
1 

 

The Impact of Graph Construction Scheme and Community 
Detection Algorithm on the Repeatability of Community and Hub 

Identification in Structural Brain Networks  
 
Stavros I. Dimitriadis1-6,8*, Eirini Messaritaki1,2,3,7, Derek K. Jones1,3 
 

1. Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, 
Cardiff University, Maindy Road, Cardiff, CF24 4HQ, UK 

2. Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, 
Cardiff University, Cardiff, CF24 4HQ, UK 

3. School of Psychology, Cardiff University, 70 Park Place, Cardiff, CF10 3AT, UK 
4. Neuroinformatics Group, Cardiff University Brain Research Imaging Centre, School 

of Psychology, Cardiff University, Cardiff, United Kingdom 
5. Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, 

United Kingdom 
6. MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, 

Cardiff University, Cardiff, United Kingdom 
7. BRAIN Biomedical Research Unit, Cardiff University, Maindy Road, Cardiff, CF24 

4HQ, UK 
 

*Corresponding author: 
Stavros I. Dimitriadis 
Contact:DimitriadisS@cardiff.ac.uk / stidimitriadis@gmail.com  
Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff 
University, Maindy Road, Cardiff, CF24 4HQ, UK 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 23, 2021. ; https://doi.org/10.1101/2020.05.07.082271doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.07.082271


2 

 

Abstract: 
 
A critical question in network neuroscience is how nodes cluster together to form 
communities, to form the mesoscale organization of the brain. Various algorithms have been 
proposed for identifying such communities, each identifying different communities within the 
same network. Here, (using test-retest data from the Human Connectome Project), the 
repeatability of 33 community detection algorithms, each paired with 7 different graph 
construction schemes was assessed. 

  Repeatability of community partition depended heavily on both the community detection 
algorithm and graph construction scheme. Hard community detection algorithms (in which 
each node is assigned to only one community) outperformed soft ones (in which each node 
can be belong to more than one community). The highest repeatability was observed for the 
fast multi-scale community detection algorithm paired with a graph construction scheme that 
combines 9 white matter metrics. This pair also gave the highest similarity between 
representative group community affiliation and individual community affiliation. Connector 
hubs had higher repeatability than provincial hubs. Our results provide a workflow for 
repeatable identification of structural brain networks communities, based on optimal pairing 
of community detection algorithm and graph construction scheme. 

 
Keywords: Structural Brain network, Community detection, Permutation test, Normalized 
Mutual Information (NMI), Diffusion Magnetic Resonance Imaging (dMRI), hard 
community detection, soft community detection, overlapping communities. 
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1. Introduction 
 

The human brain can be modelled as a network (Bassett and Sporns, 2017) and 

summarised as a graph. In structural networks, the nodes of the graph are small volumes of 

tissue which are interconnected via white matter tracts (edges). Graph theory can provide 

novel insights into healthy human brain function (Bassett et al., 2011; Braun et al., 2015) and 

its alteration in various diseases (Braun et al., 2016, Baker et al. (2015); Collin et al. 

(2016); Drakesmith et al. (2015); Aerts et al. (2016); Nelson et al. (2017); Vidaurre et al. 

(2018); Imms et al. (2019)).  

An open question in network neuroscience is how neural units cluster together to form 

inter-connected groups and provide the coordinated brain activity that gives rise to action, 

perception and behaviour (Bassett and Mattar, 2017; Pessoa et al., 2018).  Modularity is a 

quintessential concept in network neuroscience, wherein neural units are densely connected 

to one another, forming clusters or modules (Meunier et al., 2010). This is an efficient 

architecture allowing a complex network to integrate information locally, while maintaining 

its adaptability to any external stimulus.  Networks in nature often show hierarchical, 

modular organization (Blondel et al., 2008; Fortunato 2010; Fortunato and Castellano 2012; 

A. Lancichinetti and Fortunato 2009a,b; Newman,2004 2012; Meunier et al., 2009). In the 

brain, such hierarchical modularity could support segregated neuronal interactions and their 

integration at the global level.  Networks with such structure (Fortunato, 2010) are more 

complex than those with random structure (Sporns et al., 2000), and have been well 

demonstrated in functional brain networks (Sporns and Betzel, 2016).   

Commonly studied graph theoretical metrics, such as global and local efficiency, 

clustering coefficient, shortest path length, and small-worldness (Rubinov and Sporns 2010), 

provide useful information related to the global and local properties of the network, but to 

investigate mesoscale network organization community (or modularity) detection techniques 

are more appropriate (Meunier et al. 2010; Giusti et al., 2016).  Following community 

partition, a frequently used methodology to identify the community structure uses two 

modular network metrics (Guimera et al., 2005; van den Heuvel and Sporns, 2013).  The 

participation coefficient, Pi, of a node quantifies the distribution of its links among the 

modules of the network, while the within-module z-score, zi, measures the connectedness of a 

node to other nodes in the module.  These metrics in turn can be used to classify hubs as 

either provincial or connector hubs (Guimera and Amaral, 2005).  Please refer to Appendix 1 

for more detail on the computation of Pi and zi and how this classification is made. 
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Complex network analysis of multimodal structural and functional brain connectivity has 

identified a subset of brain areas that play a key role for an efficient neural signalling and 

communication (van den Heuvel and Sporns, 2013). These brain areas, called hubs, support 

dynamic functional coupling within and between functional subnetworks. In empirical 

structural brain networks, the term ‘rich-club’ characterises brain areas/nodes with high 

degree that are more densely interconnected between each other compared to the rest of the 

network.  

Various methodologies for structural network generation have been proposed, involving 

tractography with different algorithms and assigning edge weights using different diffusion 

MRI-based metrics. The resulting graphs are quite different from each other and have 

different levels of robustness and repeatability (Smith et al., 2015; Owen et al., 

2013, 2013; Zhong et al., 2015; Dimitriadis et al., 2017b; Yuan et al., 2019). We recently 

explored the repeatability of structural brain graphs, their edge weights and graph-theoretical 

metrics, for twenty-one different edge-weighting schemes (Messaritaki et al., 2019a). We 

demonstrated that integrating several metrics as edge weights is very good at capturing 

differences between populations, and is interesting from the perspective of developing 

biomarkers (Dimitriadis et al 2017, Clarke et al 2020). 

We constructed structural brain networks from a set of test-retest diffusion MRI scan data 

from the Human Connectome project using the b=2000�s/mm2 data and the seven most 

reproducible graph-construction schemes as derived from our previous study on the same 

data (Messaritaki et al., 2019b). We then applied thirty-three community detection 

algorithms. The ‘hard’ algorithms assign every node to only one community, while the ‘soft’ 

algorithms can assign a node to multiple communities. For every pair of community detection 

algorithm and graph construction scheme, we estimated the reproducibility of nodal Pi  and zi 

and of provincial and connector hubs, based on both modular network metrics. Our aim was 

to identify the combination of graph construction scheme and community detection algorithm 

with the highest agreement of individual communities between the two repeat scan sessions. 

 The quality criterion for the estimated community partitions was also important in our 

study. To this end, we compared the quality index of the community partitions estimated over 

the original graphs with quality indexes of the community partitions computed over surrogate 

null versions of the original graph (Guimera et al., 2004). We previously reported a statistical 

procedure for performing condition and group comparisons in terms of brain communities 

(Dimitriadis et al., 2012). Here, we applied a similar approach to assess between-scan 

pairwise community similarity for every pair of graph construction scheme and community 
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detection algorithm. We adopted a proper community partition distance metric, the 

Normalized Mutual Information (NMI) (Lancichinetti and Fortunato,2009a ; Alexander-

Bloch et al. 2012). Finally, we derived a consensus cluster across participants and repeat 

scans (Dong et al., 2014; Ozdemir et al., 2015). The agreement of consensus cluster with 

individual communities adopting NMI was also used as an objective criterion of the optimal 

combination of graph construction scheme and community detection algorithm.  

