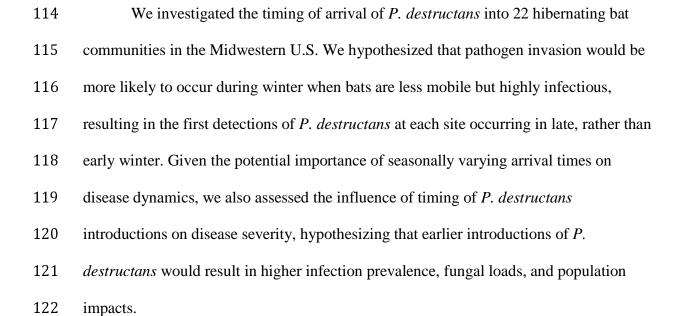
1	Mobility and infectiousness in the spatial spread of an emerging fungal pathogen
2	
3	Kate E. Langwig ¹ *, J. Paul White ² , Katy L. Parise ³ , Heather M. Kaarakka ² , Jennifer A.
4	Redell ² , John E. DePue ⁴ , William H. Scullon ⁵ , Jeffrey T. Foster ³ , A. Marm Kilpatrick ^{$6, \Psi$} ,
5	Joseph R. Hoyt ^{1, Ψ}
6	
7	Affiliations:
8	¹ Department of Biological Sciences, Virginia Polytechnic Institute, Blacksburg, VA,
9	24060 USA
10	² Wisconsin Department of Natural Resources, Madison, WI, 53703 USA
11	³ Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ 86011,
12	USA
13	⁴ Michigan Department of Natural Resources, Baraga, MI 49870, USA
14	⁵ Michigan Department of Natural Resources, Norway, MI 49908, USA
15	⁶ Department of Ecology and Evolutionary Biology, University of California, Santa Cruz,
16	CA 95064 USA
17	
18	*Corresponding author: <u>klangwig@gmail.com</u> ; Ψ these authors contributed equally
19	
20	Key Words migration; infectious disease, Pseudogymnoascus destructans, pathogen
21	seasonality; white-nose syndrome
22	

23 Abstract

24	1.	Emerging infectious diseases can have devastating effects on host communities,
25		causing population collapse and species extinctions. The timing of novel pathogen
26		arrival into naïve species communities can have consequential effects that shape
27		the trajectory of epidemics through populations. Pathogen introductions are often
28		presumed to occur when hosts are highly mobile. However, spread patterns can be
29		influenced by a multitude of other factors including host body condition and
30		infectiousness.
31	2.	White-nose syndrome (WNS) is a seasonal emerging infectious disease of bats,
32		which is caused by the fungal pathogen Pseudogymnoascus destructans. Within-
33		site transmission of <i>P. destructans</i> primarily occurs over winter, however the
34		influence of bat mobility and infectiousness on the seasonal timing of pathogen
35		spread to new populations is unknown. We combined data on host population
36		dynamics and pathogen transmission from 22 bat communities to investigate the
37		timing of pathogen arrival and the consequences of varying pathogen arrival times
38		on disease impacts.
39	3.	We found that midwinter arrival of the fungus predominated spread patterns,
40		suggesting that bats were most likely to spread P. destructans when they are
41		highly infectious, but have reduced mobility. In communities where P.
42		destructans was detected in early winter, one species suffered higher fungal
43		burdens and experienced more severe declines than at sites where the pathogen
44		was detected later in the winter, suggesting that the timing of pathogen
45		introduction had consequential effects for some bat communities. We also found

46	evidence of source-sink population dynamics over winter, suggesting some
47	movement among sites occurs during hibernation, even though bats at northern
48	latitudes were thought to be fairly immobile during this period. Winter emergence
49	behavior symptomatic of white-nose syndrome may further exacerbate these
50	winter bat movements to uninfected areas.
514.	Our results suggest that low infectiousness during host migration may have
52	reduced the rate of expansion of this deadly pathogen, and that elevated
53	infectiousness during winter plays a key role in seasonal transmission.
54	Furthermore, our results highlight the importance of both accurate estimation of
55	the timing of pathogen spread and the consequences of varying arrival times to
56	prevent and mitigate the effects of infectious diseases.
57	


58 **1. Introduction**:

59 The seasonality of pathogen spread is important for understanding, predicting, and 60 controlling disease outbreaks. Pathogens infecting highly mobile hosts often have rapid 61 rates of spread (Conner & Miller 2004; Altizer et al. 2006; Altizer, Bartel & Han 2011; 62 Dalziel, Pourbohloul & Ellner 2013). However, key tradeoffs exist between mobility and 63 disease, which can affect the likelihood that hosts spread pathogens during periods of 64 high mobility (Kiesecker et al. 1999; Norris & Evans 2000; Wendland et al. 2010; 65 Shakhar & Shakhar 2015). For example, migration can affect host body condition and 66 immune status which could increase host susceptibility to infection (Altizer, Bartel & 67 Han 2011). However, once a highly mobile host becomes infected, behavioral responses, 68 such as sickness behavior, are likely to decrease mobility (Van Gils et al. 2007;

