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ABSTRACT 22 

Intestinal digesta is commonly used for studying responses of microbiota to 23 

dietary shifts, yet evidence is accumulating that it represents an incomplete view of the 24 

intestinal microbiota. In a 16-week seawater feeding trial, Atlantic salmon (Salmo salar) 25 

were fed either a commercially-relevant reference diet or an insect meal diet containing 26 

~15% black soldier fly larvae meal. The digesta- and mucosa-associated distal intestinal 27 

microbiota were profiled by 16S rRNA gene sequencing. Regardless of diet, we 28 

observed substantial differences between digesta- and mucosa-associated intestinal 29 

microbiota. Microbial richness and diversity were much higher in the digesta than the 30 

mucosa. The insect meal diet altered the distal intestinal microbiota resulting in higher 31 

microbial richness and diversity. The diet effect, however, depended on the sample 32 

origin. Digesta-associated intestinal microbiota showed more pronounced changes than 33 

the mucosa-associated microbiota. Lastly, multivariate association analyses identified 34 

two mucosa-enriched taxa, Brevinema andersonii and unclassified Spirochaetaceae, 35 

associated with the expression of genes related to immune responses and barrier 36 

function in the distal intestine, respectively. Overall, our data clearly indicate that 37 

responses in digesta- and mucosa-associated microbiota to dietary inclusion of insect 38 

meal differ, with the latter being more resilient to dietary changes. 39 
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IMPORTANCE 40 

    While fecal samples provide a convenient, non-invasive way for profiling 41 

intestinal microbiota, heterogeneity in the microbial community assemblage between 42 

intestinal digesta and mucosa is well recognized. The present work provides insights 43 

into the differences between digesta- and mucosa-associated intestinal microbiota in 44 

Atlantic salmon and how they respond differently to dietary perturbations. Mucosa-45 

associated intestinal microbiota seemed more resilient to variation in diet composition 46 

than digesta-associated intestinal microbiota. Most likely, not only the digesta 47 

associated microbiota, but also the mucosa-associated, play key roles in shaping the 48 

host metabolism. Therefore, our work emphasizes the necessity of profiling both 49 

digesta- and mucosa-associated intestinal microbiota to understand the impact of 50 

variation in diet composition on intestinal microbiota.  51 

 52 

KEYWORDS: microbiota, gut biogeography, Atlantic salmon, diet, black soldier fly 53 
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INTRODUCTION 54 

    The reduction in the sequencing costs and the advent of bioinformatics in the past 55 

decade have enabled in-depth taxonomic and functional profiling of microbial 56 

communities from diverse environments at an unprecedented scale. Recent advances in 57 

the microbiome studies have shed light on the role of intestinal microbiota in a wide 58 

spectrum of host physiological processes and development of diseases, such as helping 59 

digestion and absorption (1), modulating lipid metabolism and energy balance (2, 3), 60 

dialoguing with the central nervous system through the so-called microbiota-gut-brain 61 

axis (4) and being a risk factor or a therapeutic intervention of inflammatory bowel 62 

disease (5-8). Diet is one of the key factors in shaping the intestinal microbiota. While 63 

long-term dietary habits have a considerable effect on the structure and activity of host 64 

intestinal microbiota (9-11), short-term dietary change also alters the intestinal microbiota 65 

in a rapid and reproducible way (12). Different dietary components selectively promote 66 

or suppress the growth of certain microbial clades, which in turn could inflict important 67 

effects on the host health and disease resistance (13, 14). 68 

    Atlantic salmon (Salmo salar) is the most produced seawater fish species and one of 69 

the most economically important farmed fish worldwide (15). While Atlantic salmon are 70 

strictly carnivorous in the wild, farmed Atlantic salmon have experienced a substantial 71 

shift in the diet composition due to a limited supply of marine ingredients. Marine 72 

ingredients used for Norwegian farmed Atlantic salmon have gradually been replaced by 73 

plant sources, decreasing from ~90% in 1990 to ~25% in 2016 (16). Due to concerns on 74 
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the economic, environmental and social sustainability of the current raw materials for 75 

Atlantic salmon farming (15), more sustainable alternative feed ingredients, such as 76 

insects (17) and yeasts (18), have been developed and used. The use of alternative feed 77 

ingredients may not only affect the nutrient utilization, fish growth, health, welfare and 78 

product quality, but also intestinal microbiota in Atlantic salmon (19-21). While studies 79 

in mammals and fish have revealed substantial differences between the digesta- and 80 

mucosa-associated intestinal microbiota (19, 22-25), most studies investigating diet 81 

effects on the intestinal microbiota of fish have sampled the digesta only or a mixture of 82 

digesta and mucosa. Evidence is accumulating that digesta- and mucosa-associated 83 

intestinal microbiota in fish respond differently to dietary changes (19, 26-29). Profiling 84 

only one of or a mixture of digesta- and mucosa-associated microbiota may obscure the 85 

response of intestinal microbiota to dietary changes.  86 

    Characterizing intestinal microbiota and its associations with host responses is an 87 

essential step towards identifying key microbial clades promoting fish health and welfare. 88 

Ultimately, a milestone in the fish microbiota research would be knowing how to 89 

selectively manipulate the microbiota to improve the growth performance, disease 90 

resistance and health status of farmed fish. The main aims of the work presented herein 91 

were (i) to compare distal intestinal microbiota of Atlantic salmon fed a commercially 92 

relevant diet and an insect meal-based diet, (ii) to further explore the dissimilarity 93 

between digesta- and mucosa-associated microbiota and the differences in their response 94 

to dietary changes, and (iii) to identify associations between microbial clades and host 95 

responses. This work was part of a larger study consisting of a freshwater and seawater 96 
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feeding trial that aimed to investigate the nutritional value and possible health effects for 97 

Atlantic salmon of a protein-rich insect meal produced from black soldier fly (Hermetia 98 

illucens) larvae. The present work focuses on the intestinal microbiota in seawater-phase 99 

Atlantic salmon fed an insect meal diet containing ~15% black soldier fly larvae meal for 100 

16 weeks. Results on feed utilization, growth performance, fillet quality, intestinal 101 

histomorphology and gene expression have been reported elsewhere (30-32).  102 

RESULT 103 

    Hereafter, different sample groups are named based on the combination of diet (REF 104 

vs. IM) and sample origin (DID vs. DIM). Hence, in addition to the extraction blanks, 105 

library blanks and mock, we have four different sample types, i.e., REF-DID, REF-DIM, 106 

IM-DID and IM-DIM.  107 

qPCR 108 

Since Cq values of most mucosa DNA templates were out of the linear range of the 109 

standard curve, the raw Cq value was used as a proxy of 16S rRNA gene quantity in the 110 

diluted DNA templates (Figure S1). On average, REF-DID showed the highest 16S rRNA 111 

gene quantities (mean Cq = 24.7), followed by the mocks (mean Cq = 26.1) and IM-DID 112 