We note that the analysis presented here does not aim to assess how well these structural 

networks represent the organisation of the human brain. The accuracy of these networks and 

of the metrics used as edge-weights in representing the functional organisation of the brain 

has been validated in recent work by Messaritaki et al. (2020). Additionally, the metrics used 

as edge-weights are routinely used in network analyses in the literature (for example Taylor 

et al., 2015; Nigro et al., 2016; Caeyenberghs et al., 2016). Our analysis does, however, 

address one aspect of the accuracy of the partition of the structural connectome. If a partition 

of the structural connectome is not repeatable in the absence of changes resulting from 

maturation or intervention, then that partition is not an accurate representation of the modular 

organisation of the structural connectome. Only partitions that are repeatable can convey 

reliable information about the structural organisation of the human brain. In other words, 

even though the repeatability of a partition is not a sufficient condition for it to be 

representative of the brain’s structural organisation, it is a necessary one. 

The rest of this manuscript is organised as follows: Section 2 describes the graph-

construction schemes, community detection algorithms, community partition similarity, the 

methodology for detecting connector and provincial hubs and their repeatability. Section 3 

reports our results in terms of repeatable community partitions across the 2D space of graph-

construction schemes / community detection algorithms, the repeatability of nodal Pi/ zi and 

the detection of connector/provincial hubs. The Discussion summarises the main outcome of 

our study explaining its advantages, limitations, and suggestions for future directions. 

 

2. Methods 

All analyses were performed using MATLAB (2019a; The Mathworks, Inc, Massachussets, 

United States). 

2.1. Data 

We analysed the test-retest MRI and diffusion-MRI dataset from the multimodal 

neuroimaging database of the Human Connectome Project (HCP) (Sotiropoulos et al., 
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2013b; Glasser et al., 2013 ; van Essen et al., 2013). We used the data from the 37 

participants for whom there were 90 gradient directions for each b-value. The participants on 

this test-retest dataset were scanned twice with the between-scan time interval ranging 

between 1.5 and 11 months. The age-range of the participants was 22–41 years. The test-

retest time interval is shorter than the expected time over which maturation-induced structural 

changes can be measured with diffusion MRI (dMRI). 

The diffusion-weighted images (DWIs) had a resolution of (1.25×1.25×1.25) mm3 and 

were acquired for three different diffusion weightings (b-values: 1000�s/mm2, 

2000�s/mm2 and 3000�s/mm2) across 90 gradient directions for each b-value. The HCP 

acquisition details and pre-processing are described in Sotiropoulos et al. (2013a,b), Feinberg 

et al. (2010), Moeller et al. (2010), Setsompop et al. (2012), Xu et al. (2012), Glasser et al. 

(2013). Specifically, the diffusion images were corrected for EPI distortions, eddy-current 

distortions, participant movement and gradient nonlinearities. The diffusion data were also 

registered to the structural data. We performed the following analyses using the 

b=2000�s/mm2 data. 

 

2.2. Tractography 

We performed whole-brain tractography using ExploreDTI-4.8.6 (Leemans et al., 2009), 

estimating the fiber orientation distribution function (fODF) using  constrained spherical 

deconvolution (CSD) (Tournier et al., 2004). Tracking was initiated on a 2×2×2 mm grid, 

with a 1mm step size, angular threshold of 30∘ and fiber length range of 50−500 mm. 

 

2.3. Graph generation 

2.3.1. Node definition 

The Automated Anatomical Labeling (AAL) atlas (Tzourio-Mazoyer et al., 2002) was 

used to define 90 cortical and subcortical areas (45 areas per hemisphere) as nodes of the 

structural brain graphs.  Structural brain networks (SBN) were generated for each participant 

using ExploreDTI-4.8.6 (Leemans et al., 2009). 

2.3.2. Edge weights 
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Edges were weighted using the seven most reproducible graph-construction schemes 

identified previously with the same dataset (Messaritaki et al., 2019b), and which were based 

on different combinations of the nine metrics listed in Table 1 (see Section 2.3.4). Each graph 

was normalised to have a maximum edge weight of 1, while the elements in the main 

diagonal were set to zero (see Figure 1). 

Table 1. Metrics used in connectivity matrices. 

Metric Abbreviation 

Fractional anisotropy FA 

Mean diffusivity MD 

Radial diffusivity RD 

Number of streamlines NS 

Percentage of streamlines PS 

Streamline density SLD 

Tract volume TV 

Tract length TL 

Euclidean distance between nodes ED 
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Figure 1. Flowchart of the construction of a structural brain network based on tractography 
and diffusion metrics (see Table 1). 
 
2.3.3 Integrated Edge-Weights 
 

Combining multiple metrics into an integrated edge weight is supported by the fact that 

each metric conveys information about different tissue properties, while at the same time 

topological properties of SBNs are affected by more than one metric. Here, using the data-

driven algorithm described in our previous work (Dimitriadis et al., 2017b,c) the nine metrics 

in Table 1 were used to form an integrated SBN for each participant and scan session. 

The algorithm down-weights the more similar metrics and up-weights the most dissimilar 

metrics to enhance the integration of complementary topological information across the nine 

metrics. An orthogonal-minimal-spanning-tree (OMST) algorithm was then applied to the 

resulting networks, selecting the edges that preserve connectivity between nodes, while 

guaranteeing that the overall network efficiency is maximised. More details on the OMST 

algorithm and its implementation can be found in our previous work (Dimitriadis et al., 

2017a,b,c; Messaritaki et al., 2019) and the related code is freely available at 

https://github.com/stdimitr/multi-group-analysis-OMST-GDD. 
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2.3.4 Graph Construction Schemes 

Seven graph construction schemes were used in this study, summarised in Table 2 and falling 

broadly into two categories. We briefly explain their construction methodologies here.  

The first category includes graphs constructed via the data-driven algorithm (Dimitriadis et 

al., 2017b, c). A) NS-OMST: apply the OMST filtering algorithm (Dimitriadis et al., 

2017b,c) to the NS-weighted matrix. B) NS+FA - OMST: Integrate the NS-weighted and FA-

weighted matrices with the data-driven algorithm. C) 9m-OMST: Integrate all nine diffusion 

metrics (as originally reported in Dimitriadis et al. 2017b, see Table 2).  

The second category includes SBNs with edges weighted by the NS or the FA and 

applying a threshold to remove edges with the lowest weights. The threshold was determined 

by imposing the constraint that the graphs exhibit the same sparsity as the OMST graphs that 

exhibited the highest reproducibility (Messaritaki et al., 2019b). Once the topology of each of 

those graphs was specified, the weights of the edges were either kept as they were or re-

weighted with one of the remaining two metrics. These graphs are as follows (see Table 2). 

D) NS-thr: Keep the highest-NS edges. E) NS-t/FA-w: Threshold to keep the highest-NS 

edges, then reweight those edges with their FA. F) NS-t/MD-w: Keep the highest-NS edges, 

then reweight those edges with their MD. G) FA-t/NS-w: Keep the highest-FA edges, then 

reweight those edges with their NS. 

As we have shown previously, these seven schemes exhibit different values of similarity 

between them, from 0.99 to 0.42 (Messaritaki et al. (2019b), Table 3), motivating their 

inclusion in a study on the repeatability of community detection. 

