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Highlights27

1) A new set of age-specific T1w Indian brain templates for ages 6-60 yr are developed and validated.28

2) A new AFNI tool, make_template_dask.py, for the creation of group-based templates.29

3) Maximum probability map atlases are also provided for each template.30

4) Results indicate the appropriateness of Indian templates for spatial normalization of Indian brains31
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Abstract32

Anatomical brain templates are commonly used as references in neurological MRI studies,33

for bringing data into a common space for group-level statistics and coordinate reporting. Given34

the inherent variability in brain morphology across age and geography, it is important to have35

templates that are as representative as possible for both age and population. A representative-36

template increases the accuracy of alignment, decreases distortions as well as potential biases37

in final coordinate reports. In this study, we developed and validated a new set of T1w Indian38

brain templates (IBT) from a large number of brain scans (total n=466) acquired across different39

locations and multiple 3T MRI scanners in India. A new tool in AFNI, make_template_dask.py,40

was created to efficiently make five age-specific IBTs (ages 6-60 years) as well as maximum41

probability map (MPM) atlases for each template; for each age-group’s template-atlas pair,42

there is both a “population-average” and a “typical” version. Validation experiments on an43

independent Indian structural and functional-MRI dataset show the appropriateness of IBTs44

for spatial normalization of Indian brains. The results indicate significant structural differences45

when comparing the IBTs and MNI template, with these differences being maximal along the46

Anterior-Posterior and Inferior-Superior axes, but minimal Left-Right. For each age-group,47

the MPM brain atlases provide reasonably good representation of the native-space volumes48

in the IBT space, except in a few regions with high inter-subject variability. These findings49

provide evidence to support the use of age and population-specific templates in human brain50

mapping studies. This dataset is made publicly available (https://hollabharath.github.io/51

IndiaBrainTemplates).52

Keywords: MRI, brain template, brain atlases, maximum probability map53

1 Introduction54

The shape, size and volume of the human brain is highly variable across individuals, as well as across55

age, gender and geographical location or ethnicity. This fact is of prime importance in neuroimaging56

group studies, where the brains of all subjects are typically aligned to a single template space for57

data analysis and for the reporting of findings where analogous anatomical structures are mapped58

on to the same coordinate location across the subjects. A brain template provides a standard59

3D coordinate frame to combine and/or compare data from many subjects, across different imaging60

modalities, structural or functional and even different laboratories around the world. The properties61

of the template (size, shape, tissue contrast, etc.) directly affect the quality of alignment.62

An early brain atlas was constructed by Talairach and Tournoux [1988] from a post mortem brain63

of one 60-year-old French woman, introducing the concepts of coordinate system and spatial trans-64

formation to brain imaging. However, using a single subject brain as a template introduces several65
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idiosyncrasies, as it does not account for groupwide anatomical variability, asymmetry, age-related66

differences, etc. In order to address some of these issues, a subsequent initiative from the Montreal67

Neurological Institute (MNI) resulted in a statistical brain template (MNI-305) using 305 young68

right-handed subjects [Evans et al., 1993]. While this composite template better accounted for69

anatomical variability, it also had relatively low tissue contrast and structural definition, which70

can affect the ability of alignment algorithms to provide high quality anatomical matching across a71

group study. In 2001, the international consortium for human brain mapping (ICBM) introduced72

the revised MNI-152 template [Mazziotta et al., 2001b] with better contrast and structure defini-73

tion, where 152 individual brains were linearly registered to MNI305 to make an average template.74

The ICBM-452 template [Mazziotta et al., 2001a] included all three sites of ICBM and provided75

even better signal-to-noise ratio due to the nearly threefold increase in the number of subjects.76

These MNI templates were widely adopted by several image processing pipelines, with the asso-77

ciated set of coordinates known as “MNI space”. Furthermore, an unbiased non-linear average of78

the adult MNI152 and a pediatric template with 20-40 iterative non-linear averages has also been79

made available [Fonov et al., 2011]. These templates provide the advantages of retaining group80

representativeness of the MNI305 or MNI152 while still providing the details that are closer to81

those apparent in a single subject; however, their “representativeness” is limited to a fairly isolated82

geographic location and (typically, Western) population, even though neuroimaging studies draw83

from populations across the globe.84

More recently, several research groups around the world have developed and validated brain tem-85

plates that are representative of their (broadly) local population. Lee et al. [2005] created a set86

of Korean Brain templates with 78 subjects in an age range between 18 to 77 years (young tem-87

plate <55 years and elderly template >55 years). Additionally, Tang et al. [2010] generated a88

Chinese brain template of 56 subjects (mean age 24.4 years). In each case the groups demonstrated89

significantly reduced warp deformations and increased registration accuracy when applying these90

templates to studies of local populations. It should be noted that even though the templates draw91

from subjects within a population, there is still a large amount of inherent variability evident in the92

brain morphology, due to combinations of factors such as inherent structural variability, multi-ethnic93

composition and differences in genetic influences and environmental exposures.94

The benefit of utilizing a population-representative template in the Indian context has also been95

recognized, with the additional need for age-specific templates due to the increasingly wide range96

of ages enrolled in studies. Recent attempts at developing brain templates for Indian population97

have tended to focus on the young adult age group (21-30 years) with relatively small [Rao et al.,98

2017] to modest sample sizes [Sivaswamy et al., 2019, Bhalerao et al., 2018, Pai et al., 2020], and99

have utilized data from a single site/scanner. Additionally, to date, whole-brain annotated reference100

atlases based on segmentation have not accompanied the generated templates. In this study, we101
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present and validate a new set of brain templates that have been created from a large number102

of subjects from multi-site acquisitions across India, with five age ranges provided (between 6-60103

years), as well as brain atlases for each template. For each age group’s template-atlas pair, there is104

both a “population average” and “typical” version (the latter being the individual brain which most105

closely matches the population average, which potentially provides higher detail as an alignment106

target and atlas). We present several validation tests for the accuracy and representativeness of the107

templates, and we also use data from separately acquired subjects to demonstrate the benefits of108

these templates over the existing standard MNI templates for studies on Indian cohorts.109

2 Methods110

2.1 Participants111

The datasets used in the present study were selected retrospectively from healthy control subjects112

of several imaging studies, across multiple centers and different populations across India. They in-113

cluded imaging data from the ongoing Indian multi-site developmental cohort study, the Consortium114

on Vulnerability to Externalising Disorders and Addictions (cVEDA) [Sharma et al., 2020, Zhang115

et al., 2020] and from stored datasets contributed by researchers at the National Institute of Mental116

Health and Neurosciences (NIMHANS, Bengaluru, India). All of these studies were approved by117

the ethics review boards at the corresponding participating sites and informed consent was obtained118

from each participant (or from their parent, in the case of subjects below 16 years, along with par-119

ticipant’s written assent) with a specific request to collect, store and share anonymized data for120

research. Inclusion criteria included not having a personal history of prior brain injury, neurological121

disorder or psychiatric diagnosis. The sample was comprised of 466 subjects from a large number122

of states across India and acquired at multiple sites. Based on age and demographic distributions,123

subject datasets were divided into 5 groups: C1, late childhood (6-11 years); C2, adolescence (12-18124

years); C3, young adulthood (19-25 years); C4, adulthood (26-40 years); C5, late adulthood (41-60125

years). The sample size and demographic information of each cohort is summarized in Table 1.126

2.2 Image acquisition127

T1-weighted (T1w) three-dimensional high resolution structural brain MRI scans were acquired128

from five 3T MRI scanners located at three different locations across India: Bengaluru (site A, C129

and D), Mysuru (site B) and Chandigarh (site E). The subjects belonged to several neighboring130

states to these locations, with wide geographical representation throughout India. As with most131
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Table 1 Demographic Profiles.
Age

Category

Age

Description

Age in years,

Mean (Range)

Sample Size

N (% Female)

No.

States

No.

