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Abstract 
The large diversity of neuron types of the brain, with numerous unique electrophysiological 

characteristics, provides the means by which cortical circuits perform complex operations. To 

quantify, compare and visualize the functional features of single neurons, we have developed a 

MATLAB-based framework, CellExplorer, consisting of three components: a processing module for 

extracting and calculating physiological metrics, a standardized yet flexible data structure, and a 

powerful graphical interface for fast manual curation and feature exploration. This data mining and 

discovery tool allows for inspection of dozens of computed features of neurons from large-scale 

recordings and relate them to those of other neurons in any combination at the speed of mouse clicks. 

The open source design of the CellExplorer permits the optimization of its functions tested against an 

ever-growing community-contributed database. CellExplorer will accelerate linking physiological 

properties of single neurons in the intact brain to genetically identified types. 
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INTRODUCTION 
Discovering novel mechanisms in brain circuits requires high-resolution monitoring of the constituent 

neurons and understanding the nature of their interactions. Identification and manipulation of different 

neuron types in the behaving animal is a prerequisite to decipher their role in circuit dynamics and 

behavior. Yet, currently a large gap exists between neuron classification schemes based on molecular 

and physiological methods (Kepecs and Fishell, 2014; Klausberger and Somogyi, 2008; McBain and 

Fisahn, 2001; Roux and Buzsáki, 2015; Rudy et al., 2011). 

 

An assertion of large-scale single unit recording method is that the relationship between neuronal firing 

and behavioral and cognitive variables can provide insights about the computational role of neurons 

and neuronal assemblies (Barlow, 1972; Buzsáki, 2004). However, exploiting the power of 

correlations between neuronal firing and behavioral variables requires multiple-level characterization 

of single neurons and their interactions along with numerous controls to exclude the contributions of 

many potential hidden variables. Ideally, neuron features need to be described at multiple levels of 

complexity. Long-term simultaneous recordings from large numbers of neurons allows building of 

extensive batteries of neuron properties (Fig. 1). The first level is description of the biophysical and 

physiological characteristics of single neurons. This step includes waveform features, their physical 

position relative to recording sites and other units (Csicsvari et al., 2003), interspike intervals statistics 

and autocorrelograms. These first-level parameters are ‘fixed’ features and can be used to combine 

data sets across animals both within and across laboratories for first-order separation of single cells 

into putative major classes, typically excitatory and inhibitory cells. The second level relates single 

cells to other neurons, and includes cross-correlations, monosynaptic connections, relationship to 

multiple oscillatory and irregular local field potentials (LFP) and unit population patterns. 

Additionally, it can describe long-term firing rates in defined brain states. The third level descriptors 

of single unit activity, ideally, should include the relationship between its  firing patterns and over 

behavioral correlates, including spontaneous motor patterns and autonomic parameters (McGinley et 

al., 2015; Steinmetz et al., 2019). Verification and refinement of these properties can be assisted by 

optogenetic methods, which can relate physiological parameters to genetically identified neuron 

groups (Boyden et al., 2005; Klausberger and Somogyi, 2008; Rudy et al., 2011; Buzsáki et al., 2015; 

Roux and Buzsáki, 2015). Antidromic and unit-LFP coupling techniques provide further assignment 

of single neurons to cortical regions, layers and target projections (Ciocchi et al., 2015; Senzai et al., 

2019; Zhang et al., 2013). 
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This three-level description provides universal features of neuronal activity common to all 

experimental paradigms and, therefore, is communicable across different experiments and 

laboratories. In turn, these universal features can be contrasted and compared with higher level 

correlates, such as learning, memory, decision making, emotions and social interactions. Because these 

inferred high-level correlates of neuronal activity are often paradigm-specific and may differ across 

laboratories, the three-level analysis can guard against mistakenly assigning cognitive roles of 

neuronal spiking that may be explained by measurable overt correlates. Yet, even if all of the above 

information is available separately, factoring out critical variables and their combinations is possible 

only when the multitudes of the single neuron characteristics can be compared flexibly.  

 
Figure 1: Multifaceted single neuron characterization A. Using high-density silicon probes or multiple tetrodes (shown 
is a single shank with 8 recording sites), dozens to hundreds of neurons can be recorded simultaneously. B, Spikes of 
putative single neurons are extracted from the recorded traces and assigned to individual neurons through spike sorting 
algorithms, and assigned to recording sites reflecting the neurons’ depth position in the brain (representation shows neurons 
projected on a silicon probe with 6 shanks). Features of the red neurons are shown in E-F. C. Neuron types are separated 
by first-order physiological parameters. D. Optogenetic and other direct methods can ground units to neuron types.  E. 
Single neurons are further characterized by their monosynaptic connections to other neurons. F. Connection vector of 
converging pyramidal cells to a single interneuron in a low dimensional representation (t-SNE) from physiological and 
functional features. G. Relating spikes to LFP patterns. H-I. Spike pattern correlations with overt behaviors. J, K. Spike 
correlations with experimenter-presented stimuli or situations. L, Spike-control of body extensions and robots. M. Spike 
correlates of cognition. A to D, first-level descriptors. E-G, second-level descriptors. H, I. third-level descriptors. J-M. 
Spike patterns related to inferred variables. 
 
Whether testing a specific hypothesis or data mining of ever-growing data sets for discovery, the 

process can be advanced by fast and user-friendly visualization methods that facilitate efficient 
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hypothesis testing. Toward this goal, we developed an open source framework, CellExplorer, to 

characterize and classify single cell features from multi-site extracellular recordings. It consists of a 

pipeline for extracting and calculating physiological features and a powerful graphical interface that 

allows fast manual curation and feature exploration. 