 

 
Table 2. Summary of the graph-construction schemes  
 

Abbreviation Initial Edge Weights Topology Final Edge Weights Symbol 

NS – OMST NS OMST Unchanged A 

NS + FA OMST lin. comb. of NS and FA OMST Unchanged B 

9-m OMST lin. comb. of all 9 metrics 
in Table 1 

OMST Unchanged C 

NS-thr NS keep highest-NS edges Unchanged D 
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Abbreviation Initial Edge Weights Topology Final Edge Weights Symbol 

NS-t/FA-w NS keep highest-NS edges re-weight with FA E 

NS-t/MD-w NS keep highest-NS edges re-weight with MD F 

FA-t/NS-w FA keep highest-FA edges re-weight with NS G 

 
 

 

2.3.5 Community detection algorithms 

Communities or modules are defined as subgroups of nodes that are more interconnected 

with each other compared to the rest of the network (Newman and Girvan 2004; Radicchi et 

al. 2004). In the present study, we compared thirty-three different community detection 

algorithms, comprising twenty-six with hard clustering and seven with soft clustering. (see 

Figure 2).  In hard clustering, community membership can be represented as a vector that 

encapsulates the assignments of every brain area to every detected graph cluster 

(community). In our case, clustering has a dimension of 1 x 90, equalling the number of brain 

regions in the AAL parcellation. In soft clustering, the outcome is a matrix that encapsulates 

how many soft clusters a given node (brain area) belongs to. A more detailed description of 

the adopted community detection algorithms is provided in Appendix 2 & Supplementary 

Material. 

In the present study, we considered for the very first time in brain network neuroimaging a 

large number of community detection algorithms. We adopted thirty-three graph partition 

algorithms further divided into twenty-six hard clustering algorithms and seven soft 

clustering algorithms. 
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Figure 2. An example of hard and soft clustering in a toy example containing 7 nodes.  

A. Hard clustering: A node can only belong to one cluster. The table shows the community 

assignment to every node.  

B. Soft clustering: Five out of seven nodes are clustered in a single cluster/community {nodes 

1,2,3,4,6} while nodes {5 and 7} belong to two communities: node 5 belongs to communities 

1 and 3 while node 7 belongs to communities 2 and 3. The table shows the community 

assignment to every node. 

 

2.3.6 Permutation Test on Quality Modular Indexes 
 

For every participant, scan and graph construction method, we produced 1000 surrogate 

null graph models by randomizing the weighted connections while preserving both the degree 

and strength of every node and the overall connectedness of the network (Rubinov and 

Sporns,2010).  

All of the hard clustering algorithms (no.s 1-26) involved a Q quality index for the 

communities detected. For further details of Q quality indexes see Le Martelot and Hankin, 

(2011,2012 a,b).  

For the soft clustering algorithms (no. 27-33), we estimated the Normalized Mutual 

Information (NMI; see Appendix 3) between the original community affiliation and the 

surrogate null communities produced via the application of every algorithm to the surrogate 

graph model. 
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2.3.7 Between-Scan Community Detection Agreement 
 
 We quantified the graph-partition distance with the normalized mutual information 

(NMI;  see Appendix 3). 

 

2.3.8 Consensus Clustering 

A consensus matrix was constructed for every pair of {graph construction scheme – 

community detection algorithm} that showed high test-retest reproducibility across the cohort 

(group-averaged NMI > 0.9).  We quantified how many times two nodes across the 74 SBNs 

(37 participants x 2 scans) were classified in the same community and this entry, ti,j,  was 

assigned to the relevant pair of nodes. The consensus matrix has the same dimensions as the 

original SBN  (90 x 90 in our case) with entries assuming integer values between 0 and 74 

{37 participants x 2 scans}, which were then transformed to denote the probability of 

occurrence of a pair of nodes (brain areas) being classified as belonging to the same 

community across the cohort and scan sessions. We converted the consensus matrix into a 

probability one by dividing each entry by 74. 

In order to get a consensus or group representative community per graph-construction 

scheme and community detection algorithm,  consensus matrices should be iteratively 

thresholded and clustered with a community detection algorithm (Lancichinetti and 

Fortunato, 2012). This algorithm uses an absolute arbitrary threshold to eliminate weak 

connections and iteratively apply a graph partition technique. Instead of an arbitrary filtering 

scheme, we adopted our OMST algorithm (Dimitriadis et al., 2017a,b,c) to topologically-

filter the consensus matrix in a data-driven way.  We then extracted the consensus – group 

representative community by applying the community detection algorithms across the graph 

construction schemes (Newman,2006). See Figure 3.E for an example of a consensus matrix. 

 

 

 

 

2.3.9 Agreement of consensus representative community with individual community 
structures 
 

An important criterion of our analysis is the high similarity between the consensus 

clustering and individual clustering for every graph construction scheme that showed high 
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group-averaged community similarity (NMI > 0.9). To this end, we estimated this community 

similarity for every case. 

Figure 3 illustrates the various steps of the analysis.  

 

Figure 3. Outline of the presented methodology. 

The demonstration based on 9-m OMST graph-construction scheme and gso-discrete 

mode community detection algorithm. 

A. Repeat – Scan Sessions 

B. Structural brain networks from participant 1 from both sessions using 9-m OMST 

graph-construction scheme 

C. Individual community affiliation of participant 1 from scan session 1. Each colour 

represents one community. 
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D. Vectorised community affiliations of the whole cohort from scan sessions 1 and 2 

separated with a red line. Every module is coded with a different colour. 

E. Consensus matrix is built over group community affiliations across both sessions as 

presented in D. Weights in the consensus matrix refer to the total number of times two 

brain areas are grouped together across the cohort and scan sessions with the 

maximum value being (number of participants) x (scan sessions) = 74. 

F. Representative community affiliation after graph partitioning the consensus matrix 

presented in E. Each community is encoded to a different colour. Similarity NMI 

distance has been estimated between representative community affiliation presented 

in F and individual community affiliations presented in C. 

 

2.3.10 Evaluating the Combined Graph Construction Schemes - Community Detection 

Algorithms 

As mentioned previously, we first identified the combinations of graph construction 

schemes and community detection algorithms with higher group-averaged between-scan 

community affiliation agreement (NMI > 0.9) with a p < 0.05 based on the bootstrapping 

procedure. We then adopted a criterion of highest community similarity between the 

consensus clustering with individual community affiliation (clustering). It is important that 

consensus clustering expresses the inter-subject variability and acts as a vector median for the 

whole group (Dimitriadis et al., 2012). The final ranking of pairs of graph construction 

schemes and community detection algorithms was based on: 1) high between-scan group-

averaged community similarity with a p < 0.05 (bootstrapping), 2) Q quality index with p < 

0.05 based on surrogate null brain models and 3) high community similarity between 

consensus clustering and individual community affiliations (clusterings) assessed via a two-

way ANOVA (see section 2.7).  

 

2.4 Modular Driven Structural Brain Hub Detection   

Here, we applied the aforementioned methodology solely on the graph construction 

schemes and community detection algorithm that fulfil the evaluation criteria of section 

2.3.10.  

 

 

2.5 Reliability of Nodal Participation Coefficient Pi and Within-Module Z-Score zi, 
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We also explored the intra-class correlation coefficient (ICC) of nodal participation 

coefficient Pi and within-module z-score zi. As a main outcome of this hub detection 

approach, we quantified the consistency of connector/provincial hub detection first within 

participant between scans, and secondly across the cohort. 

 

 

2.6 Assessing a Reproducible Structural Core of the Human Brain 

 We detected structural hubs for every participant, scan session and graph construction 

scheme by applying an absolute threshold to the participation coefficient and within-module 

z-score (Guimera and Amaral,2005; Hagmann et al., 2007,2008); van den Heuvel and 

Sporns,2013). We estimated an agreement index that quantifies the percentage of 

connector/provincial hubs that were detected in both scans. This agreement index is defined 

as: 

��������� �  
 ��� 
 ���

�� �� ��������   �1�
�� �� ��	
��
�

���

 

where CH1,2 are two vectors of size 1x90 with ones in positions where a brain area is detected 

as connector or provincial hub. This agreement index is normalized by the total number of 

participants and takes the absolute value of 1 when a node/ROI is detected as either connector 

or provincial hub across all participants and in both scans. 