Scanners

C1 Late childhood 9.3 (6 to 11) 28 (46.43%) 5 4
C2 Adolescence 15.1 (12 to 18) 106 (47.17%) 9 5
C3 Young adulthood 21.3 (19 to 25) 181 (40.89%) 15 5
C4 Adulthood 31.1 (26 to 40) 89 (42.7%) 11 2
C5 Late adulthood 52.7 (41 to 60) 62 (43.55%) 6 2

Table 2 Acquisition parameters.
Acq

Seq

Site

label

Scanner

model

dx

(mm)

dy

(mm)

dz

(mm)

TR
†

(ms)

TE

(ms)

TI

(ms)

FA

(deg)

Matrix

size

No.

Sag

No.

Subj
‡

1 A Achievaa 1 1 1 8.2 3.8 745 8 256⇥ 256 165 50
2 A Achievaa 0.9 0.9 1 8.2 3.8 800 8 257⇥ 256 160 38
3 B Ingeniaa 1.2 1 1 6.9 3.2 725 9 256⇥ 256 170 29
4 C Ingeniaa 1 1 1 6.9 3.3 925 9 256⇥ 256 211 10
5 D Skyrab 1.2 1 1 2300 3.0 900 9 256⇥ 240 176 82
6 D Skyrab 1 1 1 1900 2.4 900 9 256⇥ 256 192 56
7 D Skyrab 0.9 0.9 0.9 1600 2.1 900 9 256⇥ 256 176 124
8 E Veriob 1.2 0.5 0.5 2300 3.0 900 9 512⇥ 480 176 77

Acq Seq = acquisition sequence; dx, dy, dz are voxel dimensions; TR = repetition time; TE = echo
time; TI = inversion time; FA = flip angle; No. Sag = number of sagittal slices.
aPhilips, 3T. bSiemens, 3T. ‡This is the final number of subjects included in final templates (total
= 466), after all steps of QC and subject removal. †The TR for 3D scans such as these is defined
differently between Philips and Siemens scanners, with the relationship being TRPhilips ⇡ (TRSiemens�
TI)/(No. Sag).

multisite studies, the acquisition parameters varied slightly across sites and scanners, but were132

generally similar, with good grey/white matter contrast with a voxel size close to 1mm isotropic;133

details are listed in Table 2.134

2.3 Data Preprocessing and Initial Quality Assurance135

This processing primarily used programs in the AFNI (v19.0.20) [Cox, 1996] and FreeSurfer (v6.0)136

[Fischl, 2012] neuroimaging toolboxes, as well as the “dask” scheduling tool in Python developed by137

the Dask Development Team [2016]. Unless otherwise noted, programs named here are contained138

within the AFNI distribution. The following processing steps are shown schematically in Figure 1,139

in the first column.140
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Datasets were first processed using AFNI’s “fat_proc_convert_dcm_anat”. Using this, DICOMs141

were converted to NIFTI files using dcm2niix_afni (the AFNI-distributed version of dcm2niix [Li142

et al., 2016]). For uniformity and initialization, with this tool, they were also given the same143

orientation (RAI), and the physical coordinate origin was placed at the volume’s center of mass (to144

simplify later alignments).145

Next, “fat_proc_axialize_anat” was applied to reduce the variance in the spatial orientation of146

brains for later alignment and for practical considerations of further processing steps, as described147

here. Each volume was affinely registered to a reference anatomical template (MNI ICBM 152148

T1w) that had previously been AC-PC aligned; alignment included an additional weight mask149

to emphasize subcortical structure alignment (e.g., AC-PC structures), and only the solid-body150

parameters of the alignment were applied, so that no changes in shape were incurred. Because151

datasets had been acquired with varied spatial resolution and FOV (see Table 2), the datasets were152

resampled (using a high-order sinc function, to minimize smoothing) to the grid of the reference153

base of 1mm isotropic voxels.154

All datasets were visually and systematically checked for quality of both data and registration using155

the QC image montages that were automatically generated by the previous program. T1w volumes156

with noticeable ringing or other artifact (e.g., due to subject motion or dicom reconstruction errors)157

were noted and removed from further analyses. T1w volumes with any incidental findings (for158

example, large ventricles, cavum septum pellucidum) were also removed.159

FreeSurfer’s “recon-all” [Fischl, 2012] was run on each T1w data set to estimate surfaces, parcel-160

lation and segmentation maps. AFNI’s “@SUMA_Make_Spec_FS” was then run to convert the161

FreeSurfer output to NIFTI files and to generate standard meshes of the surface in formats usable162

by AFNI and SUMA. Additionally, @SUMA_Make_Spec_FS subdivides the FreeSurfer parcella-163

tions into tissue types such as gray matter (GM), white matter (WM), cerebrospinal fluid (CSF),164

ventricle, etc. This was followed by visual inspection of parcellation maps overlaid on anatomical165

volumes.166

Next, a whole brain mask of each anatomical volume was created. In several cases, the skullstripped167

brain volumes output by recon-all (brain_mask.nii) included large amounts of non-brain material168

(skull, dura, face, etc.), and so an alternative mask was generated using only the ROIs comprising169

the parcellation and segmentation maps. For each subject, a whole brain mask was generated by:170

first making a preliminary mask from all of the ROIs identified by recon-all; then inflating that pre-171

mask by 3 voxels; and finally shrinking the result by two voxels (thus filling in any holes inside the172

brain mask and smoothing the outer edges). This produced whole brain masks that were uniformly173

specific to each subject’s intracranial volume.174
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Finally, AFNI’s 3dUnifize was run on each T1w volume in order to reduce the intensity inhomo-175

geneity (e.g., due to the bias field) and to normalize the intensity of tissues within the volume. This176

ensures that each subject’s brain, which had been acquired on different scanners with potentially177

different scalings, would have equal weight when averaging (e.g., WM is scaled to approximately a178

value of 1000 in each brain, and similarly for other tissues), and also reduces the risk of a bright179

outlier region driving poor alignment.180

2.4 Mean template generation181

After the above pre-processing steps and QC, the following templatizing algorithm was applied182

for each cohort (C1-5) separately. The general procedure was to alternate between alignment to183

a reference base (with increasingly higher order of refinement) and averaging the aligned brains184

to generate a new reference base for the subsequent iteration. In this way one can generate a185

cohort mean template of successively greater specificity and detail; after several iterations, the186

alignment essentially converges (i.e., additional refinement becomes negligible) and is halted. Warps187

were generated and saved at each step. The final nonlinear warps and affine transformations were188

concatenated for each subject at the end in order to generate the final group average template.189

These steps are also included in the schematic Figure 1, in the first column (bottom) and second190

and third columns.191

The first level of alignment was made from each anatomical in the cohort to the MNI ICBM-152192

T1w template using a 6 degree of freedom (DF) rigid body equivalent registration, meaning a full193

affine transformation was computed, but only the rigid components were extracted and applied.194

The average of all subjects’ brains, rigidly aligned to the initial template, was used to create a195

single average volume “mean-rigid”; here and at each alignment stage, a cohort standard deviation196

map was also created, to highlight locations of relatively high and low variability. That stage’s197

average volume was then used as a base for the next stage of alignment for each subject, using a 12198

DF linear affine registration, and with the results averaged to create the next base “mean-affine”.199

For these alignments, AFNI’s “lpa” cost function (absolute value of local Pearson correlation) [Saad200

et al., 2009] was used for high quality alignment of features between volumes of similar contrast.201