(mean Cq = 28.4). Irrespective of diet, mucosa DNA templates (REF-DIM, IM-DIM) 113 

showed similar 16S rRNA gene quantities (mean Cq = 30) that were close to extraction 114 

blanks (mean Cq = 32.4). 115 

Taxonomic composition 116 

All the eight bacterial species included in the mock were successfully identified at 117 
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genus level with E. faecalis, L. fermentum, L. monocytogenes and S. aureus further being 118 

annotated at the species level (Figure S2A). At the genus level, the average Pearson's r 119 

between the expected and observed taxonomic profile of the mock was 0.33, whereas the 120 

Pearson's r between the observed taxonomic profile of the mock was 0.98. The relative 121 

abundance of most Gram-positive bacteria, L. monocytogenes and E. faecalis in particular, 122 

were underestimated. In contrast, the relative abundance of Gram-negative bacteria was 123 

overestimated. Most ASVs (97.5% - 99.9%) in the extraction and library blanks were 124 

classified as Pseudomonas (Figure S2B), which was the main contaminating taxon 125 

removed from the biological samples along with other contaminants including 126 

Curtobacterium, Jeotgalicoccus, Modestobacter, Cutibacterium, Hymenobacter, 127 

Brevundimonas, Micrococcus,  Sphingomonas, Devosia, Sphingomonas aurantiaca and 128 

Marinobacter adhaerens. The exact sequence of the contaminating ASVs and their 129 

relative abundance in the extraction and library blanks are available in Table S1. 130 

The taxonomic composition of mucosa samples showed higher similarity than that 131 

of the digesta samples, which were more diet-dependent (Figure 1). At the phylum level, 132 

the dominant taxa of mucosa samples for both diets were Spirochaetes (REF-DIM, 72 ± 133 

34.6 %; IM-DIM, 47 ± 35.2 %) (mean ± S.D.), Proteobacteria (REF-DIM, 21 ± 34.1 %; 134 

IM-DIM, 23 ± 34.1 %), Firmicutes (REF-DIM, 1 ± 2.8 %; IM-DIM, 11 ± 13.5 %),  135 

Tenericutes (REF-DIM, 4 ± 8 %; IM-DIM, 8 ± 18.8 %) and Actinobacteria (REF-DIM, 136 

1 ± 3.4 %; IM-DIM, 9 ± 8.7 %). For digesta samples, the dominant taxa of REF-DID 137 

were Tenericutes (33 ± 23.1 %), Proteobacteria (31 ± 29.9 %), Firmicutes (25 ± 21.1 %) 138 

and Spirochaetes (9 ± 12.9 %), whereas IM-DID was dominated by Firmicutes (45 ± 139 
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16.9 %), Actinobacteria (25 ± 9.5 %), Proteobacteria (17 ± 27.8 %), Tenericutes (7 ± 140 

8.8 %) and RsaHF231 (4 ± 1.5 %) (Figure 1A). At the genus level, the dominant taxa of 141 

mucosa samples for both diets were Brevinema (REF-DIM, 52 ± 40.1 %; IM-DIM, 25 ± 142 

35 %), unclassified Spirochaetaceae (REF-DIM, 20 ± 31.8 %; IM-DIM, 22 ± 31.4 %), 143 

Aliivibrio (REF-DIM, 18 ± 33.5 %; IM-DIM, 18 ± 35.3 %) and Mycoplasma (REF-DIM, 144 

4 ± 8 %; IM-DIM, 8 ± 18.8 %). For digesta samples, the dominant taxa of REF-DID were 145 

Mycoplasma (33 ± 23.1 %), Aliivibrio (20 ± 32.3 %), Photobacterium (10 ± 12.6 %), 146 

Brevinema (6 ± 12.5 %) and Lactobacillus (5 ± 4 %), whereas IM-DID was dominated 147 

by Aliivibrio (15 ± 28.2 %), unclassified Lactobacillales (14 ± 6 %), Corynebacterium 1 148 

(13 ± 5 %), Bacillus (8 ± 3.4 %), Mycoplasma (7 ± 8.8 %) and Actinomyces (5 ± 2 %) 149 

(Figure 1B). 150 

Core microbiota 151 

    In total, 108 taxa were identified as core microbiota based on their prevalence in each 152 

sample type (Figure 2; Table S2). Specifically, Aliivibrio, Brevinema andersonii, and 153 

Mycoplasma were identified as core microbiota for all the sample types, the latter two 154 

being universally present in all the samples. Additionally, ten taxa were identified as core 155 

microbiota for digesta samples (REF-DID and IM-DID), which included Bacillus, 156 

Corynebacterium 1, Lactobacillus (L. aviaries, L. fermentum and two unclassified 157 

species), Leuconostoc, Parageobacillus toebii, Ureibacillus and Weissella. No additional 158 

core microbiota taxa were identified for the mucosa samples (REF-DIM and IM-DIM). 159 

Actinomyces, Corynebacterium 1, Corynebacterium aurimucosum ATCC 70097, 160 

Microbacterium and unclassified RsaHF23 were the additional core microbiota taxa 161 
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identified for fish fed the insect meal diet (IM-DID and IM-DIM), whereas no additional 162 

core microbiota taxa were identified for fish fed the reference diet (REF-DID and REF-163 

DIM). Lastly, 86 taxa were found to be more prevalent in IM-DID than in any other 164 

sample type. 165 

Alpha-diversity 166 

Regardless of diet, all the alpha-diversity indices were higher in digesta samples than 167 

mucosa samples (p < 0.05) (Figure 3). Independent of sample origin, all the alpha-168 

diversity indices were higher in fish fed the IM diet than those fed the REF diet (p < 0.05). 169 

A significant interaction between the diet and sample origin effect was detected for the 170 

observed species (p = 0.031) and Faith’s phylogenetic diversity (p = 0.002), both of which 171 

showed a stronger diet effect in digesta samples than mucosa samples.  172 

Beta-diversity 173 

The PCoA plots built on the Jaccard and unweighted UniFrac distance matrix showed 174 

clear separations of samples belonging to different dietary groups and sample origins 175 

