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Abstract

Knowledge of trans-acting expression quantitative trait loci (trans-eQTLs) regulating distant
target genes can reveal biological mechanisms that link single nucleotide polymorphisms (SNPs)
with complex traits. However, identifying trans-eQTLs is challenging because their effect sizes
are typically small and simple regression of millions of SNPs against each gene expression
imposes a severe multiple testing burden. Here we present Tejaas, an efficient method to
discover trans-eQTLs using L2-regularized ‘reverse’ multiple regression of the gene expressions
against each SNP. Tejaas aggregates evidence of small trans-effects from all distant target genes
simultaneously while being robust against the strong correlation of the gene expressions. Tejaas,
coupled with a novel k-nearest neighbors algorithm for unsupervised confounder correction,
discovers 18 851 unique trans-eQTLs across 49 tissues from the GTEx (v8) data. They are
enriched in several functional signatures, including mediation via proximal genes, chromatin
accessibility and occurrence in enhancer and promoter regions. Several trans-eQTLs overlap
with disease-associated SNPs and reveal underlying transcriptional regulation mechanism.
Tejaas is available at https://github.com/soedinglab/tejaas

Introduction 1

Over the last decade, genome-wide association studies (GWASs) have identified over 100 000 unique 2

associations between single nucleotide polymorphisms (SNPs) and human traits [1, 2]. However, 3

our understanding of the underlying mechanism through which SNPs influence the risk of complex, 4

non-infectious diseases has not grown in proportion because more than 90% of the SNPs identified 5

by GWAS do not reside in coding regions [3]. 6

Several lines of evidence suggest the involvement of these SNPs in regulation of intermediate 7

cellular phenotypes [4], including gene expression levels [5], chromatin accessibility [6], chromatin 8

state [7] and protein abundance [8]. SNPs that are associated with the gene expression levels are 9

called expression quantitative trait loci (eQTL). For example, non-coding SNPs lying in cell-type 10

specific enhancer regions can alter the expression of target genes [9], which can then increase or 11

decrease disease risk [10]. 12

The eQTLs, which are proximal (< 1Mb) to the regulated genes are called cis-eQTLs and 13

the eQTLs, which regulate distal genes located elsewhere in the genome, are called trans-eQTLs. 14

Heritability estimates from 856 female twins suggest that, on average, cis-eQTLs explain < 40% of 15

the heritable variation in the gene expression of adipose tissue, lymphoblastoid cell line and skin 16

tissue [11]. For African Americans, cis-eQTLs explain only 12± 3% of the heritable gene expression 17

variation in the lymphoblastoid cell line [12]. The remaining heritability of gene expression levels is 18

generally attributed to trans-eQTLs [11,12]. 19

Discovering trans-eQTLs is important not only for explaining the observed gene expression 20

variations, but also for understanding the transcriptional regulation mechanisms, which can then 21

shed light on the aetiology of complex diseases. For example, a recent ATAC-Seq study [13] identified 22

a single SNP that alters the chromatin accessibility across multiple genomic loci including the BLK 23
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region, which is associated with multiple autoimmune diseases. In spite of such growing evidence of 24

long-range regulation, the systematic discovery of trans-eQTLs [14, 15] has hardly advanced due to 25

the enormous statistical challenges involved. 26

Discovery of eQTLs in silico is possible by analyzing paired genotype and gene expression 27

data collected in parallel from many individuals. Simple linear regression is commonly employed 28

on each SNP-gene pair to test for associations. Cis-eQTLs often have a large effect size and the 29

number of association tests are limited to genes in the vicinity (generally < 1Mb) of each SNP. 30

Therefore, relatively modest sample sizes enable their detection using a simple regression method. 31

