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ABSTRACT 

Deep neural networks (DNNs) trained on object recognition provide the best current            

models of high-level visual areas in the brain. What remains unclear is how strongly              

network design choices, such as architecture, task training, and subsequent fitting to            

brain data contribute to the observed similarities. Here we compare a diverse set of nine               

DNN architectures on their ability to explain the representational geometry of 62 isolated             

object images in human inferior temporal (hIT) cortex, as measured with functional            

magnetic resonance imaging. We compare untrained networks to their task-trained          

counterparts, and assess the effect of fitting them to hIT using a cross-validation             

procedure. To best explain hIT, we fit a weighted combination of the principal             

components of the features within each layer, and subsequently a weighted           

combination of layers. We test all models across all stages of training and fitting for their                

correlation with the hIT representational dissimilarity matrix (RDM) using an          

independent set of images and subjects. We find that trained models significantly            

outperform untrained models (accounting for 57% more of the explainable variance),           

suggesting that features representing natural images are important for explaining hIT.           

Model fitting further improves the alignment of DNN and hIT representations (by 124%),             

suggesting that the relative prevalence of different features in hIT does not readily             

emerge from the particular ImageNet object-recognition task used to train the networks.            

Finally, all DNN architectures tested achieved equivalent high performance once trained           

and fitted. Similar ability to explain hIT representations appears to be shared among             

deep feedforward hierarchies of nonlinear features with spatially restricted receptive          

fields. 
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INTRODUCTION 

One of the most striking achievements of the human visual system is our ability to               

recognise complex objects with extremely high accuracy. Recently, deep neural          

networks (DNN) using feedforward hierarchies of convolutional features to process          

images have reached and even surpassed human category-level recognition         

performance (He et al., 2016; Kietzmann et al., 2018; Lindsay, 2020; Russakovsky et             

al., 2015; Yamins & DiCarlo, 2016). Despite being developed as computer vision tools,             

DNNs trained to recognise objects in images are also unsurpassed at predicting how             

natural images are represented in high-level ventral visual areas of the human and             

non-human primate brain (Agrawal et al., 2014; Bashivan et al., 2019; Cadieu et al.,              

2014; Cichy et al., 2016; Devereux et al., 2018; Eickenberg et al., 2017; Güçlü & van                

Gerven, 2015; Horikawa & Kamitani, 2017; Khaligh-Razavi & Kriegeskorte, 2014;          

Kubilius et al., 2018; Lindsay, 2020; Ponce et al., 2019; Schrimpf et al., 2018; Xu &                

Vaziri-Pashkam, 2020; Yamins & DiCarlo, 2016). There is some variability in the            

accuracy with which different recent DNNs can predict high-level visual representations           

(Schrimpf et al., 2018; Xu & Vaziri-Pashkam, 2020; Zeman et al., 2020), despite broadly              

high performance. It remains unclear how strongly network design choices, such as            

depth, architecture, task training, and subsequent model fitting to neural data may            

contribute to the observed variations. There are several possible sources that can affect             

a DNN’s high (or low) correlation with brain representations, and it is important to be               

able to tease these apart.  

 

First, the architecture of a particular DNN model may cause its representations to be              

similar to those in the brain. For example, the architecture determines the spatial             

scale(s) of the image properties able to be represented within each layer. We can gain               

insight into the importance of such “baked in'' knowledge by comparing the abilities of              

different architectures in their random, untrained state (Yamins et al., 2014). In the             

computer vision literature, deeper architectures have pushed the field towards higher           

object recognition accuracies (He et al., 2016; Simonyan & Zisserman, 2014; Szegedy            

et al., 2015), although more recently architectures have been devised that display equal             

or higher performance with orders of magnitude fewer parameters (Iandola et al., 2016;             
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Sandler et al., 2018). Does depth, across layers or across networks, help predict a              

model’s correspondence with the brain? 

 

Second, the task training received by a model may have led it to develop computational               

features that better match those in the visual cortex. It seems intuitive that the success               

of DNN models at predicting brain data is due in large part to the training the models                 

receive on large datasets of natural images to do behaviourally-relevant tasks such as             

object recognition (Yamins & DiCarlo, 2016). However, randomly-weighted untrained         

DNN models are known to explain some variance in visual representations (Cichy et al.,              

2016; Güçlü & van Gerven, 2015), and at least one study reports higher performance              

for untrained than trained networks (Truzzi & Cusack, 2020). We can evaluate the             

contribution of training by comparing the ability of trained and untrained instances of the              

same architectures to predict brain data. 

 

Finally, two trained models that have learned an identical set of features may             

nevertheless differ in their apparent similarity to brain representations if they contain            

different proportions of those features. For example, consider two hypothetical neural           

network models of low-level visual representations: both networks have learned          

gabor-like oriented features, but one model contains an approximately equal number of            

features sensitive to each orientation, while the other has, through a quirk of its training               

data or task, dedicated almost all of its units to a single orientation. In this idealised                

example, the representations within both models span the same feature space, but the             

models will make very different predictions about, for example, how similar the evoked             

activity in cortical area V1 will be for probe stimuli containing different orientation             

distributions. We can evaluate to what extent the model has “the right features in the               

wrong proportions” by measuring how much its predictive power changes after allowing            

a linear reweighting of its features (Khaligh-Razavi et al., 2017). Many studies reporting             

high performance of DNNs as models of visual cortex allow linear reweighting of             

individual features (e.g. Agrawal et al., 2014; Bashivan et al., 2019; Cadieu et al., 2014;               

Güçlü & van Gerven, 2015; Horikawa & Kamitani, 2017; Ponce et al., 2019; Yamins et               

al., 2014), while others treat the representations within a layer of a network as fixed               
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(e.g. Khaligh-Razavi & Kriegeskorte, 2014; Truzzi & Cusack, 2020; Zeman et al., 2020).             

Depending on the particular research question, one may be more interested in model             

performance with or without fitting to brain data. A good model should have learned              

features which serve as a good basis set for the features represented by the brain. If                

one model outperforms another after allowing a linear reweighting of the features within             

each, then we have reason to think that the features it has learned are a better basis set                  

for the sorts of features computed in the brain.  

 

Here we systematically evaluate the contributions of task training and feature           

reweighting to the ability of models to predict representations of objects in the ventral              

stream, across nine state-of-the-art computer vision DNNs. We use representational          

similarity analysis (RSA) to evaluate the correspondence between fMRI brain activity           

patterns elicited by viewing object images, and representations of those images in            

networks. We compare a diverse set of deep neural network models, varying widely in              

depth (8-201 layers; 25 to 825 processing steps), in terms of their ability to explain the                

representational geometry in human inferior temporal (hIT) cortex. Each model is           

tested both in an untrained randomly initialised state and after object-categorisation           

training. We use principal component reweighting of features within each layer, and            

reweighting of layers, to best predict the hIT representation. After PCA and hIT-fitting,             

each model is then tested on its ability to predict the hIT representational dissimilarity              

matrix (RDM) for an independent set of images in an independent set of subjects. This               

analysis ensures that the evaluation is not biased by overfitting to either images or              

subjects.  