 

2.7 Statistical Analysis 

 Firstly, we determined pairs of graph construction schemes and community detection 

algorithms that fulfilled the evaluation criteria presented in 2.3.10. The first two criteria were 

evaluated via bootstrapping and surrogate null models, while for the third, based on the 

group-averaged similarity of individual community partitions with consensus community 

partition, a two-way ANOVA was adopted (p < 0.05).  

The detection of reproducible brain structural hubs employing community-based hub 

detection network metrics require reproducible communities. For that reason, we followed 

hub detection analysis over the best pairs of graph construction schemes and community 

detection algorithms. Then, we adopted a two-way ANOVA (p < 0.05) to detect the best pair 

of graph construction scheme and community detection algorithms over hub detection 

analysis, using as input the ICC for the participation index and the within-module z-score 

across nodes and the agreement-index.  
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3. Results 

3.1 Quality of the Detected Communities 

Q original values were transformed into p-values by comparing them with the 1000 

surrogate (permuted) Q values (see sup.material).  P-values ranged between 0.013 and 0.021 

across participants, scans and graph construction schemes. For the soft clustering algorithms 

(no. 27-33) that do not include a Q quality index, we measured the NMI between the original 

community affiliation and the 1000 surrogate-based communities. The group-averaged NMI 

ranged between 0.08 and 0.12 which supported the quality of the derived soft communities 

with the whole set of soft clustering algorithms. These findings support the quality of the 

extracted graph partitions and allow us to include all the participants, scans, graph 

construction schemes and community detection algorithms in our analysis. 

 

3.2 Group-Averaged Between-Scan Agreement of Communities Affiliations 

Figure 4 shows group-averaged between-scan agreement of community affiliations across 

graph constructions schemes and community detection schemes. Based on the highest group-

averaged NMI values and the detected p-values (p = 0.0001) derived from the permutation 

test, we detected the following four community detection algorithms across the seven graph 

construction schemes as having the highest between-scan agreement: 

1. (mscd_afg): Fast multi-scale community detection algorithm using the criterion from 

Arenas et al. (2008) 

2.  (mscd_rb): Fast multi-scale community detection algorithm using the criterion from 

Reichardt & Bornholdt, (2006) 

3. (mscd_rn): Fast multi-scale community detection algorithm using the criterion from 

Ronhovde & Nussinov (2009) 

4. (mscd_so): Fast multi-scale community detection algorithm using stability 

optimisation (Le Martelot and Hankin, 2012). 
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Figure 4. Between-Scan Agreement of Communities Affiliations across graph 

construction schemes and community detection algorithms.  

Every subplot refers to one of the 7 graph-construction schemes. The bars define the group-

averaged between-scan agreement of community affiliations. Numbers below the plot in A 

refer to the number list of community detection algorithms represented in section 2.3.3. 

Community detection algorithms with the highest agreement between the two scans (NM1 > 

0.9) were: mscd_afg,mscd_rb, mscd_rn and mscd_so. For the abbreviations of the graph-

construction schemes please see Table 2. 

 
 

3.3 Similarity of Individual Community Partitions with Consensus Community 

Partition 

The highest similarity between individual community partitions and consensus community 

partition was detected for the combination of 9-m-OMST graph construction scheme and 

mscd_so community detection algorithm. The second highest similarity was detected for 

mscd_afg and 9-m OMST. MSCD with rb and rn criterions failed to produce an acceptable 

community similarity between a group representative community estimated via consensus 

clustering and the individual community affiliations (see Table 3). Two-way ANOVA 

reported an effect of group-averaged similarity of individual community partitions with 

consensus community partition across the four community detection algorithms (df =3, F = 

54.14, p = 0.783 x 10-9, corrected for multiple comparison) but there was no effect of the 
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graph construction or their interaction.  Based on the mean group-averaged similarity across 

the seven graph construction schemes, we ranked the four community-detection algorithms. 

The Mscd_so community detection algorithm produced the highest group-averaged similarity 

of individual community partitions with consensus community partition compared to the four 

community detection algorithms.  

 

 

Table 3. Group-averaged similarity of individual community partitions with 

consensus community partition. Similarities are expressed in NMI scale. We 

assigned with bold the top ranked values. 

 

 NS-
OMST 

NS+FA 
OMST 

9-m 
OMST 

NS-
thr 

NS-
t/FA-

w 

NS-
t/MD-

w   

FA-
t/NS-

w 

mscd_afg 0.64 0.57 0.70 0.61 0.61 0.61 
 

0.39 

mscd_rb 0.53 0.39 0.39 0.32 0.31 0.30 0.18 
mscd_rn 0 0 0.36 0 0 0 0 
mscd_so 0.70 0.65 0.75 0.68 0.68 0.68 0.64 

 

 

 

 

 

3.4 Evaluation of the Best Combination of Graph Construction Scheme and 

Community Detection Algorithm 

Based on the evaluation criteria presented in section 2.4 for the final ranking of the pairs 

of graph construction schemes and community detection algorithms, and taking into account 

the individual scores, we ranked as the best pair the combination of mscd_so with 9-m 

OMST.  This pair showed a high between-scan group-averaged community similarity 

estimated with NMI and evaluated via bootstrapping (p = 0.0001). The Q quality index has a 

value of 0.67 with p = 0.001. The Mscd_so community detection algorithm also produced the 

highest group-averaged similarity of individual community partitions with consensus 

community partition compared to the four community detection algorithms supported by two-

way ANOVA.  
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Figure 5 illustrates the topology of the nine communities across the 90 AAL brain areas 

based on the combination of mscd_so with 9-m OMST. Importantly, modules number 1, 7 

and 9 group together brain areas located within the left hemisphere, modules number 2, 6 and 

8 group together brain areas located within the right hemisphere, while modules 3, 4 and 5 

involve areas from both hemispheres. Specifically, they involve bilateral ROIs from the 

fronto-parietal, cingulo-opercular and default mode networks like rectus, anterior and middle 

gyrus, frontal superior gyrus, frontal superior medial gyrus, supplementary motor area, 

precuneus, cuneus, calcarine and occipital superior gyrus. The bilateral superior temporal 

gyrus, superior temporal pole and middle temporal pole play an inter-hemispheric modular 

connector role (see * in Figure 5). Five out of thirteen consistent connector hubs are located 

within inter-hemispheric modules. Interestingly, eight homologous brain areas are grouped 

together in either left (module 8) or right hemisphere (module 9). These areas are: 

hippocampus, parahippocampal gyrus, amygdala, inferior temporal gyrus, thalamus, 

pallidum, fusiform and lingual gyrus. 
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Figure 5. Topological Layout of Modular Assignment into the 90 AAL brain areas 

based on the community affiliation extracting from the consensus matrix related to 9-m 

OMST graph construction scheme and mscd_so community detection algorithm.  

With ‘*’, we denoted the connector hubs detected consistently across participants and 

repeat scans from the same combination of {mscd-so, 9-m OMST} (see section 3.5).  

This circular plot illustrates the 90 AAL brain areas into 45 of the left hemisphere on the left 

semi-circle and 45 of the right hemisphere on the right semi-circle. Our analysis gave nine 

communities/modules where each one is encoded with a different colour.  

