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Abstract: 12 

 Over 1000 different species of microbes have been found to live within the human oral 13 

cavity where they play important roles in maintaining both oral and systemic health. Several 14 

studies have identified the core members of this microbial community, however, the factors that 15 

determine oral microbiome composition are not well understood. In this study we exam the 16 

salivary oral microbiome of 1049 Atlantic Canadians using 16S rRNA gene sequencing in order 17 

to determine which dietary, lifestyle, and anthropometric features play a role in shaping 18 

microbial community composition. Features that were identified as being significantly associated 19 

with overall composition were then additionally examined for genera and amplicon sequence 20 

variants that were associated with these features. Several associations were replicated in an 21 

additional secondary validation dataset. Overall, we found that several anthropometric 22 

measurements including waist hip ratio, height, and fat free mass, as well as age and sex, were 23 
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associated with oral microbiome composition in both our exploratory and validation cohorts. We 24 

were unable to validate dietary impacts on the oral microbiome but did find evidence to suggest 25 

potential contributions from factors such as the number of vegetable and refined grain servings 26 

an individual consumes. Interestingly, each one of these factors on their own were associated 27 

with only minor shifts in the oral microbiome suggesting that future biomarker identification for 28 

several diseases associated with the oral microbiome may be undertaken without the worry of 29 

confounding factors obscuring biological signal. 30 

Importance: 31 

 The human oral cavity is inhabited by a diverse community of microbes known as the 32 

human oral microbiome. These microbes play a role in maintaining both oral and systemic health 33 

and as such have been proposed to be useful biomarkers of disease. However, to identify these 34 

biomarkers, we first need to determine the composition and variation of the healthy oral 35 

microbiome. Within this report we investigate the oral microbiome of 1049 healthy individuals 36 

to determine which genera and amplicon sequence variants are commonly found between 37 

individual oral microbiomes. We then further investigate how lifestyle, anthropometric, and 38 

dietary choices impact overall microbiome composition. Interestingly, the results from this 39 

investigation showed that while many features were significantly associated with oral 40 

microbiome composition no single biological factor explained a variation larger than 2%. These 41 

results indicate that future work on biomarker detection may be encourage by the lack of strong 42 

confounding factors.  43 

 44 

Introduction: 45 
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 The human oral cavity is colonized by numerous bacteria, fungi, viruses and archaea that 46 

make a rich microbial community known as the oral microbiome. This microbial community is 47 

one of the most diverse sites of microbial growth within the human body being only secondary to 48 

the colon (1). To date over 1000 different bacterial species have been found to colonize the oral 49 

cavity (2) on various surfaces including the tongue, teeth, cheek, and gingivae (1). These 50 

communities of microbes are responsible for various functions that can both maintain and 51 

deplete oral health. For example, the presence of biofilms containing bacterial species such as 52 

Streptococcus mutans and other aciduric bacteria can damage hard dental surfaces and lead to 53 

dental caries (3, 4). Furthermore, the oral microbiome is known to play a role in a myriad of 54 

other oral diseases including oral cancer (5),  periodontitis (6, 7), and gingivitis (8, 9). In addition 55 

to well-established associations between oral and cardiac health (10), recent work has also begun 56 

to show that the oral microbiome may play a role in the health of other distal sites within the 57 

human body. This includes diseases such as colorectal cancer (11, 12), pancreatic cancer (13), 58 

prostate cancer (14), atherosclerosis (15) and inflammatory bowel disease (16).  59 

 Due to the associations between these diseases and the oral microbiome, its composition 60 

has been proposed as a useful biomarker for human health and disease. With this in mind, 61 

various studies have attempted to identify core members of the “healthy” oral microbiome (1, 62 

17–20) to help aid in disease detection. These studies have uncovered that, at the genus level, the 63 

oral microbiome remains relatively stable between individuals(1, 20) and across multiple 64 

geographic locations(18, 21), but at deeper taxonomic resolutions, it can be variable. This 65 

variability has indicated that dietary, anthropometric or sociodemographic factors may play a 66 

role in shaping the oral microbiome(17, 19, 22–25). Various studies have focused on individual 67 

factors that may cause shifts in the oral microbiome such as ethnicity(1, 25), alcohol 68 
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consumption(26), smoking(27), obesity(28, 29), and dietary patterns(30). However, to date only 69 

a small number of studies have looked at the relative contributions of each of these factors to oral 70 

microbiome variability in a single cohort. Takeshita et al., examined the oral microbiome of 71 

2343 adults living in Japan using 16S rRNA gene sequencing and identified that higher 72 

abundances of Prevotella, and Veillnella species were associated with old age, higher body mass 73 

index (BMI), and poor overall oral health (19). Another study by Renson et al., in adults living in 74 

New York city also found that variation in taxonomic abundances could be linked to marital 75 

status, ethnicity, education and age (23). Further, work by Belstrøm et al., examined the oral 76 

microbiome of 292 Danish individuals with low levels of dental caries and periodontitis using 77 

microarrays and found that while socioeconomic status impacted oral microbiome profiles, diet, 78 

BMI, age, and sex had no statistical impact on microbial abundances (22). This study, however, 79 

was only able to identify the abundances of taxa that had a corresponding probe which, could 80 

explain its disagreement with other work. Overall, these studies have indicated that both 81 

biological differences such as sex and BMI as well as lifestyle and sociodemographic differences 82 

can impact oral microbiome composition.   83 

While these studies have shed light on the variation of the oral microbiome, it is currently 84 

unclear to what extent these factors play a role in shaping the oral microbiome of an individual. 85 