69	Bouwman & Hawley 2010). Pathogen spread should therefore be most likely to occur
70	when hosts are both highly infectious and mobile, but given tradeoffs caused by sickness
71	behavior, peak mobility and infectiousness may not temporally align (Shakhar & Shakhar
72	2015). Understanding the relative importance of these factors in the seasonal timing of
73	pathogen spread is critical because varying pathogen arrival times can have consequential
74	effects on hosts that shape the trajectory of epidemics (Dalziel et al. 2018).
75	White-nose syndrome (WNS) is an annual seasonal epidemic that occurs in bat
76	communities during winter (Langwig et al. 2015a; Hoyt et al. 2020a). The fungus that
77	causes WNS, Pseudogymnoascus destructans, is psychrophilic and grows only at cool
78	temperatures (1–20°C) (Verant et al. 2012) which restricts fungal replication and
79	infection into bats' epidermal tissue to periods when bats are in torpor (e.g. cool their
80	body temperatures <20°C) (Meteyer et al. 2009; Langwig et al. 2015a; Langwig et al.
81	2016). White-nose syndrome disrupts bat physiology during hibernation, causing
82	increased arousals that result in bats prematurely burning through fat stores before the
83	end of winter (Lorch et al. 2011; Reeder et al. 2012; Warnecke et al. 2012; Warnecke et
84	al. 2013; Verant et al. 2014). The spread of P. destructans has resulted in dramatic
85	declines in bat communities across North America, and threatens several species with
86	extinction (Frick et al. 2010; Langwig et al. 2012; Frick et al. 2015; Langwig et al.
87	2016). Seasonal changes in host behavior and physiology paired with seasonal
88	differences in pathogen growth may influence the timing of pathogen spread to new
89	communities.
90	The seasonal timing of <i>P. destructans</i> spread among sites is unknown but may

91 occur during autumn when bats are highly mobile during mating and move among caves

92	and mines (Davis & Hitchcock 1965; Cope & Humphrey 1977; Thomas, Fenton &
93	Barclay 1979; Glover & Altringham 2008), which are known reservoirs of the fungus
94	(Hoyt et al. 2020a). Autumn swarm behavior is an important source of gene flow when
95	individuals move large distances between otherwise disconnected populations and
96	contact among mating individuals could lead to pathogen transmission (Veith et al. 2004;
97	Arnold 2007; Glover & Altringham 2008; Rossiter et al. 2012; Wilder, Kunz & Sorenson
98	2015). However, the spread of WNS has occurred relatively slowly compared with other
99	disease systems with similarly mobile hosts. For example, WNS and West Nile virus
100	were both introduced to New York, USA, but in 5 years West Nile virus had reached
101	California whereas WNS spanned less than half of eastern North America (Kilpatrick et
102	al. 2006; Kilpatrick, LaDeau & Marra 2007). In addition, P. destructans is less prevalent
103	on bats during autumn, and infected individuals typically have reduced infection levels
104	(i.e. 100–1000-fold lower than in midwinter; (Langwig et al. 2015a), Figure 1),
105	suggesting that spread may occur outside of the highly mobile autumn period. If
106	infectiousness is more important than mobility in P. destructans spread among sites, then
107	pathogen introduction to new communities could occur during winter when fungal loads
108	on bats are highest (Langwig et al. 2015a). However, most species are thought to be
109	highly philopatric to sites and relatively sedentary during winter, particularly at northern
110	latitudes where temperatures fall well below freezing (Davis & Hitchcock 1965; Davis
111	1970; Fenton & Barclay 1980; Fujita & Kunz 1984; Caceres & Barclay 2000). Therefore,
112	further investigation is needed to disentangle the importance of host mobility and
113	infectiousness in the spread of P. destructans.

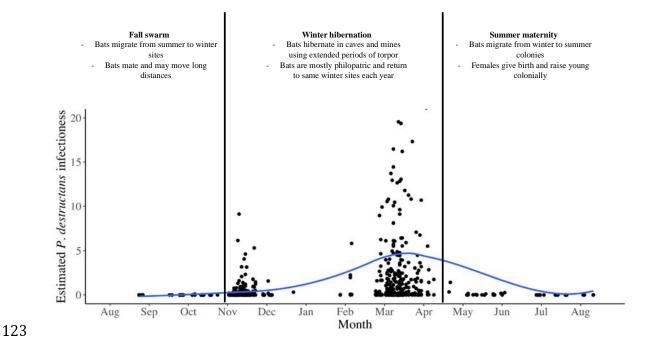


Figure 1. Mobility, migration, and infectiousness of temperate bats infected with *P*. *destructans*. Data from (Langwig *et al.* 2015a) and (Hoyt *et al.* 2020b) from little brown,
northern long-eared, big brown, and tri-colored bats. Each estimate of infectiousness is
derived from the mean fungal loads of all positive individuals of a given species captured
on a given date ('average fungal loads') multiplied by the fraction of individuals of that

129	species positive for P. destructans ('prevalence'), multiplied by the proportional
130	abundance of the species in the sample. This estimate is commonly referred to as
131	'propagule pressure' in invasion ecology (Lockwood, Cassey & Blackburn 2005). For
132	example, northern long-eared bats, which are rare (typically comprising <5% of
133	captures), but have high fungal loads and high prevalence would receive a lower estimate
134	of infectiousness than little brown bats with equally high loads and prevalence but more
135	commonly captured. Blue lines show loess curve smoothing to data points to ease
136	visualization. Temperate hibernating bats are thought to have high mobility during fall
137	swarm due to mating behavior and migration between summer and winter grounds while
138	remaining more sedentary during winter while they hibernate (Davis & Hitchcock 1965;
139	Thomas, Fenton & Barclay 1979; Thomas, Dorais & Bergeron 1990).
140	
141	2. Methods:
142	2.1 Study sites and data collection
143	We studied patterns of <i>P. destructans</i> arrival at 22 sites in the Midwestern U.S.
144	Over a 5-year period, we visited each site twice per winter and collected data on
145	population dynamics and infection status of four hibernating bat species (Myotis
146	lucifugus, Myotis septentrionalis, Eptesicus fuscus, and Perimyotis subflavus). We used
147	epidermal swab sampling to determine the presence and abundance of P. destructans on
148	bats at two time points during hibernation (November - early hibernation, and March -
149	late hibernation) in each year. During each visit, we counted all bats present and
150	identified bats to the species level. In addition, we installed HOBO U23 Pro v2

temperature (+/- 0.2 C accuracy) and humidity (+/- 3.5 - 5%) loggers at 1–4 locations
within a site to determine roost temperature and humidity.