 

 

3.5 ICC of Nodal Participation Coefficient Index and Within-Module Z-score  

Table 4 shows the group-averaged ICC of nodal Participation Coefficient Pi. ICC values 

were first estimated per node and were then averaged across the 90 nodes for every pair of 

graph construction scheme and community detection algorithms. The highest ICC score was 

detected for the mscd_so algorithm combined with both the 9-m OMST and NS-thr graph 

construction schemes. On average across the seven graph construction schemes, the mscd_so 

algorithm also demonstrated the highest average ICC score. However, these findings did not 

reach statistical significance. Two-way ANOVA revealed no main effect of network-

averaged of Participation Coefficient index across the four community detection algorithms 

(df =3, F = 2.86, p = 0.05) no main effect of the graph construction and no significant 

interaction term. 

Figure 6 shows the nodal ICC for the {mscd_so,9-m OMST} and {mscd_afg, NS-thr} 

pairs. Applying a Wilcoxon Rank-Sum-test between the two sets of 90 ICCs, we detected a 

significantly higher ICC for the mscd_so – 9-m OMST pair (p-value = 0.041). 

 

 

Table 4. ICC of Nodal Participation Coefficient index across every combination of 

graph construction scheme with community detection algorithms. We denote the top 

ranked values in bold letters. 

 NS-
OMST 

NS+FA 
OMST 

9-m 
OMST 

NS-thr NS-
t/FA-w 

NS-
t/MD-w   

FA-
t/NS-w 

mscd_afg     0.54  0.50        0.62 0.67        0.58       0.60       0.38 
mscd_rb     0.61  0.55 0.68 0.73 0.67 0.65 0.46 
mscd_rn     0.58     0.55     0.68      0.67     0.61  0.61  0.43 
mscd_so     0.69 0.70 0.80 0.80 0.77 0.76 0.43 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 23, 2021. ; https://doi.org/10.1101/2020.05.07.082271doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.07.082271


 

 

Figure 6. ICC of Nodal Participation Coefficient index for the best combinations of 

graph construction scheme and community detection algorithm 

A. mscd_so – 9-m OMST 

B. mscd_afg – NS-thr 

 

 

 

Table 5 shows the group-averaged ICC of nodal within-module Z-scores, zi. ICC values 

were first estimated per node and were then averaged across the 90 brain areas for every pair 

of graph construction scheme and community detection algorithms. The highest ICC scores 

were found for the mscd_rb and mscd_so mode algorithms combined with the NS-thr graph 

construction scheme. On average across the seven graph construction schemes, the mscd_so 

mode algorithm demonstrated the highest average ICC score. These findings reached 

statistical significance. Two-way ANOVA revealed a main effect of network-averaged zi 

across the four community detection algorithms (df =3, F = 5.89, p = 0.0037, corrected for 

multiple comparisons) but no main effect of the graph construction scheme, nor an interaction 

term. The mscd_rb community detection algorithm produced the highest ICC.  

Figure 7 shows the nodal ICC for the {mscd_rb, NS-thr} and {mscd_so, NS-thr}. 

Applying a Wilcoxon Rank-Sum-test between the two sets of 90 ICCs, we found the mscd_rb 

algorithm had significantly higher ICC (p-value = 0.0335 x 10-9). 
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Figure 7. ICC of Nodal Within-Module Z-score for the best combinations of graph 

construction scheme and community detection algorithm 

A. mscd_rb – NS-thr 

B. mscd_so – NS-thr 

 

 

 

Table 5. ICC of Nodal Within-Module Z-score across every combination of graph 

construction scheme with community detection algorithms. We denote the top ranked 

values in bold letters. 

 

 NS-
OMST 

NS+FA 
OMST 

9-m 
OMST 

NS-thr NS-
t/FA-w 

NS-
t/MD-w   

mscd_afg     0.71  0.66        0.65 0.79        0.69       0.69       
mscd_rb     0.74  0.66 0.64 0.81 0.72 0.72 
mscd_rn     0.56     0.57     0.60      0.68     0.55  0.57 
mscd_so     0.73 0.59 0.73 0.75 0.60 0.62 
 

 

 

 

3.6 Reproducibility of Structural Hubs Detection based on Participation Coefficient 

Index and Within-Module Z-score 

We estimated the Agreement Score of both connector and provincial hub detection 

across the cohort. The Agreement Score of connector hub detection across the cohort was 

higher than the Agreement Score for provincial hubs (Table 6 versus Table 7).  

FA-
t/NS-w 

0.69 
0.73 
 0.61 
0.52 
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The highest Agreement Score for provincial hub detection was found for {mscd_so, 9-m 

OMST} (Table 6). On average across the seven graph construction schemes, the mscd_so 

algorithm demonstrated the highest average Agreement Score for provincial hub detection. 

Two-way ANOVA revealed a main effect of network-averaged Within-Module Z-score 

across the four community detection algorithms (df =3 ,F = 35.55, p = 0.542 x 10-6,  corrected 

for multiple comparison) but no main effect of the graph construction schemes nor an 

interaction. The mscd_so community detection algorithm produced the highest Agreement 

Score for provincial hub detection.  

The highest Agreement Score for connector hubs detection was found for {mscd_rb, 

FA-t/NS-w} (Table 7). On average across the seven graph construction schemes, the mscd_rb 

algorithm demonstrated the highest average Agreement Score of connector hub detection. 

These findings are supported statistically. Two-way ANOVA revealed a main effect of 

network-averaged Within-Module Z-score across the four community detection algorithms 

(df =3, F = 24.3, p = 0.188 x 10-4) but no effect of the graph construction schemes nor their 

interaction. The mscd_rb community detection algorithm produced the highest agreement 

score for connector hub detection. 

Figure 8 shows the Agreement Score for connector hubs for the pair {mscd_rb, FA-t/NS-

w}. The group of connector hubs is indicated alongside modular representation of consensus 

modules illustrated in Figure 5 and also in Table 8. Interestingly, five out of thirteen 

consistent connector hubs are located within the inter-hemispheric modules (see Figure 5). 

Our conclusion is that the combination of modular network metrics Pi and zi succeeded in 

uncovering a consistent core of connector hubs but failed to detect provincial hubs 

consistently. 

  

Table 6. Agreement Scores of Provincial Hubs across every combination of graph 

construction scheme and community detection algorithm. We assigned with bold the top 

ranked values. 

 NS-
OMST 

NS+FA 
OMST 

9-m 
OMST 

NS-thr NS-
t/FA-w 

NS-
t/MD-w   

FA-
t/NS-w 

mscd_afg     0.69  0.72        0.75 0.60        0.58       0.51       0.52 
mscd_rb     0.46  0.23 0.28 0.30 0.31 0.30 0.21 
mscd_rn     0.00     0.00     0.27      0.00     0.00  0.00  0.00 
mscd_so     0.69 0.73 0.83 0.80 0.59 0.61 0.24 
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Figure 8. Agreement Score of Connector Hubs for the best pair of {mscd_rb,FA-t/NS-w}. 

 

Table 7. Agreement Scores of Connector Hubs across every combination of graph 

construction scheme and community detection algorithm. We assigned with bold the 

top ranked values. 

 NS-
OMST 

NS+FA 
OMST 

9-m 
OMST 

NS-thr NS-
t/FA-w 

NS-
t/MD-w   

mscd_afg     0.40  0.13        0.23 0.38        0.32       0.31       
mscd_rb     0.65  0.42 0.45 0.67 0.57 0.58 
mscd_rn     0.13     0.05     0.09      0.19     0.15  0.14 
mscd_so     0.17 0.03 0.05 0.12 0.12 0.12 
 

 

Table 8. Consistent connector hubs aligned with the detected module number illustrated 

in Figure 5. 