Without identifying the effect size of each of these factors relative to one another, it is difficult to 86 

identify the correct variables that should be controlled for in case-control studies of the oral 87 

microbiome. Furthermore, each of these studies have identified different taxa that are impacted 88 

by various factors such as sex, BMI and age. This could be due to many factors, including 89 

systemic bias introduced via the use of different protocols or differences in the studied cohorts. 90 
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Therefore, the identification of microbes that are impacted by factors such as sex, BMI, or diet 91 

could help identify potential interactions between the oral microbiome, health, and disease.   92 

 Herein, we report the variation within the healthy oral microbiome by examining 741 93 

samples from non-smoking healthy individuals living within the Atlantic Provinces of Canada. 94 

We then validated our results on a smaller subset of individuals (n=308) from the same cohort 95 

(Sup Fig 1). The bacterial oral microbiome composition of these individuals was investigated 96 

through 16S rRNA gene sequencing from saliva samples provided by each participant. 97 

Compositions were then compared with 41 different variables including anthropometric, dietary 98 

and sociodemographic factors. In this investigation, we determined which of these factors play a 99 

role in shaping the oral microbiome and to what extent these factors can explain the overall oral 100 

microbiome composition.  101 

 102 

 103 

 104 

Methods: 105 

Study design and population: 106 

The current study includes the analysis of saliva samples from the Atlantic Partnership for 107 

Tomorrow’s Health (PATH) study. Atlantic PATH is part of the Canadian Partnership for 108 

Tomorrow’s Health (CanPath) project, a pan-Canadian prospective cohort study examining the 109 

influence of environmental, genetic and lifestyle factors on the development of chronic disease 110 

(31). The applicable provincial and regional ethics boards approved the study protocol and all 111 

participants provided written informed consent prior to participation. The primary inclusion 112 

criteria were that participants were aged 30-74 years at time of recruitment, a resident in one of 113 
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the Atlantic Canadian provinces (Nova Scotia, New Brunswick, Prince Edward Island, and 114 

Newfoundland and Labrador). Recruitment and baseline data for all participating regions was 115 

collected between 2000 and 2019. Details on participant recruitment and a descriptive cohort 116 

profile have been published elsewhere (31). The questionnaire included sociodemographic 117 

information, health information, behaviours, environmental factors, and self-reported 118 

anthropometric information. Participants also had anthropometric measures (height, weight, 119 

waist and hip circumferences, body composition, blood pressure, grip strength, and resting heart 120 

rate) and biological samples (blood, urine, saliva, and toenails) collected. Approximately 9000 121 

participants in the Atlantic PATH cohort provided a saliva sample. Participants were instructed 122 

to refrain from eating, smoking, or chew gum for at least 30 minutes prior to oral specimen 123 

collection. Oral samples (3 ml) were collected in sterile 50 ml conical tubes after rinsing with 124 

water. Samples were stored at 4°C and batch shipped on ice to the central processing facility at 125 

the QEII Health Sciences Centre in Halifax, Nova Scotia. Samples were processed within 24 126 

hours of collection, aliquoted into cryovials and stored at -80
o
C until analysis. 127 

 128 

The current analysis includes a total of 1214 saliva samples from healthy Atlantic Canadians 129 

living within the provinces of Nova Scotia, New Brunswick, and Prince Edward Island. Based on 130 

self-reported data, participants were defined as healthy if they had not been diagnosed with any 131 

of the following conditions: hypertension, myocardial infarction, stroke, asthma, chronic 132 

obstructive pulmonary disease, major depression, diabetes, inflammatory bowel disease, irritable 133 

bowel syndrome, chronic bronchitis, emphysema, liver cirrhosis, chronic 134 

hepatitis, dermatologic disease (psoriasis and eczema), multiple sclerosis, 135 

arthritis, lupus, osteoporosis, and cancer. A total of 165 of these samples were removed due to 136 
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insufficient sequencing depth and of the remaining 1049, 308 were removed due to incomplete 137 

answering of the 41 variables examined in this study. These 308 samples that were removed 138 

were then used in validation analysis (details below) to confirm findings within the larger 741 139 

participant cohort.  140 

 141 

Socio-demographic, lifestyle and anthropometric variables: 142 

Questionnaires were used to collect socio-demographic and lifestyle variables. Self-reported 143 

variables included age, sex, education level, household income, rural/urban, province, dental 144 

visits, sleep patterns, alcohol consumption, smoking status, and dietary variables such as food 145 

avoidance, the use of specific types of fat/oil and artificial sweeteners, the frequency of dessert, 146 

soda drinks, soy/fish sauce, seasoning with salt seasoning, and fast food, as well as servings of 147 

vegetables, fruit, juice, whole grains, refined grains, dairy products, eggs, fish, tofu, beans, and 148 

nuts/seeds. Anthropometric measures were collected by trained personnel in assessment centres. 149 

Waist and hip circumferences were measured using Lufin steel tape. Height was measured by a 150 

Seca stadiometer. Height and weight measures were used to calculate body mass index (BMI; 151 

weight in kilograms divided by height in meters squared; kg/m
2
).  Body weight, fat mass, and 152 

fat-free mass were measured using the Tanita bioelectrical impedance device (Tanita BC-418, 153 

Tanita Corporation of America Inc., Arlington Heights, Illinois). Table 1 lists all variables that 154 

were used for analysis. 155 

 156 

Oral Microbiome 16S rRNA Sequencing: 157 
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Frozen saliva samples were thawed at room temperature and aliquoted into 96 well plates. DNA 158 

from samples were then extracted using a QIAamp 96 PowerFecal QIAcube HT Kit following 159 

the manufacturer's instructions using a TissueLyser II and the addition of Proteinase K. 160 

Sequencing of the 16S rRNA gene was performed by the Integrated Microbiome Resource at 161 

Dalhousie University. The V4-V5 region was amplified from extracted DNA in a PCR using 16S 162 

rRNA gene V4-V5 fusion primers (515FB – 926R) (32) and high-fidelity Phusion polymerase. 163 