153 **2.2 Sample testing**

154 We sampled bats using a standardized protocol (Langwig *et al.* 2015a) and stored 155 swabs in RNAlater[®] for sample preservation until extraction. We tested samples for *P*. 156 destructans DNA using real-time PCR (Muller et al. 2013) and quantified fungal loads 157 based on the cycle threshold (C_t) value to estimate a fungal load on each bat, with a cut-158 off of 40 cycles. Quantification of serial dilutions of the DNA from 10 ng to 1000 fg 159 resulted in C_t scores ranging from 17.33 to 30.74 and a quantification relationship of C_t = 160 $-3.348 \log_{10}(P. destructans[ng]) + 22.049, r^2 = 0.986$. We calculated prevalence as the 161 proportion of bats of each species testing positive for *P. destructans* out of the number of 162 individuals of that species sampled. 163 **2.3 Statistical analysis** 164 We used modified binomial power analyses to assess our ability to detect *P*. 165 *destructans* arrival at each site where no positive samples were detected. We first 166 calculated an expected early prevalence at each site where *P. destructans* was not 167 detected in early hibernation based on a weighted mean prevalence. The weighted mean 168 prevalence was calculated as the average prevalence of each species at sites where P.

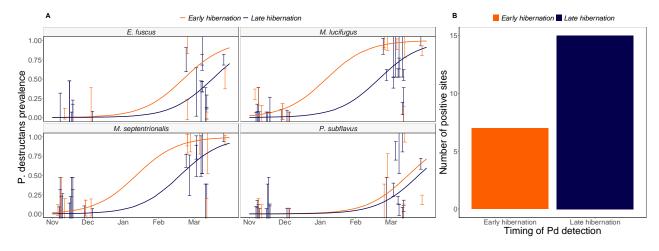
169 *destructans* was detected in early hibernation multiplied by the proportional abundance of

a given species at each site (Table S1). We then calculated the probability of missing *P*.

171 *destructans* at a site as the probability of getting all negatives in bats given the expected

172 prevalence at a site multiplied by the probability of missing *P. destructans* in the

173 unsampled bats (calculation shown in Appendix).

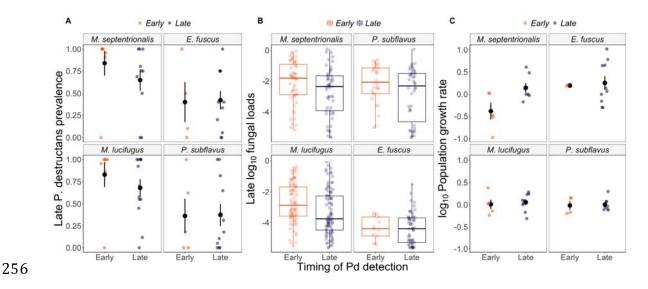

174 We investigated the effect of timing of *P. destructans* arrival on late winter 175 prevalence by fitting a generalized linear mixed model with a binomial distribution and a 176 logit link. We included fixed effects for the timing of *P. destructans* detection (early or 177 late hibernation) interacting with the effect of species, and included site as a random 178 effect. We also examined the effect of timing of *P. destructans* detection on fungal loads 179 using a linear mixed model with species and timing of detection as interacting fixed 180 effects, and site as a random effect. Lastly, we assessed the effect of the timing of P. 181 *destructans* introduction on \log_{10} bat population growth rates, calculated as the annual 182 change in late winter counts at each site, using linear mixed models with species 183 interacting with timing of detection as fixed effects and site as a random effect. We 184 explored the inclusion of autumn prevalence as a continuous variable (0 for all sites and 185 species where *P. destructans* was not detected, prevalence in each species ranged 186 between 0 and 0.25 for sites where P. destructans was detected during autumn) and the 187 results were qualitatively similar to those shown, so we present the discretized (early or 188 late winter *P. destructans* detection) for simplicity of visualization and interpretation. 189 Lastly, we investigated evidence of overwinter movements of bats among sites. 190 At each site, we calculated our response variable, overwinter λ , as the proportional 191 change in the number of bats of each species at a site by dividing the late hibernation 192 count by the early hibernation count. We then used a linear mixed model to assess the 193 relationship between \log_{10} (overwinter λ) and \log_{10} (early hibernation colony size) with an 194 additive or interactive effect of species and site as a random effect. 195