The cost function computes the absolute value of the Pearson correlation between the volume and202

the current template in patches of the volume at a time.203

As a practical consideration, we note that lower level alignments such as these have a general204

property of producing a smoothed brain, which has the additional effect of increasing the apparent205

size of the base dataset (i.e., the edge is blurred outward). Therefore, in these initial levels we206

added a step to control the overall volume of the template. We calculated the mean intracranial207
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volume (ICV) of all the subjects in the cohort Vcoh, and then calculated the volume of the initial208

mean-affine brain mask Va↵ . The volume ratio rvol = Vcoh/Va↵ was calculated, and each of the209

three dimensions of the mean-affine volume were scaled down by the appropriate length scaling210

factor r1/3vol . In this way, the final volume of the templating process retained a representative size211

for the cohort.212

The next alignment stages were comprised of nonlinear registration using AFNI’s 3dQwarp [Cox213

and Glen, 2013]. At each successive level the nonlinear alignment was performed to an increasingly214

higher refinement, resulting in mean volumes of greater detail. Specifically, nonlinear alignment at215

each stage was implemented to create mean templates as follows (A-E), using 3dQwarp’s default216

“pcl” (Pearson correlation, clipped) cost function to reduce the effects of any outlier values (and217

unless otherwise specified, applying a 3D Gaussian blur):218

A) mean-NL0: after registering to mean-affine with a minimum patch size of 101 mm and blurring219

of 0 mm (base) and 9 mm (source);220

B) mean-NL1: after registering to mean-NL0 with a minimum patch size of 49 mm and blurring221

of 1 mm (base) and 6 mm (source);222

C) mean-NL2: after registering to mean-NL1 with a minimum patch size of 23 mm and blurring223

of 0 mm (base) and 4 mm (source);224

D) mean-NL3: after registering to mean-NL2 with a minimum patch size of 13 mm and blurring225

of 0 mm (base) and 2 mm median filter (source);226

E) mean-NL4: after registering to mean-NL3 with a minimum patch size of 9 mm and blurring227

of 0 mm (base) and 2 mm median filter (source).228

Each mean-NL* volume was resized in the same manner as the initial stages, although the correction229

factors were much smaller here. Additionally, each mean-NL* volume was anisotropically smoothed230

(preserving edges within the volume, for detail) using 3danisosmooth, in order to sharpen its contrast231

for subsequent alignments.232

The mean-NL4 volume became the final group mean template for each cohort, as in all cases results233

appeared to have essentially converged after this number of step. The coordinate system of this234

mean volume defines the template space for that age group, and is labelled “IBT_C1”, “IBT_C2”,235

etc.236
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Figure 1 – Schematic representation of the steps involved in the Dask pipeline (make_template_-
dask.py) for generating population-average brain templates.

2.5 “Typical” subject template generation237

We used the following approach to find the maximally representative individual brain for the mean238

template from the underlying cohort, in order to generate an additional “typical” template for that239

space, in complement to the mean template.240

To find the most typical subject for the mean template quantitatively, the lpa cost function value241

from aligning each subject’s anatomical to the final mean-NL4 was compared across the group; that242

is, the degree of similarity of each subject’s aligned volume to the mean template base was compared243

across the cohort. The individual brain in that mean template space with the lowest cost function244

value was selected to be the “typical template” brain. Alignment results were also visually verified245

for each typical template. We note that the typical template volume uses the same coordinate246

system as the mean template, and thus no additional “coordinate space” is created in this process.247

2.6 Atlas generation for mean and typical templates248

For each cohort, atlases were generated for each of the mean and typical templates based on249

FreeSurfer parcellation and segmentation maps1. By default, recon-all produces two maps of250

ROIs (including both cortical and subcortical GM, WM, ventricles, etc.): the “2000” map, using251

the Desikan-Killiany Atlas [Desikan et al., 2006] and the “2009” map, using the Destrieux Atlas252

[Destrieux et al., 2010]. Each of these maps was used to create a “2000” and “2009” atlas for each253

template.254

For the mean template, maximum probability map (MPM) atlases were reconstructed as follows.255

1
FreeSurfer distinguishes between cortical parcellations and subcortical segmentations; here, we use “parcellation”

generically to refer to final map of all ROIs.
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The FreeSurfer parcellations for each subject were transformed to the IBT space using the warps256

created during the template creation process (and “nearest neighbor” interpolation, to preserve257

ROI identity). For a given parcellation, the fraction of overlap of a given ROI at each voxel in the258

template was computed. That overlap fraction is essentially the probability of a region to be mapped259

to that voxel. In this way, an MPM atlas was created for each of the 2000 and 2009 parcellations,260

labelled “IBT_C1_MPM_2000”, “IBT_C1_MPM_2009”, etc. The value of each voxel’s maximum261

probability was also kept and stored in a map, for reference and validation. Locations with max262

probability near 1 show greatest uniformity across group, and locations with lower values show263

greater variability.264

For each typical template volume, atlases based on the 2000 and 2009 FreeSurfer parcellation were265

also created. First, the parcellations from original subject space were mapped to the individual266

template space. Then, each parcellation was passed through a modal smoothing process using267

3dLocalstat: for each voxel in the atlas, its value was reassigned to the mode of its NN=1 neigh-268

borhood (i.e., among “facewise” neighbors, so within a 7 voxel neighborhood). In this way the269

final atlas parcellation was slightly regularized, in order to reduce the effects of resampling to the270

template space. A typical brain atlas was created from each of the 2000 and 2009 parcellations,271

labelled “IBT_C1_TYP_2000”, “IBT_C1_TYP_2009”, etc.272

2.7 Validation and tests273

The fractional volumes of each ROI in the MPM atlases were checked for being representative of274

each cohort. For this we calculated the logarithm of the relative volume ratio of each ROI:275

ri = log

 
VMPM,i / VMPM,ICV
1
N

P
j Vj,i / Vj,ICV

!
, (1)

where the numerator is the fractional volume of a given ith ROI in the MPM (i.e., volume of the276

ROI divided by that template’s ICV), and the denominator is the fractional volume of that ith277

ROI averaged across all N subjects (i.e., for each jth subject, volume of the ROI divided by the278

subject’s ICV, in native space). Thus, ri values close to 0 reflect high similarity of the MPM ROI279

to the cohort mean, and negative or positive values reflect a relative compression or expansion,280

respectively, of the MPM ROI relative to that for a particular cohort.281

In order to quantify the inter-subject brain morphological variability for participants in each age-282

band, we calculated a region-wise mean deformation value (mDV) from the deformation warp fields283

generated during non-linear registration to the age-specific IBT. For this, the absolute warp value284
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was summed across all three axes (L1-norm) and averaged across all the voxels within each ROI285

in the age-specific MPM atlas. A larger mDV indicates greater inter-subject brain morphological286

variability.287

To examine the utility of the IBTs on a real, representative dataset, a separate sample of Indian288

population data was included for validation and testing purposes. For each cohort, the validation289

group (“V1”, matched with cohort C1; “V2”, matched with cohort C2; etc.) comprised 20 subjects290

within the corresponding age range. The T1w and resting state functional MRI (rs-fMRI) data291

acquisition information and demographics of these additional groups are provided in supplementary292

text. For each IBT, in comparison to the MNI ICBM-152 template, the following validation tests293

were conducted using the T1w and resting functional data.294

We first used the deformation field to characterize the difference between the two templates (IBT vs295

MNI). For each subject in the validation cohort, we calculated the absolute amount of displacement296

needed to move a voxel location from native space to the target in the new age-specific IBT and297

the standard MNI ICBM-152 templates, for non-linear registration. A median absolute distance298

along each axis (LR = left-right; PA = posterior-anterior; IS = inferior-superior) was calculated299

from the dimensional deformation field in each voxel. The median absolute distances when warping300

to MNI and cohort-specific IBT along each axis were compared using a paired sample Wilcoxon’s301

signed-ranks test.302

Finally, the practical benefits of using the IBT as reference volume for FMRI alignment were inves-303

tigated by processing resting state FMRI data from age-specific validation cohorts using the same304

pipeline twice: once with the IBT, and once with the standard MNI template. AFNI’s afni_proc.py305

command was used to generate the full fMRI processing pipeline and the exact command is pro-306

vided in the supplementary text. We used AFNI’s 3dReHo [Taylor and Saad, 2013] to calculate a307

common resting state FMRI parameter, ReHo (region homogeneity, which is Kendall’s Coefficient308

of Concordance, W, in statistics [Kendall and Smith, 1939, Zang et al., 2004]), within each atlas309