In contrast, identification of trans-eQTLs remains a major challenge because they (1) tend to 32

have a smaller effect size, (2) impose a severe multiple testing burden due to the need to examine 33

possible association between each gene and all SNPs across the genome, and (3) are frequently 34

tissue- and context-specific. Therefore, several subjective constraints are imposed to reduce false 35

positives while scanning for trans-eQTLs, for instance, working with a reduced set of SNPs that are 36

associated with disease traits or that have known cis effects. Subjective constraints might sacrifice 37

the discovery of many true trans-eQTLs. 38

Scientists are now trying to use known biological signatures of trans-eQTLs to boost the power 39

to detect them. For example, Rakitsch and Stegle [16] developed a two-stage gene-network linear 40

mixed model (GNetLMM), which implicitly assumed that a trans-eQTL is linked to a target 41

trans-eGene via an intermediate cis-associated gene. This property of trans-eQTLs allowed them 42

to construct local, directed gene-regulatory networks and identify exogenous genes that account 43

for hidden variation in the target trans-eGene. Conditioning the trans-eGene on the exogenous 44

gene improved the power for the trans-eQTL association test. Hore et al. [17] assumed another 45

biological signature: Trans-eQTLs create variation in the expression levels of gene networks across 46

tissues. They decomposed the three-dimensional (individual, genes and tissues) array or tensor 47

using a Variational Bayes (VB) approach with sparsity enforced by a spike-and-slab prior to obtain 48

latent components that represent the major modes of variation in the data. They tested each latent 49

component against genetic variation across the genome to discover underlying QTL effects. The 50

VB optimization results in different latent components in separate runs and the authors ensured 51

robustness by only considering latent components that are persistently found across multiple runs. 52

In this work, we rely on another commonly considered aspect of trans-eQTLs, that they regulate 53

multiple genes simultaneously [18]. Instead of looking at each SNP-gene pair, we try to find SNPs 54

which regulate tens to hundreds of genes. Earlier, Brynedal et al. [19] used cross-phenotype 55

meta-analysis (CPMA) to find trans-eQTLs based on the same property. They evaluated the 56

p -values for the pairwise linear association of a candidate SNP with all available gene expression 57

levels. For the null SNPs with no trans effect, p -values will follow a uniform distribution and the 58

− log p -values will follow a chi-square distribution. A trans-eQTL will be associated with more 59

genes than expected by chance and the distribution of − log p -values will be overdispersed near 60

zero. The CPMA statistic estimates the overdispersion near zero. However a major limitation 61

of this approach arises due to strong correlations among the gene expression levels, which induce 62

strong correlations among the p -values. This leads to overdispersion near zero by chance, increasing 63

the false positive rate and diminishing the power of the method significantly. For example, let us 64

consider a SNP that changes the expression of tens or hundreds of genes. With increasing strength 65

of the gene expression correlation, the probability of finding similar associations to null SNPs by 66

chance increases and the significance of the truly causal SNP decreases. 67

In order to circumvent the problem of correlation among the gene expression levels, we use 68

multiple regression in the reverse direction by explaining the minor allele counts using the gene 69

expression levels. Since available eQTL data generally has significantly lower number of samples 70

than the number of expressed genes, we used an L2 regularizer (equivalent to a Gaussian prior) to 71

limit model complexity. Our motivation is that multiple regression using a regularizer should help 72

find the causal genes, with directly affected genes explaining away the effect of the genes which are 73

merely correlated. There are two major benefits of our approach: (1) Although the effect sizes of 74

the trans-eQTLs on individual genes are small, the signal is accumulated over many genes, making 75

them easier to discover. (2) The multiple testing problem is reduced significantly because each SNP 76

is tested only once instead of being tested against every gene separately. We note that the work of 77

Brynedal et al. [19] also has the same benefits but suffers from the correlation among the single 78

SNP-gene p -values. 79
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Figure 1: Summary of methods implemented in Tejaas. We assume that trans-eQTLs
affect multiple genes simultaneously via some transcription factors (TFs), as shown in the left.
In Joint P-value Analysis (JPA) we analyze the distribution of p -values for the association of a
candidate SNP with all available gene expression levels. The JPA-score (qjpa) estimates whether
this distribution of p -values is enriched near zero. In Reverse Regression (RR), we perform a L2

regularized multiple linear regression using the genotype as target, and gene expression levels as
explanatory variables. The RR-score (qrr) estimates whether there are ‘significant’ number of genes
with non-zero effect sizes.