 
METHODS 

Stimuli 

Both human participants and neural networks were shown the same set of 62 coloured              

images depicting faces, objects and places, segmented and presented on a grey            

background of 427 x 427 pixels (see Figure 1a). The image set was constructed to               

include a balance of animate (faces and bodies) and inanimate (objects and scenes)             

stimuli, with animate stimuli further divided into human and animal faces/bodies, and            
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inanimate stimuli divided into man-made and natural objects/scenes. Of the 20 human            

face images, 14 (7 male, 7 female) were closely matched for low-level image statistics,              

depicting faces in a 30 degree semi-profile view with matched lighting and matched             

color-histogram profiles. The remaining face and non-face images contained greater          

pose and image variation, and were a subset of those previously used in (Kriegeskorte,              

Mur, Ruff, et al., 2008) and (Kiani et al., 2007). 

 

Human fMRI procedures 

Deep neural networks were tested against a pre-existing human fMRI dataset (Walther,            

2015; Walther, Diedrichsen, et al., 2016), described below. 

 

Participants 

Participants were 24 healthy adult volunteers (15 female) naïve to the goals of the              

experiment, with normal or corrected-to-normal vision. Participants gave informed         

consent and the study was approved by the MRC Cognition and Brain Sciences ethical              

review panel and conducted in accordance with the Declaration of Helsinki.  
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Figure 1. Human fMRI dataset. Sixty-two stimulus images (a) were shown to 24             
human participants in a rapid event-related fMRI experiment. A representational          
dissimilarity matrix (RDM) was constructed for each participant from the crossvalidated           
mahalanobis distances between the multi-voxel activation patterns elicited by each          
image in inferior temporal cortex (hIT). The average of all individual RDMs is shown in               
(b), with dissimilarity between the hIT representation of each pair of images expressed             
as a percentile for visualisation purposes. 
 

Image familiarisation 

Before the main fMRI experiment, participants were familiarised with the stimuli and            

task outside the scanner by completing five runs of the one-back task (i.e. five complete               

cycles through the stimulus set). Participants were also instructed to pay attention to the              

62 images shown, and try to commit them to memory. After completing the second of               

two fMRI sessions, their recall of the images was tested. A total of 128 isolated objects                

on grey backgrounds was shown to participants, of which 62 were the experimental             

stimuli. During this recall block, images were shown in a random order, with each image               

repeated twice, and participants were asked to identify which they had previously seen             

during the fMRI sessions. On average, recognition accuracy was 92% (standard           

deviation 0.051%), indicating that participants had attended to and learned the           

experimental stimuli. 
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fMRI task 

During the fMRI scans, participants engaged in a one-back task in which they were              

instructed to press a button if the present image was a repeat of that shown on the                 

immediately previous trial. While performing the task, participants were asked to keep            

fixation on a central fixation cross. On each trial, one image was presented in the centre                

of a grey screen, subtending 7 degrees of visual angle (dva). Images were shown for               

500ms with a trial-onset asynchrony of 3 seconds. During each run, 56 of the stimuli               

were each presented once. The other 6 were presented twice, appearing as repeats in              

the one-back task. Stimulus order was randomized within each run for each participant.             

The stimulus sequence also included 30 baseline trials with no image stimulus,            

comprising 5 blank trials at the beginning of each run, 5 at the end, and 20 randomly                 

interspersed within stimulus trials.  

 

MRI measurements 

Each participant undertook two scanning sessions on separate days, each consisting of            

12 functional runs lasting approximately 5 minutes. Functional images were acquired on            

a Siemens Trim-Trio 3 Tesla MRI scanner with a 32-channel head coil. For each              

functional run, we recorded 135 volumes containing 35 slices, each using a 2D             

echo-planar imaging sequence (TR = 2.18 s, TE = 30 ms, flip angle = 78°, voxel size:                 

2mm isotropic, interleaved slice acquisition, GRAPPA acceleration factor: 2). We also           

acquired a high-resolution (1mm isotropic) T1-weighted anatomical image in each          

session, using a Siemens MPRAGE sequence.  

 

Data pre-processing 

Image preprocessing was performed using SPM8 (https://www.fil.ion.ucl.ac.uk/spm/).       

For each participant, images from both sessions were jointly processed, after discarding            

the first two volumes of each run to prevent T1 saturation effects in the baseline of the                 

regression coefficients. Pre-processing consisted of the following steps, in order:          

slice-scan-time correction, 3D head motion correction by aligning to the first echo planar             

image (EPI) of the first run of the first session, re-slicing, and co-registration of the               
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high-resolution anatomical images to the session mean EPI. No smoothing was           

performed. 

 

hIT ROI definition 

For each participant and hemisphere, visually responsive voxels were first identified           

based on an independent functional localizer scan in which responses to 432 images of              

faces, places, objects, and scrambled objects were contrasted against baseline. An           

anatomical mask was used to select the subset of those voxels that lay within              

parahippocampal, entorhinal, fusiform, inferior temporal or lateral occipital regions,         

using the FreeSurfer package ( http://surfer.nmr.mgh.harvard.edu/ ). Any voxels       

belonging to early visual cortex (V1, V2 and V3) were excluded, as defined using a               

cortical surface template projected into each subject’s native volume (Benson et al.,            

2014). 

 

Estimating stimulus response patterns 

Response patterns were calculated as in (Walther, Nili, et al., 2016), using multivariate             

noise normalisation to improve the reliability of dissimilarities subsequently measured          

between response patterns. Beta response weights were estimated using general linear           

modeling (GLM) with ordinary least squares. Timecourse data of each run were            

modeled using 62 stimulus predictors, separately for each subject and session. Six            

additional one-back predictors were included to model repeated image stimuli in the            

one-back task. For each run, we included 6 head motion predictors (3D translation and              

rotation coordinates) and one intercept.  

 

Before fitting, the timecourse data and the design matrix were filtered to remove             

low-frequency trends. As cross-validated dissimilarity estimates, as used here to derive           

hIT RDMs (details below), require two independent estimates of stimulus response           

vectors, two sets of GLMs were fitted for each session and subject (Walther, Nili, et al.,                

2016). For each of the 12 imaging runs, one GLM was fit on the data of the individual                  

run, while another GLM was jointly fit on the data of the remaining runs, thereby keeping                

the GLM estimates independent. For the latter GLM, data from the included runs was              

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 8, 2020. ; https://doi.org/10.1101/2020.05.07.082743doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.07.082743
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
concatenated for each stimulus (i.e. 11 entries per predictor in the design matrix), which              

stabilizes the regression weights. Nuisance regressors were modeled separately for          

each concatenated run. Finally, the 62×P stimulus response beta estimates from each            

GLM were normalised for multivariate spatial noise by the P×P variance-covariance           

matrix estimated from the time-course residuals, where P is the number of voxels.  

