT or Gly. ### p < 0.001 in (L), when compared with +
- 1024 Gly. # p < 0.05, ## p < 0.01, ### p < 0.001 in (N), when compared to + Gly 1'.
- **Figure 3 figure supplement 1.** Endophilin A1 does not bind Ca^{2+} .
- 1026

1027

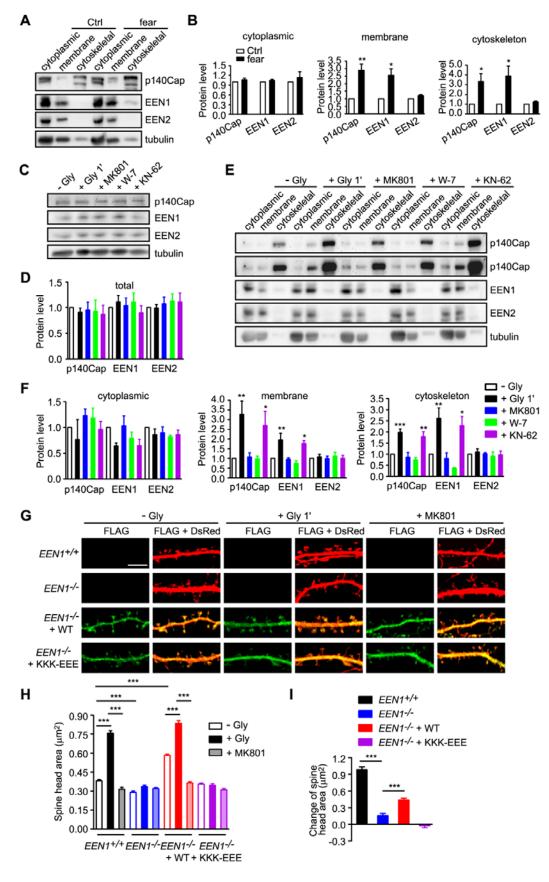

Figure 4. Ca²⁺/calmodulin promotes actin polymerization in spines via the endophilin


1029 A1-p140Cap pathway.

1030 (A) Effect of Ca²⁺ on binding of EEN1 double mutant (DM) to calmodulin in GST-pull down 1031 assay. (B) Quantification of EEN1 DM binding to GST-CaM as compared with WT in (A). Y 1032 axis shows as two segments. N = 4, *** p < 0.001. (C) Cultured *EEN1*^{+/+} and *EEN1*^{-/-} 1033 hippocampal neurons co-transfected with LifeAct-mCherry and pCMV-Tag2B, and *EEN1*^{-/-} 1034 hippocampal neurons co-transfected with LifeAct-mCherry and pCMV-Tag2B-EEN1 WT or 1035 pCMV-Tag2B-EEN1 DM on DIV12 were pre-treated with DMSO or W-7 and chemically 1036 induced LTP (cLTP) on DIV16. Neurons were fixed 1 min after glycine application and

1037	imaged by confocal microscopy. Bar = 5 μ m. (D , E) Quantification of spine size and changes
1038	in spine size in (C). N \geq 12 neurons, n \geq 450 spines per group. (F) Quantification of F-actin
1039	enrichment in spines in (C). N \geq 12 neurons, n \geq 450 spines per group. (G) Cultured $\textit{EEN1}^{+/+}$
1040	and <i>EEN1</i> ^{-/-} hippocampal neurons co-transfected with pLL3.7-DsRed and pCMV-Tag2B, and
1041	EEN1 ^{-/-} hippocampal neurons co-transfected with pLL3.7-DsRed and pCMV-Tag2B-EEN1
1042	WT or pCMV-Tag2B-EEN1 Y343A on DIV12 were pre-treated with DMSO or MK801 and
1043	chemically induced LTP (cLTP) on DIV16. Neurons were fixed 1 min after glycine
1044	application and imaged by confocal microscopy. Bar = 5 μ m. (H, I) Quantification of spine
1045	size and changes in spine size in (G). N \geq 12 neurons, n \geq 502 spines per group. Data
1046	represent mean \pm SEM in (B), (D), (E), (F), (H), and (I). ** $p < 0.01$, *** $p < 0.001$ in (B)
1047	when compared with 0 μ m Ca ²⁺ .
1048	Figure 4 - figure supplement 1. I154 and L158 are required for endophilin A1 binding to

1049 calmodulin.



1053 correlates with spine expansion.

(A) DIV16 neurons were pre-treated with DMSO, W-7 or KN-62 and chemically induced LTP.
Neurons were fixed 1 min after glycine application. Plasma membrane (PM)-localized
endophilin A1 was immunostained and imaged by 3D-SIM. Spines were outlined manually.