Results 80

Methods overview. Tejaas (see URLs) is a new tool for discovering trans-eQTLs. It imple- 81

ments the Reverse Regression (RR-score, qrr) for ranking trans-eQTLs and a non-linear KNN 82

correction for removing confounding effects from the gene expression. We wanted to compare 83

Tejaas with CPMA statistic of Brynedal et al. [19] because we use the same underlying assumption. 84

As there are no currently available software for CPMA, we also implemented the Joint P-value 85

Analysis (JPA-score, qjpa) within Tejaas as an alternative. Both the JPA-score and RR-score 86

are summarized in Fig. 1 and briefly introduced in the ensuing paragraphs. For a detailed discus- 87

sion, along with explanation on software usage and choosing model parameters, please refer to 88

Supplementary Sec. 2. 89

JPA evaluates the distribution of p -values of the pairwise linear association of a candidate 90

SNP with all available gene expression levels. The null SNPs (no trans-effect) will have a uniform 91

distribution of p -values, while trans-eQTLs will be associated with more genes than expected by 92

chance, leading to overdispersion near zero. We defined the JPA-score (qjpa) as a statistic which 93

estimates whether the distribution of p -values is significantly overdispersed near zero. 94

Reverse Regression (RR) performs a multiple linear regression using expression levels of all genes 95

to explain the genotype of a candidate SNP. In contrast to conventional methods, the direction of 96

the regression is reversed, with the gene expressions as explanatory variables. In brief, let x denote 97

the vector of scaled and centered minor allele counts of a SNP for N samples and Y be the G×N 98

matrix of preprocessed expression levels for G genes. We model x with a normal distribution whose 99

mean depends linearly on the gene expression through a vector of regression coefficients β: 100

p (x | Y) ∝ N
(
x | βTY, Iσ2

)
. (1)

Generally, the number of explanatory variables (genes) is much larger than the number of samples 101

(G� N) in currently available eQTL data sets. To avoid overtraining, we introduce a normal prior 102

on β, with mean 0 and variance γ2, 103

p(β) = N
(
β | 0, γ2

)
. (2)

This L2 regularization pushes the effect size of non-target genes towards zero. Ideally, a spike-and-
slab prior should work better than the current model but is analytically intractable and is too slow
to approximate. We calculated the significance of the trans-eQTL model (β 6= 0) compared to the
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null model (β = 0) using Bayes theorem to define the RR-score (qrr),

ln

(
P (β 6= 0 | x,Y)

P (β = 0 | x,Y)

)
= qrr + const., where

qrr := xTWx (3)

and, W :=
1

σ2
YT

(
YYT +

σ2

γ2
IG

)−1

Y . (4)

For each SNP, the null distribution of qrr can be obtained by randomly permuting the sample labels 104

of the genotype multiple times. Note that this null distribution will depend on the minor allele 105

frequency and preprocessing of the SNPs but it is computationally infeasible to obtain the null 106

distribution empirically for each SNP independently. We could, however, analytically obtain the 107

expectation and variance of qrr under this permuted null model. Assuming that the null distribution 108

is Gaussian, we calculated a p -value to get the significance of any observed qrr. 109

Our method requires the gene expression matrix Y to have full column rank. Any covariate 110

correction method involving linear regression would also reduce the column rank of Y and cannot 111

be used for preprocessing the gene expression for calculating qrr. Therefore, we developed an 112

unsupervised non-linear correction using k-nearest neighbors, which we call KNN correction 113

(Supplementary Sec. 3.2) to remove confounding effects. 114

Simulation studies. We ran simulations to benchmark Tejaas against existing methods, to 115

compare different preprocessing methods for removing confounders and to estimate the model 116

parameters. Several software packages exist for finding trans-eQTLs using single SNP-gene regression 117

and we used MatrixEQTL [20] as a representative of these methods. As an alternative for CPMA, 118

we used our JPA implementation in Tejaas, henceforth referred to as JPA (∼CPMA). 119

For the simulations, we used the strategy of Hore et al. [17], the details of which are discussed 120

in the Supplementary Sec. 4. In brief, we sampled I = 12 639 SNPs from the real genotype of the 121