 

Estimating representational geometry 

To investigate the representations in hIT, we used Representational Similarity Analysis           

(RSA; (Kriegeskorte, Mur, & Bandettini, 2008; Nili et al., 2014)). RSA characterises the             

underlying representations of a given system via representational dissimilarity matrices          

(RDMs), consisting of dissimilarity estimates for all pairs of stimuli . The set of all               

pairwise distances describes the geometry of response patterns in high-dimensional          

activation space (Kriegeskorte & Diedrichsen, 2016) and can be used to compare            

representations across different systems (here, hIT and DNNs).  

 

For each subject, a hIT RDM was computed by taking the cross-validated Mahalanobis             

distances between the patterns elicited by each pair of images (Walther, Nili, et al.,              

2016). This distance measure, also known as ‘crossnobis distance’ does not exhibit an             

additive bias, unlike non-crossvalidated distance measures, and so preserves a          

meaningful zero-point when two images elicit identical (but noisy) representations          

(Walther, Nili, et al., 2016). We calculated leave-one-run-out crossvalidated distances          

using the two sets of response pattern estimates derived from GLMs fitted to             

non-overlapping imaging runs. Separate RDMs were derived from the left and right            

hemispheres, and then averaged to create a single hIT RDM for each participant, of              

size 62x62 (1891 unique pairwise image dissimilarities).  

 

Deep neural network models 

Network architectures and training 

We investigated nine deep convolutional neural network (DCNN) architectures         

representing various states of the art from the computer vision literature over the past              

eight years (see Table 1). The architectures varied widely in the number of unique              
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processing steps they involved (e.g. convolution, nonlinearity, pooling, batch         

normalisation, concatenation), from 25 sequential processing steps (Alexnet;        

(Krizhevsky et al., 2012)), to 825 steps with branching nodes and skipping connections             

(Inception-Resnet-v2; (Szegedy et al., 2017)). Their sizes varied from 1.24 million           

parameters (Squeezenet; (Iandola et al., 2016)) to 138 million parameters (VGG-16;           

(Simonyan & Zisserman, 2014)). 

 

All models were implemented in the Deep Learning Toolbox for MATLAB 2019b, and             

were pre-trained by their original developers on the Imagenet Large-Scale Visual           

Recognition Competition (ILSVRC; (Russakovsky et al., 2015)) dataset. The ILSVRC          

training set consists of 1.2 million labelled images and the networks’ task is to              

categorise images as belonging to one of 1,000 possible object and animal categories.             

All networks had near-identical training data and training tasks—slight differences were           

due to updates to the ILSVRC training set and image categories over the years, and to                

differences in training strategies adopted by different research groups, such as which            

methods of data augmentation were used. Object classification error of the networks, as             

quantified by top-5 error rate on the ILSVRC validation set, ranged from 20.9% error              

rate (Alexnet; (Krizhevsky et al., 2012)) to 4.9% error rate (Inception-Resnet-v2;           

(Szegedy et al., 2017)). This measure captures the proportion of test images for which              

the correct object category was not one of the network’s top five guesses. Human top-5               

classification error rate for this dataset is thought to be around 5.1% (Russakovsky et              

al., 2015). 

 

In addition to analysing the trained networks, we also created untrained           

randomly-weighted versions of the same architectures, by replacing all weights and           

biases in each network layer by random numbers drawn from a Gaussian distribution             

with the same mean and standard deviation as the weights or biases in the trained               

network at the same layer. Analysis procedures were identical for trained and untrained             

networks. 
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Name Reference Imagenet 
Top-5 
Error 

Depth 
(layers) 

Number of 
Parameters 
(millions) 

Layers Selected for Evaluation 

Alexnet Krizhevsky, 
Sutskever 
& Hinton 
(2012) 

20.9% 8 61.0 8 key layers: Outputs of each 
convolutional or fully connected 
layer (after ReLU nonlinearity). 

VGG-16 Simonyan 
& 
Zisserman 
(2014) 

9.6% 16 138.0 16 key layers: Outputs of each 
convolutional or fully connected 
layer (after ReLU nonlinearity). 

Googlenet Szegedy et 
al., (2015) 

10.5% 22 7.0 13 key layers: Outputs of first three 
convolutional layers, outputs of 
each branching “inception” module 
(after concatenation), and output of 
final fully connected layer. 

Resnet-18 He et al., 
(2016) 

10.9% 18 11.7 10 key layers: Output of first 
convolutional layer, outputs of each 
“residual block” (after addition), and 
output of final fully connected layer. 

Resnet-50 He et al., 
(2016) 

7.1% 50 25.6 20 key layers: Output of first 
convolutional layer, outputs of each 
“residual block” (after addition), and 
output of final fully connected layer. 

Squeezenet Iandola et 
al., (2016) 

19.4% 18 1.24 11 key layers: Output of first 
convolutional layer, outputs of each 
“fire” module (after depth 
concatenation), and outputs of final 
convolutional and pooling layers. 

Densenet- 
201 

Huang et 
al., (2017) 

6.4% 201 20.0 103 key layers: Output of first 
convolutional layer, outputs of each 
densely-connected block (after 
depth concatenation), and output of 
final fully connected layer. 

Inception- 
Resnet-v2 

Szegedy et 
al., (2017) 

4.9% 164 55.9 50 key layers: Outputs of first five 
convolutional layers, outputs of 
each “inception-resnet” module 
(after addition and ReLU), and 
output of final fully connected layer. 

Mobilenet- 
v2 

Sandler et 
al., (2018) 

9.7% 53 3.5 20 key layers: Output of first 
convolutional layer, output of each 
residual or downsizing block (after 
batch normalisation), and output of 
final fully connected layer. 
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Table 1. Details of the nine computer vision DCNNs evaluated. “Imagenet Top-5            
Error” records the percentage of times the correct object label was not in the network’s               
top five guesses for the public test set of the Imagenet 1000-way object classification              
database, used in the Imagenet Large Scale Visual Recognition Competition (ILSVRC).           
Error rates are as reported for a single model and single crop of each test image for a                  
PyTorch implementation of the models (from:      
https://pytorch.org/docs/stable/torchvision/models.html), with the exception of     
InceptionResnet-v2, which is the single-model error rate reported in the original           
publication. Note that these error rates may differ from the model’s ILSVRC result,             
because competition results are calculated on a confidential test image set, and            
because competition submissions often use ensembles of networks and/or data          
augmentation at test time. The column “Layers Selected for Evaluation” briefly           
describes the criteria we used to select key processing steps within each network, in              
order to evaluate their match to neural representations in human IT cortex. 
 

 

Image preprocessing 

Before being input to neural networks, the 62 stimuli used in the fMRI experiment were               

resampled to the native input size of each network architecture (either 224x224,            

227x227 or 299x299 pixels) and the mean RGB pixel value of each network’s training              

images was subtracted. 