196 **3. Results:**

197	During early hibernation, we sampled 706 total bats from 22 sites in the year that
198	<i>P. destructans</i> was first detected (site mean +/- $SE = 67.4 +/- 1.79$)(Table S1). We first
199	detected <i>P. destructans</i> in early hibernation at 32% of sites (7/22), whereas in 68% of
200	sites (15/22), the detection of <i>P. destructans</i> first occurred during our late hibernation
201	visit (Figure 2). A total of 468 bats (site mean +/- $SE = 31.1 + - 1.25$) were sampled from
202	sites that were negative for <i>P. destructans</i> during early hibernation and became positive
203	later in the same winter. After accounting for the relatively high proportion of bats
204	sampled in each site (an average of 38% of the total bats at each site) and variable
205	estimated "true" prevalence among sites (weighted mean prevalence of the species
206	sampled from sites where <i>P</i> . <i>destructans</i> was detected in early hibernation: mean = 0.07 ,
207	range = 0.05, 0.10), the mean probability of missing <i>P</i> . <i>destructans</i> at each negative site
208	was 0.063 (median = 0.039, range: 0.005–0.3266), suggesting fairly good power to detect
209	P. destructans presence.
210	Across sites where P. destructans was first detected during early hibernation, we
211	were more likely to detect P. destructans on M. lucifugus, M. septentrionalis, and E.
212	fuscus than on P. subflavus (P. subflavus intercept: -1.82 +/- 0.66, M. lucifugus coeff:
213	1.79 +/- 0.38 P < 0.0001, E. fuscus coeff: 1.40 +/- 0.51, P = 0.006, M. septentrionalis
214	coef: 1.44 +/- 0.39, P = 0.0002, Appendix). In sites where <i>P. destructans</i> was first
215	detected in late hibernation, we were also less likely to detect <i>P. destructans</i> on <i>P.</i>
216	subflavus than on any other species (P. subflavus intercept: -1.69 +/- 0.31, M. lucifugus
217	coeff: 0.94 +/- 0.22 P < 0.0001, <i>E. fuscus</i> coeff: 0.66 +/- 0.30, P = 0.0264, <i>M</i> .
218	septentrionalis coeff: 0.84 +/- 0.26, $P = 0.0014$, Appendix).

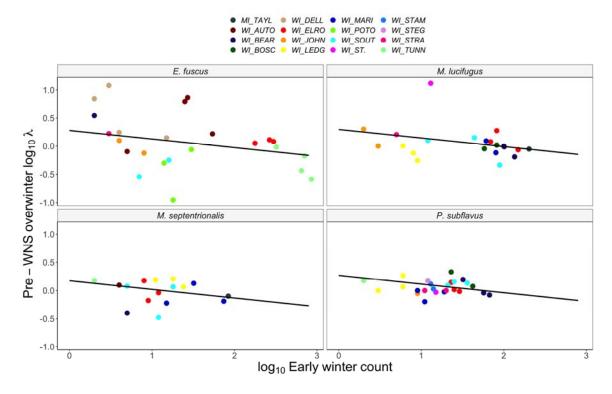
219	The timing of <i>P. destructans</i> introduction influenced disease dynamics and
220	population impacts for some, but not all, bat species (Figure 3). For M. septentrionalis,
221	prevalence of P. destructans, fungal loads, and population impacts during late winter
222	were higher at sites where P. destructans was first detected in early hibernation (one-
223	tailed P-values = 0.032, 0.005, 0.0004, respectively, Appendix). For <i>M. lucifugus</i> ,
224	prevalence was also higher in sites where P. destructans was first detected in early
225	hibernation (one-tailed $P = 0.04$, Appendix), although the effect on fungal loads and
226	population impacts was less clear (Appendix). There was no clear effect of the timing of
227	P. destructans introduction on prevalence, fungal loads, or population impacts for either
228	E. fuscus or P. subflavus, possibly because these species had lower prevalence and fungal
229	loads than M. septentrionalis and M. lucifugus in the first year of detection (Figure 3,
230	Appendix).
231	We found that prior to the arrival of WNS, there were detectable changes in
232	population counts between early and late hibernation (Figure 4). Across species, as
233	colony size decreased in early hibernation, immigration increased (early hibernation
234	colony size coeff: -0.15 +/- 0.06, t = -2.66) such that smaller colonies had proportionally
235	more immigrants than larger colonies, indicative of a general spreading out of bats across
236	sites during the hibernation season. We found no support for an interactive model over an
237	additive model ($\Delta AIC = -9.63$), suggesting no clear indication that the slope of this effect
238	differed among species. The changes in overwinter counts occurred despite frigid
239	minimum temperatures that were consistently below 5°C throughout this period (Figure
240	S1), suggesting that some movement among hibernacula continues to occur during winter
241	when bats are most infected with P. destructans.

- Lastly, we explored the effect of multiple covariates on the probability that *P*.
- 243 *destructans* arrived at a site outside of or during the hibernation season, including abiotic
- 244 (vapor pressure deficit and temperature) and biotic (abundance of certain species, species
- richness). We found no clear effects that any of these variables modified the probability
- that *P. destructans* was first detected at a site during early hibernation (Figure S2,
- 247 Appendix).


249 **Figure 2**

(a) Change in overwinter prevalence of *Pseudogymnoascus destructans* in the year that *P*.

251 *destructans* was first detected at a site. Lines shows fits of a generalized linear mixed


- 252 model with a binomial distribution with timing of first detection interacting with species
- and an additive effect of date with site as a random effect. (b) Twice as many sites had
- the first detection of *P. destructans* in late winter as in early winter.
- 255

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.07.082651; this version posted November 11, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

The timing of *Pseudogymnoascus destructans* introduction (early or late hibernation) influences late winter infection prevalence +/- SE (a), late winter fungal loads (b), and annual population impacts +/- SE (from late winter in the year that *P. destructans* arrives to the subsequent winter) (c), in some species. In sites where *P. destructans* was first detected during late hibernation *M. septentrionalis* had significantly higher infection prevalence, fungal loads, and population impacts by the end of winter in the first year of WNS.