Genotype Tissue Expression (GTEx) project to retain the complexity of real data. We simulated 122

the expression levels for G = 12 639 genes, containing non-genetic signals (background correlation 123

and confounding factors) and genetic signals (cis and trans effects). The background correlation of 124

the gene expression was obtained with same covariance structure as that of the artery-aorta tissue 125

of the GTEx project. The strength for confounder effects, cis effects and trans effects were obtained 126

from Hore et al. , while we additionally introduced genotype principal components as confounders 127

to simulate population substructure. 128

For every simulation, we randomly selected 800 SNPs to be cis-eQTLs, out of which 30 SNPs 129

were also trans-eQTLs [17]. The trans-eQTLs regulated the nearest gene via cis effect. This 130

cis target gene was considered a transcription factor (TF) and regulated multiple target genes 131

downstream (excluding other TFs). Let Mtrans be the number of target genes regulated by each 132

TF and |βgj | ∼ Gamma (ψtrans, 0.02) be the effect size of the j th TF on the g th target gene. 133

In Fig. 2a, we show the results for different covariate correction strategies: (1) without any 134

covariate correction (denoted as ‘None’), (2) the most commonly used confounder correction method 135

using residuals after linear regression of the gene expression with known covariates (denoted as 136

‘CCLM’), and (3) KNN correction with 30 nearest neighbors. The GTEx consortium recommended 137

using inverse normal transformation of the gene expression data before applying covariate correction. 138

Hence, the CCLM correction was done on inverse normal transformed gene expression data. The 139

KNN correction was applied directly on the gene expression data because we found that trans-eQTL 140

signals are removed if KNN correction is applied on inverse normal transformed data (Supplementary 141

Fig. S4). We then applied MatrixEQTL, JPA (∼CPMA) and Tejaas (qrr) to find trans-eQTLs 142

from the corrected gene expressions. The ranking with qrr depends on the parameter γ and we 143

set it empirically at γ = 0.2 (Supplementary Fig. S3). For Tejaas, we used the cis-masking option 144

(Supplementary Sec. 2.8) in our software, i.e., removed all genes located within ±1Mb of each SNP 145

to avoid the strong cis-eQTL signals. For each preprocessing option, we performed 20 simulation 146

replicates. We compared the ranking of trans-eQTLs using the partial area under the ROC curve 147

(pAUC) where the false positive rate (FPR) ≤ 0.1. This is because we are only interested in the 148

top predictions. 149

Our results show that the KNN correction is the most effective covariate correction for Tejaas. 150

Unlike simulations, in real data we do not have exact knowledge of the confounders. Hence, it is 151
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Figure 2: Comparison of methods on simulated data. We compared the ranking performance
of finding trans-eQTLs using Tejaas (qrr with γ = 0.2), JPA (∼CPMA) and MatrixEQTL, as
measured with the partial area under the ROC curve (pAUC) where the false positive rate (FPR)
≤ 0.1. The maximum possible pAUC for a perfect method is 0.1 and the expected pAUC for
a random method is 0.005. The mean pAUC for each method was obtained by averaging over
20 simulation replicates. Panel (a) shows different confounder correction options: no covariate
correction (None), covariate correction using linear regression of known confounders (CCLM) on
inverse normal transformed gene expression, and KNN correction (30 nearest neighbors) applied
directly on the gene expression data. Panel (b) shows different strength of trans-eQTL signals
obtained by using (1) different number of target genes for the TF linked with the trans-eQTL,
Mtrans = 150, 100 and 50 from top to bottom panels and (2) different distribution for sampling
the effect sizes of the TF on the target genes, 〈βgj〉 = 0.1, 0.2, 0.3 and 0.4 from left to right
(corresponding to ψtrans = 5, 10, 15 and 20 respectively).

encouraging to note that the KNN correction can remove the background noise in an unsupervised 152

fashion. Covariate correction using linear regression (CCLM) is effective for traditional SNP-gene 153

pair analysis (if the true covariates are known) but unfortunately it reduces the rank of the gene 154

expression matrix and breaks down the Tejaas ranking (Supplementary Sec. 2.5 and Fig. S2). 155

In Fig. 2b, we compared different methods for discovering trans-eQTLs at different signal 156

strengths. The varying signal strength was simulated by tuning (1) the number of target genes 157