 

Layer activations 

For each architecture, we selected a subset of key layers to analyse, generally             

consisting of the outputs of convolutional or fully connected processing steps, after            

applying a nonlinearity. For architectures made up of “modules” or “blocks” of            

processing steps within which parallel branches of processing occurred, or over which            

skipping connections passed, we took as key layers the outputs of each submodule             

after all its inputs had been concatenated or added. Table 1 provides further detail on               

the criteria for key layer selection within each architecture. Network activation patterns            

in response to the 62 stimulus images were recorded for each of these key layers. 

 

Comparing human and DCNN image representations 

Ecologically-driven principal component selection 

The number of features in a layer varied by three orders of magnitude across layers and                

networks, from over 1 million unit activations in the early layers of some architectures, to               
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1,000 in the output layers. Before reweighting features, we therefore used Principal            

Components Analysis (PCA) to match the dimensionality of the representations across           

all layers, and to bring the number of parameters to be fitted into a feasible range. For                 

each layer of each network, a PCA was performed to extract the first 100 orthogonal               

dimensions explaining the most variance in the responses to a set of independent             

ecologically-representative images. For this, a set of 3,020 images was drawn from            

“ecoset” (Mehrer et al., 2017), a large-scale vision dataset that mirrors the most             

common, most concrete nouns in the english language that describe basic level            

categories (such as dog, cat, table, etc.). Ecoset thereby represents categories that            

describe physical things in the world (rather than abstract concepts) which are of             

significance to humans. The image set used to calculate the PCA had no overlap with               

the experimental test set, and were natural photographs with backgrounds (whereas           

test stimuli were isolated object images on grey backgrounds). 

 

Based on each of 100 principal components, 100 component RDMs were computed by             

taking the Euclidean distance between unit activation patterns elicited by each image            

pair, after projecting those activation patterns onto each principal component in turn.            

These 100 component RDMs, extracted for each layer of each model, were then fitted              

to human IT RDMs by cross-validation over both participants and images (see Figure             

2). 
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Figure 2. Ecologically-driven dimensionality reduction and component       
reweighting. An independent dataset (a) of 3,020 images derived from object           
categories that are important to humans was constructed by sampling uniformly from            
the ecoset dataset (Mehrer et al., 2017). We recorded the activations elicited by these              
images in each unit of each layer of each network. Based on the data obtained from all                 
units of a given layer, we then ran a Principal Components Analysis (PCA) to identify               
the first 100 orthogonal components that explained the most variance in the layer’s             
response to these ecologically more representative images. Based on the projection           
onto each of the 100 PCs, we then constructed one RDM for the 62 experimental               
stimulus images. As a distance measure, Euclidean distance between the activation           
vectors was used. (b) After extraction, the 100 component RDMs of each layer were              
linearly combined within a cross-validated reweighting procedure to predict the human           
IT fMRI representation (“first-level fitting”). On each cross-validation fold, one          
non-negative weight was assigned to each component RDM via least-squares fitting. In            
a second-level reweighting procedure run within the same cross-validation folds, an           
aggregate prediction for the whole network was then calculated by linearly weighting the             
per-layer fitted RDMs. All weights were fitted on data from both separate subjects and              
separate image stimuli from those on which they were tested.  
 

Cross-validated reweighting 

We performed a two-stage reweighting procedure to fit model representations to human            

IT representations both within and across layers of networks, while cross-validating over            

both subjects and stimuli ( Figure 2b). The first-level (within-layer) fitting linearly           

combined the first 100 principal components within each layer of a model to create a               
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single hIT-fitted RDM for that layer. The second-level fitting then linearly combined            

these layer-based RDMs across all layers of a network, to create a single             

whole-network hIT-fitted RDM for that model. The weights for both levels of fitting were              

estimated within the same crossvalidation procedure. The latter was set up to ensure             

that model fitting was performed on an independent set of subjects and stimuli. As a               

result, the reported predictive performance of the DNN models is based on previously             

unseen subject, and unseen image-data. In addition to model fitting, we calculated the             

performance of unfitted versions of each layer, and the lower and upper bounds of the               

noise ceiling, all within the same crossvalidation folds to ensure that all estimates were              

directly comparable. The full sequence of steps, run for all models within a single              

bootstrap resampling procedure, is as follows: 

1. For each of 1000 bootstrap samples, resample both stimuli and subjects with            

replacement: 

a. For 200 crossvalidation folds: 

i. Randomly assign 12 unique stimuli present in this bootstrap sample          

to be test stimuli. The test set always consists of data from exactly             

12 unique images, and typically contains repetitions of some of          

them. Data from the same image never appears in both training           

and test sets, even if it is repeatedly present in the bootstrap            

sample. 

ii. Randomly assign 5 individuals present in this bootstrap sample to          

be test subjects. As with stimuli, the test set consists of data from             

exactly 5 individuals, and may contain repetitions.  

iii. Once training and test stimuli and participants were separated:  

1. Create human target RDM. Average the data RDMs across         

training subjects for the training stimuli to create a target          

RDM to which models will be fit. 

2. First-level (within-layer) hIT-fitting : For each layer of each        

model, use that layer’s PCA-derived RDMs as the basis for          

creating two sets of 100 component RDMs corresponding to         

the training and test stimuli (these RDMs are subsets of the           
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original RDMs). Use non-negative least squares regression       

to find the linear weighting of training-stimuli component        

RDMs that best predicts the human target RDM (derived         

previously from training participants, only). Create a       

single-layer predicted RDM for the test images by combining         

the test-stimuli component RDMs using the weights obtained        

via the training fit. Compute an unfitted RDM for each layer           

based on the RDM distances between test images in the          

original feature space of each layer, with no dimensionality         

reduction or reweighting applied. 

3. Second-level (across-layer) hIT-fitting: For each model,      

take the set of single-layer fitted RDMs calculated at the          

previous step. Use non-negative least squares regression to        

linearly weight the first-level fitted RDMs to best predict the          

human target RDM. As previously, only training RDM        

distances were used for fitting and the resulting layer         

weights were applied to the test RDMs to derive a prediction           

on the test images. This whole-model hIT-fitted predicted        

RDM aggregates representations across all layers of a        

network, while allowing the influence of features to be         

linearly scaled both within and across layers to better match          

human representations. We also computed a whole-network       

predicted RDM based on the unfitted per-layer RDMs        

described in the previous step. This predicted RDM treats         

each layer as a fixed representation, but allows the influence          

of each layer on the whole-network predicted RDM to be          

linearly scaled to better match human data. 

4. Model evaluation : Evaluate the performance of each of the         

model predictions as the average Spearman correlation       

between the predicted RDM and each individual test        

subject’s RDM for test stimuli. On each cross-validation fold,         
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estimate the performance of the first-level fitted RDMs for         

each layer of each model, the unfitted per-layer RDMs for          

each layer of each model, and two second-level (across         

layer) fitted RDMs for each model, one fitting the first-level          

fitted RDMs and the other fitting the previously unfitted         

per-layer predictions. 