 

RESULTS 
The CellExplorer architecture and operation consist of three main parts: a processing module for 

feature extraction, a graphical interface for manual curation and exploration, and a standardized data 

structure (Fig 2). A step-by-step tutorial is available in the supplementary section, and more tutorials 

available online (Suppl Movie 1). The first step in running the pipeline is defining the data input. 

               
Figure 2. Three-component framework Single yet extensive processing module (green); Standardized yet flexible data 
structure (yellow); and Graphical interface (purple). Data inputs are compatible with most existing spike sorting algorithms 
(grey). The data structure joins the Processing module with the Graphical interface (* signifies data containers). 
CellExplorer is available on GitHub. The software is open source and built in MATLAB. Reference data shared via Globus 
and a webshare.  

 
Data Input 

Before running the pipeline, relevant metadata should be defined describing the spike format, raw data, 
and experimental metadata (Fig. 2). All experimental metadata are handled in a single MATLAB 
structure, as part of the data structure, with a GUI for manual entry. The platform supports several 
spike sorting data formats, including Neurosuite, Phy, KiloSort, SpyKING Circus, MountainSort, 
IronClust and Wave_Clus (Chung et al., 2017; Hazan et al., 2006; Pachitariu et al., 2016; Quiroga et 
al., 2004; Schmitzer-Torbert et al., 2005; Yger et al., 2018). The raw data (wide-band) is critical for 
comparing derived metrics across laboratories, since preprocessed data vary across laboratories and 
depend on equipment type and filter settings. Yet, for many applications, restricted to examination of 
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unit–behavior relationship and neuronal spike-interaction analysis, entering metadata and spike time 
stamps are sufficient. 
 

Processing Module 

From the input data, the processing module will generate a large battery of spike features 

corresponding to a 3-level description of neuronal firing and their relationship to experiment-specific 

behaviors (Figure 2; Suppl. table 1). The processing module is comprised in a single MATLAB script 

ProcessCellMetrics.m, that computes metrics using a modular structure. The first level description 

provides temporal features, waveform features (filtered and wideband), interspike interval statistics 

(ISIs) and autocorrelograms (ACGs). Next, the unit parameters are used for initial classification of 

single cells into broad classes, default into putative pyramidal cells, narrow waveform interneurons 

and unclassified cells. In experiments with silicon probes, the physical position relative to recording 

sites are also determined using trilateration (Petersen and Berg, 2016; Csicsvari et al., 2003). 

The second level of description relates single neuron spikes to the activity of other neurons and 

population patterns. These metrics include spike cross-correlograms (CCGs), quantitative 

identification of putative monosynaptic connections, phase relationships to various oscillations and 

irregular local field potentials (LFP) and to unit population patterns. Monosynaptic connections, in 

turn, can be used to physiologically identify putative excitatory and inhibitory interneurons and use 

this information to refine the primary unit classification (Fig. 1E; Suppl Fig. 4H) (Barthó et al., 2004; 

English et al., 2017). All parameters can be customized according to the needs of each experimental 

paradigm (Suppl table 1; petersenpeter.github.io/CellExplorer/datastructure/standard-cell-metrics/). 

The third level descriptors are used to assess the relationship between firing patterns of neurons and 

overt behaviors, including immobility, locomotion and running speed. Level 1-3 descriptors can be 

then further refined by optogenetic methods, which can relate physiological parameters to genetically 

identified neuron groups and justify or modify the primary cell type classification (Boyden et al., 2005; 

Buzsáki et al., 2015; Roux and Buzsáki, 2015). When available, antidromic and unit-LFP coupling 

techniques provide additional information about single neurons, such as their position in cortical 

regions, layers and their target projections (Ciocchi et al., 2015; Senzai et al., 2019; Zhang et al., 2013). 

Because these 3-level descriptors of single unit features are universal, they can be readily compared 

with similar analyses across laboratories, independent of paradigm-specific features. The Processing 

Module automatically generates all cell metrics in a standardized fashion. 
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Figure 3: Graphical interface. A. The interface consists of 4 to 9 main plots, where the top row is dedicated to population-
level representations of the neurons. Other plots are selectable and customizable for individual cells (e.g., single 
waveforms, ACGs, ISIs, CCGs, PSTHs, response curves, and firing rate maps). The surrounding interface consists of 
panels placed on either side of the graphs. The left side displays settings and population settings, including a custom plot 
panel, color group panel, display settings panel, and legends. The right side-panel displays single-cell dimensions, 
including a navigation panel, cell assignment panel, tags, and a table with metrics. In addition, there are text fields for a 
custom text filter and a message log. B. Layout examples highlighting three configurations with 1-3 group plots and 3-6 
single cell plots. C. The interface has many interactive elements, including navigation and selection from plots (left mouse 
click links to selected cell and right mouse click selects the cell from all the plots), visualization of monosynaptic 
connections, various data plotting styles (more than 30+ unique plots built-in), supports custom plots; plotting filters can 
be applied by text or selection, keyboard shortcuts, zooming any plot by mouse-scrolling and polygon selection of 
cells. D. Group plotting options: 2D, 3D, raincloud plot, t-SNE, and double histogram. Each dimension can be plotted on 
linear or logarithmic axes. E. Single-cell plot options: waveform, ACG, ISI, firing rate across time, PSTH, response curve, 
firing rate maps, neuron position triangulation relative to recording sites and monosynaptic connectivity graph. F. Most 
single-cell plots have three representations: individual single cell representation, single cell together with the entire 
population with absolute amplitude and a normalized image representation (colormap). 
 