(Mtrans) of the TF linked to the trans-eQTL and (2) the effect size of the TF on the target genes, 158

which is sampled from a Gamma (ψtrans, 0.02) distribution with mean 〈βgj〉 = 0.02ψtrans. For 159

discovering trans-eQTLs, Tejaas used KNN correction with K = 30 directly on the gene expression 160

and qrr with γ = 0.2. For MatrixEQTL and JPA (∼CPMA), all known covariates introduced in 161

the previous simulation steps were corrected out using CCLM on the inverse normal transformed 162

gene expression. We compared the accuracy of the methods using the partial area under the 163

ROC curve (pAUC) where the false positive rate (FPR) is ≤ 0.1. We find that JPA (∼CPMA) 164

has slightly lower pAUC than MatrixEQTL, while Tejaas performs best with significantly higher 165

pAUC at all values of Mtrans and 〈βgj〉, even without exact knowledge of covariates. At very low 166

signals, for example with mean effect size of 0.1 and 50 target genes, the ranking performance of all 167

methods are significantly reduced and we would need a larger sample size for efficient trans-eQTL 168

discovery. However, Tejaas improves more rapidly compared to JPA (∼CPMA) or MatrixEQTL 169

with increasing signal strength of the trans-eQTLs. 170

Genotype Tissue Expression trans-eQTL analysis. To illustrate Tejaas in a relevant data 171

set, we analyzed trans-eQTLs across 49 human tissues using data from the Genotype Tissue 172
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Expression (GTEx) project [21–23]. The GTEx project aims to provide insights into mechanisms 173

of gene regulation by collecting gene expression measurements from multiple tissues in human 174

donors. The latest analysis on the GTEx v8 release yielded 143 trans-eQTLs across all tissues, 175

with 121 linked to protein coding genes and 22 linked to lincRNA [24]. Of these trans-eQTLs, 47 176

trans-eQTLs were observed in testis alone. 177
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Figure 3: Summary of trans-eQTLs identified by Tejaas in GTEx. Using Tejaas, we
calculated genome-wide qrr and corresponding p -values for each SNP in 49 GTEx tissues, using
KNN corrected gene expression. The tissues were broadly classified into two groups: 45 tissues
analyzed with prior γ = 0.1, and 4 tissues analyzed with prior γ = 0.006. For each SNP, we
excluded the proximal genes (±1Mb) from analysis. We predicted all SNPs with p < 5 × 10−8

as trans-eQTLs and pruned the list to obtain lead trans-eQTLs in each independent LD region.
(a) The number of lead trans-eQTLs discovered per tissue (note the logarithmic scale on y-axis).
For tissue abbreviations, please refer to Appendix 2 of Supplementary. (b) The proportion of
trans-eQTLs (y-axis) which are found in a given number of tissues (x-axis). More than 75% of
the trans-eQTLs are found uniquely in single tissues. (c) The number of lead trans-eQTLs as
a function of the number of samples in each tissue. Each point is a tissue. For tissues with
more than 250 samples, we observe an exponential increase in the number of trans-eQTLs with
increasing sample size (regression line shown in gray). (d) Trans-eQTLs act via cis-eGenes. On
the x-axis, we show the number of lead trans-eQTLs and on the y-axis, we show the number of
lead trans-eQTLs which also happen to be cis-eQTLs in the GTEx analysis. (e) Representative
example of quantile-quantile plot in two tissues: artery aorta (ARTAORT) and EBV-transformed
lymphocytes (LCL). (f) Corresponding Manhattan plot for the above two tissues, showing the
− log10(p)-values for genome-wide variants.
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We used the GTEx genotype and gene expression data provided in dbGaP (accession phs000424) 178

for our analysis. Details of the preprocessing steps are discussed in Supplementary Sec. 5. In 179

brief, we converted the gene expression read counts obtained from phASER to standardized TPMs 180

(Transcripts per Millions) for all the 49 tissues and used KNN correction with 30 nearest neighbors 181

to remove confounders. We then estimated the optimal values of γ for each tissue. and broadly 182

classified the tissues into two groups: (a) 45 tissues analyzed with γ = 0.1 and (b) 4 tissues analyzed 183

with γ = 0.006 (Supplementary Fig. S8). For each SNP, we removed all corresponding genes from 184

the vicinity (±1Mb) to avoid the relatively stronger cis-eQTL signals inflating qrr. We predicted all 185