1057	$Bar = 4 \ \mu m$ in left and center panels and 500 nm in magnified images in right panels. (B)
1058	Quantification of spine size in (A). (C) Quantification of the area and number of
1059	PM-localized endophilin A1 nanodomains in spines in (A). (D) Scatterplot of the number or
1060	area of PM-localized endophilin A1 nanodomains versus the size of spine head for control (-
1061	Gly, $n = 278$ spines) and cLTP (+ Gly, $n = 254$ spines) groups with linear fits. (E)
1062	Quantification of changes in the mean intensity of PM-localized endophilin A1 in spines. (\mathbf{F})
1063	DIV16 neurons were pre-treated with DMSO or LatA and chemically induced LTP. Neurons
1064	were fixed at 30 s, 45 s, 60 s or 120 s after glycine application. PM-localized endophilin A1
1065	was stained and imaged by 3D-SIM. Bar = 500 nm. (G) Quantification of spine size in (F).
1066	(H) Quantification of the mean intensity of PM-localized endophilin A1 in spines in (F). (I)
1067	Quantification of changes in the mean intensity of PM-localized endophilin A1 in spines in
1068	(F). (J) Effect of $Ca^{2+}/calmodulin$ on binding of EEN1 WT or DM protein to membrane in
1069	liposome sedimentation assay. (K) Quantification of endophilin A1 binding to liposome in (J).
1070	N = 7. Data represent mean \pm SEM in B-E, G-I, and K. *** $p < 0.001$, when compared with -
1071	Gly in (G) and (H). ### $p < 0.001$, when compared with - Gly + LatA treatment in (H). N \geq
1072	10 neurons, $n \geq 254$ spines per group in (B-E), and $N \geq 10$ neurons, $n \geq 241$ spines per group
1073	in (G-I).
1074	Figure 5 - figure supplement 1. Calmodulin-dependent increase in the number of endophilin

1074 Figure 5 - figure supplement 1. Calmodulin-dependent increase in the number of endophilin
1075 A1 nanodomains correlates with spine size during the initial phase of sLTP.

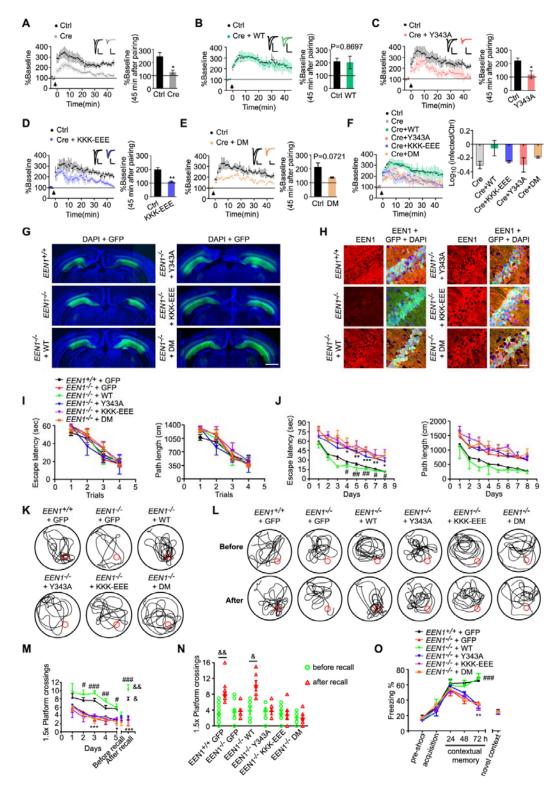


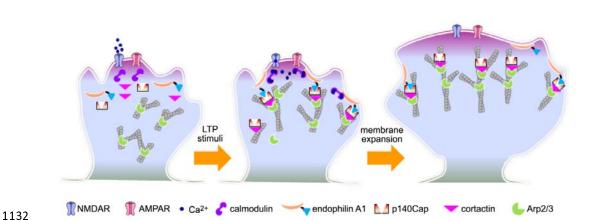
Figure 6. $Ca^{2+}/calmodulin$ regulates the association of endophilin A1 and p140Cap with both

1079 membrane and cytoskeleton upon LTP induction.

1080	(A) Immunoblotting of subcellular fractionations of mouse hippocampi from animals
1081	subjected to fear training. (B) Quantification of protein levels of p140Cap, endophilin A1 or
1082	endophilin A2 in cytoplasmic, membrane and cytoskeleton fractions in (A). $N = 6$ animals. (C)
1083	Cultured neurons were pre-treated with DMSO, 10 μM MK801, W-7 or KN-62 and
1084	chemically induced LTP on DIV16. Cell lysates were prepared 1 min after glycine application
1085	and subjected to SDS-PAGE and immunoblotting. (D) Quantification of total protein levels in
1086	(C). N = 5. (E) Effects of MK801, W-7 and KN-62 on subcellular distribution of protein
1087	levels. Neurons were pre-treated with DMSO, MK801, W-7 or KN-62 and chemically
1088	induced LTP on DIV16. Cells were collected and subjected to subcellular fractionation 1 min
1089	after glycine application. (F) Quantification of protein levels in subcellular fractions in (E). N
1090	= 5. (G) $EEN1^{+/+}$ and $EEN1^{-/-}$ hippocampal neurons co-transfected with pLL3.7-DsRed and
1091	pCMV-Tag2B, and EEN1 ^{-/-} hippocampal neurons co-transfected with pLL3.7-DsRed and
1092	pCMV-Tag2B-EEN1 WT or pCMV-Tag2B-EEN1 KKK-EEE on DIV12 were pre-treated with
1093	DMSO or MK801 and chemically induced LTP on DIV16. Neurons were fixed 1 min after
1094	glycine application and imaged by confocal microscopy. Bar = 5 μ m. (H , I) Quantification of
1095	spine size or changes in spine size in (G). $N \geq 12$ neurons, $n \geq 482$ spines per group. Data
1096	represented are mean \pm SEM in (B), (D), (F), (H) and (I). * $p < 0.05$, ** $p < 0.01$, ***
1097	0.001 when compared to Ctrl or - Gly in (B) and (F).
1098	Figure 6 - figure supplement 1. In response to $Ca^{2+}/calmodulin$, endophilin A1 localizes to