ROI for the data in each of the IBT and MNI spaces (as per template-specific Desikan-Killiany At-310

las, which exists in both spaces). We then performed a paired t-test comparison on the ROI-ReHo311

values, in order to compare ReHo values between template space targets. In the current pair-wise312

comparisons, a greater ReHo would indicate greater temporal coherence of BOLD time series, likely313

due improvement in overall alignment across subjects within each ROI.314
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3 Results315

The first part of the output consists of both “population average” and “typical” Indian brain tem-316

plates for five specific age-ranges: late-childhood (C1), adolescence (C2), young adulthood (C3),317

adulthood (C4) and late adulthood (C5) [see Table 1 for the age-ranges]. The second part of the318

output is a set four IBT atlases (IBTAs) for each age range: both an MPM and a typical subject319

version of each of the Desikan-Killiany (FreeSurfer’s “2000”) and Destrieux (FreeSurfer’s “2009”)320

atlases.321

Figure 2 shows an example of the successive stages in the creation of the C1 IBT. Throughout322

the refinement, details become progressively clearer, with tissue contrast and feature identification323

increasing. Additionally, the variance decreases in the gray and white tissues with each stage. The324

contrast-to-noise ratio (CNR) between GM and WM improved through the successive stages in all325

the template age-groups (see Supplementary Figure S1).326

Figure 3 shows an example of the IBT and IBTA outputs for the C3 group, displaying multiple slices327

in sagittal, coronal and axial views; in all cases, the population average template is underlayed. The328

top row shows a size comparison with the overlaid MNI template (shows as edges). In the second row,329

the “typical” template version is overlaid translucently, showing the very high degree of structural330

similarity between the two template versions. The bottom two rows show the MPM 2000 and 2009331

IBTAs. Similar outputs for other age groups are provided in the Supplementary Information, in332

Figures S2-S6.333

Figure 4’s left panel displays the logarithm of the relative volume ratio of each ROI in the IBT MPM334

atlas (see Eq. (1)), showing how representative the atlas is of each cohort in a region-wise manner. As335

shown in the figure, most cortical regions have values close to zero, indicating that MPM ROIs in the336

IBT space provide representative volumes of the native space ROIs for each age group. The largest337

expansions were observed in the bilateral caudal and rostral middle frontal gyrus, bilateral rostral338

anterior cingulate, bilateral superior and inferior parietal cortices across the age groups. These are339

also the regions that show greater mDV (Figure 4’s right-panel) indicating that greater inter-subject340

variability could be in part responsible for greater volumetric differences between native-space and341

MPM volumes. The scatter-plots in Supplementary Information (Figure S7) indicates that there342

were significant correlations between relative volume ratios and mDV for each age group (R-values:343

0.24-42 and p-values <0.05 ).344

Figure 5A-E shows the comparison of warp distances from the anatomical (T1w) volumes of the345

validation cohorts (V1-5) to each of the age-matched IBT “population mean" templates (orange),346

vs the V1-5 warp distances to the standard MNI template (blue); for more detailed comparison,347
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Figure 2 – Axial slices of mean (top row) and standard deviation (bottom row) maps through
successive stages of the templatizing algorithm (first stage at the left) for the C1 age-band. Note
that the mean and standard deviation maps have separate scales, to show details more clearly in
each.

Figure 3 – Three sets of sagittal, coronal and axial views of the “population-average” C3 IBT,
displayed as underlay in grayscale in each row (A-D). Row A depicts the edge-filtered version of
the MNI 2009 nonlinear template as overlay for size comparison. Row B shows the “typical” IBT
C3 dataset as a translucent overlay; note the very high degree of structural similarity, as expected.
The Indian MPM version of the DK atlas (FreeSurfer’s 2000 atlas) is shown in row C as overlay
and Destrieux atlas (FreeSurfer’s 2009 atlas) as overlay in row D.
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Figure 4 – Evaluation of the region-wise similarity of the MPM volumes as measured (left panel)
by the relative volume ratio for each ROI via Eq. (1), and (right panel) by mean deformation value
(mDV) of each ROI; rows A-E show results for each age-specific group C1-C5, respectively. In the
left-panel ROIs with notably different volume fractions are highlighted in purple (increases) and
green (decreases), and in the right-panel ROIs with greater inter-subject variability are shown as
increasingly yellow.

Figure 5 – Validation cohort T1w results: A-E) IBT-based results are in orange, and MNI-based
results in blue. Wilcoxon’s signed-ranks test was used to compare the distributions; p-values are
shown at the top of each panel. For each validation group (V1-5), boxplots of the median warp
magnitude along each major axis (LR, PA, IS) to a given template are shown in panel A-E. The
warp distributions to MNI space are significantly larger along the AP and IS axes in all cases.
While the differences tend to be smallest along the LR axis (particularly for C4), warps to MNI are
nevertheless significantly larger for 4/5 of the cohorts along this axis, as well.

average warp distances along each of the main volumetric axes are shown separately. In all cases,348

alignment to an IBT dataset required much less overall displacement on average. Warps to MNI349

were highly significantly greater (p < 0.05, corrected for N = 3⇥ 5 multiple comparisons) along the350

PA and IS axes in all cases. Along the LR axes, differences were smaller but still significant at the351

same level for 4/5 cohorts (again, warps to MNI being larger); the C4 cohort showed no significant352

difference along the LR axis, but overall differences for this group were still large, due to the warps353
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along the other axes.354

Figure 6 – Validation cohort fMRI results. A-E) Comparison of the region-wise ReHo values
in the IBT vs MNI space for each validation group C1-C5. The colors indicate the directions and
magnitude of the mean difference of ReHo values between IBT vs MNI. The unthresholded results
are in top panel and Bonferroni corrected results are in the bottom panel. The warm-red color
indicates regions where the ReHo values are greater in IBT and cool-blue colors are those where
ReHo values are greater in MNI. The ReHo provides a measure of local FC as index of temporal
coherence (Kendall’s coefficient of concordance) of the BOLD time series within a set of a given
voxel’s nearest neighbors in an ROI.

Finally, we investigated the practical difference when using IBT vs MNI as a template space for fMRI355

processing, using the validation cohorts. ReHo values were compared between corresponding ROIs356

in the IBT and MNI spaces, and the paired t-tests of the values showed that each IBT tended to357

have higher ReHo values throughout most regions of the brain. These results are shown in Figure 6.358

While some medial and anterior regions showed higher ReHo in the MNI space, the overall greater359

ReHo values in the IBT space may be the result of slightly improved alignments on average, so that360

more similar time series are grouped together per ROI.361

4 Discussion362

We have introduced five new India brain template (IBTs) spaces, spanning an age range from 6-60363

years. Additionally, corresponding atlases (IBTAs) from widely used segmentations were also created364

for each space. These should form useful reference templates and region maps for brain imaging365

studies involving predominantly Indian populations. Both the creation of age-specific templates and366

the inclusion of associated atlases make the present study distinct from previous Indian population367

brain template projects [Rao et al., 2017, Bhalerao et al., 2018, Sivaswamy et al., 2019, Pai et al.,368

2020]; additionally, we have generated both “population mean” and high-contrast “typical” templates369
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for each age band. The IBT volumes and corresponding atlases are publicly available for download,370

in standard NIFTI format, and freely usable by the wider neuroimaging community.371

The need for age-specific templates in particular has been recognized across different populations372

[Fonov et al., 2011, Wilke et al., 2002, Yoon et al., 2009]; however, Indian versions of age-specific373

brain templates have not been available to date. While adult brain templates may still provide374

reasonably accurate anatomical priors for normalizing lower resolution smoothed functional data,375

they may not be appropriate for high resolution structural and functional data [Wilke et al., 2002].376