(Figure 4A-B). However, the average distance between samples from different dietary 176 

groups was dependent on sample origin. Specifically, mucosa samples from different 177 

dietary groups formed clusters close to each other, whereas digesta samples from different 178 

dietary groups were far apart. The PCoA plots built on the Aitchison and PHILR 179 

transformed Euclidean distance matrix also showed separations of samples belonging to 180 

different dietary groups and sample origins (Figure 4C-D). Again, the average distance 181 

between samples from different dietary groups was dependent on sample origin. Mucosa 182 

samples from different dietary groups formed clusters boarding (Figure 4C) or 183 
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overlapping (Figure 4D) each other, whereas digesta samples from different dietary 184 

groups were more clearly separated. 185 

The PERMANOVA and its following conditional contrasts largely confirmed the 186 

PCoA results. Regardless of the distance matrix used, both main factors had significant 187 

effects on the beta-diversity and their interaction was significant as well (p < 0.05) (Table 188 

1). Results on the tests of homogeneity of multivariate dispersions are shown in Table 2. 189 

For Jaccard distance, significant differences in the multivariate dispersions were observed 190 

between digesta and mucosa samples for both diets (REF-DID VS. REF-DIM, p = 0.045; 191 

IM-DID VS. IM-DIM, p = 0.002), and between diets for digesta samples (REF-DID VS. 192 

IM-DID, p = 0.002). For unweighted UniFrac distance, IM-DID showed lower 193 

multivariate dispersions than other sample types resulting in significant differences 194 

compared to REF-DID (p = 0.002) and IM-DIM (p = 0.002). For Aitchison distance, REF-195 

DIM showed lower multivariate dispersions than other sample types resulting in 196 

significant differences compared to REF-DID (p = 0.046) and IM-DIM (p = 0.046). For 197 

PHILR transformed Euclidean distance, the differences in the multivariate dispersions 198 

among the sample types were not significant (p > 0.05). 199 

Significant associations between microbial clades and sample metadata 200 

The multivariate association analysis identified 53 taxa showing significant 201 

associations with the metadata of interest (Figure 5A). The diagnostic plots showing the 202 

raw data underlying the significant associations are shown in Figures S3-8. Forty-seven 203 

differentially abundant taxa were identified for the sample origin effect, 45 of which, 204 

including Bacillus, Enterococcus, Flavobacterium, Lactobacillus, Lactococcus, 205 
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Leuconostoc, Mycoplasma, Peptostreptococcus, Photobacterium, Staphylococcus, 206 

Streptococcus, Vagococcus and Weissella, showed lower relative abundances in the 207 

mucosa than the digesta (Figure S3). In contrast, two taxa belonging to the Spirochaetes 208 

phylum, B. andersonii and unclassified Spirochaetaceae, were enriched in the mucosa 209 

(Figure 5B). Thirty-six differentially abundant taxa were identified for the diet effect, 26 210 

of which showed increased relative abundances in fish fed the IM diet (Figure S4). 211 

Among these 26 taxa, some were enriched in both intestinal digesta and mucosa which 212 

included Actinomyces, unclassified Bacillaceae, Bacillus, unclassified Beutenbergiaceae, 213 

Brevibacterium, Corynebacterium 1, Enterococcus, unclassified Lactobacillales, 214 

Microbacterium, Oceanobacillus and unclassified RsaHF231 (partially illustrated as 215 

Figure 5C). For the histological scores, the relative abundance of unclassified 216 

Sphingobacteriaceae and unclassified RsaHF231 were found to increase and decrease, 217 

respectively, in fish scored abnormal regarding lamina propria cellularity (lpc) in distal 218 

intestine (Figure S5). The relative abundance of Acinetobacter and Pseudomonas were 219 

negatively correlated with the distal intestine somatic index (DISI) (Figure S6). Six taxa, 220 

including Actinomyces, B. andersonii, Kurthia, Lysobacter, Microbacterium and the 221 

unclassified Sphingobacteriaceae, were found to associate with the expression of genes 222 

related to immune responses (Figure S7). Notably, the relative abundance of B. andersonii 223 

showed a clear positive correlation with the expression levels of immune genes (Figure 224 

5D), which decreased as the PC1 of the PCA increased. Furthermore, 3 taxa including 225 

Cellulosimicrobium, Glutamicibacter and the unclassified Spirochaetaceae were found 226 

to associate with the expression of genes related to barrier functions (Figure S8). The 227 
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relative abundance of the unclassified Spirochaetaceae showed a negative correlation 228 

with the expression levels of barrier function relevant genes (Figure 5E), which decreased 229 

as the PC1 of the PCA increased. 230 

DISCUSSION 231 

Core microbiota 232 

In accordance with previous studies in Atlantic salmon (20, 33-38), Aliivibrio, B. 233 

andersonii and Mycoplasma were identified as core microbiota in the present study. 234 

Aliivibrio is commonly found in the seawater phase Atlantic salmon intestine (35-37, 39-235 

43) and has been identified as a core taxon of both wild and captive Atlantic salmon (34, 236 

36, 37). Provided its common presence in seawater, Aliivibrio may have originated from 237 

the surrounding water and colonized the intestinal mucosa as Atlantic salmon constantly 238 

drink seawater to prevent dehydration in a hyperosmotic environment. Currently, the 239 

taxon Aliivibrio comprises of four closely related species including Aliivibrio fischeri, 240 

Aliivibrio logei, Aliivibrio salmonicida and Aliivibrio wodanis, which were split from the 241 

Vibrio genus and reclassified as Aliivibrio in 2007 (44). Strains of A. fischeri and A. logei 242 

have been described as bioluminescent symbionts of certain fishes and squids (45), 243 

whereas A. salmonicida and A. wodanis have been identified as pathogens for Atlantic 244 

salmon causing cold-water vibriosis (46) and ‘winter ulcer’ (47), respectively.  245 

Though Spirochaetes has typically been found in low abundances in the Atlantic 246 

salmon intestine (19, 23, 27, 39), two recent studies have identified B. andersonii as a 247 

core taxon of both digesta- and mucosa-associated intestinal microbiota in seawater phase 248 
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Atlantic salmon (35, 36). Furthermore, B. andersonii is also a predominant taxon in the 249 

digesta and mucosa in one of the studies (36). B. andersonii was initially isolated from 250 

short-tailed shrews (Blarina brevicauda) and white-footed mice (Peromyscus leucopus) 251 

as an infectious pathogen (48). This taxon has also been found in the intestine and gill 252 

tissue of rainbow trout (Oncorhynchus mykiss) (49), and intestinal digesta of Senegalese 253 

sole (Solea senegalensis)(50). 254 

Mycoplasma is widely distributed in nature and well known for its minute size and 255 

lack of cell wall. Like Aliivibrio, Mycoplasma has been frequently identified as a core 256 

taxon of both wild and captive Atlantic salmon as well (20, 33, 35-38). It was found to be 257 

more abundant in marine adults than in freshwater juvenile Atlantic salmon (37) and 258 

sporadically predominate intestinal microbial community in the digesta (20, 36, 37, 41, 259 