SNPs with p < 5×10−8 as trans-eQTLs for further analyses. To avoid double-counting trans-eQTLs 186

that are in LD with one another, we pruned the list of trans-eQTLs by retaining only the best 187

trans-eQTL (with lowest p -value) in each independent LD region defined by r2 > 0.5 in 200kb 188

windows. 189

We discovered 16 929 unique lead trans-eQTLs across all GTEx tissues except brain (Fig. 3a) and 190

1 922 unique lead trans-eQTLs in brain tissues. Consistent with our simulation results, Tejaas is able 191

to discover more trans-eQTLs than traditional methods in GTEx. We find that the trans-eQTLs 192

are tissue-specific, with 77.3% of the trans-eQTLs being discovered in single tissues (Fig. 3b). The 193

number of trans-eQTLs discovered increases exponentially with the number of samples (Fig. 3c) for 194

N > 250, indicating that larger studies would be able to discover more trans-eQTLs. In Fig. 3d, we 195

show that the fraction of trans-eQTLs with a cis-effect vary proportionally with the total number of 196

trans-eQTLs in each tissue, implying that a significant proportion of trans-eQTLs act via cis-eGenes. 197

To note the results of Tejaas at single-tissue level, we show the quantile-quantile plot (Fig. 3e) 198

and Manhattan plot (Fig. 3f) for two representative tissues, namely artery-aorta (ARTAORT) and 199

EBV-transformed lymphocytes (LCL). 200

Functional enrichment analyses of trans-eQTLs. Enrichment of the newly discovered trans- 201

eQTLs in functionally relevant regulatory annotation of the genome provides insight into the 202

underlying biological mechanisms of the trans-eQTLs. Given the lack of experimental validation, 203

the biological relevance of the trans-eQTLs suggested by their functional enrichment in several 204

diverse, independent experiments is indicative of them being true positives. The enrichment of the 205

functional features were measured in comparison to a random set of SNPs obtained by sampling 206

from the GTEx genotype (Supplementary Sec. 5.6). 207

A possible mechanism of trans-eQTLs involves mediation via cis-eQTLs, where the cis-eGene 208

(for example, some known transcription factor) might regulate distant genes. Indeed, we observed a 209

significant enrichment of trans-eQTLs being also cis-eQTLs to proximal genes in the same tissue 210

(Fig. 4a), although our trans-eQTLs were discovered excluding all genes in the vicinity of that SNP. 211

We also observed that the cis-mediator genes have a higher proportion of being protein-coding than 212

the background distribution of GTEx cis-eGenes (Fig. 4d). For this analysis, the cis-eQTLs and 213

their target genes (mediator genes for trans-eQTLs) were obtained from the GTEx portal. Although 214

we rarely found significant enrichment of transcription factors (TFs) among the cis-mediator genes, 215

trans-eQTLs are enriched in proximal locations (< 100Kb) of TFs (Fig. 4a). 216

Reporter assay QTLs (raQTLs) are SNPs that alter the activity of putative regulatory elements 217

(enhancers and promoters), partially in a cell-type-specific manner. In Fig. 4a, we show the 218

enrichment of the trans-eQTLs in two sets of raQTLs for two cell types, K562 and HepG2. The 219

raQTL data was obtained from the survey of regulatory elements (SuRE) [26]. K562 is an 220

erythroleukemia cell line with strong similarities to whole blood tissue and HepG2 cells are derived 221

from hepatocellular carcinoma with similarities to liver tissue. 222

DNase I hypersensitive sites (DHSs) are accessible regions of the chromatin, often considered 223

as markers in the genome for regulatory elements (promoters, enhancers, insulators and other 224

control regions) and are functionally associated with transcriptional activity. We found that the 225

trans-eQTLs occur within these regions more often than expected by chance, showing significant 226