For example, Yoon et al. [2009] examined the “template effect” in a pediatric population and noted377

significantly greater amount of deformation required for nonlinear normalization to the MNI152378

adult template than compared to an age-appropriate template (2.2 vs. 1.7 mm). Further, the379

authors also noted significant differences in both volume-based and surface-based morphological380

features between data warped to pediatric and adult brain templates. Such discrepancies are also381

reported in aging studies, where use of young-adult template (such as the MNI) for older adults can382

result in biases such as regional distortion and systematic over-expansion of older brains [Buckner383

et al., 2004]. Age-appropriate template for older adults have also been shown to provide more accu-384

rate tissue segmentation for structural imaging [Fillmore et al., 2015] and more focused activation385

patterns with improvement in sensitivity for fMRI group analyses [Huang et al., 2010].386

In addition to age, consideration should also be given to the ethnic or population-specific differences387

[Lee et al., 2005, Tang et al., 2010, Rao et al., 2017], when choosing the appropriate brain template.388

As expected, there are noticeable structural differences when comparing the new IBTs with existing,389

popular standard templates (such as the MNI), which have been made from very different subject390

populations. Overall, registration to the IBTs from the Indian population validation groups required391

much less deformation of the input datasets and resulted in more accurate stereotactic standard-392

ization and anatomical localization. The relative differences in warping along the major axes of393

the brain were shown here using validation groups from the local population. The differences in394

warping magnitudes varied both by axis and by the age of subjects. Thus, the structural differences395

in templates are not trivial, i.e., just scaling, but instead reflect shape variations that are likely to396

significantly affect the overall goodness-of-fit and anatomical alignment across a group study.397

Such aspects were highlighted in the differences of outcomes in fMRI processing when using IBT vs398

MNI templates: the IBT-based output tended to have higher ReHo values among ROI pairs. The399

latter fact in particular suggests that the IBTs provided better function-to-anatomical alignment400

across groups, so that voxel with functionally similar time series tended to be grouped together more401

preferentially. One might expect this to be a relatively small effect, because alignment to the MNI402

templates still appears generally reasonable; one would expect the overlap pattern differences to be403

occurring fractionally within ROIs and predominantly at boundaries. Indeed, the FC differences404
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were relatively small, but with a noticeable trend toward higher values in the IBT-based datasets.405

It is important to emphasize that these structural differences are only with regards to morphology;406

they do not relate to functional or behavioral outcomes, nor to intelligence, etc. The purpose and407

goal of population-specific templates is for the practical consideration of maximizing the matching408

of structures across a group during an alignment step of processing, as well as to better match409

functional regions to structures. These are geometric and signal-to-noise considerations, which are410

important in brain studies (as demonstrated here), but which are unrelated to the brain behavior411

itself.412

The wide variety of brain structural patterns in any group, even in an apparently homogeneous413

one, is also worth commenting on. This inherent variability affects both the creation and utilization414

of brain templates [Yang et al., 2020]. In any population brain structures can vary to the degree415

of having different numbers of sulci in the same region (e.g., [Thompson et al., 1996] and op cit);416

this is true even in a group of controls who are highly localized, genetically related, similar age and417

background, etc. Thus, there is a minimum and nontrivial degree of variability in alignment that418

one can reasonably expect both when combining multiple subjects to generate a template, as well as419

in the overlap of anatomical structures when applying the template. Indeed, the Indian population420

(currently over 1.3 billion people) is spread across a wide range of geographies with diversity in421

linguistic-ethnic compositions as well as extensive genetic admixtures [Basu et al., 2016]. In this422

study, the final mean template for each cohort contained variability. However, this was relatively423

low compared to the mean dataset values, and the final mean template contained a large amount of424

clearly defined structure. Moreover, the fractional overlap of ROIs when generating the maximum425

probability map atlases showed a high degree of agreement across the group through most of the426

brain.427

The variability present in the template generation is also observable in the atlases. The inter-428

subject variability (as measured by the mean deformation values for various regions during non-linear429

registration to age and population-specific template) also correlated positively with the expansion430

of MPM volumes, in all age groups (see Supplementary Figure S7). While the final MPM atlases431

indicate the most frequent positions of each brain region in a given cohort, we also provide the432

probability density maps for each ROI in the atlas (see supplementary Figure S8 for example),433

which can be of additional use in ROI-based analyses.434

While spatial normalization to IBT offers distinct advantages in terms of spatial accuracy and435

detection power, it may still be desirable to have the results from any particular analysis also436

reported in another space. For example, for comparisons with previously published studies, one437

might want to compare the locations of a finding with those reported in MNI, Talairach or Korean438

template coordinate spaces. Therefore, a nonlinear coordinate transformation mapping between439
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IBT and the common MNI space has also been calculated, and a similar coordinate warp between440

any coordinate frames can be calculated easily.441

There are several methodological strengths and limitations related to the current study that should442

be noted. We used combined state-of-the-art linear and non-linear averaging techniques using443

AFNI’s completely automated pipeline “make_template_dask.py”, which uses the Dask python444

parallelization to efficiently make a template from a large group of subjects. We addressed several445

specific challenges involved in the template creation, such as intensity normalization from different446

scanners, scaling, resizing of the overall brain size to be representative of the cohort at each iteration,447

and anisotropic smoothing with preservation of edges. While the overall sample size of the study448

was relatively large, the late childhood and the late adulthood templates had relative modest sample449

sizes. Therefore, it will be of benefit for the constructed templates to continue to be updated with450

larger sample sizes as we collect more MRI datasets. Future work should also expand the templates451

for ages < 6 yr and > 60 yr. We will also expand this work to include development of a cortical452

surface atlas, which may allow for a registration procedure involving alignment of highly variable453

cortical folding patterns.454

5 Conclusions455

In conclusion, the present work demonstrates the appropriateness of using age and population-456

specific templates as reference targets for spatial normalization of structural and functional neu-457

roimaging data. This database of age-specific IBTs and IBTAs is made freely available to the wider458

neuroimaging community of researchers and clinicians worldwide. We hope that these tools will fa-459

cilitate research into neurological understand in general and into the functional and morphometric460

changes that occur over life-course in Indian population in particular.461

Data Availability Statement462

The Indian brain templates (IBTs) and atlases (IBTAs) developed in this study are openly available463

for use in AFNI. Instructions for downloading the datasets are available at https://hollabharath.464

github.io/IndiaBrainTemplates. The installer script is also available from Zenodo at https:465

//doi.org/10.5281/zenodo.3817045.466

18

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 10, 2020. ; https://doi.org/10.1101/2020.05.08.077172doi: bioRxiv preprint 

https://hollabharath.github.io/IndiaBrainTemplates
https://hollabharath.github.io/IndiaBrainTemplates
https://hollabharath.github.io/IndiaBrainTemplates
https://doi.org/10.5281/zenodo.3817045
https://doi.org/10.5281/zenodo.3817045
https://doi.org/10.5281/zenodo.3817045
https://doi.org/10.1101/2020.05.08.077172
http://creativecommons.org/licenses/by-nc-nd/4.0/


Declaration of competing interest467

The authors have no financial or competing interests to declare.468

Author Contributions469

VB, RDB, BH, PAT and DRG conceptualized and designed the study. VB, RDB, PP, GV, UMM,470

JS, MK, KK, AC and DB contributed data to the study. BH, PAT, NV and DPO curated the471

data. BH and PAT conducted data quality assessments. BH, PAT, DRG and JAL conducted the472

computations required for template construction. GV and NPR contributed data for the validation473

experiments. BH and PAT conducted the validation experiments. BH and PAT took the lead in474

writing the manuscript. DRG, GJB, RDB, RWC and VB contributed to the interpretation of the475

findings and edited the manuscript for important intellectual content. All authors discussed the476

results and contributed to the final manuscript.477

Acknowledgments478

This work was partially supported by c-VEDA (Consortium on Vulnerability to Externalizing Disor-479

ders and Addictions) ICMR (India)/MRC (UK) (grant ICMR/MRC-UK/3/M/2015-NCD-I) to VB480

and GS. Wellcome Trust/DBT India Alliance Fellowship Grants to BH (Award: IA/RTF/14/1/1002),481

and UMM (Award: IA/E/12/1/500755), DST Research Grant SR/CSI/44/2008(5) to RDB and482