Amplified DNA concentrations were then normalised and pooled together to be sequenced on an 164 

Illumina MiSeq. Sequencing of samples was conducted over 6 Illumina MiSeq runs producing 165 

300 base pair paired-end reads.  166 

 167 

16S rRNA Gene Sequence Processing: 168 

Primers were removed from paired-end 300 base pair sequences using cut adapt(33). Primer free 169 

reads were then stitched together using the QIIME2 (v. QIIME2-2018.8)(34) VSEARCH(35) 170 

join-pairs plugin. Stitched reads were then filtered using the QIIME2 plugin q-score-joined using 171 

the default parameters. Quality filtered reads were then input into the QIIME2 plugin Deblur(36) 172 

to produce amplicon sequence variants (ASV). A trim length of 360 base pairs and a minimum 173 

number of reads required to pass filtering was set to 1. Amplicon sequence variants that were 174 

found in an abundance of less than 0.1% of the mean sample depth (18) were then removed from 175 

analysis. This is to keep inline with the approximate bleed-through rate on an Illumina MiSeq 176 

sequencer. After filtering a total of 13248 ASVs were recovered. Representative sequences were 177 

then placed into the Greengenes 13_8 99%(37) reference 16S rRNA tree using the QIIME2 178 

(2019.7) fragment-insertion SEPP(38, 39) plugin . Rarefaction curves were then generated using 179 

the QIIME2 alpha-rarefaction plugin and a suitable rarefaction depth of 5000 was chosen for 180 
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diversity analysis based on when the number of newly discovered ASVs came to a plateau (Sup 181 

Fig 2). Representative sequences were then assigned taxonomy using a custom trained V4-V5 182 

16S rRNA naive Bayesian QIIME2 classifier(40) trained on the 99% Silva V132 database(41). 183 

 184 

Oral Microbiome Composition Analysis: 185 

Taxonomic composition tables were generated using the QIIME2 taxa plugin and collapsed at 186 

the genus level. All samples over 5000 reads in depth (1049) were subsampled to a depth of 5000 187 

reads each and taxa that contributed less than a mean relative abundance of 1% were grouped 188 

together under an “Other” category. The composition stacked bar chart was then generated in R 189 

using ggplot2(42) and the x-axis was order based on the PC1 weighted Unifrac coordinates of 190 

each sample.  191 

 192 

Core Oral Microbiome Analysis: 193 

Taxonomic tables subsampled previously at 5000 reads were collapsed at the genus and ASV 194 

level using QIIME2. Genera/ASVs were removed at varying different sample presence cut-offs 195 

and the remaining total mean relative abundance of non-filtered out genera/ASVs was then 196 

calculated.  197 

 198 

Oral Microbiome Alpha Diversity analysis: 199 

Alpha diversity metrics were generated using QIIME2 (v2019.7) and the previously generated 200 

tree containing both representative sequences and reference sequences. All samples were 201 

subsampled to a depth of 5000 reads. Association between four different alpha diversity metrics 202 

(Faith’s Phylogenetic Diversity, Shannon, Evenness, Number of ASVs) were then tested using 203 
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general linear models while controlling for DNA extraction. A base model containing only DNA 204 

extraction as a covariate and a testing modelling containing DNA extraction and the covariate of 205 

interest were then compared using an ANOVA and p-values were recorded. Recorded p-values 206 

were then corrected for false discovery (Benjamini and Hochberg(43)) with a chosen alpha of q 207 

< 0.1.  208 

 209 

Oral Microbiome Beta Diversity analysis: 210 

Beta diversity metrics were generated using QIIME2 and the previously generated phylogeny. 211 

All sequences were subsampled to a depth of 5000 reads based on the plateauing stage of 212 

rarefaction plots (Sup Fig 2). Association between two different beta diversity metrics (weighted 213 

UniFrac distance, Bray Curtis dissimilarity) were then tested using a PERMANOVA (adonis2 214 

function in Vegan(44)) while controlling for DNA extraction. Marginal p values were then 215 

corrected for false discovery (Benjamini and Hochberg) and an alpha value of q < 0.1 was 216 

chosen. Significant features from univariate analysis were then included in a single multivariate 217 

model that underwent backwards covariate selection, where each co-variation with the highest p-218 

value was removed from the model until all features were found to be significant. Additional 219 

testing using adonis2 on fat free mass and height were done while controlling for both sex and 220 

DNA extraction.  221 

 222 

Differential abundance analysis: 223 

Differential abundance analysis was conducted using the Corncob(45) (v 0.1.0) and 224 

Phyloseq(46) R packages. A genus level taxonomic table was generated using QIIME2 (2019.7) 225 

and genera that were not found in at least 10% of samples were removed. The fifteen covariates 226 
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that were found to be significantly associated to either weighted UniFrac or Bray Curtis 227 

dissimilarities were chosen for testing. Testing of each covariate was done using the 228 

“differentialtest” function in the Corncob package while controlling for differences in DNA 229 

extraction and differential variability across DNA extraction and the covariate of interest. 230 

Heatmaps were then constructed containing any genera/ASV that were significantly associated to 231 

at least one of the covariates that were tested. 232 

 233 

Validation analysis: 234 

 A total of 308 samples had not completely answered all 41 metadata variables of interest and 235 

therefore were removed from the original analysis. This smaller cohort was used to test our 236 

previous results by removing samples during testing of each covariate that had not answered that 237 

question on the questionnaire. Both beta diversity analysis and differential abundance analysis 238 

were carried out in the same manner as previously explained except for only testing features that 239 

were previously identified as being significantly associated with that covariate/metric. 240 

Furthermore, as there was previous evidence that these features were associated with that 241 

covariate/metric, p-values were not corrected for false discovery but an alpha value of 0.05 was 242 

chosen. 243 

 244 

Results: 245 

The Healthy Oral Microbiome is Stable at the Genus Level but Variable at Higher Resolutions: 246 