Data structure 

The data structure (summarized in Fig. 2, and supplementary Fig. 1), is structured into data categories 

(containers) and MATLAB structures, which functionally separate related data, making them easily 

interpretable (human-readable) but also makes them machine-readable. The format is derived from 
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buzcode (introduces the containers and a subset of the structs, github.com/buzsakilab/buzcode), 

Neurosuite (neurosuite.sourceforge.net), and the Freely Moving Animal (FMA) Toolbox 

(fmatoolbox.sourceforge.net).  

 

The two most important structures are the session metadata struct and cell_metrics struct.  

session metadata struct: Contains all session-level experimental metadata. It is a modular structure 

which makes it flexible and expandable, intuitive and interpretable, and it offers a single structure 

preventing scattering of metadata. A GUI allows for intuitive manual metadata entry, and a template 

script can assist in importing experimental metadata.   

cell_metrics struct: Modular structure containing all metrics calculated in the processing module. It 

consists of three types of data-fields for handling the diverse types of data: numeric double, character-

cells and structs. Single value metrics are stored in double and character cells for respective numeric 

and character metrics. Time series (e.g., waveforms), group data (e.g. synaptic connections) and 

session parameters are stored in predefined struct modules. This structure makes the fields machine 

readable, including user-defined metrics, providing expandability and flexibility, yet maintaining 

compatibility with the graphical interface. The single struct allows for processing multiple sessions 

together in the graphical interface (batch processing) and is convenient for sharing with collaborators 

and broader scientific community in publications (see Supplementary Section and Supplementary table 

1 for a detailed description. 

Graphical Interface 

The most important component of the framework is the user-friendly Graphical Interface (Fig. 3), 

which allows for characterization and exploration of all single unit metrics through a rich set of high-

quality built-in plots, interaction modes, cell grouping, cross-level pointers, and filters. User-defined 

numbers of plots can be selected any time and replaced on the screen instantaneously. In the typical 

layout, the top row displays population-level representations and the bottom row single cell features. 

Any neuron or multiple neurons can be clicked upon and all other features of the selected neurons are 

automatically updated in the other plots. For easy navigation and selection, the left mouse click links 

to selected cell(s) and right mouse click selects the cell(s) from all the plots. These selected groups can 

be displayed alone or highlighted and superimposed against all data in the same session, multiple 

sessions or the entire data base. Clusters of neurons of interest can be selected by drawing polygons 

with the mouse cursor, and the features of the selected groups will be updated in all other display 

windows. Multiple group selections are also possible for both visualization and statistical comparison. 
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Flexibility is assisted by self-explanatory side panels, including a custom plot panel, color group panel, 

display settings panel, and legend (left side) and single-cell dimensions, navigation panel, cell 

assignment panel, tags, and a table with metrics (right side). A text field is also available for custom 

text filtering and a message logging. Group plotting options include 2D, 3D, raincloud plot, t-SNE, 

and double histogram, each plotted either on linear or logarithmic scales. 

Examples of the flexible operation of the graphical interface module are illustrated in Fig. 4 and 

described in more detail in Suppl Movie 1. Here we begin with motives of monosynaptically connected 

clusters of neurons from the hippocampal CA1 area, as provided by the Processing Module (Fig. 4A). 

An example sub-network of connected neurons is highlighted in panel B with a selected single neuron 

(arrow) to be characterized. In turn, selected level 1, 2 and 3 descriptors of the neuron are displayed in 

panels C to G, respectively. In several panels, the descriptors of the selected neuron are shown against 

all other neurons. Left mouse clicking any neuron will update all the panels, allowing quick screening 

and qualitative evaluation of multiple features of each inspected neuron. Neurons of interest can be 

marked for further quantitative comparisons. Next, level 1-3 descriptions can be compared with 

paradigm-specific features of the selected neuron(s), such as placed field, trial-by-trial variability of 

firing patterns, travel direction firing specificity, spike phase precession relative to theta oscillation 

cycles, and multiple other features predefined by the experimenter. During the data mining process, 

unexpected features and outliers may be noted, instabilities of neurons (‘drifts’) can be recognized and 

artifacts identified. Such experimenter-supervised judgments are also essential for evaluating the 

quality of quantified data processing and estimating potential single neuron-unique features that might 

drive population statistics. 

 

 
 
Figure 4. Data exploration example. A. Connectivity graph with monosynaptic modules found across multiple datasets. 
Cells are color coded by their putative cell types (pyramidal cells in red, narrow interneurons in blue and wide interneurons 
in cyan). B. Highlighted monosynaptic module with single pyramidal cell highlighted (arrow). C. First level descriptors: 
Auto-correlogram, average waveform (top row), the ISI distribution across population and the physical location of the cells 
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relative to the multi-shank silicon probe. D. Firing rate across time for the population, each cell is normalized to its peak 
rate. The session consists of three behavioral epochs: pre-behavior sleep, behavior (track running) and post-behavior sleep 
(boundaries shown with dashed lines). E. Theta phase distribution for all neurons recorded in the same session (red, 
pyramidal cells; blue, interneurons) during locomotion with the selected cell highlighted (black line). F. Average ripple 
across multiple sites of a shank. The site of the selected neuron is highlighted (dashed black line). The polarity of the 
average sharp wave is used to determine the position of the cell relative to the pyramidal layer in CA1. G. Ripple wave-
triggered PSTH for the selected cell aligned to the ripple peak. H. Trial-wise raster for the selected cell across in a maze. 
I. The average firing rate across trials. J. Spike raster showing the theta phase relationship to the spatial location of the 
animal. Each of the three place fields shows phase precession.  
 