267

268 **Figure 4**

Pre-WNS immigration rates show dynamic populations during winter. Panels show bat species and colors indicate different bat populations. Lines show the fitted relationship between \log_{10} early winter counts of bats and the rate of change in the same population over winter. Despite cold (<5°C) temperatures, there was considerable immigration and emigration among hibernation sites, consistent with bats moving from larger to smaller colonies over winter.

275

4. Discussion:

Our results indicate that host fungal burdens were important in determining the
timing of pathogen spread. We found that *P. destructans* was more likely to be
introduced to sites during winter hibernation than during autumn, suggesting that elevated
infectiousness overwinter outweighed the increase in activity and long-distance

281	movements that occur during autumn. Bats were previously thought to be restricted in
282	their movement among sites during hibernation due to extremely cold temperatures (< -
283	5C; Fig S1) and a lack of prey availability. However, we found evidence that limited
284	movement may be occurring among hibernacula during the winter, and given their
285	increased levels fungal loads and prevalence, provide a higher probability of successful
286	invasion to new sites. The lower fungal loads and prevalence on bats during autumn
287	when they are highly mobile has likely decreased the rate of geographic expansion of the
288	fungus as the majority of spread occurs during the hibernation period. As P. destructans
289	moves into less connected western bat populations (Wilder, Kunz & Sorenson 2015;
290	Lorch et al. 2016), spread could be further dampened by larger distances among colonies
291	(Wilder, Kunz & Sorenson 2015; Weller et al. 2018).
292	Although the absolute absence of a pathogen is difficult to confirm, large sample
293	sizes paired with the differential consequences of the timing of P. destructans
294	introduction on disease dynamics, suggest that we did not simply fail to detect P.
295	destructans during early winter. Our results also demonstrate that the timing of P.
296	destructans introduction was more important for some species than others. Early
297	introduction of P. destructans resulted in higher mortality in M. septentrionalis
298	populations, but not M. lucifugus. Previous laboratory studies have shown that infection
299	duration prior to death was 90-120 days for M. lucifugus. The absence of clear mortality
300	in M. lucifugus populations while M. septentrionalis suffered from higher impacts
301	suggests that <i>M. septentrionalis</i> may have a shorter time from infection until death.

302 Infection in *P. subflavus* and *E. fuscus* were lower in the first year of WNS than *M. spp.*,

303 likely due to low environmental contamination (Langwig *et al.* 2015b; Hoyt *et al.* 2020a)

and fewer contacts over the hibernation period (Hoyt *et al.* 2018).

305 We found evidence of some overwinter movement among hibernacula prior to 306 the arrival of WNS, with a general trend of bats spreading out from larger to smaller 307 colony size sites. Other studies have found that some species (especially the larger E. 308 fuscus) can move in very cold temperatures (Klüg-Baerwald et al. 2016), although winter 309 flight of *Myotis* spp. is thought to be a relatively rare occurrence (Davis & Hitchcock 310 1965). We cannot exclude the possibility that bats in larger sites became more difficult to 311 detect in late winter while bats in smaller sites became more apparent. However, sites 312 were selected for inclusion in this study for their relative simplicity in searching and 313 ability to census all bats present (e.g. they did not have sections that we were unable to 314 access and many were square tunnels with no obvious hiding places). As a result, we 315 think that failed detections are unlikely to fully explain this relationship. In addition, 316 higher overwinter mortality is unlikely to be a potential explanation as there is no 317 evidence to suggest elevated mortality in sites with larger population sizes prior to the 318 arrival of WNS (Langwig et al. 2012). Interestingly, symptoms of WNS include mid-319 hibernation emergence onto the winter landscape (Carr, Bernard & Stiver 2014; Bernard 320 & McCracken 2017). This sickness behavior may increase movements between 321 hibernacula and the spread of *P. destructans*. 322 We found no clear effects of any covariate in explaining differences in timing of

arrival. However, we environmental conditions of hibernacula may be important

324 determinants of *P. destructans* establishment into new communities outside of the

325	hibernation season, as is suggested by the directionality and magnitude of a trend where
326	warmer and wetter hibernacula tended to have a higher probability of autumn
327	introduction. While bats with low fungal loads are likely moving among uninfected
328	hibernacula during autumn, vapor pressure deficit and potentially temperature appear to
329	be important in determining whether P. destructans can successfully establish in a
330	population (Lilley, Anttila & Ruokolainen 2018). Given the limited number of sites
331	where P. destructans arrived outside of the hibernation season, it was difficult to
332	ascertain the importance of a number of factors that have been implicated by other studies
333	(Wilder et al. 2011; Maher et al. 2012; Wilder, Kunz & Sorenson 2015). For example,
334	species-specific differences in sociality and transmission (Hoyt et al. 2018) may be
335	important in determining whether a lightly infected bat could introduce P. destructans
336	during fall, although we found no clear effects of species abundance or composition on
337	the timing of first detection of P. destructans. Additional research is needed to determine
338	which species and site-specific differences may influence the timing of pathogen spread.
339	Importantly, many studies rely on disease stage (e.g. invading, epidemic or
340	endemic) to draw inferences about geographic disease risk, population declines, and
341	community persistence. Given the high probability of P. destructans introduction to new
342	sites during winter, early and midwinter surveys could miss the introduction of P.
343	destructans, and thus falsely conclude pathogen absence during the first year of arrival.
344	Our results suggest that the arrival time of <i>P. destructans</i> can substantially influence
345	dynamics, and therefore could be responsible for unexplained variance in transmission,
346	impacts, and structure of remnant populations when sites are grouped by disease stage.