 We examined the oral microbiome composition of the overall cohort containing 1049 247 

healthy individuals (Sup Fig 1) from Atlantic Canada to understand how anthropometric, socio-248 

demographic and dietary choices could alter oral microbiome composition. We found that 16 249 
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genera were found to have a mean relative abundance greater than 1% (Fig 1A) with Veillonella 250 

having the largest mean contribution (21.49% +- 0.38%) followed by Neisseria (13.04% +- 251 

0.40%), Streptococcus (11.86% +- 0.26%) and Prevotella 7 (11.55% +- 0.24%).  252 

To characterise the core relative abundance of core genera and ASVs within the oral 253 

microbiome of these samples the mean relative abundance of genera/ASVs that were present in 254 

greater than a specific percentage of samples was analysed. Interestingly, we found that at the 255 

genus level the oral microbiome is relatively stable with 11 genera (Sup Fig 3A) present in 256 

greater than 99% of all individuals making up on average a total relative abundance of 77.82% 257 

(Fig 1B). However, this was not the case when we examined composition at a higher taxonomic 258 

resolution. We then found that only 5.17% on average of the total relative abundance of the oral 259 

microbiome was made up of 3 ASVs (Sup Fig 3B) shared between 99% of all participants in the 260 

study (Fig 1C). These ASVs were classified as being in the Granulicatella, Streptococcus, and 261 

Gemelli genera but could not confidently be assigned to a specific species.  262 

 263 

Demographic, Anthropometric, and lifestyle choices have small but significant impacts on oral 264 

microbiome composition 265 

We examined the relationship of both alpha and beta diversity of the oral microbiome 266 

between 41 different variables that described various demographic, lifestyle, and anthropometric 267 

measures (Table 1). Samples were split into two different cohort based on whether they had 268 

answered all 41 variables of interest. A total of 741 individuals answered all 41 variables and 269 

were included in the exploratory cohort. From this cohort we did not find any significant 270 

associations between any of the 41 variables tested and four different alpha diversity metrics 271 

(Faith’s PD, number of ASVs, Shannon, Evenness) after correction for multiple testing using 272 
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linear models that were adjusted for DNA extraction batch (Sup file 1). We did, however, find 273 

ten variables that were associated with differences in beta diversity as measured by both 274 

weighted UniFrac (Fig 2A) and Bray Curtis dissimilarity (Fig 2C) (PERMANOVA, q < 0.1) 275 

(Sup file 2). We found two additional variables that were only associated with weighted UniFrac 276 

distances and three variables additional variables only associated with Bray Curtis dissimilarity 277 

(PERMANOVA, q < 0.1). Principal component analysis of both the weighted UniFrac distances 278 

and Bray Curtis dissimilarity of each sample revealed that anthropometric measures such as 279 

height, weight, waist hip ratio, waist size, and fat free mass were all correlated in similar 280 

directions along PC1, whereas features such as vegetable servings, age, and being female 281 

correlated in opposite directions (Fig 2C). As sex plays an important role in determining the 282 

height, fat free mass and waist hip ratio of an individual, we attempted to determine whether sex 283 

was confounding our results from these variables. A separate analysis on weighted UniFrac 284 

distances controlling for sex indicated that fat free mass (p=0.02, r2=0.0039) and waist hip ratio 285 

(p=0.03, r2=0.0039), but not height (p=0.44, r2=0.0012) was significantly associated to 286 

microbial composition despite differences in sex.  Examining the amount of variation explained 287 

by each variable by itself after controlling for DNA extraction showed small effect sizes for both 288 

weighted UniFrac distances and Bray Curtis dissimilarities (R2 0.0030 - 0.009) (Fig 2B, 2D). Of 289 

the features that were significant, sleeping light exposure explained the least amount of variation 290 

in both weighted UniFrac distances (r2 = 0.0036) and Bray-Curtis dissimilarity (r2=0.0030). We 291 

also found that fat free mass explained the largest amount of variation in both weighted UniFrac 292 

(r2=0.009) and Bray Curtis dissimilarity (r2=0.006). In generally we found that the rankings of 293 

effect sizes between these two different metrics agreed (Fig 2B, 2D). Also, the directionality of 294 

each feature along PC1 and PC2 were similar between both weighted UniFrac and Bray Curtis 295 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 9, 2020. ; https://doi.org/10.1101/2020.05.07.083634doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.07.083634
http://creativecommons.org/licenses/by/4.0/


dissimilarity (Fig 2A, 2C). Examining each significant factor in our weighted UniFrac analysis 296 

using a backward selected multivariate PERMANOVA, we found that 7.0% of total oral 297 

microbiome variation could be explained by a total of 6 significant factors including DNA 298 

extraction batch despite using the same protocol, equipment and personnel for each round (Sup 299 

Tab 1). Interestingly, of these 6 factors DNA extraction number explained a considerable 300 

amount of the variation alone (4.18%) (Sup Table 1). We found similar results examining beta 301 

diversity variation using Bray Curtis dissimilarity with a slightly higher number of significant 302 

features and lower total variation explained (5.87%) (Sup Table 2).  303 

 304 

Various oral bacterial genera and ASVs are associated with anthropometric measurements, and 305 

dietary choices in healthy individuals 306 

We next decided to identify genera that were associated with the fifteen features previously 307 

identified as being associated with beta diversity in either the weighted UniFrac or Bray Curtis 308 

dissimilarity analysis.  We found 42 genera (Fig 3A) and 42 ASVs (Fig 3B) that were 309 

significantly associated with at least one of these features after controlling for DNA extraction. 310 