51) and mucosa (35) reaching as high as > 90% of total read counts in extreme cases. Due 260 

to its small compact genome and limited biosynthesis capacities, Mycoplasma typically 261 

forms obligate parasitic or commensal relationships with its host to obtain necessary 262 

nutrients such as amino acids, fatty acids and sterols (52). The major acids produced by 263 

Mycoplasma during fermentation are lactic acid and acetic acid (53), the latter of which 264 

was found in our recent studies to be 2-4 orders of magnitude higher than other short-265 

chain fatty acids in the Atlantic salmon distal intestine (unpublished data). A recent study 266 

found that Atlantic salmon Mycoplasma, recovered by shotgun metagenomic sequencing, 267 

was closely related to Mycoplasma penetrans and Mycoplasma yeatsii (20). Compared to 268 

these closely related Mycoplasma species, the salmon Mycoplasma appears to carry a 269 

much lower number of unique genes that are enriched in carbohydrate uptake and low in 270 
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peptidase synthesis.  271 

Sample origin effect 272 

In line with previous findings in mammals and fish (19, 22-25), we observed 273 

substantial differences between digesta- and mucosa-associated microbiota. The 274 

microbial richness and diversity were much higher in the digesta than the mucosa, as 275 

previously observed in seawater phase Atlantic salmon (19, 23, 36). Furthermore, most 276 

of the bacterial taxa in the distal intestine, including those commonly found in the Atlantic 277 

salmon intestine such as Bacillus, Enterococcus, Flavobacterium, Lactobacillus, 278 

Lactococcus, Leuconostoc, Mycoplasma, Peptostreptococcus, Photobacterium, 279 

Staphylococcus, Streptococcus, Vagococcus and Weissella, were less abundant in the 280 

mucosa than in the digesta. These results are suggestive of a selection pressure from the 281 

host that determines which microbial clades colonize and flourish in the intestinal mucus 282 

layer (54). In this study, two taxa belonging to the Spirochaetes phylum, B. andersonii 283 

and unclassified Spirochaetaceae, were more abundant in the distal intestine mucosa than 284 

the digesta. As aforementioned, Spirochaetes were typically found in low abundances in 285 

the Atlantic salmon intestine. Yet a recent study also showed that irrespective of diets B. 286 

andersonii seemed to be more abundant in the intestinal mucosa than the digesta of 287 

seawater phase Atlantic salmon (36). Known for high motility and chemotactic attraction 288 

to mucin, some Spirochaetes can penetrate the mucus and associate with the intestinal 289 

mucosa (55-57). Further work is required to confirm whether these taxa are consistently 290 

enriched in the intestinal mucus layer of seawater phase Atlantic salmon.  291 
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Diet effect 292 

Diet is one of the key factors in shaping the fish intestinal microbiota. In agreement 293 

with previous findings in rainbow trout (29, 58, 59) and laying hens (60, 61), we found 294 

that the insect meal diet altered the distal intestinal microbiota assemblage resulting in 295 

higher microbial richness and diversity. Our findings, showing that the insect meal diet 296 

increased the relative abundance of Actinomyces, Bacillus, Brevibacterium, 297 

Corynebacterium 1 and Enterococcus, are in accord with recent studies in rainbow trout 298 

fed diets containing 30% black soldier fly larvae meal (29, 59). Importantly, these results 299 

were partly confirmed in other studies employing fluorescence in situ hybridization for 300 

targeted profiling of changes in the intestinal microbiota. Specifically, increased absolute 301 

abundance of Lactobacillus/Enterococcus was found in rainbow trout fed 20% dietary 302 

black soldier fly larvae meal (62), whereas increased absolute abundance of Bacillus, 303 

Enterococcus and Lactobacillus was documented in Siberian sturgeon (Acipenser baerii) 304 

fed 15% black soldier fly larvae meal (63).  305 

The increases in the relative abundance of specific microbial clades in Atlantic 306 

salmon fed the insect meal diet may be explained by feed-borne microbiota and/or feed 307 

composition. Bacterial taxa, including Actinomyces, Bacillus, Brevibacterium, 308 

Corynebacterium, Enterococcus, Oceanobacillus and RsaHF231, have been found in 309 

black soldier fly whole larvae or larvae intestine (64-67). The fact that RsaHF231 has not 310 

been documented in fish before indicates that these bacterial taxa may have partially 311 

originated from black soldier fly larvae meal. Our results from the freshwater feeding trial 312 

showed that these bacterial taxa were also enriched in the intestinal digesta and mucosa 313 
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of Atlantic salmon smolts fed an insect meal diet containing 60% soldier fly larvae meal. 314 

Importantly, these bacterial taxa were also detected in the feed pellets which contained 315 

considerable amount of bacterial DNA that is comparable to intestinal digesta 316 

(unpublished data). Given the hydrothermal treatments the feed pellets underwent during 317 

the extrusion, the feed-borne microbiota profiled by the DNA sequencing techniques 318 

could have largely originated from dead bacteria and bacterial spores rather than living 319 

bacteria. As sequencing-based methods cannot differentiate between living and dead cells, 320 

future studies should investigate to what extent the feed-borne microbiota may contribute 321 

to, or confound the observed diet effects on intestinal microbiota, using methods that 322 

distinguish living and dead bacteria such as viability PCR and RNA sequencing (68). On 323 

the other hand, unique nutrients in the insect meal diet such as chitin, an essential 324 

component of the insect exoskeleton, may have selectively promoted the growth of certain 325 

intestinal microbes. Actinomyces species are often identified as active chitin degraders 326 

showing enhanced growth and activity upon chitin addition (69). Many bacterial species 327 

belonging to Bacillus can produce chitinase (70). Bacillus and Lactobacillus were two of 328 

the predominant taxa in the intestinal mucosa of Atlantic salmon fed a 5% chitin diet, the 329 

former of which displayed the highest in vitro chitinase activity (71). 330 

Significant interactions between diet and sample origin effect 331 

    We observed in the present study that the diet effect on the intestinal microbial 332 

community richness and structure was dependent on the sample origin, with mucosa-333 

associated intestinal microbiota showing higher resilience to the dietary change. Our 334 

results corroborate previous findings in rainbow trout revealing that mucosa-associated 335 
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intestinal microbiota was less influenced by dietary inclusion of 30% black soldier fly 336 

larvae meal compared to digesta-associated intestinal microbiota (28, 29). Results from 337 

molecular-based studies on salmonid intestinal microbiota hitherto suggest that diet 338 

modulates digesta- and mucosa-associated intestinal microbiota to varying degrees with 339 

the latter generally being more resilient to dietary interventions (19, 26-29, 35). As such, 340 

current practices of profiling only one of or a mixture of digesta- and mucosa-associated 341 

microbiota may obscure the response of intestinal microbiota to dietary changes. To fully 342 

unveil the response of intestinal microbiota to dietary changes, we recommend concurrent 343 

profiling of digesta- and mucosa-associated intestinal microbiota whenever it is feasible. 344 