347	Our ability to predict the timing and patterns of pathogen spread are fundamental
348	to the prevention and control of infectious disease outbreaks. The differential timing of
349	initial pathogen arrival can have important effects on disease dynamics and lasting
350	impacts to populations. This study suggests that host infectiousness is an important factor
351	in determining successful pathogen spread and that incorrectly attributing pathogen
352	spread to periods of high mobility would have masked the true underlying causes of
353	among site variation in transmission and population impacts. Future studies examining
354	the spatial and seasonal patterns of pathogen movement should consider the multitude of
355	factors that might influence spread patterns.
356	
357	Acknowledgements: We thank Steffany Yamada, MI DNR, Eric McMaster and the many
358	landowners for site access. The research was funded by NSF grants DEB-1115895, DEB-
359	1336290, DEB-1911853 and the USFWS (F17AP00591). The authors have no competing
360	interests to declare.
361	
362	Author Contributions: KEL analyzed the data and wrote the original draft; KEL, AMK
363	and JRH revised the manuscript with input from all authors; KLP and JTF tested the
364	samples and KEL, JPW, HMK, JAR, JED, WHS, AMK, and JRH collected the data.
365	
366	Data Availability Statement:
367	Data will archived at VTData Repository upon manuscript acceptance or reviewer
368	request.
369	

370 References:

- Altizer, S., Bartel, R. & Han, B.A. (2011) Animal Migration and Infectious Disease Risk.
 Science, 331, 296-302.
- Altizer, S., Dobson, A., Hosseini, P., Hudson, P., Pascual, M. & Rohani, P. (2006)
 Seasonality and the dynamics of infectious diseases. *Ecology Letters*, 9, 467-484.
- Arnold, B.D. (2007) Population structure and sex-biased dispersal in the forest dwelling
 vespertilionid bat, Myotis septentrionalis. *The American Midland Naturalist*, 157,
 377 374-384.
- Bernard, R.F. & McCracken, G.F. (2017) Winter behavior of bats and the progression of
 white-nose syndrome in the southeastern United States. *Ecology and Evolution*, 7,
 1487-1496.
- Bouwman, K.M. & Hawley, D.M. (2010) Sickness behaviour acting as an evolutionary
 trap? Male house finches preferentially feed near diseased conspecifics. *Biology Letters*, 6, 462-465.
- Caceres, M.C. & Barclay, R.M.R. (2000) Myotis septentrionalis. *Mammalian Species*, 1 4.
- Carr, J.A., Bernard, R.F. & Stiver, W.H. (2014) Unusual bat behavior during winter in
 Great Smoky Mountains National Park. *Southeastern naturalist*, 13, N18-N21.
- Conner, M.M. & Miller, M.W. (2004) Movement patterns and spatial epidemiology of a
 prion disease in mule deer population units. *Ecological Applications*, 14, 1870 1881.
- Cope, J.B. & Humphrey, S.R. (1977) SPRING AND AUTUMN SWARMING
 BEHAVIOR IN INDIANA BAT, MYOTIS-SODALIS. *Journal of Mammalogy*,
 58, 93-95.
- Dalziel, B.D., Kissler, S., Gog, J.R., Viboud, C., Bjørnstad, O.N., Metcalf, C.J.E. &
 Grenfell, B.T. (2018) Urbanization and humidity shape the intensity of influenza
 epidemics in US cities. *Science*, 362, 75-79.
- 397 Dalziel, B.D., Pourbohloul, B. & Ellner, S.P. (2013) Human mobility patterns predict
 398 divergent epidemic dynamics among cities. *Proceedings of the Royal Society B:*399 *Biological Sciences*, 280, 20130763.
- Davis, W. (1970) Hibernation: ecology and physiological ecology. *Biology of Bats*, 1,
 265 300.
- 402 Davis, W.H. & Hitchcock, H.B. (1965) Biology and migration of the bat, Myotis
 403 lucifugus, in New England. *Journal of Mammalogy*, 46, 296-313.
- 404 Fenton, M.B. & Barclay, R.M.R. (1980) Myotis lucifugus. *Mammalian Species*, 1-8.
- Frick, W.F., Pollock, J.F., Hicks, A.C., Langwig, K.E., Reynolds, D.S., Turner, G.G.,
 Butchkoski, C.M. & Kunz, T.H. (2010) An emerging disease causes regional
 population collapse of a common north american bat species. *Science*, **329**, 679682.
- Frick, W.F., Puechmaille, S.J., Hoyt, J.R., Nickel, B.A., Langwig, K.E., Foster, J.T.,
 Barlow, K.E., Bartonička, T., Feller, D., Haarsma, A.J., Herzog, C., Horacek, I.,
 van der Kooij, J., Mulkens, B., Petrov, B., Reynolds, R., Rodrigues, L., Stihler,
 C.W., Turner, G.G. & Kilpatrick, A.M. (2015) Disease alters macroecological
 patterns of North American bats. *Global Ecology and Biogeography*, 24, 741-749.
- 414 Fujita, M.S. & Kunz, T.H. (1984) Pipistrellus subflavus. *Mammalian Species*, 1-6.