Connector Hubs Module Number 

FrontSup_L 3 

FrontSup_R 3 

FrontInfOrb_L 2 

RolOper_L 2 

Lingual_L 6 

Lingual_R 7 

OccMid_L 8 

OccMid_R 9 

Precuneus_R 5 

TempSup_R 9 

FA-
t/NS-w 

0.43 
0.80 
 0.49 
0.17 
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TempPoleSup_L 2 

TempMid_L 8 

TempInf_R 7 

 

 

4. Discussion 

We have presented the first extensive study in the literature on the robustness of 

community detection in structural brain networks by exploring different graph-construction 

schemes (previously shown to exhibit high repeatability themselves) and various community 

detection algorithms. Our main findings have direct implications for longitudinal studies and 

studies comparing healthy controls versus diseased populations.   

The key findings of our analysis can be summarized as follows: 

1. The repeatability of community affiliations depends heavily on the combination of 

graph-construction scheme and community detection algorithm. All previously 

reported studies of network communities adopted a specific pair of graph-construction 

scheme and community detection algorithm, with the majority of them focused on 

Newman’s modularity objective criterion (Newman, 2006; Sporns and Betzel, 2016; 

Betzel et al., 2017). Based on our first criterion of high repeatability of community 

affiliation between the two scans and across the cohort (NMI > 0.9) supported 

statistically via bootstrapping (p = 0.0001), we identified four community detection 

algorithms as the best choices: 

A. mscd_agb 

B. mscd_rb  

C. mscd_rn 

D. mscd_so 

These four algorithms gave excellent repeatability across the entire set of graph-

construction schemes (see Table 2 and Figure 4). 

2. Complementary to the repeatability of the community partitions, we assessed their 

quality (second criterion). The majority of the graph partition algorithms used here 

(28 out of 33) estimated a quality index in combination with the community partition. 

By comparing the quality index of the original community partition to that derived 

from 1000 surrogate null graph versions, we computed their significance values to be 

in the range 0.013 < P < 0.021. For the soft clustering algorithms, where this quality 
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index was absent, we estimated the mean clustering distance (mean NMI) between the 

original partition and partitions derived from 1000 surrogate null graph versions of the 

original graph. The mean NMI was below 0.1. Our findings indicated community 

detection at the mesoscale is repeatable and, as the Q quality for the four selected 

algorithms reached statistically significant levels, is of high quality.  

3. Our third criterion was the high similarity of consensus community affiliation with 

individual community affiliations. The majority of the neuroimaging studies that 

employed a single graph-construction scheme and one community detection algorithm 

did not evaluate their findings under this framework (Ryali et al., 2015; Rosero et al., 

2017; Akiki and Abdallah, 2019). The consensus matrix integrates community 

affiliations across the entire cohort counting the number of times two nodes are 

assigned to the same community. To reveal a representative community affiliation, we 

have to apply a community detection algorithm. However, almost all previous studies 

report this representative community affiliation was determined without estimating its 

similarity with individual community affiliations. Following a two-way ANOVA, we 

observed an effect of group-averaged similarity of individual community partitions 

with consensus community partition across the four community detection algorithms. 

Of the four community-detection algorithms, the mscd_so community detection 

algorithm produced the highest group-averaged similarity of individual community 

partitions with consensus community partition. We found the highest similarity 

between individual community partitions and representative community partition for 

the {mscd_so, 9-m OMST} pair. The second highest similarity was detected for 

{mscd_afg, 9-m OMST} pair. 

4.  Two-way ANOVA reported an effect of group-averaged similarity of individual 

community partitions with consensus community partition across the four community 

detection algorithms (df =3, F = 54.14, p = 0.783 x 10-9, corrected for multiple 

comparisons) but there was no effect of the graph construction scheme or their 

interaction.  The mean group-averaged similarity across the seven graph construction 

schemes allowed us to rank the four graph construction schemes.  

5. An important result of our analysis is that soft clustering community detection 

algorithms gave the least repeatable results. Therefore, we recommend the use of 

hard-clustering algorithms for the detection of brain communities, at least when using 

the AAL template. 
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6. The best combination of graph-construction scheme (9-m OMST) and community 

detection algorithm (mscd_so) revealed nine distinct modules (as illustrated 

topologically in Figure 5) with interesting findings: 

A. Modules 1, 7 and 9 group together brain areas located exclusively within the left 

hemisphere while modules 2, 6 and 8 group together brain areas located 

exclusively within the right hemisphere. Modules 3, 4 and 5 group brain areas 

from both hemispheres together. 

B. Modules 3 – 5 that integrate brain areas from both hemispheres involve bilateral 

ROIs from fronto-parietal, cingulo-opercular and default mode network like 

rectus, anterior and middle gyrus, frontal superior gyrus, frontal superior medial 

gyrus, supplementary motor area, precuneus, cuneus, calcarine and occipital 

superior gyrus.  A multi-tasking fMRI study has previously suggested the flexible 

role of the fronto-parietal network in cognitive control and adaptive demands of 

cognitive tasks (Cole et al., 2013). 

C. Five out of thirteen consistent connector hubs are located within inter-hemispheric 

modules 3 – 5 supporting their inter-connecting role (Figure 5). 

D.  Interestingly, eight homologous brain areas were grouped together in either left 

(module 8) or right hemisphere (module 9). These areas are: hippocampus, 

parahippocampal gyrus, amygdala, inferior temporal gyrus, thalamus, pallidum, 

fusiform and lingual. Lesions of hippocampus, parahippocampal gyrus, amygdala 

and fusiform gyrus in participants with temporal lobe epilepsy caused an impaired 

associative memory in learning tasks that require learning and recall of objects 

and faces (Weniger et al., 2004). These four brain areas including the thalamus are 

those most consistently implicated in neurodegenerative dementias, especially in 

Alzheimer’s Disease, even at an early stage (Manuello et al., 2018).    

E. The bilateral superior temporal gyrus, superior temporal pole and middle temporal 

pole play an inter-hemispheric integration role. Inter-hemispheric functional 

connections between temporal lobes predict language impairment in adolescents 

born preterm (Northam et al., 2012). Phonological awareness, a key factor in 

reading acquisition was positively correlated with radial diffusivity of the 

interhemispheric pathways connecting temporal lobes (Dougherty et al. 2007). 

This bilateral temporal module could play a key role in many functions and 

dysfunctions. 
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7. The core of our study was an extensive analysis to identify the optimal pair of graph-

construction scheme and community detection algorithm. The choice of this pairing 

will also affect repeatability of connector and provincial hub detection based on the 

participation coefficient score Pi and the within-module z-score zi. Our results 

revealed a high repeatability of nodal Pi with the mscd_so algorithm across the seven 

graph construction schemes. The highest ICC score was reached for the {mscd_so, 9-

m OMST} pair. A significantly higher repeatability of nodal zi was found for mscd_so 

algorithm compared to the rest of the community detection algorithms. The highest 

ICC was achieved for the pairs {mscd_rb, NS-thr} and {mscd_so, NS-thr} . 

8. The Agreement Score was high only for connector and not for provincial hubs using 

both modular network metrics. The Agreement Score was statistically higher for the 

{mscd_so, 9-m OMST} pair than for the rest of the community detection algorithms. 

We detected a group of thirteen repeatable connector hubs across the cohort, but no 

provincial hubs. Based on our results, we therefore recommend to not use these 

modular network metrics for the detection of provincial hubs, at least when using the 

AAL atlas. The designation of a brain node as a hub depends also on the scale at 

which brain networks are constructed. Many brain areas in a basic atlas template 

group together functionally heterogenous subareas and it is possible that a finer-

grained parcellation may affect the nodes’ classification as a hub or not. For example, 

the thalamus, despite comprising 50 – 60 specialized sub-nuclei (Herrero et al., 2002) 

is in many studies, including ours, treated as a single node. 