5. Noise ceiling calculation : Calculate the upper and lower        

bounds of the noise ceiling by taking the correlation between          

each test subject’s test-stimuli RDM and the mean        

test-stimuli RDM averaged over either all subjects (upper        

bound) or the training subjects (lower bound). The noise         

ceiling provides upper and lower bounds on the expected         

performance of the true data-generating model, given the        

inter-subject variability in the data (Nili et al., 2014). By          

calculating the noise ceiling within the model-reweighting       

cross-validation folds we ensure that the lower bound        

estimates are correct for both fitted and unfitted models         

(Storrs et al., 2020). 

b. At the end of the 200 cross-validation folds, average the model           

performances (first- and second-level) as well as noise ceiling estimates.          

to create a single estimate of each, for a given bootstrap sample. 

 

 

RESULTS 

We evaluated how well the representations of object images in each of nine diverse              

deep neural network architectures could predict those in human inferior temporal (hIT            

cortex). We analysed performance both for each layer individually and when           

aggregating across layers in a network. We tested trained and untrained versions of             

each architecture as well as the effects of allowing linear reweighting of the principal              

feature components within each layer. 

 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 8, 2020. ; https://doi.org/10.1101/2020.05.07.082743doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.07.082743
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
Object recognition training improves representational correspondence with       

human IT 

First we compared the hIT correlation of every layer in trained and untrained versions of               

each model ( Figure 3). We found that training improved representational similarity to            

hIT, but by a perhaps surprisingly small degree. For each layer and model, we tested               

whether the distribution of differences in bootstrapped performance between the trained           

and untrained model contained zero, using a one-tailed test, with an alpha level of 0.05,               

uncorrected for multiple comparisons. Even using this liberal criterion, only five of the             

nine models contained layers in which trained performance was better than untrained,            

and Mobilenet was the only model to show significantly higher performance in most             

layers after training (see blue asterisks in Figure 3). 
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Figure 3. Object recognition training improves hIT correspondence. Panels show          
the hIT correlation of the full representation in each layer of each architecture, with no               
dimensionality reduction or feature reweighting, for an object-recognition trained         
instance of each network (blue) and for a corresponding untrained instance with            
randomly initialised weights (grey). Each dot corresponds to one of the key layers             
selected for analysis (see Table 1), and indicates the mean of a distribution of 1,000               
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bootstrap estimates of cross-validated layer performance, bootstrapped over both         
subjects and stimuli. For comparability across the diverse architectures, the ‘depth’ of            
each layer is indicated in terms of the number of unique processing steps up to this                
point, such as convolution, batch normalisation, pooling, or nonlinearity. Shaded regions           
indicate the standard deviation of the bootstrap distribution. The horizontal grey bar            
indicates the lower and upper bounds of the noise ceiling. Blue asterisks above the              
x-axis indicate that the representation in the trained network performs significantly better            
than that in the untrained network in this layer ( ɑ = 0.05, uncorrected). Layers which do                
not perform significantly below the lower bound of the noise ceiling are indicated by “ns”               
within the noise ceiling; for all others this comparison is significant. 

 

Notably, however, whereas untrained models showed similar hIT correlation         

across all their layers, the performance of trained models peaked for processing steps             

about ½ to ¾ of the way from network input to output. This echoes previous findings of                 

graded similarity between DNN representations and the human ventral stream (Güçlü &            

van Gerven, 2015; Khaligh-Razavi & Kriegeskorte, 2014; Xu & Vaziri-Pashkam, 2020;           

Yamins et al., 2014; Zeman et al., 2020), and suggests that the learning of natural               

image features of the correct complexity is responsible for the superior performance of             

later layers, rather than inherent architectural properties such as the spatial scale of the              

representations. Most models show a sharp decline in hIT match towards the final             

output layers, likely because their training target, a sparse vector indicating which of             

1,000 objects possible within the Imagenet ILSVRC challenge dataset is present in an             

image, forces late layers not to represent graded similarities between images. There            

was substantial variation among models in how well the best layer correlated with the              

representation in hIT, but no model explained all of the explainable variance in the              

human data. A model could be considered to explain all explainable variance in a              

dataset if it predicts human data as well as individual human subjects can predict the               

data of other subjects, as quantified by the lower bound of the noise ceiling (Nili et al.,                 

2014; Storrs et al., 2020). For each layer of each model, we tested whether the               

bootstrap distribution of differences between the lower bound of the noise ceiling and             

the layer performance contained zero (one-tailed, ɑ = 0.05, uncorrected for multiple            

comparisons). For all layers of all models, the lower bound of the noise ceiling was               

significantly higher than model performance. Although object-recognition training        

improves performance, the distribution of visual features learned by task-trained DNNs           

does not fully mirror those in human IT. 
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Reweighting features within trained layers dramatically improves correspondence        

with hIT 

Next we compared the hIT correlation of each layer of the trained networks, both in its                

full unfitted state, and after model fitting, i.e. reducing dimensionality via PCA on natural              

images and reweighting the principal components to better predict human          

representations of held-out data(images and participants, see Methods). Reducing and          

reweighting the feature space improved the correlation of a layer’s representations with            

that in hIT for virtually all layers of all networks ( Figure 4). The gradient of similarity                

between hIT and mid-to-late network layers was enhanced after fitting, which suggests            

that later layers of task-trained DNNs outperform early layers because they contain            

features that better match those in late ventral visual cortex in terms of their complexity,               

structure, or spatial scale, rather than because the preponderance of different features            

happens to match the brain better than in lower layers. Five of the nine models               

contained at least one layer in which hIT correlation, after fitting, was not significantly              

lower than the lower bound of the noise ceiling (based on the bootstrapped distribution              

of differences, one-tailed, ɑ = 0.05, uncorrected. Note that correcting for multiple            

comparisons would lower our threshold for considering a layer statistically          

indistinguishable from the noise ceiling, and so constitute a more liberal criterion than             

the test performed here). 
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Figure 4. Reducing and reweighting the feature space dramatically improves hIT           
correlation across most layers in all network architectures. Each panel shows, for            
one model, the hIT correlation of the unfitted representation in the full original feature              
space (pale blue lines, same data as shown in Figure 3), and of the same feature space                 
after reducing to 100 dimensions via ecologically-driven dimensionality reduction (see          
Figure 2) and linearly reweighting those dimensions to fit the hIT representations            
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(crossvalidated over both subjects and images). Blue asterisks indicate that the fitted            
layer performs significantly better than the original unfitted feature space. Layers in            
which the fitted representation is not significantly different from the lower bound of the              
noise ceiling are indicated by “ns”. ɑ = 0.05, uncorrected. 