DHS enrichment in most tissues (4b). 227

With well-powered trans-eQTL mapping by Tejaas, it also becomes possible to describe and 228

disentangle tissue-specific enrichments. Using chromatin state predictions from a set of tissues from 229

the Roadmap Epigenomics project [28], we show that the trans-eQTLs are enriched in enhancer, 230

bivalent and repressed polycomb regions of their matched tissues (Fig. 4c). They are depleted in 231

the inaccessible heterochromatin regions for most of the tissues while they show no enrichment or 232
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Figure 4: Functional mechanisms of genetic regulatory effects of trans-eQTLs. We
calculated the enrichment (ρ) of the trans-eQTLs in functionally relevant regulatory annotations of
the genome. (a) Log2 enrichment of lead trans-eQTLs in all non-brain tissues to occur within ±
100Kb distance from transcription factors reported in [25] (cis-TF), to mediate via known cis-eQTLs
reported in the GTEx v8 analysis (Cis-eQTLs) and to occur in reporter assay QTLs (raQTLs)
showing activity on enhancers and promoter [26] in K562 and HepG2 cells. In the heatmap, the
color signifies the log2(ρ) as shown by the scale on the right. On the x-axis, the tissues are labelled
with corresponding abbreviations, and the area of the colored circles represents the number of lead
trans-eQTLs discovered in that tissue. On the left panel, we show the mean log2(ρ) across all
tissues. (b) Log2 enrichment of the trans-eQTLs in all non-brain tissues in DHS regions reported
in [27]. Each colored bar shows the log2(ρ) for the corresponding tissue, and their p -value for
significance is denoted by the stars (p ≤ 0.05 denoted by *, p ≤ 0.01 denoted by ** and p ≤ 0.001
denoted by ***). (c) Tissue-matched log2 enrichments for cis-regulatory elements (labels on the
y-axis). GTEx tissues were matched to their corresponding tissue annotation in the Roadmap
Epigenomics Project [28]. Shown here are tissues, which had a corresponding matching tissue in
Roadmap and had at least 10 trans-eQTLs. The x-axis is the same as in panel (a). On the left, we
show the distribution of log2(ρ) across all tissues with bar plots. (e) Gene type composition for
target genes of cis-eQTLs with trans-eQTL effects. Cis-eQTLs and their target genes were obtained
from the GTEx portal (v8). Here we only show tissues which had at least 10 cis-eQTL mediators.
Each bar correspond to a tissue, with colors proportional to the composition of the mediator genes.
The number of mediator genes in each tissue is mentioned at the top of each bar.

depletion in inactive quiescent regions. 233
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Association with complex diseases. We investigated the overlap of the novel trans-eQTLs 234

discovered by Tejaas with GWAS variants of complex traits to find transcriptional regulatory 235

mechanisms through which SNPs affect complex diseases. We used the GWAS summary statistics 236

from 87 traits harmonized and imputed to GTEx v8 variants with MAF > 0.01 using only European 237

samples by Barbeira et al. [29]. These 87 traits were broadly classified into a range of disease 238

categories. For example, the category “Immune” contained all studies related to immune diseases 239

such as asthma or psoriasis. 240
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Figure 5: Trans-eQTLs are enriched in GWAS SNPs for complex diseases. We calculated
the enrichment of lead trans-eQTLs predicted by Tejaas across all tissues (x-axis) in GWAS hits
of multiple disease categories (y-axis). Each point in the plot represents a pair of tissue and
disease category, the size of the point scales with the log2 enrichment, and the color scales with the
significance (− log10(p)) of the enrichment.

We calculated enrichments for each tissue in each individual trait (Supplementary Sec. 6 and 241

Fig. S13) and each disease category (Fig. 5). We considered all SNPs with imputed p < 10−7
242

to be a significant GWAS hit for the corresponding study or disease category. There are several 243

tissue - disease category pairs that have a clear biological relationship. For example, trans-eQTLs 244

discovered in whole blood are 1.3-fold enriched (p = 0.0014) in the disease category of “Blood”, 245

which contains different studies investigating varying blood cell counts such as those of red blood 246

cells and lymphocytes. Trans-eQTLs in whole blood and heart atrial appendage are 1.7 and 7-fold 247

enriched in cardiometabolic traits, with p = 0.01 and p = 0.008 respectively. The cardiometabolic 248

disease category includes studies on cholesterol levels, blood pressure and coronary artery disease, 249

among others. 250

GWAS-associated trans-eQTLs can provide insight to previously unknown disease pathways. For 251

example, three of our trans-eQTLs rs7864322, rs4297160 and rs10983975 (all in chr9q22) discovered 252

in thyroid tissue were found to be associated with hypothyroidism. These trans-eQTLs control the 253

expression of nearby PTCSC2 lncRNA, a thyroid-specific regulator, and FOXE1 gene, which is 254

known to play an important role in thyroid development. The distant target genes were enriched in 255

the ‘thyroid hormone signaling’ pathway, indicating possible disease mechanism. For instance, the 256