 

 In our previous study on the same cohort, we focused on the repeatability of network 

topologies focusing on edge weights and graph theoretical metrics. We demonstrated that 

network topology and edge weights are repeatable, but the repeatability depends on the 

graph-construction scheme (Messaritaki et al., 2019b). The important finding in this work is 

that the repeatability of network topologies and edge weights does not guarantee the 

repeatability of community detection at the mesoscale. In the present study, we focused on 

this important tool for mesoscale network topological investigations, and the detection of 

robust communities in structural brain networks over the same participants. To the best of our 

knowledge, this is the first study in the literature that explores the robustness of community 

detection over a large set of graph-construction schemes (seven) and community detection 

algorithms (thirty-three). Our analysis detected an optimal pair of {mscd_so, 9-m OMST} 

that fulfills the three basic criteria: high repeatability of community affiliations between the 
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two scan-sessions, quality over surrogate null graph partitions and high similarity of group 

community affiliations with the individual community affiliations. To the best of our 

knowledge, this is the first time that the second and third criterion were used for the 

validation of representative consensus community affiliation (this includes studies using a 

single graph-construction scheme and community detection algorithm). 

Running the comparison study for the whole set of thirty-three graph partition algorithms 

(including graph partition of the original graph and 1000 surrogate null models) takes a few 

hours on a personal computer. We suggest to the neuroscience community to always run such 

an analysis over an in-house test-retest dataset acquired with the same settings as in the 

targeted dataset. Optimizing the set of algorithms over the test-retest study will increase the 

chance of repeatability of findings over the single-scan dataset. This process will increase the 

reproducibility of research findings, especially important for cross-sectional studies. 

Our study has a few limitations. This dataset involves a specific data acquisition protocol 

and a specific tractography algorithm. We recommend following our analysis for every study 

because such an investigation could improve the repeatability and reproducibility of the 

findings at the mesoscale while also increasing the power of the study at the nodal and 

network level (Messaritaki et al., 2019b). Additionally, in our study we used only one of the 

three available b-values to perform the tractography. This was mainly done in order to 

supplement our previous work (Messaritaki et al., 2019), and we chose the b-value of 2000 

s/mm2, because this value provides a balance between the b-value being sufficiently high to 

resolve crossing fibers with CSD, while at the same time being ensuring sufficient SNR in the 

signal for robust measurements, and that higher-order effects of the diffusion do not need to 

be taken into account when calculating the diffusion metrics. Using one b-value also reflects 

acquisition protocols routinely used in other studies, and therefore makes our work more 

applicable to the general literature. At the same time, tractography results could be improved 

by combining data from all avaialble b-values, and the implications of using different 

community detection algorithms in those cases should be explored as well. Moreover, three 

or more scan sessions would be also desirable to get a more robust assessment of 

repeatability. Scanning the same participant on different scanners and /or with different 

protocols would also allow assessment of reproducibility as well as repeatability. Lastly, the 

reproducibility of estimates of structural brain networks is affected by the resolution of the 

MR data (Vaessen et al., 2010), the parcellation scheme used (Bassett et al., 2011), the 

interval time between the scan sessions and others.  
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5. Conclusions 

In this study, we compared several graph-construction schemes and community detection 

algorithms for the detection of reproducible communities in structural brain networks. Our 

extensive analysis showed that every choice in both groups of algorithms exhibits different 

reproducibility in community detection algorithms, as well as in connector/provincial hubs 

detection. Our analysis indicates that our analytic pathway should be adopted and performed 

in every study in order to extract reliable results at the mesoscale of structural brain networks.  
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Data and code availability 
The HCP test-retest data is freely available as listed above.  
The code used to generate the graphs for the structural brain networks with the OMST 
schemes is available at: https://github.com/stdimitr/multi-group-analysis-OMST-GDD. The 
structural brain networks and the code used to perform the reproducibility analysis will be 
released as soon as the paper will be accepted from author’s github website 
https://github.com/stdimitr.  
Source code of community detection algorithms are provided on the Dr.Le Martelot’s 
personal homepage, author’s homepage and also were implemented by our team. The 
collection of the whole set of the algorithms will be reported in our github homepage. 
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Appendix 1. Detecting Structural Hubs based on Nodal Participation Coefficient Pi and 
Within-Module Z-Score zi 

By recovering the community partition and estimating the participation coefficient, we can 

classify brain hubs into provincial and connector hubs (Guimera and Amaral,2005). 

‘Provincial hubs’ are high-degree nodes that primarily connect to nodes in the same module. 

‘Connector hubs’ are high-degree nodes that show a diverse connectivity profile by 

connecting to several different modules within the network. Brain hubs are important brain 

areas that are vulnerable and susceptible to disconnection and dysfunction in brain disorders. 

Rich club organization of structural hubs supports the robustness of inter-hub connections 

and promotes the efficient information exchange between brain areas and its integration 

across the brain (van den Heuvel and Sporns,2011).  

The distinction of nodes into hubs and non-hubs by a combination of network topology 

and community affiliation is supported by a pair of network metrics called: participation 

coefficient Pi and within-module z-score, zi. This definition has been first reported by 

Guimera and Amaral (2005). Here, we first reported the reliability of these nodal metrics in 

structural brain networks. 

The degree of a node i is defined as  , where Aij is the adjacency matrix of the 

graph. Within-module z-score for node i is defined as  

 (1) 

 where κi is the number of edges of node i to other nodes in its module si  si is the 

average of κ over all the nodes in si , and σsi is the standard deviation of κ in si .  

The participation coefficient Pi, for node i is defined as  

(2) 

where kis is the number of links of node i to nodes in module s, and ki is the total degree of 

node i. The participation coefficient of a node is therefore close to 1 if its links are uniformly 

distributed among all the modules and zero if all its links are within its own module. 
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Provincial Hubs: If a node with a large degree, k » 1, has at least 5/6 of its links within 

the module, then it follows that P = 1 − (5/6)2 − (k/6)(1/k2) = 0.31 − 1/(6k) ≈ 0.30. i.e. ,  P < 

0.3 

Connector Hubs: If a node with a large degree has at least half of its links within the 

module, then it follows that P = 1 − 1/4 − (k/2)(1/k2) = 0.75 − 1/(2k). Since k » 1, P < 0.75 for 

such nodes. 

Both provincial and connector hubs demonstrate a high within-module z-score which 

means that they have many within-module edges. In this work, we used the threshold 

originally proposed by Guimera and Amaral, (2005) for the zi dimension as zi > 2.5 for both 

types of studied hubs (see Figure 5 in Guimera and Amaral, (2005)). In the Pi dimension, we 

defined a node as provincial hub if  Pi <= 0.3 and as connector hub if  0.3 < Pi < 0.75.  

The intra-class correlation coefficient (ICC) was estimated for every nodal participation 

coefficient index, Pi, and within-module z-score zi across the cohort and for every selected 

pair of graph construction scheme and community detection algorithm that showed higher 

group-averaged community similarity (NMI > 0.9). 

 

 
Appendix 2. Graph partition Algorithms  

 We described briefly the thirty-three graph-partition algorithms used in the present 

study. 

 Hard clustering algorithms are divided into three groups: 

A. Fast multi-scale community detection algorithms: 

1. (fast_mo): Fast greedy modularity optimisation algorithm based on the multi-scale 

algorithm but optimised for modularity (mono-scale) (Le Martelot and Hankin, 

2012a,b). 

2. (mscd_afg): Fast multi-scale community detection algorithm using the criterion from 

Arenas et al. (2008) 

3. (mscd_hslsw): Fast multi-scale community detection algorithm using the criterion 

from Huang et al. (2011) 

4. (mscd_lfk): Fast multi-scale community detection algorithm using the criterion from 

Lancichinetti et al. (2009b) 

5. (mscd_rb): Fast multi-scale community detection algorithm using the criterion from 

Reichardt & Bornholdt, (2006) 
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6. (mscd_rn): Fast multi-scale community detection algorithm using the criterion from 

Ronhovde & Nussinov (2009) 

7. (mscd_so): Fast multi-scale community detection algorithm using stability 

optimisation (Le Martelot and Hankin, 2012). 