 
Deeper architectures are not better models of hIT 

Despite the wide range of network depths across the nine architectures, spanning 25 to              

825 unique processing steps, we found no compelling evidence that deeper networks            

were better models of hIT than shallower ones. Figure 5 shows the hIT correlation of               

each of the fitted layers (i.e. dark blue lines from Figure 4 ) for all models on the same                  

axes for comparability. Although there was a clear improvement in hIT correspondence            

across early and intermediate layers within each model, the peak layer performance            

was similar across models of different depths. There was no correlation between depth             

of architecture and whole-network hIT match after combining representations across all           

layers via second-level fitting, for either trained and within-layer fitted models ( r = 0.20,              

p = 0.61, ns ) or trained and within-layer unfitted models ( r = -0.07, p = 0.86, ns). Within                  

the range of deep convolutional neural networks capable of high object-recognition           

accuracy, it does not appear that greater depth leads to more brain-like representations             

(cf. Kubilius et al., 2018; Schrimpf et al., 2018). 
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Figure 5. Depth is not the answer. Correlation with hIT representation for all layers of               
all networks, after “ecologically-driven” PCA reduction and reweighting. Although many          
models reach representations in their late intermediate layers that well match hIT,            
increasing depth does not equate to increased hIT match, either within or between             
architectures, within this range of highly successful object-recognition computer vision          
models. 

 

A combination of training and fitting achieves a good match to human IT for              

diverse deep neural networks 

So far we have considered each layer of each network as a separate candidate for               

predicting hIT. However, it is unlikely that the computational features across large parts             

of inferior temporal cortex correspond neatly to those in any single processing step of              

an artificial neural network. We therefore linearly combined the per-layer          

representational dissimilarity matrices (RDMs) of each network to estimate the hIT           

correlation of the model considered as a whole, via a second-level fitting procedure (see              

Methods). The inputs to the second-level hIT-fitting were (i) the unfitted per-layer RDMs             

calculated from the full original feature space in each layer, i.e. without dimensionality             

reduction and first-level (within-layer) fitting (light grey and blue bars in Figure 6 ), and              

(ii) the hIT-fitted per-layer RDMs estimated via first-level fitting (comprising both,           
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dimensionality reduction and linear reweighting, dark grey and blue bars). Both levels of             

fitting were performed within the same cross-validation loops, so that both within-layer            

and across-layer weights were always fitted based on the same split of training subject              

and stimulus data and tested on unseen subjects and stimuli. 

Figure 6. Training and within-layer fitting both improve correlation with hIT. Bars            
show an estimate of the combined performance of all layers within each of the              
networks, obtained by second-level (across-layer) fitting in all cases. The fitting           
procedure is identical to that used to reweight principal components within each layer,             
except that it takes as input per-layer RDMs rather than per-component RDMs. Pale             
grey bars show the hIT match for the raw (unfitted) feature space of a              
randomly-weighted instance of the network; dark grey bars show hIT match for the             
same random feature space after PCA reduction and within-layer reweighting; pale           
blue bars show hIT match for the unfitted feature space of the object-recognition-trained             
network; and dark blue bars show hIT match for the trained network after PCA              
reduction and within-layer reweighting. Error bars indicate the standard deviation of the            
bootstrap distribution. The horizontal grey bar indicates the lower and upper bounds of             
the noise ceiling. Models which do not perform significantly below the lower bound of              
the noise ceiling are indicated by “ns” within the noise ceiling; for all others this               
comparison is significant, ɑ = 0.05, uncorrected. (b) Data from (a) averaged across all              
models. Error bars indicate the standard error of the mean across models. 

 
This whole network analysis revealed that both, object recognition training, and           

subsequent hIT-fitting improved the correspondence between model representations        
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and those in hIT ( Figure 6b). A 2x2 (training x fitting) ANOVA treating each of the nine                 

DNN architectures as an independent observation revealed significant main effects of           

both training ( F(1,35) = 33.82, p < 0.0001), and of fitting ( F(1,35) = 43.69, p < 0.0001). There                  

was also a significant interaction between training and fitting, such that within-layer            

fitting yields a larger benefit when applied to the features found in layers of trained than                

untrained models (F (1,35) = 6.51, p  = 0.016).  

 

On average, trained and within-layer fitted models explained 48.0% of the explainable            

rank variance in hIT representations (squared Spearman correlation 0.08, normalised          

by the average squared correlations of the upper and lower noise ceilings, 0.16).             

Starting from an untrained, unfitted model as a baseline, on average across models,             

task training produced a 57.5% increase in the proportion of explainable rank variance             

explained (taking the noise-ceiling normalised r 2 from 0.12 to 0.19). Similarly, hIT-fitting            

of the untrained model produced a 73.4% increase (normalised r2 from 0.12 to 0.21).              

While these are substantial gains, the combination of training and hIT-fitting achieved a             

superadditive boost. Compared to trained but unfitted networks, reweighting the          

features within each layer of trained networks led to a further 124% increase in the               

proportion of explainable rank variance explained (normalised r2 from 0.21 to 0.48). The             

superadditive interaction between training and fitting suggests that training on the           

Imagenet object-recognition task causes models to develop features that capture          

aspects of real-world images that are important to their representation in hIT, but does              

not cause models to learn the relative prevalence of these features seen in brain data. 

 

After training networks to classify objects, and linearly reweighting their learned features            

within and across layers, all nine DNN architectures yielded good models of hIT,             

explaining most of the explainable variance in the data (dark blue bars in Figure 6a ).               

For three architectures (Googlenet, Densenet and Mobilenet), the trained and hIT-fitted           

model was not statistically distinguishable from the lower bound of the noise ceiling,             

indicating performance on par with the ability of individual human brains to predict             

representational dissimilarities in other human brains (one-tailed test of whether the           

bootstrap distribution of differences contained zero, ɑ = 0.05, uncorrected). In order to             
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evaluate the relative contributions of architectural differences to model performances          

before and after reweighting, we ran a permutation test comparing all pairwise            

differences among trained but only second-level fitted (i.e. within-layer-unfitted) models          

to those among fully fitted models. Differences among the hIT correspondence of            

unfitted models were larger than those among the same models after they had             

undergone within-layer principal components reweighting (Cohen’s d  = 1.49, p  = 0.001). 

 

In order to gauge whether the remaining differences in performance among trained and             

fitted models were likely to be of theoretical interest, we performed an equivalence test              

(Lakens, 2017) in which we defined the variance in estimates of the lower bound of the                

noise ceiling as a naturally occurring variation in predicting individual human data. If a              

difference between two models falls outside the 95% confidence interval of this            

distribution, the models are more different from one another than human subjects are             

from one another, which could be considered a threshold for the minimal potentially             

interesting model difference. For each pair of models, we tested whether the observed             

differences between the hIT correlation of the two models, across bootstrap samples,            

were significantly larger than the bound of the 95% confidence interval on noise ceiling              

variation, and at the same time significantly lower than the upper bound of the              

confidence interval (Lakens, 2017). After training and hIT-fitting, the differences          

between models proved statistically equivalent to the differences between human          

subjects for all models ( ɑ = 0.05, Bonferroni corrected for 36 pairwise comparisons             

among models). However, there were larger differences among pairs of trained but            

unfitted models, with differences in 8 of the 36 pairwise comparisons falling significantly             

outside of the variability in the lower noise ceiling. 