We found that sex, height, and fat free mass shared similar genera and ASV associations. To 311 

control for the possibility of sex confounding our height and fat free mass associations we 312 

reanalysed the data controlling for sex. We found that no ASVs or genera were significantly 313 

associated to fat free mass after controlling for sex and only 3 genera Chloroplast, 314 

Burkholderiaceae unclassified and Treponema 2 were significantly associated to height. 315 

Interestingly two of these three genera were not previously associated to height in our initial 316 

analysis. These results suggest that many of these features associated to height or fat free mass 317 

may be driven by differences in sex. To test this, we also tested for differences in sex while 318 
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controlling for both fat free mass and height. Interestingly, we did not find any significantly 319 

associated ASVs and only three significantly associated genera Defluvittaleaceae UCG-011, 320 

Leptotrichia, and Treponema 2.  321 

We did not find any other features that shared similar patterns of taxonomic associations 322 

but there were multiple genera with multiple feature associations. The genus Prevotella 7 had the 323 

highest number of features (5) associated with its relative abundance including four 324 

anthropometric measurements (height, fat free mass, waist size, waist hip ratio, and weight) and 325 

sex. Interestingly, BMI did not have any genera or ASVs significantly associated despite many 326 

other anthropometric measures showing strong taxonomic signals. We were unable to identify 327 

any single ASVs associated to waist size and weight but were able to identify a small number of 328 

genera including Prevotella 7, which was related to both and Mogibacterium with waist size. We 329 

also found that for some phyla, all taxa with significant associations had the same effect size 330 

direction. For example, genera in the Actinobacteria or Proteobacteria phyla tended to be 331 

negatively associated with fat free mass, height and being male. We also found several genera in 332 

the Proteobacteria phylum that were significantly associated with the amount of time since an 333 

individuals last dental appointment.  334 

 In contrast, examining the ASVs associated with each feature we found that in a small 335 

number of cases ASVs in the same genera had opposite directions of association to the same 336 

features. For example, two ASVs classified as Rothia uncultured were both significantly 337 

associated to age but in opposite directions suggesting that lower taxonomic resolution is 338 

required to identify some associations. Furthermore, we also identified cases were ASVs that 339 

were associated to a feature were classified in a genus that was found not to be related to that 340 

feature. For example, ASV-4ca02 Selenomonas uncultured was strongly associated with being 341 
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male even though this entire collective genus was not (Fig 3). Further examples include ASV-342 

e2cc4 which was classified in the genus Alysiella, and significantly associated with reduced 343 

refined grain servings. Examples of the opposite occurrence are also present with genera such as 344 

Mycoplasma being associated with age but no single ASV for this associated could be identified.  345 

 346 

Validation of diversity and differential abundance analysis: 347 

 To help validate our findings we analyzed an additional 308 samples from a smaller 348 

subset of the Atlantic PATH cohort that had not completely answered all 41 variables of interest. 349 

We found that associations between beta diversity and anthropometric features such as height, 350 

weight, waist hip ratio, and fat free mass were recoverable within our smaller cohort (Table 2, 351 

Sup Fig 4). Furthermore, we also found that the associations between age and sex with oral 352 

microbiome composition were also recoverable, validating our previous analysis. We were 353 

unable to recover any significant dietary associations within this smaller validation cohort. We 354 

also were unable to recover associations between lifestyle variables such as sleeping light 355 

exposure or the time since an individuals last dental visit. The inability to recover these 356 

differences could have been due to the highly reduced sample size within this validation cohort. 357 

  We further validated our differential abundance analysis using this cohort and found 8/17 358 

genera associated with sex, 8/16 genera associated with fat free mass, 5/15 genera associated 359 

with height, and 3/11 genera associated with age were recoverable within this smaller cohort. 360 

Additionally, the negative association between Prevotella 2 and waist hip ratio was also verified 361 

within this cohort. Furthermore, several associations between ASVs and features such as sex 362 

(5/14), height (4/12), fat free mass (2/3) and sleeping light exposure (1/2) were also found within 363 

this smaller validation cohort. All significant effect sizes that were recovered in the validation 364 
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cohort except for one, between sleeping light exposure and ASV-d4746 Streptococcus, remained 365 

in same direction as the original cohort indicating relationships that were robust to sample 366 

choice.  367 

Discussion: 368 

 Our analysis of 1049 healthy (Sup Fig 1) individuals from Atlantic Canada revealed that 369 

much of the oral microbiome of Atlantic Canadians was made up of eleven “core” genera that 370 

belong to six different phyla (Actinobacteria, Fusobacteria, Proteobacteria, Firmicutes, 371 

Bacteroidetes, and Fusobacteria). Interestingly some of these core genera found in 99% of all 372 

samples were found in relatively low abundance (<2% mean abundance) indicating that bacteria 373 

within the oral microbiome can be consistently observed with minor contributions. In contrast, 374 

the composition at the ASV level had only 3 ASVs being present in 99% of samples and only 375 

contributing 5.17% of the total oral microbiome composition on average. Overall, these results 376 

indicate that individuals tend to share similar genera within the oral cavity, but the species/strains 377 

shared between individuals is highly variable. These findings are inline with previous work from 378 

the Human Microbiome project that found the oral microbiome to be relatively stable at the 379 

genus level(1).  380 

 We found that various anthropometric and lifestyle features were significantly associated 381 

with oral microbiome composition, however, they explained only a small amount of total oral 382 

microbiome variance while controlling for DNA extraction batch (5.87-7.00%). We found that 383 

fat free mass explained the highest amount of variance (0.6-0.9%) of all biological features. 384 

While this feature had many differential abundant genera and ASVs associated with it, we were 385 

unable to recover any of them after controlling for differences in sex. This could indicate that 386 

these associations could be driven by sex and not underlying fat mass, however, we were also 387 
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unable to recover many relationships between sex and taxonomic abundance while controlling 388 

for fat free mass indicating that both of these factors significant confound the other. However, 389 

despite this issue there is previous evidence to suggest that some bacteria are related to 390 

differences in body size. A study in children found reduced abundance of Veillonella, Prevotella, 391 