1099 the plasma membrane and recruits Arp2/3 via p140Cap.

1100


Figure 7. The calmodulin-, membrane- and p140Cap-binding capacities of endophilin A1 are

1103	(A-F) Rescue of the LTP impairment phenotype in EEN1 KO neurons by EEN1 WT and
1104	mutants. AAV viruses expressing the Cre recombinase (AAV-mCherry-2A-Cre) and GFP
1105	(AAV-EGFP) or Cre, GFP and EEN1 WT or mutant (AAV-EGFP-2A-EEN1) were
1106	stereotaxically injected into the CA1 regions of EEN1 ^{fl/fl} mice at P0. Acute slices of
1107	hippocampi were prepared on P14-P21 for dual recording analysis of LTP. Shown are
1108	pairwise comparisons of LTP in non-infected (Ctrl) and infected neurons of the same slice.
1109	For Cre-expressing neurons (Cre) versus Ctrl in (A), 6 recording pairs from three mice,
1110	marked as $N = 6/3$, were analyzed. $N = 10/5$ in (B), $N = 5/4$ in (C), $N = 5/3$ in (D) and $N = 5/3$
1111	4/3 in (E). Bar graphs shown percentage of baseline at 45 min after pairing. A summary of
1112	rescue effects of EEN1 WT and mutants is shown in (F). Data represent mean $\Box \pm \Box$ SEM. * p
1113	< 0.05, ** p <0.01. (G) AAV virus was stereotaxically injected into the CA1 regions of
1114	<i>EEN1</i> ^{+/+} to express GFP alone, or <i>EEN1</i> ^{-/-} mice to express GFP alone, EEN1 WT, KKK-EEE,
1115	Y343A or DM and GFP. Shown are images of GFP fluorescent signals and DAPI labeling of
1116	nuclei captured by fluorescence microscopy. Bar = 1 mm. (H) Immunofluorescence staining
1117	of endophilin A1 in CA1 neurons of brain slices from mice in (G). Bar = 50 μ m. (I-N) Morris
1118	water maze test of AAV-injected mice. Shown are escape latency or distance travelled before
1119	escaping to the platform in the visible platform training (I), escape latency and distance
1120	travelled before escaping to the platform in the invisible platform training (J) , the swim trace
1121	in probe trial 3 and recall following training once again one month after training (K, L),
1122	number of crossings within the $1.5 \times$ platform area in 5-day probe trial and recall test (M), and
1123	number of crossings within the $1.5 \times$ platform area before and after recall (N). (O) Freezing
1124	behavior in AAV-injected <i>EEN1</i> ^{+/+} or <i>EEN1</i> ^{-/-} mice subjected to contextual fear conditioning.

- 1125 Data represent mean $\Box \pm \Box$ SEM in H-O (15 $EEN1^{+/+} + GFP$, 10 $EEN1^{-/-} + GFP$, 6 $EEN1^{-/-} + GFP$, 7 $EEN1^{-/-} + GF$
- 1126 EEN1, 6 $EEN1^{-/-}$ + Y343A, 7 $EEN1^{-/-}$ + KKK-EEE, 7 $EEN1^{-/-}$ + DM), * p < 0.05, ** p < 0.01,
- 1127 *** p < 0.001 when compared with $EENI^{+/+} + GFP$, # p < 0.05, ## p < 0.01, ### p < 0.001
- 1128 when compared with $EEN1^{-/-}$ + GFP; & p < 0.05, && p < 0.01 when compared with before
- 1129 recall.
- 1130

1133 Figure 8. Model for endophilin A1-mediated initial expansion of spine head in sLTP.

LTP stimuli induce NMDAR-mediated Ca²⁺ influx into dendritic spines and activation of calmodulin. Ca²⁺/calmodulin interacts directly with endophilin A1 and enhance its binding to both the plasma membrane and p140Cap. As a result, the plasma membrane-associated endophilin A1 recruits p140Cap, which in turn recruits cortactin to promote branched actin polymerization underneath the plasma membrane, generating propulsive force for rapid structural expansion of spine head during the initial phase of sLTP.