DBT Research Grant BT/PR14315/MED/30/474/2010 to PKP. GV acknowledges the support of483

the SwarnaJayanti Fellowship by the Department of Science and Technology, Government of In-484

dia (DST/SJF/LSA-02/2014–15). GS was supported by the Horizon 2020-funded ERC Advanced485

Grant ‘STRATIFY’ (brain network-based stratification of reinforcement-related disorders; 695313),486

ERANID (understanding the interplay between cultural, biological and subjective factors in drug487

use pathways; PR-ST-0416-10004), BRIDGET (JPND brain imaging, cognition, dementia and next488

generation GEnomics; MR/N027558/1), the Human Brain Project (SGA 2, 785907, and SGA 3,489

945539), the National Institute of Health (NIH) (R01DA049238, A decentralized macro and mi-490

cro gene-by-environment interaction analysis of substance use behavior and its brain biomarkers).491

DRG, JAL, PAT and RWC were supported by the NIMH and NINDS Intramural Research Pro-492

grams (ZICMH002888) of the NIH (HHS, USA). This work utilized the computational resources of493

the NIH HPC Biowulf cluster (http://hpc.nih.gov).494

19

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 10, 2020. ; https://doi.org/10.1101/2020.05.08.077172doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.08.077172
http://creativecommons.org/licenses/by-nc-nd/4.0/


References495

Analabha Basu, Neeta Sarkar-Roy, and Partha P. Majumder. Genomic reconstruction of the history496

of extant populations of india reveals five distinct ancestral components and a complex structure.497

Proceedings of the National Academy of Sciences, 113(6):1594–1599, January 2016. doi: 10.1073/498

pnas.1513197113. URL https://doi.org/10.1073/pnas.1513197113.499

G. V. Bhalerao, R. Parlikar, R. Agrawal, V. Shivakumar, S. V. Kalmady, N. P. Rao, S. M. Agarwal,500

J. C. Narayanaswamy, Y. C. J. Reddy, and G. Venkatasubramanian. Construction of population-501

specific indian mri brain template: Morphometric comparison with chinese and caucasian tem-502

plates. Asian J Psychiatr, 35:93–100, 2018. ISSN 1876-2026 (Electronic) 1876-2018 (Linking).503

doi: 10.1016/j.ajp.2018.05.014. URL https://www.ncbi.nlm.nih.gov/pubmed/29843077.504

Randy L. Buckner, Denise Head, Jamie Parker, Anthony F. Fotenos, Daniel Marcus, John C. Morris,505

and Abraham Z. Snyder. A unified approach for morphometric and functional data analysis in506

young, old, and demented adults using automated atlas-based head size normalization: reliability507

and validation against manual measurement of total intracranial volume. NeuroImage, 23(2):724–508

738, October 2004. doi: 10.1016/j.neuroimage.2004.06.018. URL https://doi.org/10.1016/j.509

neuroimage.2004.06.018.510

R. W. Cox. Afni: software for analysis and visualization of functional magnetic resonance neuroim-511

ages. Comput Biomed Res, 29(3):162–73, 1996. ISSN 0010-4809 (Print) 0010-4809 (Linking). doi:512

10.1006/cbmr.1996.0014. URL https://www.ncbi.nlm.nih.gov/pubmed/8812068.513

RW Cox and DR Glen. Nonlinear warping in afni. In Poster presented at the 19th Annual Meeting514

of the Organization for Human Brain Mapping, 2013.515

Dask Development Team. Dask: Library for dynamic task scheduling, 2016. URL https://dask.516

org.517

R. S. Desikan, F. Segonne, B. Fischl, B. T. Quinn, B. C. Dickerson, D. Blacker, R. L. Buckner,518

A. M. Dale, R. P. Maguire, B. T. Hyman, M. S. Albert, and R. J. Killiany. An automated519

labeling system for subdividing the human cerebral cortex on mri scans into gyral based regions520

of interest. Neuroimage, 31(3):968–80, 2006. ISSN 1053-8119 (Print) 1053-8119 (Linking). doi:521

10.1016/j.neuroimage.2006.01.021. URL https://www.ncbi.nlm.nih.gov/pubmed/16530430.522

Christophe Destrieux, Bruce Fischl, Anders Dale, and Eric Halgren. Automatic parcellation of523

human cortical gyri and sulci using standard anatomical nomenclature. Neuroimage, 53(1):1–15,524

2010. ISSN 1053-8119.525

Alan C Evans, D Louis Collins, SR Mills, ED Brown, RL Kelly, and Terry M Peters. 3d statistical526

20

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 10, 2020. ; https://doi.org/10.1101/2020.05.08.077172doi: bioRxiv preprint 

https://doi.org/10.1073/pnas.1513197113
https://www.ncbi.nlm.nih.gov/pubmed/29843077
https://doi.org/10.1016/j.neuroimage.2004.06.018
https://doi.org/10.1016/j.neuroimage.2004.06.018
https://doi.org/10.1016/j.neuroimage.2004.06.018
https://www.ncbi.nlm.nih.gov/pubmed/8812068
https://dask.org
https://dask.org
https://dask.org
https://www.ncbi.nlm.nih.gov/pubmed/16530430
https://doi.org/10.1101/2020.05.08.077172
http://creativecommons.org/licenses/by-nc-nd/4.0/


neuroanatomical models from 305 mri volumes. In 1993 IEEE conference record nuclear science527

symposium and medical imaging conference, pages 1813–1817. IEEE, 1993.528

Paul T. Fillmore, Michelle C. Phillips-Meek, and John E. Richards. Age-specific MRI brain and head529

templates for healthy adults from 20 through 89 years of age. Frontiers in Aging Neuroscience, 7,530

April 2015. doi: 10.3389/fnagi.2015.00044. URL https://doi.org/10.3389/fnagi.2015.00044.531

B. Fischl. Freesurfer. Neuroimage, 62(2):774–81, 2012. ISSN 1095-9572 (Electronic) 1053-532

8119 (Linking). doi: 10.1016/j.neuroimage.2012.01.021. URL https://www.ncbi.nlm.nih.gov/533

pubmed/22248573.534

V. Fonov, A. C. Evans, K. Botteron, C. R. Almli, R. C. McKinstry, D. L. Collins, and Group535

Brain Development Cooperative. Unbiased average age-appropriate atlases for pediatric studies.536

Neuroimage, 54(1):313–27, 2011. ISSN 1095-9572 (Electronic) 1053-8119 (Linking). doi: 10.1016/537

j.neuroimage.2010.07.033. URL https://www.ncbi.nlm.nih.gov/pubmed/20656036.538

Chih-Mao Huang, Shwu-Hua Lee, Ing-Tsung Hsiao, Wan-Chun Kuan, Yau-Yau Wai, Han-Jung Ko,539

Yung-Liang Wan, Yuan-Yu Hsu, and Ho-Ling Liu. Study-specific EPI template improves group540

analysis in functional MRI of young and older adults. Journal of Neuroscience Methods, 189(2):541

257–266, June 2010. doi: 10.1016/j.jneumeth.2010.03.021. URL https://doi.org/10.1016/j.542

jneumeth.2010.03.021.543

M. G. Kendall and B. Babington Smith. The problem of m rankings. Ann. Math. Statist., 10544

(3):275–287, 09 1939. doi: 10.1214/aoms/1177732186. URL https://doi.org/10.1214/aoms/545

1177732186.546

Jae Sung Lee, Dong Soo Lee, Jinsu Kim, Yu Kyeong Kim, Eunjoo Kang, Hyejin Kang, Keon Wook547

Kang, Jong Min Lee, Jae-Jin Kim, and Hae-Jeong Park. Development of korean standard brain548

templates. Journal of Korean medical science, 20(3):483–488, 2005. ISSN 1011-8934.549