415	Glover, A.M. & Altringham, J.D. (2008) Cave selection and use by swarming bat species.
416	Biological Conservation, 141, 1493-1504.
417	Hoyt, J.R., Langwig, K.E., Sun, K., Parise, K.L., Li, A., Wang, Y., Huang, X., Worledge,
418	L., Miller, H. & White, J.P. (2020a) Environmental reservoir dynamics predict
419	global infection patterns and population impacts for the fungal disease white-nose
420	syndrome. Proceedings of the National Academy of Sciences, 117 , 7255-7262.
421	Hoyt, J.R., Langwig, K.E., Sun, K., Parise, K.L., Li, A., Wang, Y., Huang, X., Worledge,
422	L., Miller, H., White, J.P., Kaarakka, H.M., Redell, J.A., Görföl, T., Boldogh,
423	S.A., Fukui, D., Sakuyama, M., Yachimori, S., Sato, A., Dalannast, M.,
424	Jargalsaikhan, A., Batbayar, N., Yovel, Y., Amichai, E., Natradze, I., Frick, W.F.,
425	Foster, J.T., Feng, J. & Kilpatrick, A.M. (2020b) Environmental reservoir
426	dynamics predict global infection patterns and population impacts for the fungal
427	disease white-nose syndrome. <i>Proceedings of the National Academy of Sciences</i> ,
428	117, 7255.
429	Hoyt, J.R., Langwig, K.E., White, J.P., Kaarakka, H., Redell, J., Kurta, A., DePue, J.,
430	Scullon, W.H., Parise, K.L., Foster, J.T., Frick, W.F. & Kilpatrick, A.M. (2018)
431	Cryptic connections illuminate pathogen transmission within community
432	networks. Nature.
433	Kiesecker, J.M., Skelly, D.K., Beard, K.H. & Preisser, E. (1999) Behavioral reduction of
434	infection risk. Proceedings of the National Academy of Sciences of the United
435	<i>States of America</i> , 96 , 9165-9168.
436	Kilpatrick, A.M., Chmura, A.A., Gibbons, D.W., Fleischer, R.C., Marra, P.P. & Daszak,
437	P. (2006) Predicting the global spread of H5N1 avian influenza. <i>Proceedings of</i>
438	the National Academy of Sciences of the United States of America, 103, 19368-
439	19373.
440	Kilpatrick, A.M., LaDeau, S.L. & Marra, P.P. (2007) Ecology of west nile virus
441	transmission and its impact on birds in the western hemisphere. Auk, 124 , 1121-
442	1136.
443	Klüg-Baerwald, B.J., Gower, L.E., Lausen, C. & Brigham, R. (2016) Environmental
444	correlates and energetics of winter flight by bats in Southern Alberta, Canada.
445	Canadian Journal of Zoology, 94, 829-836.
446	Langwig, K.E., Frick, W.F., Bried, J.T., Hicks, A.C., Kunz, T.H. & Marm Kilpatrick, A.
447	(2012) Sociality, density-dependence and microclimates determine the persistence
448	of populations suffering from a novel fungal disease, white-nose syndrome.
449	Ecology Letters, 15, 1050-1057.
450	Langwig, K.E., Frick, W.F., Hoyt, J.R., Parise, K.L., Drees, K.P., Kunz, T.H., Foster, J.T.
451	& Kilpatrick, A.M. (2016) Drivers of variation in species impacts for a multi-host
452	fungal disease of bats. Phil. Trans. R. Soc. B, 371, 20150456.
453	Langwig, K.E., Frick, W.F., Reynolds, R., Parise, K.L., Drees, K.P., Hoyt, J.R., Cheng,
454	T.L., Kunz, T.H., Foster, J.T. & Kilpatrick, A.M. (2015a) Host and pathogen
455	ecology drive the seasonal dynamics of a fungal disease, white-nose syndrome.
456	Proceedings of the Royal Society B: Biological Sciences, 282.
457	Langwig, K.E., Hoyt, J.R., Parise, K.L., Kath, J., Kirk, D., Frick, W.F., Foster, J.T. &
458	Kilpatrick, A.M. (2015b) Invasion dynamics of white-nose syndrome white-nose
459	syndrome fungus, midwestern United States, 2012-2014. Emerg Infect Dis, 21.