Significant associations between microbial clades and sample metadata 345 

To our knowledge, only a few studies have carried out association analysis between 346 

intestinal microbial clades and host responses in Atlantic salmon. As such, our results 347 

should be treated as preliminary observations and critically evaluated in later studies. 348 

Herein, we highlight the significant associations between two mucosa-enriched taxa and 349 

host gene expressions in the intestine. Specifically, B. andersonii, part of the core 350 

microbiota, was associated with the expression of genes related to pro- and anti-351 

inflammatory responses whereas the unclassified Spirochaetaceae was associated with 352 

the expression of genes related to barrier function. Intestinal microbiota is well known to 353 

modulate the local immune responses and intestinal epithelial barrier function (72). 354 

Furthermore, it is hypothesized that mucosa-associated microbiota plays a more crucial 355 

role in shaping the host immunity in that it can interact both directly and indirectly with 356 

intestinal epithelial barrier whereas digesta-associated microbiota can only interact 357 
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indirectly (54). Taken together, further research should be undertaken to investigate the 358 

potential ecological and functional significance of these two taxa for seawater phase 359 

Atlantic salmon.  360 

Quality control: use of mock and negative controls 361 

As in any field of research, conducting a well-controlled microbiome study requires 362 

great care in the experiment design such as setting up appropriate experimental controls. 363 

The use of mock as a positive control allows for critical evaluation and optimization of 364 

microbiota profiling workflow. That all the bacterial taxa in the mock were correctly 365 

identified at the genus level indicates that the current workflow is reliable for the 366 

taxonomic profiling of intestinal microbiota. Furthermore, the taxonomic profile of mock 367 

from different DNA extraction batches was fairly similar, suggesting that the results 368 

generated by the current workflow are also largely reproducible. However, the low 369 

concordance between the expected and observed relative abundance of bacterial taxa in 370 

the mock is reminiscent of the fact that bias is introduced at different steps of the marker-371 

gene survey (73-75), among which DNA extraction and PCR amplification are the two 372 

largest sources of bias due to preferential extraction and amplification of some microbial 373 

clades over others. In line with previous observations that Gram-positive bacteria may be 374 

more subjective to incomplete lysis during DNA extraction due to their tough cell walls 375 

(76, 77), the recovery of most Gram-positive bacteria in the mock was lower than the 376 

expected. The insufficient lysing of Gram-positive bacteria in the mock was largely 377 

mitigated in our later experiments by using a mixture of beads with different sizes for the 378 

bead beating during DNA extraction (unpublished data). The bias in the marker-gene 379 
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sequencing experiments, as reflected in the observed taxonomic profile of the mock, 380 

highlights the necessity of validating such results by absolute quantification techniques 381 

such as cultivation (if possible), qPCR, flow cytometry and fluorescence in situ 382 

hybridization.  383 

Reagent contamination is a common issue in molecular-based studies of microbial 384 

communities. The main contaminating taxon identified in this study is Pseudomonas, 385 

which has been reported as a common reagent contaminant in numerous studies (78-84). 386 

Given the dominance of Pseudomonas in the negative controls of both DNA extraction 387 

and PCR, most of the observed contamination has likely derived from PCR reagents such 388 

as molecular-grade water (85-87). Notably, Pseudomonas has also been isolated from 389 

intestinal digesta and mucosa of Atlantic salmon by traditional culturing approaches (71, 390 

88-90), and reported as a member of Atlantic salmon core microbiota in culture-391 

independent studies (19, 23, 33, 34, 38, 91). Due to the low taxonomic resolution of 392 

amplicon sequencing, it is difficult to discern contaminating taxa from true signals solely 393 

based on taxonomic labels. The inclusion of negative controls, coupled with 394 

quantifications of microbial DNA concentration in the samples, has enabled fast and 395 

reliable identification of contaminating taxa in this study. Besides Pseudomonas, other 396 

common reagent contaminants, including Bradyrhizobium, Burkholderia, Comamonas, 397 

Methylobacterium, Propionibacterium, Ralstonia, Sphingomonas and Stenotrophomonas 398 

(83, 85, 87, 92-96), have also been frequently reported as members of Atlantic salmon 399 

intestinal microbiota, indicating that existing studies of Atlantic salmon intestinal 400 

microbiota may have been plagued with reagent contamination that is hard to ascertain 401 
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due to lack of negative controls. As reagent contamination is unavoidable, study-specific 402 

and can critically influence sequencing-based microbiome analyses (85, 97, 98), negative 403 

controls should always be included and sequenced in microbiome studies especially when 404 

dealing with low microbial biomass samples like intestinal mucosa. 405 

Conclusion 406 

    In summary, we confirmed previous findings in mammals and fish that intestinal 407 

digesta and mucosa harbor microbial communities with clear differences. Regardless of 408 

diet, microbial richness and diversity were much higher in the digesta than the mucosa. 409 

The insect meal diet altered the distal intestinal microbiota assemblage resulting in higher 410 

microbial richness and diversity. The diet effect was however dependent on the sample 411 

origin, with mucosa-associated intestinal microbiota being more resilient to the dietary 412 

change. To fully unveil the response of intestinal microbiota to dietary changes, 413 

concurrent profiling of digesta- and mucosa-associated intestinal microbiota is 414 

recommended whenever feasible. Lastly, we identified two mucosa-enriched taxa, 415 

Brevinema andersonii and unclassified Spirochaetaceae, which seemed to be associated 416 

with the expression in the distal intestine of genes related to immune responses and barrier 417 

function, respectively. As mucosa-associated microbiota could play a more critical role 418 

in shaping the host metabolism, their potential functional significance for seawater phase 419 

Atlantic salmon merits further investigations. 420 
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MATERIALS AND METHODS 421 

Experimental fish, diet and sampling 422 

 A 16-week seawater feeding trial with Atlantic salmon (initial body weight = 1.40 423 

kg, S.D. = 0.043 kg) was conducted at the Gildeskål Research Station (GIFAS), Nordland, 424 

Norway, in accordance with laws regulating the experimentation with live animals in 425 

Norway. The experimental fish were randomly assigned into 6 net pens (5 x 5 x 5 m) each 426 

containing 90 fish. The fish were fed, in triplicate net pens, either a commercially-relevant 427 

reference diet (REF) with a combination of fish meal, soy protein concentrate, pea protein 428 

concentrate, corn gluten and wheat gluten as the protein source, or an insect meal diet 429 