X. Li, P. S. Morgan, J. Ashburner, J. Smith, and C. Rorden. The first step for neuroimaging550

data analysis: Dicom to nifti conversion. J Neurosci Methods, 264:47–56, 2016. ISSN 1872-551

678X (Electronic) 0165-0270 (Linking). doi: 10.1016/j.jneumeth.2016.03.001. URL https://552

www.ncbi.nlm.nih.gov/pubmed/26945974.553

John Mazziotta, Arthur Toga, Alan Evans, Peter Fox, Jack Lancaster, Karl Zilles, Roger Woods,554

Tomas Paus, Gregory Simpson, Bruce Pike, et al. A four-dimensional probabilistic atlas of the555

human brain. Journal of the American Medical Informatics Association, 8(5):401–430, 2001a.556

John Mazziotta, Arthur Toga, Alan Evans, Peter Fox, Jack Lancaster, Karl Zilles, Roger Woods,557

Tomas Paus, Gregory Simpson, Bruce Pike, et al. A probabilistic atlas and reference system for558

21

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 10, 2020. ; https://doi.org/10.1101/2020.05.08.077172doi: bioRxiv preprint 

https://doi.org/10.3389/fnagi.2015.00044
https://www.ncbi.nlm.nih.gov/pubmed/22248573
https://www.ncbi.nlm.nih.gov/pubmed/22248573
https://www.ncbi.nlm.nih.gov/pubmed/22248573
https://www.ncbi.nlm.nih.gov/pubmed/20656036
https://doi.org/10.1016/j.jneumeth.2010.03.021
https://doi.org/10.1016/j.jneumeth.2010.03.021
https://doi.org/10.1016/j.jneumeth.2010.03.021
https://doi.org/10.1214/aoms/1177732186
https://doi.org/10.1214/aoms/1177732186
https://doi.org/10.1214/aoms/1177732186
https://www.ncbi.nlm.nih.gov/pubmed/26945974
https://www.ncbi.nlm.nih.gov/pubmed/26945974
https://www.ncbi.nlm.nih.gov/pubmed/26945974
https://doi.org/10.1101/2020.05.08.077172
http://creativecommons.org/licenses/by-nc-nd/4.0/


the human brain: International consortium for brain mapping (icbm). Philosophical Transactions559

of the Royal Society of London. Series B: Biological Sciences, 356(1412):1293–1322, 2001b.560

Praful P. Pai, Pravat K. Mandal, Khushboo Punjabi, Deepika Shukla, Anshika Goel, Shallu Joon,561

Saurav Roy, Kanika Sandal, Ritwick Mishra, and Ritu Lahoti. BRAHMA: Population specific t1,562

t2, and FLAIR weighted brain templates and their impact in structural and functional imaging563

studies. Magnetic Resonance Imaging, 70:5–21, July 2020. doi: 10.1016/j.mri.2019.12.009. URL564

https://doi.org/10.1016/j.mri.2019.12.009.565

N. P. Rao, H. Jeelani, R. Achalia, G. Achalia, A. Jacob, R. D. Bharath, S. Varambally, G. Venkata-566

subramanian, and K. Yalavarthy P. Population differences in brain morphology: Need for567

population specific brain template. Psychiatry Res Neuroimaging, 265:1–8, 2017. ISSN 1872-568

7506 (Electronic) 0925-4927 (Linking). doi: 10.1016/j.pscychresns.2017.03.018. URL https:569

//www.ncbi.nlm.nih.gov/pubmed/28478339.570

Z. S. Saad, D. R. Glen, G. Chen, M. S. Beauchamp, R. Desai, and R. W. Cox. A new method for571

improving functional-to-structural mri alignment using local pearson correlation. Neuroimage, 44572

(3):839–48, 2009. ISSN 1095-9572 (Electronic) 1053-8119 (Linking). doi: 10.1016/j.neuroimage.573

2008.09.037. URL https://www.ncbi.nlm.nih.gov/pubmed/18976717.574

Eesha Sharma, Nilakshi Vaidya, Udita Iyengar, Yuning Zhang, Bharath Holla, Meera Purushottam,575

Amit Chakrabarti, Gwen Sascha Fernandes, Jon Heron, Matthew Hickman, Sylvane Desrivieres,576

Kamakshi Kartik, Preeti Jacob, Madhavi Rangaswamy, Rose Dawn Bharath, Gareth Barker,577

Dimitri Papadopoulos Orfanos, Chirag Ahuja, Pratima Murthy, Sanjeev Jain, Mathew Vargh-578

ese, Deepak Jayarajan, Keshav Kumar, Kandavel Thennarasu, Debashish Basu, B. N. Sub-579

odh, Rebecca Kuriyan, Sunita Simon Kurpad, Kumaran Kalyanram, Ghattu Krishnaveni, Mu-580

rali Krishna, Rajkumar Lenin Singh, L. Roshan Singh, Kartik Kalyanram, Mireille Toledano,581

Gunter Schumann, Vivek Benegal, and The cVEDA Consortium. Consortium on vulnerabil-582

ity to externalizing disorders and addictions (cveda): A developmental cohort study proto-583

col. BMC Psychiatry, 20(1):2, 2020. ISSN 1471-244X. doi: 10.1186/s12888-019-2373-3. URL584

https://doi.org/10.1186/s12888-019-2373-3.585

J. Sivaswamy, A. J. Thottupattu, R. Mehta, R. Sheelakumari, and C. Kesavadas. Construction586

of indian human brain atlas. Neurol India, 67(1):229–234, 2019. ISSN 0028-3886 (Print) 0028-587

3886 (Linking). doi: 10.4103/0028-3886.253639. URL https://www.ncbi.nlm.nih.gov/pubmed/588

30860125.589

Jean Talairach and Pierre Tournoux. Co-planar stereotaxic atlas of the human brain-3-dimensional590

proportional system. An approach to cerebral imaging, 1988.591

22

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 10, 2020. ; https://doi.org/10.1101/2020.05.08.077172doi: bioRxiv preprint 

https://doi.org/10.1016/j.mri.2019.12.009
https://www.ncbi.nlm.nih.gov/pubmed/28478339
https://www.ncbi.nlm.nih.gov/pubmed/28478339
https://www.ncbi.nlm.nih.gov/pubmed/28478339
https://www.ncbi.nlm.nih.gov/pubmed/18976717
https://doi.org/10.1186/s12888-019-2373-3
https://www.ncbi.nlm.nih.gov/pubmed/30860125
https://www.ncbi.nlm.nih.gov/pubmed/30860125
https://www.ncbi.nlm.nih.gov/pubmed/30860125
https://doi.org/10.1101/2020.05.08.077172
http://creativecommons.org/licenses/by-nc-nd/4.0/


Y. Tang, C. Hojatkashani, I. D. Dinov, B. Sun, L. Fan, X. Lin, H. Qi, X. Hua, S. Liu, and A. W.592

Toga. The construction of a chinese mri brain atlas: a morphometric comparison study between593

chinese and caucasian cohorts. Neuroimage, 51(1):33–41, 2010. ISSN 1095-9572 (Electronic)594

1053-8119 (Linking). doi: 10.1016/j.neuroimage.2010.01.111. URL https://www.ncbi.nlm.nih.595

gov/pubmed/20152910.596

Paul A Taylor and Ziad S Saad. Fatcat:(an efficient) functional and tractographic connectivity597

analysis toolbox. Brain connectivity, 3(5):523–535, 2013.598

P. M. Thompson, C. Schwartz, R. T. Lin, A. A. Khan, and A. W. Toga. Three-dimensional statistical599

analysis of sulcal variability in the human brain. J Neurosci, 16(13):4261–74, 1996. ISSN 0270-600

6474 (Print) 0270-6474 (Linking). URL https://www.ncbi.nlm.nih.gov/pubmed/8753887.601