Selenomonas and Streptococcus in obese children (47). Interestingly, in our adult population we 392 

found similar trends with members of the Veillonella family being positively associated with 393 

increasing fat free mass, and members of the Provetella genus also being linked with higher fat 394 

free mass. Another publication on the Southern Community Cohort Study found that both 395 

Granulicatella and Gemella were associated with obesity (29) which we also found within our 396 

cohort at both the genus and ASV level. One interesting result from our study was our inability 397 

to identify any genera or ASVs linked to body mass index, despite numerous relationships 398 

between anthropometric measurements being identified. These results indicate that future studies 399 

should be advised to include sex and other measurements of body composition, such as lean 400 

body mass, when looking at relationships between the microbiome and obesity. 401 

We found two genera Defluviitaleaceae UCG-011 and an uncultured genus from 402 

Veillonellaceae which were strongly associated with being male. However, neither of these 403 

associations were recovered in our validation cohort indicating that they could either be false 404 

positives or require a larger sample size to recover. Despite this we were still able to recover 405 

eight genus level associations in our validation cohort, however, only a few of these associations 406 

match those that were previously reported. Renson et al. found two genera Lactobacillus and 407 

Actinobacillus to be higher in males, which we did not find within our study (23). This could 408 

have been due to multiple differences including sampling procedures or systemic protocol bias. 409 

Raju et al. found that there was a high relative abundance of Haemophilus in females which we 410 
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also found in our study, however they also found Oribacterium to be increased in females which 411 

was opposite from what was found in this study (47). Differences between these studies and ours 412 

can in part be attributed to differences in samples collection and sequencing primers used 413 

highlighting the importance of standardizing protocols within the field.  414 

We were unable to recover any relationships between dietary features within our 415 

validation cohort, however, refined grain servings per day had the largest impact on oral 416 

microbiome composition in our initial analysis. During this initial analysis, we found that 417 

bacteria from four genera Bergeyella, Parvimonas, Veillonella, and Neisseria decreased in 418 

relative abundance with increasing refined grain intake. Interestingly, refined grain intake had a 419 

very strong association with inflammatory bowel disease in a previous analysis of this 420 

cohort(48), and alterations in the oral microbiome have been linked to inflammatory bowel 421 

disease in the past (49). Previous work by Said et al., found multiple genera in differential 422 

abundance between individuals with and without IBD including the increased presence of 423 

Veillonella (16), which we found to be linked positively with refined grain intake.  424 

Other dietary factors we found linked to oral microbiome composition in our original 425 

analysis include both juice servings and vegetable servings. However, were only able to find a 426 

small number of genera and taxa linked to vegetable serving intake and juice serving intake. 427 

Furthermore, we were unable to recover these effects in our validation cohort indicating the 428 

possibility for a false positive or the requirement of a large sample size to see these effects. 429 

Previous work within the field has found conflicting evidence on the role of diet impacting oral 430 

microbiome composition. This previous evidence along with the inability to recover these 431 

relationships within our validation cohort indicates that diet may only have a small impact on 432 
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oral microbiome variation, and that these effects require large samples to recover them or that 433 

different dietary capture methods have a strong influence on the observed results. 434 

Looking at all features that were significantly associated to oral microbiome composition 435 

together in a single model we were only able to explain a small portion of the total variance 436 

between samples (6.75-6.92%). This indicates that while many of these features are significantly 437 

related to microbial composition each one by themselves tends to only cause small shifts in 438 

overall microbial composition. Furthermore, a majority of the variance accounted for was due to 439 

differences in DNA extraction date. This shows that while slight technical variations such as the 440 

time when DNA extraction was done can have larger impacts on sample composition 441 

emphasizing the need to control for these technical variations during large population-based 442 

studies.  443 

One large limitation to our study was our lack of detailed dental history information from 444 

participants. While we did record how recently each individual last visited the dentist, we were 445 

unable to retrieve detailed information on dental health, which has been found to have dramatic 446 

impacts on oral microbiome composition (19). This could explain some of the missing variation 447 

that was not accounted for in our study, however, it is unlikely to explain all 93.25% indicating 448 

we are still missing a suitable amount of information on what determines an individual’s oral 449 

microbiome composition.  450 

 In conclusion, our study indicates that the healthy oral microbiome is relatively stable 451 

between individuals at the genus level and is impacted very little by any one factor. Future 452 

studies that attempt to identify oral microbial biomarkers associated with disease may be 453 

encouraged by the lack of major confounding variables and may be justified in controlling only 454 

for sex, body composition, oral health, and basic dietary information.  455 
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project. 462 

 463 

Funding: 464 

 JTN is supported by both a Research Nova Scotia, Scotia Scholars award (2019-2022) as 465 

well as a Nova Scotia Graduate Scholarship (2019-2023). JVL was supported by a Canadian 466 

Institutes of Health Research (CIHR)-Canadian Association of Gastroenterology-Crohn’s Colitis Canada 467 

New Investigator Award (2015–2019), a Canada Research Chair Tier 2 in Translational Microbiomics 468 

(2018-2019) and a Canadian Foundation of Innovation John R. Evans Leadership fund (awards #35235 469 

and #36764), a Nova Scotia Health Research Foundation (NSHRF) establishment award (2015–2019), an 470 

IWK Health Centre Research Associateship, a Future Leaders in IBD project grant, a donation from the 471 

MacLeod family and by a CIHR-SPOR-Chronic Diseases grant (Inflammation, Microbiome, and 472 