(IM) wherein all the fish meal and most of the pea protein concentrate were replaced by 430 

black soldier fly larvae meal. Fish were fed by hand until apparent satiation once or twice 431 

daily depending on the duration of the duration of daylight. During the feeding trial, the 432 

water temperature ranged from 7 °C to 13 °C. Further details on the formulation and 433 

chemical composition of the diets, and insect meal has been reported elsewhere (31, 32). 434 

    At the termination of the feeding trial, 6 fish were randomly taken from each net pen, 435 

anesthetized with tricaine methanesulfonate (MS222®; Argent Chemical Laboratories, 436 

Redmond, WA, USA) and euthanized by a sharp blow to the head. After cleaning the 437 

exterior of each fish with 70% ethanol, the distal intestine, i.e., the segment from the 438 

increase in intestinal diameter and the appearance of transverse luminal folds to the anus, 439 

was aseptically removed from the abdominal cavity, placed in a sterile Petri dish and 440 

opened longitudinally. Only fish with digesta along the whole intestine were sampled to 441 

ensure that the intestine had been exposed to the diets. The intestinal digesta was collected 442 
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into a 50 mL skirted sterile centrifuge tube and mixed thoroughly using a spatula. An 443 

aliquot of the homogenate was then transferred into a 1.5 mL sterile Eppendorf tube and 444 

snap-frozen in liquid N2 for the profiling of digesta-associated intestinal microbiota. A 445 

tissue section from the mid part of the distal intestine was excised and rinsed in sterile 446 

phosphate-buffered saline 3 times to remove traces of the remaining digesta. After rinsing, 447 

the intestinal tissue was longitudinally cut into 3 pieces for histological evaluation (fixed 448 

in 4% phosphate-buffered formaldehyde solution for 24 h and transferred to 70% ethanol 449 

for storage), RNA extraction (preserved in RNAlater solution and stored at -20 °C) and 450 

profiling of mucosa-associated intestinal microbiota (snap-frozen in liquid N2), 451 

respectively. The collection of microbiota samples was performed near a gas burner to 452 

secure aseptic conditions. After the sampling of each fish, tools were cleaned and 453 

decontaminated by an 70% ethanol spray and flaming. Microbiota samples of the distal 454 

intestine digesta (DID) and mucosa (DIM) were transported in dry ice and stored at -455 

80 °C until DNA extraction. 456 

DNA extraction 457 

    Total DNA was extracted from ~200 mg distal intestine digesta or mucosa using the 458 

QIAamp® DNA Stool Mini Kit (Qiagen, Hilden, Germany; catalog no., 51504) with some 459 

modifications to the manufacturer’s specifications as described before (19), except that 2 460 

mL prefilled bead tubes (Qiagen; catalog no., 13118-50) were used for the bead beating. 461 

For quality control purposes, a companion “blank extraction” sample was added to each 462 

batch of sample DNA extraction by omitting the input material, whereas an additional 463 

microbial community standard (ZymoBIOMICS™, Zymo Research, California, USA; 464 
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catalog no., D6300), i.e. mock, was included for each DNA extraction kit as a positive 465 

control. The mock consists of 8 bacteria (Pseudomonas aeruginosa, Escherichia coli, 466 

Salmonella enterica, Lactobacillus fermentum, Enterococcus faecalis, Staphylococcus 467 

aureus, Listeria monocytogenes, Bacillus subtilis) and 2 yeasts (Saccharomyces 468 

cerevisiae, Cryptococcus neoformans). 469 

Amplicon PCR 470 

    The V1-2 hypervariable regions of the bacterial 16S rRNA gene were amplified 471 

using the primer set 27F (5'-AGA GTT TGA TCM TGG CTC AG-3') and 338R (5'-GCW 472 

GCC WCC CGT AGG WGT-3') (99). The PCR was run in a total reaction volume of 25 473 

μL containing 12.5 μL of Phusion® High-Fidelity PCR Master Mix (Thermo Scientific, 474 

CA, USA; catalog no., F531L), 10.9 μL molecular grade H2O, 1 μL DNA template and 475 

0.3 μL of each primer (10 μM). The amplification program was set as follows: initial 476 

denaturation at 98 °C for 3 min; 35 cycles of denaturation at 98 °C for 15 s, annealing 477 

decreasing from 63 °C to 53 °C in 10 cycles for 30 s followed by 25 cycles at 53 °C for 478 

30 s, and extension at 72 °C for 30 s; followed by a final extension at 72 °C for 10 min. 479 

For samples with faint or invisible bands in the agarose gel after PCR, the PCR condition 480 

was optimized by applying serial dilutions to the DNA templates to reduce the influence 481 

of PCR inhibitors. All the digesta samples were diluted 1:2 in buffer ATE (10 mM Tris-482 

Cl, pH 8.3, with 0.1 mM EDTA and 0.04% NaN3) whereas all the mucosa samples were 483 

diluted 1:32. The formal amplicon PCR was run in duplicate incorporating two negative 484 

PCR controls, which were generated by replacing the template DNA with molecular grade 485 

H2O. The duplicate PCR products were then pooled and examined by a 1.5% agarose gel 486 
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electrophoresis. 487 

Quantification of 16S rRNA gene by qPCR 488 

    To assist in identifying contaminating sequences, the 16S rRNA gene quantity in the 489 

diluted DNA templates used for the amplicon PCR was measured by qPCR. The qPCR 490 

assays were performed using a universal primer set (forward, 5'-CCA TGA AGT CGG 491 

AAT CGC TAG-3'; reverse, 5'-GCT TGA CGG GCG GTG T-3') that has been used for 492 

bacterial DNA quantification in previous studies (100, 101). The assays were carried out 493 

using the LightCycler 96 (Roche Applied Science, Basel, Switzerland) in a 10 μL reaction 494 

volume, which contained 2 μL of PCR-grade water, 1 μL diluted DNA template, 5 μL 495 

LightCycler 480 SYBR Green I Master Mix (Roche Applied Science) and 1 μL (3 μM) 496 

of each primer. Samples, together with the extraction blanks and mock, were run in 497 

duplicate in addition to FemtoTM bacterial DNA standards (Zymo Research; catalog no., 498 

E2006) and a no-template control of the qPCR assay. The qPCR program encompassed 499 

an initial enzyme activation step at 95 °C for 2 min, 45 three-step cycles of 95 °C for 10 500 

s, 60 °C for 30 s and 72 °C for 15 s, and a melting curve analysis at the end. 501 

Quantification cycle (Cq) values were determined using the second derivative method 502 

(102). The specificity of qPCR amplification was confirmed by evaluating the melting 503 

curve of qPCR products and the band pattern on the agarose gel after electrophoresis. 504 

The inter-plate calibration factor was calculated following the method described in 505 