Value of large inter-laboratory data sets 

While progress in discovery science often depends on investigator-unique approach to novel insights, 

standardization of data processing and screening is essential in fields where ‘big data’ generation is 

not realistic in small and middle-size laboratories. This applies to the current effort to quantitatively 

relate physiology-based and genetically classified cell ‘types’ (Klausberger and Somogyi, 2008; 

McBain and Fisahn, 2001; Rudy et al., 2011). In each experiment, typically only one or limited number 

of neuron types can be identified. Yet, combining data sets from numerous experiments and different 

laboratories can generate physiological descriptors grounded by optogenetics and other ‘ground truth’ 

data. 

 

Fig. 5 illustrates the feasibility and utility of this approach. Level 1-3 descriptors of neurons recorded 

from the same brain region and layer can be combined from multiple experiments and contrasted to 

data quality of units recorded in a single session. An ever-growing data set allows for more reliable 

modality separation and characterization of neuron types. For example, the initial divisions of neurons 

into putative pyramidal cells, interneurons and unclassified cells can be further refined by quantifying 

monosynaptic connections, increasing confidence of pyramidal cell–interneuron separation as well as 

identifying subsets of the unclassified group as interneurons (Mizuseki et al., 2011; Petersen and 

Buzsáki, 2020; Peyrache et al., 2015; Stark et al., 2013). Combining extracellular spiking with 

intracellular recordings can further help determine cell the excitatory or inhibitory identity of neurons 

(Radosevic et al., 2019). Single neurons identified by opto-tagging or other direct means (Ciocchi et 

al., 2015; Klausberger and Somogyi, 2008; Royer et al., 2012; Senzai et al., 2019; Stark et al., 2012; 

Zhang et al., 2013; Roux and Buzsáki, 2015). can be used to examine and contrast level 1-3 features 

of initially classified neurons into further types. In turn, such ‘ground truth’ data may offer further 

clues for including unrecognized brain region and layer-distinct physiological features of single 

neurons for more effective classification (Senzai and Buzsáki, 2017). An expected outcome is that 

growing data sets containing ground truth-verified neurons will allow that in future experiments 

multiple neuron types recording in the same animal can be reliably identified by physiological 

descriptors only. 
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Data sets obtained from different brain areas, different electrode types and drug conditions can be 

compared. t-Distributed Stochastic Neighbor Embedding (t-SNE) plots can highlight inconsistences 

and differences across recording sessions, identify important regional and layer-specific differences 

and alert for interspecies characteristics (Fig. 5). 

 

 
Figure 5. Reference data, ground truth data and comparison of basic metrics. A. Single session (dots) compared with 
reference data from 30 reference sessions (shaded zones). B. Ground truth cells (optogenetically identified parvalbumin 
[PV]-cells marked with green crosses) projected onto the same sessions as in panel A. C. Example of PSTH of a PV-
expressing cell. Raster plot and average responses to light pulses visualized in CellExplorer. D. The CellExplorer 
framework allows for sharing ground truth and reference data directly with the end user. End users can upload their ground 
truth data to the CellExplorer GitHub repository for communal sharing. E. Distributions of spike amplitudes and waveform 
width (quantified by the trough to peak metrics) for the three groups from multiple CA1 recording sessions. Note inverse 
relationship between spike amplitude and waveform for putative interneurons. F-H. t-SNE representations of putative cell 
types (F), species (G, rat and mouse in magenta and red, respectively) and subjects (H, colors scaled across subjects) for 
hippocampal neurons. I-M: Comparison of spike features of neurons recorded from CA1 pyramidal cells and visual cortex 
pyramidal cells. Significant differences are observed across several basic metrics, including CV2 (I), burst index (J), trough-
to-peak (K), waveform asymmetry (L) and waveform peak voltage (M). 
 
 
 
 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 10, 2020. ; https://doi.org/10.1101/2020.05.07.083436doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.07.083436
http://creativecommons.org/licenses/by-nd/4.0/


Benchmarking 

Several tests were performed to characterize the speed performance of CellExplorer under various 

conditions, testing display features and computation of various features. The results are summarized 

in Fig. 6. 

 

 
Figure 6. Benchmarks of the CellExplorer user interface (UI). A. UI display times when switching between units for 
the three layouts shown in figure 3B (approximately 110 ms for layout 1+3; blue lines. 180 ms for layout 3+3; green lines) 
and 290 ms (layout 3+6; in red), respectively. Dark gradient colored lines (dark red, green and blue) indicate where there 
were no limits on the number of traces plotted for single cell plots, and the light gradient lines show screen update times 
with a maximum of 2000 random traces. B. Display times for single cell plots, quantified by the number of cells displayed. 
The plots contributing most to an increased display time are the plots with trace representations for each cell (ACGs, ISIs, 
waveforms, ISIs, theta phase) and the connectivity graph. By default, a maximum of 2000 traces are drawn capping the 
processing time below ~80 ms for all plots except the connectivity graph. C. Benchmarking of cell metrics file readings. 
On average, 230 cells can be loaded per second quantified across 180 sessions with various cell count (red dots and linear 
fit in red). By storing the data on a local SSD, the loading time could be decrease and attain cell loading above 500 cells 
per second. 
 