M. Wilke, V. J. Schmithorst, and S. K. Holland. Assessment of spatial normalization of whole-brain602

magnetic resonance images in children. Hum Brain Mapp, 17(1):48–60, 2002. ISSN 1065-9471603

(Print) 1065-9471 (Linking). doi: 10.1002/hbm.10053. URL https://www.ncbi.nlm.nih.gov/604

pubmed/12203688.605

Guoyuan Yang, Sizhong Zhou, Jelena Bozek, Hao-Ming Dong, Meizhen Han, Xi-Nian Zuo, Hesheng606

Liu, and Jia-Hong Gao. Sample sizes and population differences in brain template construction.607

NeuroImage, 206:116318, February 2020. doi: 10.1016/j.neuroimage.2019.116318. URL https:608

//doi.org/10.1016/j.neuroimage.2019.116318.609

U. Yoon, V. S. Fonov, D. Perusse, A. C. Evans, and Group Brain Development Cooperative. The610

effect of template choice on morphometric analysis of pediatric brain data. Neuroimage, 45(3):611

769–77, 2009. ISSN 1095-9572 (Electronic) 1053-8119 (Linking). doi: 10.1016/j.neuroimage.2008.612

12.046. URL https://www.ncbi.nlm.nih.gov/pubmed/19167509.613

Yufeng Zang, Tianzi Jiang, Yingli Lu, Yong He, and Lixia Tian. Regional homogeneity approach614

to fmri data analysis. Neuroimage, 22(1):394–400, 2004.615

Y. Zhang, N. Vaidya, U. Iyengar, E. Sharma, B. Holla, C. K. Ahuja, G. J. Barker, D. Basu, R. D.616

Bharath, A. Chakrabarti, S. Desrivieres, P. Elliott, G. Fernandes, A. Gourisankar, J. Heron,617

M. Hickman, P. Jacob, S. Jain, D. Jayarajan, K. Kalyanram, K. Kartik, M. Krishna, G. Kr-618

ishnaveni, K. Kumar, K. Kumaran, R. Kuriyan, P. Murthy, D. P. Orfanos, M. Purushottam,619

M. Rangaswamy, S. S. Kupard, L. Singh, R. Singh, B. N. Subodh, K. Thennarasu, M. Toledano,620

M. Varghese, V. Benegal, G. Schumann, and Veda consortium c. The consortium on vulnerability621

to externalizing disorders and addictions (c-veda): an accelerated longitudinal cohort of children622

and adolescents in india. Mol Psychiatry, 2020. ISSN 1476-5578 (Electronic) 1359-4184 (Linking).623

doi: 10.1038/s41380-020-0656-1. URL https://www.ncbi.nlm.nih.gov/pubmed/32203154.624

23

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 10, 2020. ; https://doi.org/10.1101/2020.05.08.077172doi: bioRxiv preprint 

https://www.ncbi.nlm.nih.gov/pubmed/20152910
https://www.ncbi.nlm.nih.gov/pubmed/20152910
https://www.ncbi.nlm.nih.gov/pubmed/20152910
https://www.ncbi.nlm.nih.gov/pubmed/8753887
https://www.ncbi.nlm.nih.gov/pubmed/12203688
https://www.ncbi.nlm.nih.gov/pubmed/12203688
https://www.ncbi.nlm.nih.gov/pubmed/12203688
https://doi.org/10.1016/j.neuroimage.2019.116318
https://doi.org/10.1016/j.neuroimage.2019.116318
https://doi.org/10.1016/j.neuroimage.2019.116318
https://www.ncbi.nlm.nih.gov/pubmed/19167509
https://www.ncbi.nlm.nih.gov/pubmed/32203154
https://doi.org/10.1101/2020.05.08.077172
http://creativecommons.org/licenses/by-nc-nd/4.0/


Age-specific Indian brain templatesSupplementary Information

This section provides supplementary figures and codes to the material in the main text.

The contrast-to-noise ratio (CNR) between GM and WM for successive template creation
steps (Figure S1) was calculated as

CNR =
|mean(SIGM )�mean(SIWM )|
sqrt(SD2

GM ) + sqrt(SD2
WM )

(1)

where SIGM / SIwM and SDGM/SDWM are mean signal intensity within the gray and white matter
respectively, and the corresponding standard deviations.

Figure S1: The CNR between GM and WM improves consistently across the successive template
creation stages in all the template age-groups C1-C5.
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Age-specific Indian brain templates

Figure S2: The five IBTs (C1-5) with three sets of sagittal, coronal and axial view displayed as
underlay in grayscale and edge-filtered version of the MNI 2009 non-linear template mask as overlay
for size comparison. High tissue contrast and detail are evident in each case.
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Figure S3: The five population-average IBTs (C1-5) with three sets of sagittal, coronal and axial
view displayed as underlay in grayscale and the respective typical subject for each IBT version as
the overlay. Arrow points to example regions in C1 age-band regions where the typical version
provides greater details than the underlying population-average version.
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Figure S4: The five IBTs (C1-5) with three sets of sagittal, coronal and axial view displayed as
underlay in grayscale and the respective Indian maximum probability map version of the DK atlas
(FreeSurfer’s 2000 Atlas) as overlay in AFNI’s “ROI i256” color scale.
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Figure S5: The five IBTs (C1-5) with three sets of sagittal, coronal and axial view displayed as
underlay in grayscale and the respective Indian maximum probability map version of the Destrieux
atlas (FreeSurfer’s 2009 Atlas) as overlay in AFNI’s “ROI i256” color scale.
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Figure S6: 3D surface view of the brain atlases for the C1-IBT age band. The top row shows
the maximum probability map (MPM) version of the DK atlas (FreeSurfer’s 2000 Atlas) and the
bottom row shows MPM version of the Destrieux atlas (FreeSurfer’s 2009 Atlas) for the C1 age
band.

Figure S7: Scatterplot with marginal densigram for pairwise correlations between absolute values of
logarithm of the relative volume ratios and mean absolute deformation value across all the regions
in the maximum probability map (MPM) version of the DK atlas (FreeSurfer’s 2000 Atlas) at each
age-group C1-C5.
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Figure S8: Axial views for three example region of interest from MPM-2000 IBT atlas for all the
age groups. The top row shows probability map for right superior temporal gyrus, middle row
shows left medial orbital frontal gyrus and the bottom row shows left posterior cingulate gyrus.
The color intensity reflects probability density estimates (ranging from 0 to 1)
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Supplementary Information:
Example afni proc.py command for comparing validation tests.

#!/bin/bash

subj=$1 # subject ID

topdir=$2 # group level directory for input

outdir=$3 # group level directory for output

btemplate=$4 # brain template name

tpath=`@FindAfniDsetPath ${btemplate}`

sdir=${topdir}/${subj}

\mkdir -p ${outdir}

afni_proc.py \

-subj_id ${subj} \

-out_dir ${outdir}/${subj}.results \

-blocks despike tshift align tlrc volreg mask regress \

-copy_anat ${sdir}/anatSS.${subj}.nii \

-anat_has_skull no \

-dsets ${sdir}/${subj}_rest.nii.gz \

-tcat_remove_first_trs 3 \

-align_opts_aea -ginormous_move -deoblique on \

-check_flip -cost lpc+ZZ \

-mask_epi_anat yes \

-volreg_align_to MIN_OUTLIER \

-volreg_align_e2a \

-volreg_tlrc_warp \

-tlrc_base ${tpath}/${btemplate} \

-tlrc_NL_warp \

-tlrc_NL_warped_dsets \

${sdir}/anatQQ.${subj}.nii \

${sdir}/anatQQ.${subj}.aff12.1D \

${sdir}/anatQQ.${subj}_WARP.nii \

-volreg_warp_dxyz 3 \

-mask_segment_anat yes \

-regress_censor_outliers 0.1 \

-regress_censor_motion 0.3 \

-regress_apply_mot_types demean deriv \

-regress_est_blur_errts \

-html_review_style pythonic \

-execute
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