Alimentation: Gastro-Intestinal and Neuropsychiatric Effects: the IMAGINE-SPOR chronic disease 473 

network).  The data used in this research were made available by the Atlantic Partnership for 474 

Tomorrow’s Health (Atlantic PATH) study, which is the Atlantic Canada regional component of 475 

the Canadian Partnership for Tomorrow’s Health Project funded by the Canadian Partnership 476 

Against Cancer and Health Canada. The views expressed herein represent the views of the 477 

authors and do not necessarily represent the views of Health Canada.  478 

 479 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 9, 2020. ; https://doi.org/10.1101/2020.05.07.083634doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.07.083634
http://creativecommons.org/licenses/by/4.0/


Acknowledgements: 480 

 This research has been conducted using Atlantic PATH data and biosamples, under application  481 

 #2018-103. We would like to thank the Atlantic PATH participants who donated their time, 482 

personal health history and biological samples to this project. We would also like to thank the 483 

Atlantic PATH team members for data collection and management. 484 

 485 

 486 

Table 1: Cohort characteristic and variables compared against oral microbiome composition. NA 487 

represents responses of prefer not to answer or missing data. 488 

 

Overall 

Number of participants 1214 

Rural/Urban (%)   

    Urban 1050 (86.5) 

    Rural 126 (10.4) 

   NA 38 (3.1) 

Province (%)   

   New Brunswick 124 (10.2) 

   Nova Scotia 1070 (88.1) 

   Prince Edward Island 16 (1.3) 

   NA Data repressed 

Economic Region  

Annapolis Valley 52 

Cape Breton 142 

Edmundston – Woodstock Data repressed 

Fredericton – Oromocto 44 

Halifax 773 

Moncton – Richibucto 32 

North Shore 41 

Prince Edward Island 16 

Saint John – St., Stephen 45 

Southern Shore 28 

Sex (%)   

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 9, 2020. ; https://doi.org/10.1101/2020.05.07.083634doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.07.083634
http://creativecommons.org/licenses/by/4.0/


   Female 846 (69.7) 

   Male 368 (30.3) 

Body mass index (mean (SD)) 27.30 (4.55) 

Waist size (mean (SD)) 90.96 (12.79) 

Hip size (mean (SD)) 104.29 (9.45) 

Waist hip ratio (mean (SD)) 0.87 (0.08) 

Height (mean (SD)) 167.06 (8.90) 

Weight (mean (SD)) 76.39 (14.99) 

Age (mean (SD)) 55.39 (7.80) 

Fat mass (mean (SD)) 25.26 (9.55) 

Fat free mass (mean (SD)) 51.05 (10.87) 

Body fat percentage (mean (SD)) 32.68 (8.61) 

Vegetable servings (mean (SD)) 2.56 (1.98) 

Fruit servings (mean (SD)) 2.00 (1.45) 

Juice servings (mean (SD)) 0.69 (0.95) 

Whole grain servings (mean (SD)) 2.11 (1.43) 

Refined grain servings (mean (SD)) 0.67 (0.86) 

Milk product servings (mean (SD)) 2.04 (1.29) 

Egg servings per week (mean (SD)) 3.25 (2.68) 

Meat/poultry servings (mean (SD)) 1.53 (1.35) 

Fish servings (mean (SD)) 0.51 (0.67) 

Tofu servings (mean (SD)) 0.04 (0.18) 

Bean servings (mean (SD)) 0.36 (0.55) 

Nut/seed servings (mean (SD)) 0.69 (0.68) 

Dessert Frequency (%)   

   Never 109 (9.0) 

   Less than once a month 153 (12.6) 

   About once a month 228 (18.8) 

   2 to 3 times a month 173 (14.3) 

   Once a week 85 (7.0) 

   2 to 3 times a week 115 (9.5) 

   4 to 5 times a week 58 (4.8) 

   6 to 7 times a week 169 (13.9) 

   NA 124 (10.2) 

Avoidance of particular foods (%)   

   Never 853 (70.3) 

   Often 11 (0.9) 

   Prefer not to answer 15 (1.2) 

   Rarely 163 (13.4) 

   Sometimes 52 (4.3) 

   NA 120 (9.9) 
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Oil on bread (%)   

   Butter 371 (30.6) 

   Low fat margarine 272 (22.4) 

   Full fat margarine 300 (24.7) 

   None 109 (9.0) 

   Olive oil 36 (3.0) 

   NA 126 (10.4) 

Artificial sweeteners (%)   

   Almost never 976 (80.4) 

   About 1/4 of the time 24 (2.0) 

   About 1/2 of the time 16 (1.3) 

   About 3/4 of the time 12 (1.0) 

   Almost always or always 53 (4.4) 

   NA 133 (11.0) 

Non-diet soda frequency (%)   

   Zero days a week 432 (35.6) 

   One to three days per month 459 (37.8) 

   One to five days a week 167 (13.8) 

   Six to seven days a week 27 (2.2) 

   NA 129 (10.6) 

Diet sugar drink frequency (%)   

   Zero days a week 513 (42.3) 

   One to three days per month 356 (29.3) 

   One to five days a week 156 (12.9) 

   Six to seven days a week 57 (4.7) 

   NA 132 (10.9) 

Soy/fish usage (%)   

    Never at the table 424 (34.9) 

    Rarely at the table 441 (36.3) 

    Sometimes at the table 217 (17.9) 

    At most meals of eating occasions 9 (0.7) 

   NA 123 (10.1) 

Salt seasoning (%)   

    Never 368 (30.3) 

    Rarely 347 (28.6) 

    Sometimes 219 (18.0) 

    Most meals 157 (12.9) 

   NA 123 (10.1) 

Fast food frequency (%)   

    Never 149 (12.3) 
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    Less than once per month 384 (31.6) 

    One - three times per month 366 (30.1) 

    One - six per week 191 (15.7) 