Open source database 

The CellExplorer takes advantage of web-based resources (Chon et al., 2019; Petersen et al., 2018)  

https://atlas.brain-map.org/, https://buzsakilab.com/wp/public-data/) for discovering, viewing and 

comparing physiological features of single neurons. Data sharing allows building large data banks for 

discovery science, cross-laboratory interactions and reproducibility control. 

 

DISCUSSION 
We have developed CellExplorer, a transparent, open source, MATLAB-based resource for 

characterizing single neurons and neuron types, using physiological features. The CellExplorer 

platform enables visualization and analysis for users without the need to write code. Its modular format 

allows for fast and flexible comparisons of a large battery of preprocessed physiological characteristics 

of single neurons and their interactions with other neurons as well as their correlation with 

experimental variables. Code is publicly available on GitHub for users to download and use the same 

standardized processing module on their local personal computer (Windows, OS X and Linux). 
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CellExplorer offers step-by-step online tutorials for first-time users. It is linked to the Allen Institute 

reference atlas (Chon et al., 2019), https://atlas.brain-map.org/) and can be expanded to include other 

online resources that provide annotated data on putative neuron types. The open source design of the 

CellExplorer permits the optimization of current standardized components tested against an ever-

growing community-contributed data base and will accelerate linking genetically identified neuron 

types with their physiological properties in the intact brain. 

 

Multiple-level characterization and classification of single neurons 

To correctly interpret neuron firing-behavior/cognition relationships, numerous controls are needed to 

rule out or reduce the potential contribution of spurious variables. The Processing Module generates a 

battery of useful metrics. In addition to first-level description of the biophysical and physiological 

characteristics of single neurons, it computes brain state-dependent firing rates, insterspike interval 

variation, and relationships between single neurons and spiking activity of the population and LFP 

(second level). When spontaneous (control) behaviors are also available, it describes the relationship 

between single neuron firing patterns and routine behavioral parameters, such as immobility, walking, 

running speed, respiration and pupil diameter (third level). These third level descriptors may assist in 

appropriately attributing spiking activity to inferred behavior, such as perception or cognition. Because 

these 3-level descriptors are independent of particular experimental paradigms, they can be used as 

benchmarks for assessing consistencies across experiments performed by different investigators in the 

same laboratory or across laboratories. Concatenating numerous data sets obtained from the same brain 

regions and layers will create a continuously growing data bank. In turn, these data-rich sets may allow 

identifying and quantifying reliable boundaries among putative clusters and suggest inclusion and 

exclusion of parameters for more refined separation of putative neuronal classes. Sets from different 

brain regions can be readily compared and differences recognized. 

 

Although several statistical tests are available in the CellExplorer, it is not meant to be a substitute for 

rigorous quantification. Instead, it is designed as a tool for facilitating interpretation and discovery. It 

is a complementary approach to dimensionality reduction and population analysis methods. Because 

assemblies of neurons consist of highly unequal partners (Buzsáki and Mizuseki, 2014), knowledge 

about neuron-specific contribution to population measures is critical in many situations (Nicolelis and 

Lebedev, 2009). Such inequality may stem from unknowingly lumping neurons of different classes 

together into a single type and because even members of the same type belong to broad and skewed 

distribution and may contribute to different aspects of the experiment (Grosmark and Buzsáki, 2016). 
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Two key features make the CellExplorer platform highly efficient: flexibility and speed. Flexibility is 

provided by the numerous parameters as outputs of the Processing Module. High speed is achieved by 

using precomputed metrics and limiting the computation time in the user interface. A caveat is that 

online alteration of the plots and metrics is not allowed. Yet, such changes can be performed by 

working with the raw spike data. Multiple features of single neurons, displayed on the same screen, 

can be compared. Moving from one neuron to the next requires only mouse click. These features can 

be compared separately or superimposed against another neuron, all neurons in a session or the entire 

data base. Unexpected features can be noted, obvious artifacts can be deleted. When unusual sets are 

discovered in any display, all other features of the same set can be rapidly compared and contrasted to 

other sets. Neuron clouds can be selected by drawing polygons around them and regrouped in any 

arbitrary configuration. Inspection of data sets containing even several thousand neurons (Steinmetz 

et al., 2019) is realistic because minimal computing time is required in the graphical interface and 

because in most conditions only small subsets need individual inspection and quality control. 

 

Various classification schemes have been developed to assign extracellular spikes to putative 

pyramidal cells, interneurons and their putative subtypes, on the basis of a variety of physiological 

criteria. These include waveform features, firing rate statistics in different brain states, embeddedness 

in various population activities, firing patterns characterized by their autocorrelograms, and putative 

monosynaptic connections to other neurons (Barthó et al., 2004; Csicsvari et al., 1999; Fujisawa et al., 

2008; Mizuseki et al., 2009; Okun et al., 2015; Sirota et al., 2008). Increasingly larger data sets will 

likely improve such physiology-based classification. Yet, the ‘ground truth’ for these classifying 

methods is largely missing. Optogenetic tagging (Boyden et al., 2005) offers such grounding by 

connecting putative subtypes based on physiologically distinct features to their molecular identities. 

Because in a single animal only one or few neuron types can be tagged optogenetically or by other 

direct methods (Fosque et al., 2015; Klausberger and Somogyi, 2008), refinement of a library of 

physiological parameters should be conducted iteratively, so that in subsequent experiments the 

various neuron types can be recognized reliably by using solely physiological criteria (English et al., 

2017; Royer et al., 2012; Senzai and Buzsáki, 2017, 2017; Roux and Buzsáki, 2015). In turn, 

knowledge about the molecular identity of the different neuronal components of a circuit can 

considerably improve the interpretation of correlational observations provided by large-scale 

extracellular recordings.  
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Data sharing 

Above, we described one of the many possible examples that can benefit from large databases. 