(103), using the bacterial DNA standards as inter-plate calibrators. 506 

Sequencing 507 

    The sequencing was carried out on a Miseq platform following the Illumina 16S 508 
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metagenomic sequencing library preparation protocol (104). Briefly, the PCR products 509 

were cleaned using the Agencourt AMPure XP system (Beckman Coulter, Indiana, USA; 510 

catalog no., A63881), multiplexed by dual indexing using the Nextera XT Index Kit 511 

(Illumina, California, USA; catalog no., FC-131-1096) and purified again using the 512 

AMPure beads. After the second clean-up, representative libraries were selected and 513 

analyzed using the Agilent DNA 1000 Kit (Agilent Technologies, California, USA; 514 

catalog no., 5067-1505) to verify the library size. Cleaned libraries were quantified using 515 

the Invitrogen Qubit™ dsDNA HS Assay Kit (Thermo Fisher Scientific, California, USA; 516 

catalog no., Q32854), diluted to 4 nM in 10 mM Tris (pH 8.5) and finally pooled in an 517 

equal volume. Negative controls with library concentrations lower than 4 nM were pooled 518 

in equal volume directly. Due to the low diversity of amplicon library, 15% Illumina 519 

generated PhiX control (catalog no., FC-110-3001) was spiked in by combining 510 μL 520 

amplicon library with 90 μL PhiX control library. The library was loaded at 6 pM and 521 

sequenced using the Miseq Reagent Kit v3 (600-cycle) (Illumina; catalog no., MS-102-522 

3003). 523 

Sequence data processing  524 

    The raw sequence data were processed by the DADA2 1.14 in R 3.6.3 (105) to infer 525 

amplicon sequence variants (ASVs) (106). Specifically, the demultiplexed paired-ended 526 

reads were trimmed off the primer sequences (forward reads, first 20 bps; reverse reads, 527 

first 18 bps), truncated at the position where the median Phred quality score crashed 528 

(forward reads, at position 290 bp; reverse reads, at position 248 bp) and filtered off low-529 

quality reads. After trimming and filtering, the run-specific error rates were estimated and 530 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 9, 2020. ; https://doi.org/10.1101/2020.05.08.083899doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.08.083899
http://creativecommons.org/licenses/by-nd/4.0/


- 26 - 

 

  - 26 -

 

the ASVs were inferred by pooling reads from all the samples sequenced in the same run. 531 

The chimeras were removed using the “pooled” method after merging the reads. The 532 

resulting raw ASV table and representative sequences were imported into QIIME2 533 

(version, 2020.2) (107). The taxonomy was assigned by a scikit-learn naive Bayes 534 

machine-learning classifier (108), which was trained on the SILVA 132 99% OTUs (109) 535 

that were trimmed to only include the regions of 16S rRNA gene amplified by our primers. 536 

Taxa identified as chloroplasts or mitochondria were excluded from the ASV table. The 537 

ASV table was conservatively filtered to remove ASVs that had no phylum-level 538 

taxonomic assignment or appeared in only one biological sample. Contaminating ASVs 539 

were identified based on two suggested criteria: contaminants are often found in negative 540 

controls and inversely correlate with sample DNA concentration (84). The ASVs filtered 541 

from the raw ASV table were also removed from the representative sequences, which 542 

were then inserted into a reference phylogenetic tree built on the SILVA 128 database 543 

using SEPP (110). The alpha rarefaction curves and the core metrics results were 544 

generated with a sampling depth of 10000 and 2047 sequences per sample, respectively. 545 

For downstream data analysis and visualization, QIIME2 artifacts were imported into R 546 

using the qiime2R package (111) and a phyloseq (112) object was assembled from the 547 

sample metadata, ASV table, taxonomy and phylogenetic tree. The core microbiota and 548 

alpha-diversity indices were computed using the ASV table collapsed at the species level. 549 

The core microbiota was calculated based on the 80% prevalence threshold and visualized 550 

by the Venn’s diagram. The alpha-diversity indices, including observed species, Pielou’s 551 

evenness, Shannon’s index and Faith’s phylogenetic diversity (PD), were computed via 552 
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the R packages microbiome (113) and picante (114). For beta-diversity analyses, we used 553 

distance matrices including Jaccard distance, unweighted UniFrac distance, Aitchison 554 

distance and phylogenetic isometric log-ratio (PHILR) transformed Euclidean distance. 555 

Since rarefying remains to be the best solution for unweighted distance matrices (115), 556 

the Jaccard distance and unweighted UniFrac distance were computed in QIIME2 using 557 

the rarefied ASV table. The compositionality-aware distance matrices, Aitchison distance 558 

and PHILR transformed Euclidean distance, were calculated using the unrarefied ASV 559 

table. The Aitchison distance was computed by the DEICODE plugin in QIIME2, a form 560 

of Aitchison distance that is robust to high levels of sparsity by using the matrix 561 

completion to handle the excessive zeros in the microbiome data (116). The PHILR 562 

transform of the ASV table was performed in R using the philr package (117). The 563 

selected distance matrices were explored and visualized by the principal coordinates 564 

analysis (PCoA).  565 

Multivariate association analysis 566 

    The ASV table was collapsed at the genus level before running the multivariate 567 

association analysis. Bacterial taxa of very low abundance (< 0.01%) or low prevalence 568 

(present in < 25% of samples) were removed from the feature table. The microbial clades 569 

were then tested for significant associations with metadata of interest by MaAsLin2 570 

(version, 0.99.12) (https://huttenhower.sph.harvard.edu/maaslin2) in R, using the default 571 

parameters. The results of the analysis are the associations of specific microbial clades 572 

with metadata, deconfounding the influence of other factors included in the model. 573 

Association was considered significant when the q-value was below 0.25. Metadata 574 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 9, 2020. ; https://doi.org/10.1101/2020.05.08.083899doi: bioRxiv preprint 

https://huttenhower.sph.harvard.edu/maaslin2
https://doi.org/10.1101/2020.05.08.083899
http://creativecommons.org/licenses/by-nd/4.0/


- 28 - 

 

  - 28 -

 

included in the multivariate association testing are fixed factors Diet + Sample origin + 575 

distal intestine somatic index (DISI) + lamina propria cellularity (histological scores) + 576 

immune response (qPCR) + barrier function (qPCR), and random factors FishID + 577 

NetPen. FishID was nested in NetPen, and NetPen nested in Diet. Lamina propria 578 

cellularity reflects the severity of inflammation in the distal intestine. Based on the degree 579 

of cellular infiltration within the lamina propria, a value of normal, mild, moderate, 580 

marked or severe was assigned. To make the data appropriate for the association testing, 581 

the highly skewed five-category scores were collapsed into more balanced binary data, 582 

i.e., normal and abnormal. The immune-related genes included for the association testing 583 

were myeloid differentiation factor 88 (myd88), interleukin 1β (il1β), interleukin 8 (il8), 584 

cluster of differentiation 3 γδ (cd3γδ), transforming growth factor β1 (tgfβ1), interferon γ 585 