    One or more times per day Data Repressed 

    NA 122 (10.0) 

Alcohol Frequency (%)   

   Never 61 (5.0) 

   Less than once a month 192 (15.8) 

   About once a month 70 (5.8) 

   2 to 3 times a month 171 (14.1) 

   Once a week 170 (14.0) 

   2 to 3 times a week 259 (21.3) 

   4 to 5 times a week 127 (10.5) 

   6 to 7 times a week 112 (9.2) 

   NA 52 (4.3) 

Education level (%)   

   Highschool or below 208 (17.1) 

   Non-bachelors post secondary 425 (35.0) 

   Bachelors 334 (27.5) 

   Graduate 242 (19.9) 

   NA Data Repressed 

Income (%)   

    Below $25 000 CAD 41 (3.4) 

    $25 000 - $49 999 CAD 157 (12.9) 

    $50 000 - $74 999 CAD 244 (20.1) 

    $75 000 - $99 999 CAD 244 (20.1) 

    $100 000 - $149 999 CAD 291 (24.0) 

    Greater than $150 000 CAD 179 (14.7) 

   NA 58 (4.8) 

Sleeping trouble frequency (%)   

   None 104 (8.6) 

   A little of the time 411 (33.9) 

   Some of the time 507 (41.8) 

   Most of the time 161 (13.3) 

   All the time 25 (2.1) 

   NA Data Repressed 

Last dental visit (%)   

   Less than 6 months ago 851 (70.1) 

   6 months to less than 1 year ago 221 (18.2) 

   1 year to less than 2 years ago 56 (4.6) 
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   2 years to less than 3 years ago 17 (1.4) 

   3 or more years ago 24 (2.0) 

   NA 45 (3.7) 

Sleeping light exposure (%)   

   Virtually no light 561 (46.2) 

   Some light 613 (50.5) 

    A lot of light 36 (3.0) 

   NA Data Repressed 

DNA extraction batch (%)   

   Extraction.1 85 (7.0) 

   Extraction.10 66 (5.4) 

   Extraction.11 80 (6.6) 

   Extraction.12 78 (6.4) 

   Extraction.13 85 (7.0) 

   Extraction.14 57 (4.7) 

   Extraction.15 79 (6.5) 

   Extraction.16 0 (0.0) 

   Extraction.17 67 (5.5) 

   Extraction.2 85 (7.0) 

   Extraction.3 81 (6.7) 

   Extraction.4 68 (5.6) 

   Extraction.5 85 (7.0) 

   Extraction.6 92 (7.6) 

   Extraction.7 85 (7.0) 

   Extraction.8 60 (4.9) 

   Extraction.9 61 (5.0) 

 489 

 490 

 491 

 492 

 493 

 494 
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 495 

Table 2: Validation of Beta Diversity Results 496 

Metric Feature P-value R
2
 

Weighted UniFrac Waist Hip Ratio 0.0190 0.0116 

Height 0.001 0.0117 

Weight 0.010 0.0102 

Fat Free Mass 0.002 0.0172 

Sex 0.0390 0.0080 

Age 0.0120 0.0105 

Bray-Curtis Waist Hip Ratio 0.0140 0.0072 

Height 0.0030 0.0118 

Weight 0.0020 0.0096 

Fat Free Mass 0.0040 0.0110 

Waist Size 0.0210 0.0065 

 Age 0.0020 0.0106 

 Sex 0.0380 0.0059 
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 497 

Figures: 498 

Figure 1. Atlantic Canadian oral microbiome composition is dominated by the genus Veillonella 499 

and is relatively similar at the genus level but highly variable at the ASV level. Samples from 500 

Atlantic Partnership for Tomorrow’s Health project (n=1049). Samples were subsampled to a 501 

depth of 5000 reads. A) Genera that had a mean relative abundance less than 1% were grouped 502 

into “Other”. B) Genera were removed at varying different sample presence cut-offs and the 503 

remaining total mean relative abundance of non-filtered genera was then calculated. C) ASVs 504 

were removed at varying different sample presence cut-offs and the remaining total mean 505 

relative abundance of non-filtered ASVs was then calculated.  506 

Figure 2. Various anthropometric, dietary and lifestyle features are significantly associated to 507 

oral microbiome composition. Saliva samples from Atlantic Partnership for Tomorrow’s Health 508 

cohort (n=741). Samples were subsampled to a depth of 5000 reads. Two different metrics were 509 

tested weighted Unifrac distances (A) and Bray-Curtis dissimilarity (C) using a PERMANOVA 510 

test while controlling for differences in DNA extraction and correction for false discovery (q < 511 

0.1). Arrows point toward the direction each feature correlates along PC1 and PC2 while their 512 

size was scaled by the PERMANOVA R
2
 value. Panels B and D show the relative rankings of 513 

the effect sizes (R
2
) of each significant feature. 514 

 515 

Figure 3. Various genera and ASVs are associated with features found to influence oral 516 

microbiome composition. Genera (A) and ASVs (B) meeting an FDR <0.1 using the Corncob R 517 

package which uses beta binomial regressions. Each feature’s false discovery rate was corrected 518 
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separately, and each tested to control for differences in DNA extraction and differential 519 

variability within that feature. Ordinal variables were converted into a ranked scale for testing, 520 

and all features except for sex were scaled. *Sex was treated as a categorical value and therefore 521 

the magnitude is not directly comparable to other log odd ratios.  522 

 523 

Figure 4. Validation of Genera and ASV association in a smaller Atlantic Partnership for 524 

Tomorrow’s Health cohort (n=308). Samples that did not complete all questions examined in this 525 

study were used to validate previous associations identified in the larger cohort. Testing 526 

procedure was done in the same manner as Figure 3 with A representing Genera and B 527 

representing ASVs. 528 

 529 

 530 

 531 
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