Currently, tens to hundreds of thousands of pre-processed neurons exist across laboratories in different 

brain regions, which can be streamlined by the Processing Module in an identical fashion, and 

displayed and compared in the same coordinate system. Our laboratory welcomes shared data sets 

from other research groups for enhancement and comparison with our publicly-accessible database 

(buzsakilab.com/wp/public-data/). The single prerequisite for quantitative comparison of data across 

laboratories is to make wideband data available (≤ 3 Hz to ≥ 8 kHz; ideally ≥ 20 kHz sampling rate) 

so that all data are processed the same way. 

 

Through our web resource (Petersen et al., 2018), we host > 1,000 publicly shared data sets of long (4 

to 24 hrs), large-scale recordings of single units from multiple brain structures, including hippocampus, 

entorhinal, prefrontal, somatosensory and visual cortices, thalamus, amygdala and septum 

(buzsakilab.com/wp/public-data/). Long-recordings have the advantages of defining brain state-

dependent characteristics of neurons, such as their firing rates and patterns during waking and sleep, 

unmasking the ‘hidden’ or relatively silent majority of neurons (Mizuseki and Buzsáki, 2013; Shoham 

et al., 2006) and discovering their connectivity patterns (English et al., 2017). These data already 

provide benchmarks assessing the reliability of initial neuron classification into broad pyramidal cell 

and interneuron groups, many of which are identified physiologically by their monosynaptic 

connections. They also offer normative data about spikes features, firing rates and spike dynamics. 

These features can serve as benchmarks for comparison with data collected in any other laboratory. 

 

Development and availability 

Development takes place in a public code repository at github.com/petersenpeter/CellExplorer. All 

examples in this article have been calculated with the pipeline and plotted with the CellExplorer. 

Extensive documentation, including installation instructions and tutorials, is hosted at 

petersenpeter.github.io/CellExplorer/. The CellExplorer is available for MATLAB 2017B and 

forward, and for the operating systems Windows, OS X and Linux. More information can be found at 

petersenpeter.github.io/CellExplorer/. 
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SUPPLEMENTARY SECTION 
 

 
Supplementary figure 1: Data types. The data structure. A detailed description is available online at: 
petersenpeter.github.io/CellExplorer/datastructure/data-structure-and-format/ 

 

 
Supplementary figure 2: Primary MATLAB functions of the CellExplorer framework. From left to right: 
sessionTemplate: a template script which automatically can extract and import relevant metadata. gui_session: a graphical 
user interface (GUI) for manual inspection and entry of metadata; ProcessCellMetrics: the processing module. 
CellExplorer: the main graphical interface of CellExplorer. CellExplorer_Preferences: a preference file for the graphical 
interface. gui_MonoSyn: GUI for manual curation of monosynaptic connections. gui_DeepSuperficial: a GUI for manual 
curation of the depth assignment of neurons based on depth-related changes of sharp-wave-ripples (Mizuseki et al., 2011). 
LoadCellMetricsBatch: Batch loading script for combining cell_metrics structs across sessions. LoadCellMetrics: Script 
for loading cell_metrics with built-in common text filters (putative cell type, brain region, synaptic effect, label, animal, 
tags, groups, etc). 
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Supplementary Figure 3. Flow charts. A) Creating meta data structure for each recording session. B) Running the 
pipeline. C) Running the CellExplorer module for manual curation and exploration. CellExplorer data structures are 
highlighted in yellow, MATLAB functions in green and the input data in grey. Buzsáki lab database input is in purple 
(https://buzsakilab.com/wp/public-data/). 
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Supplementary Figure 4. Single cell plots. Most data have three representations: single neurons (with neuronal 
connections highlighted for a subset of the plots), all neurons (absolute or normalized representations) and image 
representation (normalized data, with selected cell highlighted by a white line). A-F, H-J: a single narrow interneuron, G: 
Place field of a pyramidal cell on a linear track. A. Waveform representations: waveform of a chosen single neuron, 
waveforms of all neurons (z-scored) and their image representation. White line corresponds to the single neuron. B. 
Autocorrelogram (ACGs) for the single neuron, ACG for all neurons and their image representation. C. ACGs on log scale 
(single, all, image).  D, E. Interspike interval distributions (ISIs) on a log scale (single, all image) for two different 
normalizations (D, rate (Hz); E, occurrence). F. Theta phase spike histogram for the single interneuron (black line) and 
those of pyramidal neurons monosynaptically connected to the interneurons (blue lines; left) and all neurons in the same 
session (middle and right panels). G. Firing rate map for a pyramidal cell. Session average (left) and trial-wise heatmap. 
H. Connectivity graph showing all monosynaptic modules in the dataset. A module is highlighted and enhanced (top right). 
I. physical location of neurons recorded in the same animal using trilateration. Eight-shank silicon probe recording (8 sites 
on each shank). Red, pyramidal cells. Blue, interneurons. Monosynaptic connections between two pyramidal cells and a 
target interneuron is also shown (blue lines) J. Average waveform across channels of the single interneurons shown in 
most panels. 
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Supplementary Figure 5. Population data plots. Top row: The three standard representations: custom plot (A), classic 
representation (B), and t-SNE plot (C). Bottom row: The custom plot has 3 further data representations: 3-dimensional 
plot with custom marker size (D), 2D plot with marginal histograms (E) and one-dimensional raincloud plots (F), 
combining 1D scattered neurons with error bars histogram and KS significance test (line thickness represent significance 
levels). Color-coded according to cell types: pyramidal cell (red), narrow interneuron (blue), wide interneuron (cyan). 
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Metrics Description/Calculation Type
General metrics
general struct containing general information about the session struct