 

Finding dimensions of natural-image variation within layers improves correlation         

with human IT 

Our first-level (within-layer) fitting procedure consists of two steps, both of which            

potentially change the representational geometry: first, the full feature space of a layer             

is reduced to the first 100 principal components accounting for the most variation in that               

layer’s activation patterns to natural images of ecological validity, and second, those            
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principal components are linearly reweighted to best predict dissimilarities between          

images in human IT. In order to assess the relative contribution of each step towards               

the improvements gained by fitting, we calculated the performance of a version of each              

model that had undergone the first (dimensionality reduction) step, but not the second             

(hIT-fitting) step. Within the main cross-validation procedure (see Methods) we created           

an RDM for each layer of each network by uniformly combining the layer’s 100 principal               

component RDMs with equal weights, and used these as inputs to the second-level             

(across-layer) fitting procedure. The resulting whole-network hIT correlations are shown          

in the central column of Figure 7a , with those shown previously, based on either the full                

unfitted per-layer representations, or the dimensionality-reduced and hIT-fitted per-layer         

representations to the left and right, respectively,  for comparison. 

 

Despite reducing the dimensionality of the feature space by up to four orders of              

magnitude for some layers of some networks, from over 1 million units to only 100               

principal dimensions, PCA improved the hIT correspondence of models ( Figure 7a). A            

2x2 (dimensionality reduction x training) ANOVA revealed a main effect of both            

dimensionality reduction ( F(1,35) = 6.39, p = 0.0166) and training ( F(1,35) = 15.14, p =               

0.0005). Post-hoc tests on the effect of dimensionality reduction show that models            

based on the first 100 principal components within each layer matched hIT better than              

models based on the full feature space, both for trained networks (paired-samples t-test             

t8 = 6.87, p = 0.0001) and untrained networks ( t8 = 4.84, p = 0.0013). There was no                  

interaction between training and dimensionality reduction ( F(1,35) = 1.09, ns). On           

average, for the trained networks, correlation with hIT could be improved by 25.5%             

simply by taking dimensions within each layer that account for the most variation in the               

network’s activations to natural images sampled from a set of object categories that are              

of significance to the human (visual) experience (Mehrer et al., 2017). 
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Figure 7. Finding dimensions of natural-image variation within each layer’s          
feature space improves hIT match. (a) Estimates of the whole-network hIT correlation            
for trained (blue) and random (grey) networks, derived by reweighting layer RDMs            
obtained from either (left) the full original feature space, (middle) the first 100             
components of that feature space, derived via PCA on an independent natural image             
set, and (right) after reweighting the principal components within each layer to predict             
hIT representations. (b) Estimates of the whole-network hIT correlation for untrained           
networks (x-axis) compared to their task-trained counterparts (y-axis), derived by          
reweighting layer RDMs obtained from either (pale blue dots) the full original feature             
space or (dark blue dots) within-layer hIT-fitted representations. 

 

Differences in hIT correspondence between trained models do not well predict           

their performance on other model evaluation metrics 

After task training, but without per-layer hIT-fitting, there were non-trivial differences           

among some DNN architectures in how well they predicted representations in human IT             

(as supported by an equivalence test against the variability in the lower bound of the               

noise ceiling, described above). Did these differences point to the superiority of certain             

DNN architectures as models of the brain over others? We investigated whether higher             

hIT correspondence for unfitted models was associated with higher performance on           

other model evaluation metrics, such as their performance after within-layer hIT fitting,            
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their ability to predict other neural and behavioural datasets, or their object classification             

accuracy. 

 

We found that, for within-layer-unfitted models, there was a positive correlation between            

hIT correlation before and after task training ( Figure 7b; Pearson Skipped r = 0.49, 95%               

CI = [0.16, 0.96], ɑ = 0.05, using the robust correlation toolbox for Matlab (Pernet et al.,                 

2013)). There was no relationship between the performance of trained and untrained            

models after fitting the within-layer representations of each to hIT ( Figure 7b; Pearson             

Skipped r  = 0.07, ns ). 

 

Among relatively shallow neural networks, models with higher object classification          

accuracy tend to provide feature spaces that can better predict the firing rates of              

neurons in macaque IT to object images (Yamins et al., 2014). Among deeper,             

higher-performing networks, this effect appears to saturate, and further improvements to           

classification accuracy no longer translate into higher performance as brain models           

(Schrimpf et al., 2018). We found no significant association, either among unfitted or             

fitted models, between accuracy on the ILSVRC object classification task, and           

correlation with human IT ( Figure 8a; Pearson Skipped r = -0.38 (unfitted), 0.32 (fitted)              

both ns). 
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Figure 8. Better hIT models are not consistently better on other model evaluation             
metrics. (a) Relationship between hIT match and object classification accuracy on the            
ILSVRC dataset for each model (Russakovsky et al., 2015) (b) ability of each model to               
predict neural responses in macaque IT (Majaj et al., 2015; Schrimpf et al., 2018). (c)               
ability of each model to predict categorisation responses in a large set of human              
behavioural judgements on object images (Rajalingham et al., 2018; Schrimpf et al.,            
2018). 
 

One of the central goals of computational visual neuroscience is a model that can              

predict neural representations in visual cortex at multiple levels of granularity, from            

single neuron responses to the aggregated population signals measured via fMRI, and            

can also predict the perceptual properties of our visual systems, as measured in             

behavioural experiments (Funke et al., 2020; Hebart et al., 2020; Rajalingham et al.,             

2018; Schrimpf et al., 2018; Storrs & Kriegeskorte, 2020). We were therefore interested             

in whether models that predicted fMRI-based representational dissimilarities in human          

IT better also predicted electrophysiological or behavioural object perception data          

better. We compared the hIT correlation of each of the trained models to the previously               

reported ability of each architecture to predict macaque IT firing rates in response to              

object images (Majaj et al., 2015; using values reported in Schrimpf et al., 2018), and to                

predict a set of human behavioural object classification judgements (Rajalingham et al.,            

2018; using values reported in Schrimpf et al., 2018). Robust correlation analysis            

revealed no significant relationships with either measure, for either fitted or per-layer            

unfitted models (for macaque IT Figure 8b : Pearson Skipped r = -0.47 (unfitted), 0.19              
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(fitted) both ns; for human behavioural judgements Figure 8c : Pearson Skipped r =             

-0.52 (unfitted), 0.57 (fitted) both ns). 