460	Lilley, T.M., Anttila, J. & Ruokolainen, L. (2018) Landscape structure and ecology
461	influence the spread of a bat fungal disease. <i>Functional Ecology</i> , 32 , 2483-2496.
462	Lockwood, J.L., Cassey, P. & Blackburn, T. (2005) The role of propagule pressure in
463	explaining species invasions. Trends in Ecology & Evolution, 20, 223-228.
464	Lorch, J.M., Meteyer, C.U., Behr, M.J., Boyles, J.G., Cryan, P.M., Hicks, A.C.,
465	Ballmann, A.E., Coleman, J.T.H., Redell, D.N., Reeder, D.M. & Blehert, D.S.
466	(2011) Experimental infection of bats with Geomyces destructans causes white-
467	nose syndrome. <i>Nature</i> , 480 , 376-378.
468	Lorch, J.M., Palmer, J.M., Lindner, D.L., Ballmann, A.E., George, K.G., Griffin, K.,
469	Knowles, S., Huckabee, J.R., Haman, K.H., Anderson, C.D., Becker, P.A.,
470	Buchanan, J.B., Foster, J.T. & Blehert, D.S. (2016) First Detection of Bat White-
471	Nose Syndrome in Western North America. <i>mSphere</i> , 1 , e00148-00116.
472	Maher, S.P., Kramer, A.M., Pulliam, J.T., Zokan, M.A., Bowden, S.E., Barton, H.D.,
473	Magori, K. & Drake, J.M. (2012) Spread of white-nose syndrome on a network
474	regulated by geography and climate. <i>Nature Communications</i> , 3 .
475	Meteyer, C.U., Buckles, E.L., Blehert, D.S., Hicks, A.C., Green, D.E., Shearn-Bochsler,
476	V., Thomas, N.J., Gargas, A. & Behr, M.J. (2009) Histopathologic criteria to
477	confirm white-nose syndrome in bats. Journal of Veterinary Diagnostic
478	Investigation, 21 , 411-414.
479	Muller, L.K., Lorch, J.M., Lindner, D.L., O'Connor, M., Gargas, A. & Blehert, D.S.
480	(2013) Bat white-nose syndrome: a real-time TaqMan polymerase chain reaction
481	test targeting the intergenic spacer region of Geomyces destructans. Mycologia,
482	105 , 253-259.
483	Norris, K. & Evans, M.R. (2000) Ecological immunology: life history trade-offs and
484	immune defense in birds. <i>Behavioral Ecology</i> , 11 , 19-26.
485	Reeder, D.M., Frank, C.L., Turner, G.G., Meteyer, C.U., Kurta, A., Britzke, E.R.,
486	Vodzak, M.E., Darling, S.R., Stihler, C.W., Hicks, A.C., Jacob, R., Grieneisen,
487	L.E., Brownlee, S.A., Muller, L.K. & Blehert, D.S. (2012) Frequent Arousal from
488	Hibernation Linked to Severity of Infection and Mortality in Bats with White-
489	Nose Syndrome. <i>Plos One</i> , 7 .
490	Rossiter, S.J., Zubaid, A., MOHD-ADNAN, A., Struebig, M.J., Kunz, T.H., Gopal, S.,
491	Petit, E.J. & Kingston, T. (2012) Social organization and genetic structure:
492	insights from codistributed bat populations. Molecular Ecology, 21, 647-661.
493	Shakhar, K. & Shakhar, G. (2015) Why Do We Feel Sick When Infected—Can Altruism
494	Play a Role? <i>Plos Biology</i> , 13 , e1002276.
495	Thomas, D., Dorais, M. & Bergeron, J. (1990) Winter energy budgets and cost of
496	arousals for hibernating little brown bats, Myotis lucifugus. J Mammal, 71, 475 -
497	479.
498	Thomas, D.W., Fenton, M.B. & Barclay, R.M.R. (1979) Social behavior of the Little
499	brown bat, Myotis lucifugus. I. mating behavior. Behavioral Ecology and
500	<i>Sociobiology</i> , 6 , 129-136.
501	Van Gils, J.A., Munster, V.J., Radersma, R., Liefhebber, D., Fouchier, R.A. & Klaassen,
502	M. (2007) Hampered foraging and migratory performance in swans infected with
503	low-pathogenic avian influenza A virus. Plos One, 2, e184.

504	Veith, M., Beer, N., Kiefer, A., Johannesen, J. & Seitz, A. (2004) The role of swarming
505	sites for maintaining gene flow in the brown long-eared bat (Plecotus auritus).
506	Heredity, 93 , 342.
507	Verant, M.L., Boyles, J.G., Waldrep, W., Wibbelt, G. & Blehert, D.S. (2012)
508	Temperature-dependent growth of Geomyces destructans, the fungus that causes
509	bat white-nose syndrome. <i>Plos One</i> , 7 .
510	Verant, M.L., Carol, M.U., Speakman, J.R., Cryan, P.M., Lorch, J.M. & Blehert, D.S.
511	(2014) White-nose syndrome initiates a cascade of physiologic disturbances in the
512	hibernating bat host. BMC physiology, 14, 10.
513	Warnecke, L., Turner, J.M., Bollinger, T.K., Lorch, J.M., Misra, V., Cryan, P.M.,
514	Wibbelt, G., Blehert, D.S. & Willis, C.K.R. (2012) Inoculation of bats with
515	European Geomyces destructans supports the novel pathogen hypothesis for the
516	origin of white-nose syndrome. Proceedings of the National Academy of Sciences
517	of the United States of America, 109, 6999-7003.
518	Warnecke, L., Turner, J.M., Bollinger, T.K., Misra, V., Cryan, P.M., Blehert, D.S.,
519	Wibbelt, G. & Willis, C.K.R. (2013) Pathophysiology of white-nose syndrome in
520	bats: a mechanistic model linking wing damage to mortality. <i>Biology Letters</i> , 9.
521	Weller, T.J., Rodhouse, T.J., Neubaum, D.J., Ormsbee, P.C., Dixon, R.D., Popp, D.L.,
522	Williams, J.A., Osborn, S.D., Rogers, B.W. & Beard, L.O. (2018) A review of bat
523	hibernacula across the western United States: Implications for white-nose
524	syndrome surveillance and management. Plos One, 13.
525	Wendland, L.D., Wooding, J., White, C.L., Demcovitz, D., Littell, R., Berish, J.D.,
526	Ozgul, A., Oli, M.K., Klein, P.A., Christman, M.C. & Brown, M.B. (2010) Social
527	behavior drives the dynamics of respiratory disease in threatened tortoises.
528	<i>Ecology</i> , 91 , 1257-1262.
529	Wilder, A.P., Frick, W.F., Langwig, K.E. & Kunz, T.H. (2011) Risk factors associated
530	with mortality from white-nose syndrome among hibernating bat colonies.
531	Biology Letters, 7, 950-953.
532	Wilder, A.P., Kunz, T.H. & Sorenson, M.D. (2015) Population genetic structure of a
533	common host predicts the spread of white-nose syndrome, an emerging infectious
534	disease in bats. Molecular Ecology, 24, 5495-5506.
535	