  .basename the name of the session char

  .basepath the path to the raw data char

  .clusteringpath the relative clustering path char

  .cellCount number of cells in the current session double

  .ccg cross correlogram matrix between cell pairs within a session 201xNxN double

  .ccg_time time vector describing the time bins in the ccg (standard: -100ms:1ms:100ms) 201x1 double

animal (name) Unique name of animal 1xN cell array of charactor vectors

general.animal struct containing animal specific information struct

  .sex Sex of the animal [Male, Female, Unknown] char

  .species Animal species [Rat, Mouse,...] char

  .strain Animal strain [Long Evans, C57B1/6,...] char

  .geneticLine Genetic line of the animal char

sessionName Name of session 1xN cell array of charactor vectors

general.session struct containing session specific information struct

  .sessionType [Acute, Chronic] 1xN cell array of charactor vectors

  .spikeSortingMethod char

  .investigator char

UID The ID for each cell unique within a session 1xN double

cellID 1xN double

cluID clustering ID from spike sorting pipeline 1xN double

batchIDs only present in batch sessions. The batch ids the cells 1xN double

putativeCellType Putative cell type 1xN cell array of charactor vectors

brainRegion Brain region acronyms from Allan institute Brain atlas. 1xN cell array of charactor vectors

spikeGroup Spike group: Shank number / spike group 1xN double

labels Custom labels 1xN cell array of charactor vectors

groups struct containing groups struct

tags struct containing tags struct

Spike event-based metrics
spikeCount Spike count of the cell from the entire session 1xN double

firingRate Firing rate in Hz: Spike count normalized by the interval between the first and the last spike. 1xN double

cv2 Coefficient of variation 1xN double

refractoryPeriodViolation Refractory period violation (‰): Fraction of ISIs less than 2ms. 1xN double

burstIndex_Mizuseki2012 Burst index: Fraction of spikes with a neighboring ISI < 6ms as defined in Mizuseki et al. 1xN double

Waveform metrics
waveform struct containing waveform information struct

  .filt Average filtered waveform from peak chanel (µV) 1xN cell array of 1xM numeric vectors

  .filt_std Std of average filtered waveform (µV) 1xN cell array of 1xM numeric vectors

  .raw Average raw waveform from peak chanel (µV) 1xN cell array of 1xM numeric vectors

  .raw_std Std of average raw waveform (µV) 1xN cell array of 1xM numeric vectors

maxWaveformCh peak channel (0-indexed) 1xN double

maxWaveformCh1 peak channel (1-indexed) 1xN double

maxWaveformChannelOrder linearized channel position

polarity waveform polarity

troughToPeak waveform trough to peak interval (µs) 1xN double

ab_ratio waveform peak to peak ratio 1xN double

peakVoltage amplitude of the filtered waveform (µV). max(waveform)-min(waveform). 1xN double

troughtoPeakDerivative derivative of waveform trough to peak interval (µs) 1xN double

ACG metrics
acg struct containing autocorrelogram information struct

  .wide [-1000ms:1ms:1000ms] 1xN cell array of 1xM numeric vectors

  .narrow [-50:0.5:50] 1xN cell array of 1xM numeric vectors

  .log10 [log-intervals spanning 1ms:10s] 1xN cell array of 1xM numeric vectors

thetaModulationIndex defined by the difference between the theta modulation trough (mean of autocorrelogram 

bins 50-70 ms) and the theta modulation peak (mean of autocorrelogram bins 100-140ms) 

1xN double

ACG fit metrics Fit to the autocorrelogram with a triple-exponential equation ( fit = cexp(-x/τ_decay)-dexp(- 1xN double

acg_asymptote the asymptote of the ACG fit 1xN double

acg_c ACG fit: amplitude 1xN double

acg_d ACG fit: amplitude 1xN double

acg_fit_rsquare ACG fit R-square (the goodness of the fit) 1xN double

acg_h ACG fit: amplitude 1xN double

acg_refrac ACG fit: refractory period (ms) 1xN double

acg_tau_burst ACG fit: tau bursts (ms) 1xN double

acg_tau_decay ACG fit: tau decay (ms) 1xN double

acg_tau_rise ACG fit tau rise (ms) 1xN double

burstIndex_Royer2012 Burst index (Royer 2012) 1xN double

burstIndex_Doublets Burst index doublets 1xN double

ISI metrics
isi struct with interspike interval information struct

  .log10 [log-intervals spanning 1ms:10s] 1xN cell array of 1xM numeric vectors

Putative connections
putativeConnections putative connections determined from cross correlograms struct

putativeConnections.Excitatory excitatory connection pairs 2xP double

putativeConnections.Inhibitory inhibitory connection pairs 2xP double

synapticEffect Excitatory' or 'Inhibitory' 1xN cell array of charactor vectors

synapticConnectionsIn Synatic connections count 1xN double

synapticConnectionsOut Synatic connections count 1xN double

Event metrics
events event time series struct

  .'name' the event curve 1xN cell array of 1xM numeric vectors

name'_modulationIndex modulation index for each event types 1xN double

name'_modulationSignificanceLevel modulation significance level for each event types

name'_modulationPeakResponseTime modulation peak response time for each event types 1xN double
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Table 1: Cell metrics. An incomplete list of the standard cell metrics. The full list is available online at 
petersenpeter.github.io/CellExplorer/datastructure/standard-cell-metrics/ 
 
Supplementary Movie 1 

 
The supplementary movie is available at: buzsakilab.com/CellExplorer/CellExplorerMovie.mp4  
 
TUTORIALS 
A general tutorial on the full pipeline is described below. There are many more detailed tutorials 
online, covering: how to generate the metadata struct, the manual curation process, generating spike 
raster plots, the manual curation process of monosynaptic connections, performing opto-tagging, using 
ground truth data, export figure. 