DIO1 gene in chr1 targeted by rs4297160 plays an important role in the production of T3, which is 257

the main mediator of thyroid action. 258

Discussion 259

We developed Tejaas to increase the power for detecting trans-eQTLs by using two key innovations: 260

the reverse regression and the KNN correction. We created a fast, parallel open-source software 261

using these concepts, validated the method in a semi-realistic synthetic data and demonstrated 262

its usefulness on a substantive real data set from the GTEx consortium to discover trans-eQTLs 263

with clear biological and statistical significance. A marginal analysis of single SNP-gene pair or a 264

method like CPMA would not have discovered those trans-eQTLs because of the low effect size of 265

the trans-eQTLs on each single target gene and the strong correlated noise of the gene expression 266

levels. 267
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Tejaas complements other eQTL pipelines that focus on analyzing single SNP-gene pairs. Tejaas 268

excels in discovering trans-eQTLs with multiple small effects by accumulating signals from many 269

genes, which are regulated by that trans-eQTL, while other methods excel in discovering trans- 270

eQTLs with a single large effect on a distant gene. Hence, we expect Tejaas and other existing 271

methods to be complementary rather than overlapping. 272

Distinguishing causation from correlation is a long-standing and well-studied problem in statistics. 273

In human genetics, the low number of samples compared to the explanatory variables (in our case, 274

the number of genes) additionally requires controlling for sparsity. One widely accepted Bayesian 275

approach is to use multiple regression with a sparsity-enforcing prior, for example the spike-and-slab 276

prior, which has been previously used with success in different contexts such as fine-mapping in 277

GWAS [30, 31]. Reverse regression controls for the correlation among the gene expression levels by 278

using them as explanatory variables in a multiple regression setting. However, due to computational 279

limitations, we had to use a normal prior which reduces model complexity but cannot enforce 280

sparsity. In Tejaas, the standard deviation γ of the normal prior is not learnt from the data, but 281

is set empirically. As expected, a high value of γ (> 0.2) would be too wide to reduce the model 282

complexity and lead to overtraining. A low value of γ (< 0.001), on the other hand, will be too 283

restrictive for the model and lead to false signals even with chance correlations of a single gene 284

with a genotype. We encourage future users to make informed decision on the choice of γ for every 285

gene expression profile, for example by first simulating a null set of qrr on a simulated genotype 286

and calculating the non-Gaussian parameter as explained in the supplementary text for the GTEx 287

gene expressions. 288

The current method can be improved by introducing sparsity-enforcing priors on the effect 289

size of the genes. It will not only improve accuracy for finding trans-eQTLs but also remove the 290

dependency on γ. Additionally, it will enable robust variable selection, giving a more refined 291

selection of trans-eQTL target genes. This could replace the current two-stage procedure for finding 292

target genes with single SNP-gene pairwise regression after the trans-eQTLs are discovered by 293

reverse regression. In spite of such multiple anticipated benefits, it remains technically challenging 294

to implement such a method for large data sets. 295

Although reverse regression proved to be a powerful approach for finding trans-eQTLs, a major 296

impediment was that the gene expression could not be corrected for confounders with the standard 297

approach of regressing the known covariates or hidden PEER factors [32] (Supplementary Sec. 3.1). 298

Hence, we proposed the KNN correction, a simple but powerful method for unsupervised confounder 299

correction. Indeed, it corrected for most of the known covariates in GTEx (Supplementary Fig. S7). 300

We expect the KNN correction to become an important tool for confounder correction in future 301

eQTL pipelines. 302

Robust identification of trans-eQTLs and underlying disease pathways is crucial to further our
understanding of genetics and its implication in complex diseases. Alongside larger studies with
more samples, this will inevitably require more powerful methods for analyses. Tejaas represents a
major step towards this goal.
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