 

B. Multi-Scale Community Detection algorithms using Stability as Optimisation 

Criterion in a Greedy Algorithm and Multi-Scale Community Detection using Stability 

Optimisation as described in (Le Martelot and Hankin,2011): 
 

8. (gso_discrete): Greedy stability optimisation using the Markov chain model. 

9. (gso_continuous): Greedy stability optimisation using a time-continuous Markov 

process. 

10. (msgso_discrete): Multi-step greedy stability optimisation using the Markov chain 

model. 

11.  (msgso_continuous): Multi-step greedy stability optimisation using a time-continuous 

Markov process. 

12.  (rgso_discrete): Randomised greedy stability optimisation using the Markov chain 

model. 

13.  (rgso_continuous): Randomised greedy stability optimisation using a time-continuous 

Markov process. 

14. (gso_discrete_markovian): Front-end function calling any of the aforementioned 

algorithms based on discrete Markovian model. We specified a pre-processing phase 

removing nodes with a single neighbour and a post-processing phased based on the 

Kernighan-Lin algorithm adapted for stability (Kernighan and Lin,1970).  

15.  (gso_discrete_continuous): Same as above but based on continuous Markovian 

model. 

16. (Newman): Greedy modularity optimisation with Newman's fast algorithm. 

17. (Danon): Greedy optimisation of Danon et al.'s criterion (Danon et al., 2006). 

18. (Louvain): Uses the Louvain method (Blondel et al.,2008) 

19. (Louvain_modularity): Uses the Louvain method to optimise modularity criterion 

with gamma=0.5. 

20. (Louvain_so): Uses the Louvain method to optimise ‘stability’ criterion with 

Markovian time 
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21. (reichardt): Greedy optimisation of Reichardt & Bornholdt's criterion (Reichardt and 

BornHoldt, 2006). 

22. (ronhovde): Greedy optimisation of Ronhovde & Nussinov's criterion 

(Reichardt and BornHoldt, 2006) 

 

 

C. Hard community detection algorithms involving state-of-the-art graph partition 

algorithms  
 

23. (shi_malik): From tens of available spectral clustering algorithms, we adopted the 

algorithm from Shi and Malik, (2000) 

24. (dominant_sets): Dominant sets (Pavan and Pelillo, 2007). We have adopted this 

algorithm in our previous studies (Dimitriadis et al., 2009,2012) 

25. (modularity): The algorithm by Newman, 2006  

26. (infomap):  An important algorithm for identifying communities in large graph-

oriented problems and synthetic graphs (Rosvall M, Bergstrom CT, 2008)) 

 
The soft clustering algorithms we considered are:  

 
27. (ogso_discrete): Greedy stabilisation optimisation with overlapping communities for 

discrete Markov Model.  The network is first converted to an edge-graph and then 

community detection is performed on the edge-graph 

28. (ogso_continuous): Greedy stabilisation optimisation with overlapping communities 

for continuous Markov Model. The network is first converted to an edge-graph and then 

community detection is performed on the edge-graph 

29. (link): Link Communities: The network is first converted to an edge-graph and then 

community detection is performed on the edge-graph. In an edge-graph, nodes refer to edges 

of the original SBN while edges denote edges between pair of connected edges of the original 

SBN.  This algorithm uncovers overlapping community structure via hierarchical clustering 

of network links (Ahn et al., 2010). We used single-linkage criterion. 

30. (link_complete): Link Communities: Same as above but we used complete-linkage 

criterion. 

31. (nnmf): Non-negative Matrix Factorization (NNMF): (Psorakis et al., 2011) 
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32. (k-cliques): This algorithm partitions a graph into soft communities using the simplest 

subgraph forms, the k-cliques. Here, we used 3-cliques (Palla et al., 2005) 

33. (orthogonal nonnegative matrix t-factorizations): Orthogonal nonnegative matrix t-

factorizations (Ding et al., 2006) 

 

For the first set of multiscale community detection algorithms, we considered the 

following set of resolution parameter ps = [0.1 0.15, …, 0.55, 0.60]. For the discrete and 

continuous Markovian time series, we searched over ts = [0.1, 0.02, …, 0.9,1.0]. Finally, for 

Louvain’s modularity method and Reichardt’s method, we considered γ = [0.05, 0.1, 0.15, 

…,0.95,1.5]. Τhe aforementioned parameters were optimized over the highest group-

averaged community affiliation similarity between the two scans estimated with NMI. For 

further details, see the following section. 

For the Louvain’s methods, we ran the algorithms 1000 times and we followed the 

construction of consensus matrix approach. We described this approach in section 2.3.8 for 

the construction of consensus matrix across participants and scans.  

 

Appendix 3. Normalized Mutual Information: Graph – partition similarity 

To assess the reproducibility of the thirty-three community detection techniques across the 

seven graph-construction schemes and repeat-scan sessions, we first quantified the similarity 

between the community partitions from the two scan sessions separately for every participant 

using the Normalized Mutual Information (NMI) (Alexander-Bloch et al. 2012), defined as 

follows (Lancichinetti and Fortunato,2009a): 

(1) 

where A and B are the community partitions of two SBNs from the two scan sessions 

while CA, CB are the number of communities in partition A and B, correspondingly. N denotes 

the number of nodes (here 90), while Nij is the overlap between A’s and B’s communities i 

and j which practically means the number of common nodes between the two partitions.  Ni 

and Nj are the total number of nodes in A’s and B’s communities i and j respectively. The 

NMI ranges from 0 to 1 where 0 corresponds to two independent partitions and 1 to identical 
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partitions. This definition was used for hard community partition comparisons while for soft 

community partition, we adopted the homologue definition of NMI tailored to soft graph 

clustering (Lancichinetti et al., 2009a). 

We calculated NMI values between every possible pair of scans and for each of the seven 

graph-construction schemes and the thirty-three community detection algorithms giving an 

space of {7 graph-construction schemes x 33 community detection algorithms}.  The NMI 

was then averaged across the 37 participants, to create a group-averaged NMI, and ranked the 

community detection algorithms with high test-retest reproducibility (group-averaged values 

NMI > 0.9) in at least one of the seven graph construction schemes (see Figure 4). 

To quantify the statistical significance of group-mean community similarity quantified 

with NMI, we adopted a nonparametric test via bootstrapping procedure (Dimitriadis et al., 

2012). Practically, the outcome of every community detection algorithm in our cohort is a 

matrix (dimensions {(no of participants) x (no of nodes)}) with elements containing integer 

numbers assigned to every detected community. Analysing the scan-rescan data gives two 

such matrices, one per scan session. The bootstrapping procedure comprises: 

a) The two matrices (dimensions {(no of participants) x (no of nodes)}) tabulating the 

community affiliations across the cohort are integrated into a single matrix 

(dimensions  

{2 x no of participants x no of nodes}) 

b) The rows of this integrated matrix are shuffled, mixing the community affiliations of 

participants across scan sessions 

c) The integrated matrix is divided into two matrices of equal size {no of participants x 

no of nodes} and the group mean NMI between those two shuffled matrices is 

estimated.  

d) Steps (b) and (c) are repeated 10,000 times 

e) A P-value is assigned to every graph construction scheme - community detection 

algorithm pair by counting the number of times the permuted between-scan group 

mean similarity exceeds the actual between-scan group mean similarity, divided by the 

number of permutations (here 10,000)  
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