 

DISCUSSION 

In this work, we investigated a diverse set of DNNs for their ability to predict               

representations estimated from fMRI data of human inferior temporal cortex. Comparing           

the predictive performance of untrained and object-recognition-trained network variants         

we show that task training substantially improves correspondence with representations          

in hIT. This suggests that training on natural stimuli to perform ecologically relevant             

tasks yields a set of computational features that form a better basis for predicting those               

in the human brain. The effect of training is significantly amplified by model fitting,              

indicating that the relative prevalence of different features in hIT does not automatically             

emerge from the particular ImageNet recognition task training used to train the            

networks. Following task-training and two-stage model fitting, the predictive         

performance of all networks, irrespective of depth, on data from unseen stimuli and             

participants, was similarly high, explaining 48% of the rank variance in human IT             

representations. This is similar to the proportion of variance DNNs have previously been             

found to explain in macaque electrophysiological data (Bashivan et al., 2019; Cadieu et             

al., 2014; Yamins et al., 2014). The indistinguishable performance levels of diverse            

architectures, after training and fitting, suggests that the models’ architectural          

specifics—depth, numbers of feature maps, sizes of filters, presence of skipping or            

branching connections—matter less than their shared attributes, as relatively deep          

feedforward hierarchies of convolutional features. 

 

Training DNNs helps inject domain knowledge, and helps to address why brain            

representations contain particular features 

A number of studies has shown that performance-optimised DNNs can explain           

representations in high-level regions of human and nonhuman primate ventral visual           

cortex (Agrawal et al., 2014; Cichy et al., 2016; Güçlü & van Gerven, 2015;              

Khaligh-Razavi & Kriegeskorte, 2014; Kriegeskorte, 2015; Kubilius et al., 2018;          

Schrimpf et al., 2018; Xu & Vaziri-Pashkam, 2020; Yamins et al., 2014; Yamins &              
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DiCarlo, 2016). Our results here replicate and extend upon this widely appreciated            

finding by testing a large variety of models on the same hIT dataset, while at the same                 

time providing estimates for the relative effects of task training and model fitting.  

 

Knowing the size of the effect of task training on a given network’s predictive power               

serves an important role in our goal of understanding ventral stream computations.            

Following the normative approach, training models on an external task can help answer             

the question of why the ventral stream computes what it computes (Kietzmann et al.,              

2018). While a larger set of supervised and unsupervised training objectives needs to             

be investigated, the present results indicate that exposure to natural images is important             

for hIT-like representations, as randomly initialised untrained deep architectures         

performed significantly worse. At the same time, the dramatic benefits of model fitting             

suggest that training on the ImageNet ILSVRC challenge does not lead to the correct              

relative feature distribution.  

 

In addition to answering the why question, task-trained models are advantageous           

because they can harness large training datasets that go beyond what can be             

measured within a given neuroscientific experiment. Vision, like other feats of           

intelligence, requires knowledge about the world. In particular, recognition requires          

knowledge of what things look like. In order to explain task performance and high-level              

responses, therefore, a model needs the parametric capacity to store the requisite            

knowledge. Direct training with millions of natural images provides a highly efficient way             

of arriving at useful visual features deep within network hierarchies. Yet, the differences             

in predictive performance between random and trained versions of the same           

architecture are surprisingly small, suggesting we need to be cautious about interpreting            

the features learned by trained networks as being informative about the particular            

features represented in the ventral stream. 

 

Reweighting features improves hIT correspondence, and reveals common        

performance across diverse models 
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After finding dimensions of important variance, and reweighting to adjust the relative            

strength of those feature dimensions, good prediction of human IT representations in            

our dataset could be achieved by all models, with minimal differences in performance             

among very diverse architectures ranging from 8 to 201 layers in depth. The fitted and               

unfitted performance estimates provide us with different information, and experimenters          

may wish to use or not use fitting depending on their modelling objective.  

 

The substantial benefit of hIT-fitting (124% improvement, for trained models) should not            

be surprising, for at least two reasons. First, the object-recognition-trained networks had            

as their only requirement the classification of 1,000 nameable objects, with a distribution             

highly unlike that found in the human visual diet — for example, the ILSVRC categories               

do not contain “person” or “face” (Mehrer et al., 2017; Russakovsky et al., 2015). The               

human ventral stream, in contrast, must subserve a wide range of behaviours beyond             

recognition such as navigation, interaction, and memory. For some research questions,           

we may be most interested in the performance of models without allowing feature             

reweighting. Model fitting (including encoding models, and single- or two-stage RDM           

reweighting) always deviates models away from their “native” feature coding, by           

allowing the prevalence of different features to be adjusted (Khaligh-Razavi et al., 2017). If              

we are interested in which architectures, training objectives and visual diets give rise to              

distributions of features similar to those found in the human visual system, the unfitted              

performance of models will be most informative. 

 

A second consideration is that, even if an ideal DNN model of human IT were to exist,                 

containing exactly the features and distribution of those features found in the brain, the              

measurement processes giving rise to data would bias the prevalence of measured            

features (Kriegeskorte & Diedrichsen, 2016). This provides one motivation for          

reweighting features — since we know that our measurement processes can introduce            

bias in feature sampling, requiring a model to match the measured prevalence of             

features might be too strict a criterion. Instead of reweighting existing features that             

emerge via task-training, researchers have recently started using data from the human            

ventral stream to directly learn the network features themselves in end-to-end training            
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on natural stimuli (Kietzmann et al., 2019; Seeliger et al., 2019). Such procedures serve              

the important function of verifying that a given network architecture chosen is in             

principle capable of mirroring the right representational transitions observed in the brain. 

 

The future of DNNs as models in visual neuroscience 

The advent of high-performing object-recognition DNNs in computer vision has provided           

visual neuroscience with unprecedentedly good models for predicting visual responses          

in the human and non-human primate brain (Kietzmann et al., 2018; Kriegeskorte, 2015;             

Lindsay, 2020; Schrimpf et al., 2018; Yamins et al., 2014). The deep learning modelling              

framework promises much more, beyond evaluating the effectiveness of off-the-shelf          

feedforward DNNs trained on computer vision tasks. Despite the achievements of such            

models, they are not yet perfect models of biological vision, exhibiting fragility in the              

face of noise and other perturbations (Geirhos et al., 2017, 2020), an over-reliance on              

textural information (Geirhos et al., 2018), and limited ability to predict brain responses             

to artificial stimuli (Xu & Vaziri-Pashkam, 2020). 

 

Going forward, deep learning models in visual neuroscience will more broadly explore            

the space of objective functions, learning rules, architectures (Richards et al., 2019),            

and training diets (Mehrer et al., 2017). Recurrent networks can recycle neural            

resources to flexibly trade speed for accuracy in visual recognition and show great             

promise as models of temporal dynamics in visual cortex (Güçlü & van Gerven, 2017;              

Kietzmann et al., 2019; Nayebi et al., 2018; Spoerer et al., 2017; van Bergen &               

Kriegeskorte, 2020). Unsupervised learning objectives provide rich and ecologically         

feasible ways of getting complex knowledge about the visual world into the brain             

(Fleming & Storrs, 2019; Storrs & Fleming, 2020). Models should be able to predict both               

internal representations and behavioural data (Funke et al., 2020; Jozwik et al., 2017;             

Storrs & Kriegeskorte, 2020), and will be tested using larger datasets, with higher noise              

ceilings, and with stimuli designed to tease apart the differences between model            

predictions (Golan et al., 2019). We have come a long way, but are only just beginning                

to explore the full potential of deep learning in visual neuroscience. 
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