Tutorials are available online at: petersenpeter.github.io/CellExplorer/tutorials/tutorials/ 

Firing rate map metrics
firingRateMaps struct with (spatial) linearized firing rate maps struct

  .firingRateMaps The mean firing rate map 1xN cell array of 1xM numeric vectors

spatialCoverageIndex Spatial coverage index. Defined from the inverse cumulative distribution, where bins are 
sorted by decreasing rate. The 75 percentile point defines the spatial coverage by the fraction 
of bins below and above the point (defined by Royer et al., NN 2012)

1xN double

spatialGiniCoeff Spatial Gini coefficient. Defined as the Gini coefficient of the firing rate map 1xN double

spatialCoherence Spatial Coherence. Defined by the degree of correlation between the firing rate map and a 
hollow convolution with the same map

1xN double

spatialPeakRate Spatial peak firing rate (Hz). Defined as the peak rate from the firing rate map 1xN double

placeFieldsCount Place field count: Number of intervals along the firing rate map that fulfills a set of spatial 
criteria: minimum rate of 2Hz and above 10% of the maximum firing rate bin and minimum of 
4 connecting bins. The cell further has to have a spatial coherence greater than 0.6 (Mizuseki 

1xN double

spatialSplitterDegree 1xN double

placeCell Place cell (determined from the Mizuseki spatial metrics) 1xN binary

Manipulation metrics
manipulations manipulations time series struct

  .'manipulationName' 1xN cell array of charactor vectors

Response curves metrics
responseCurves response curves struct

  .'responseCurveName' 1xN cell array of charactor vectors

Quality metrics
refractoryPeriodViolation Refractory period violation (‰): Fraction of ISIs less than 2ms 1xN double

isolationDistance Isolation distance as defined by Schmitzer-Torbert et al. Neuroscience. 2005. 1xN double

lRatio L-ratio as defined by Schmitzer-Torbert et al. Neuroscience. 2005. 1xN double

Hippocampal sharp wave ripple metrics
deepSuperficial Deep-Superficial region assignment [Unknown, Cortical, Superficial, Deep]
deepSuperficialDistance Deep Superficial depth relative to the reversal of the sharp wave (µm) 1xN double

Hippocampal theta oscillation metrics
thetaPhasePeak Theta phase peak 1xN double

thetaPhaseTrough Theta phase trough 1xN double

thetaEntrainment Theta entrainment 1xN double

thetaModulationIndex Theta modulation index. determined from the ACG 1xN double

Firing rate stability metrics
firingRateGiniCoeff The Gini coefficient of the firing rate across time 1xN double

firingRateStd Standard deviation of the "firing rate across time" divided by the mean' 1xN double

firingRateInstability Mean of the absolute differential "firing rate across time" divided by the mean. 1xN double

Database metrics
entryID database entry id 1xN double

sessionID database session id 1xN double
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General tutorial 
This tutorial shows you the full processing pipeline, from generating the necessary session metadata 
using the template, running the processing pipeline, opening multiple sessions for manual curation in 
the CellExplorer, and finally using the cell_metrics for filtering cells, by two different criteria. The 
tutorial is also available as a Matlab script: ( tutorials/CellExplorer_Tutorial.m ). 

1. Define the basepath of the dataset to process. The dataset should consist of a basename.dat (a 
binary raw data file),  a basename.xml  (recommended; not required) and spike sorted data. 
basepath = '/your/data/path/basename/'; 

cd(basepath) 

2. Generate session metadata struct using the template function and display the metadata in a GUI 
session = sessionTemplate(basepath, 'showGUI',true); 

In the GUI you can put in relevant metadata. Please pay attention to the general, extracellular 
and spikesorting tabs and verify all metadata. 

3. Run the cell metrics pipeline ProcessCellMetrics  using the session struct as input 
cell_metrics = ProcessCellMetrics('session', session); 

4. Visualize the cell metrics in the CellExplorer 
cell_metrics = CellExplorer('metrics', cell_metrics);  

5. Open several sessions from paths 
basenames = {'session1', 'session2'}; 

clusteringpaths = {'path/to/session1','path/to/session2'}; 

cell_metrics = LoadCellMetricsBatch('clusteringpaths', clusteringpaths, 'basenames', basenames); 

cell_metrics = CellExplorer('metrics', cell_metrics); 

6. Curate cells and save the metrics 
7. Now to incorporate the cell metrics into your analysis you can use the load function that has 

filters built-in:  
1. Get cells that are assigned as Interneuron 
cell_metrics_idxs1 = loadCellMetrics('cell_metrics', cell_metrics, 'putativeCellType', {'Interneuron'}); 

2. Get cells that are has groundTruthClassification as Axoaxonic 
cell_metrics_idxs2 = loadCellMetrics('cell_metrics', cell_metrics, 'groundTruthClassification', {'Axoaxonic'}); 
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