(ifnγ), interleukin 17A (il17a), fork-head box P3 (foxp3) and interleukin 10 (il10), whose 586 

expression levels were higher in the distal intestine of fish assigned abnormal regarding 587 

lamina propria cellularity. Since the expression levels of immune-related genes were 588 

highly correlated, we ran a principal component analysis (PCA) and extracted the first 589 

principle component (PC1) for the association testing to avoid multicollinearity and 590 

reduce the number of association testing. For genes relevant to the barrier function, which 591 

included claudin-15 (cldn15), claudin-25b (cldn25b), zonula occludens 1 (zo1), E-592 

cadherin / cadherin 1 (cdh1) and mucin-2 (muc2), we also used the PC1 of the PCA for 593 

the association testing based on the same considerations.  594 

Statistics  595 

    All the statistical analyses were run in R except for the PERMANOVA, which was 596 
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run in PRIMER v7. The differences in the alpha-diversity indices were compared using 597 

linear mixed-effects models via the lme4 package (118). Predictor variables in the models 598 

included the fixed effects Diet + Sample origin + Diet x Sample origin, and the random 599 

effects FishID + NetPen. The models were validated by visual inspections of residual 600 

diagnostic plots generated by the ggResidpanel package (119). The statistical significance 601 

of fixed predictors was estimated by Type III ANOVA with Kenward-Roger’s 602 

approximation of denominator degrees of freedom via the lmerTest package (120). When 603 

the interaction between the main effects was significant, conditional contrasts for the main 604 

effects were made via the emmeans package (121). To compare the differences in beta-605 

diversity, we performed the PERMANOVA (122) using the same predictors included in 606 

the linear mixed-effects models. Terms with negative estimates for components of 607 

variation were sequentially removed from the model via term pooling, starting with the 608 

one showing the smallest mean squares. At each step, the model was reassessed whether 609 

more terms need to be removed or not. Conditional contrasts for the main effects were 610 

constructed when their interaction was significant. Monte Carlo p values were computed 611 

as well when the unique permutations for the terms in the PERMANOVA were small (< 612 

100). The homogeneity of multivariate dispersions among groups was visually assessed 613 

with boxplots and was formally tested by the permutation test, PERMDISP (123), via the 614 

R package vegan (124). Multiple comparisons were adjusted by the Benjamini-Hochberg 615 

procedure where applicable. Differences were regarded as significant when p < 0.05. 616 

Code availability 617 

   All the code for reproducing the results are available from the GitHub repository 618 
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(https://github.com/yanxianl/Li_AqFl2-Microbiota_ASM_2020).  619 

Data availability 620 

    Raw sequence data are deposited at the NCBI SRA database 621 

(https://www.ncbi.nlm.nih.gov/sra) under the BioProject PRJNA555355. Other raw data 622 

and sample metadata are available from the GitHub repository 623 

(https://github.com/yanxianl/Li_AqFl2-Microbiota_ASM_2020).  624 
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Tables 1043 

Table 1. PERMANOVA results and subsequent conditional contrasts.  1044 

Distance matrix 

Main effects 

Interaction 

Conditional contrasts 

Diet 
Sample 

origin 

REF-DID  

VS.  

IM-DID 

REF-DIM  

VS.  

IM-DIM 

REF-DID  

VS.  

REF-DIM 

IM-DID  

VS.  

IM-DIM 

Jaccard  0.001 0.001 0.001 0.001 0.001 0.001 0.001 

Unweighted UniFrac  0.0011 0.001 0.001 0.0011 0.001 0.001 0.001 

Aitchison  0.001 0.003 0.004 0.002 0.004 0.0041 0.0021 

PHILR (Euclidean)2 0.001 0.001 0.001 0.001 0.005 0.001 0.001 

REF, reference diet; IM, insect meal diet; DID, distal intestine digesta; DIM, distal intestine mucosa.  1045 

1Monte Carlo p value.  1046 

2Phylogenetic isometric log-ratio transformed Euclidean distance.  1047 
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Table 2. Test of homogeneity of multivariate dispersions among groups. 1048 

REF, reference diet; IM, insect meal diet; DID, distal intestine digesta; DIM, distal intestine mucosa.  1049 

1Phylogenetic isometric log-ratio transformed Euclidean distance.1050 

Distance matrix 

Conditional contrasts 

REF-DID  

VS.  

IM-DID 

REF-DIM  

VS.  

IM-DIM 

REF-DID  

VS.  

REF-DIM 

IM-DID  

VS.  

IM-DIM 

Jaccard  0.002 0.087 0.045 0.002 

Unweighted UniFrac  0.002 0.711 0.200 0.002 

Aitchison  0.453 0.046 0.046 0.369 

PHILR (Euclidean)1 0.240 0.266 0.240 0.266 
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Figures 1051 

Figure 1. Top 10 most abundant taxa of all samples at phylum (A) and genus (B) 1052 

level. The samples are grouped by sample origins and dietary treatments. The mean 1053 

relative abundance of each taxon within the same group is displayed on the right side. 1054 

o__, order; f__, family; REF, reference diet; IM, insect meal diet; DID, distal intestine 1055 

digesta; DIM, distal intestine mucosa.  1056 
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Figure 2. Venn’s diagram showing the shared and unique core microbiota in each 1057 

sample type. The core microbiota was computed using a prevalence threshold of 80%. 1058 

REF, reference diet; IM, insect meal diet; DID, distal intestine digesta; DIM, distal 1059 

intestine mucosa. 1060 
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Figure 3. The sample origin and diet effects on the alpha-diversity of distal intestinal 1061 

microbiota in seawater phase Atlantic salmon. The p value of the main effects and their 1062 

interaction are displayed on the top-right corner of each sub-plot. Asterisks denote 1063 

statistically significant differences (*, p < 0.05; **, p < 0.01; ***, p < 0.001). PD, 1064 

phylogenetic diversity; REF, reference diet; IM, insect meal diet; DID, distal intestine 1065 

digesta; DIM, distal intestine mucosa.  1066 
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Figure 4. The sample origin and diet effects on the beta-diversity of distal intestinal 1067 

microbiota in seawater phase Atlantic salmon. The PCoA plots were built on Jaccard 1068 

(A), unweighted UniFrac (B), Aitchison (C) and PHILR transformed Euclidean (D) 1069 

distance matrix, respectively. PCo, principle coordinate; PHILR, phylogenetic isometric 1070 

log-ratio; REF, reference diet; IM, insect meal diet; DID, distal intestine digesta; DIM, 1071 

distal intestine mucosa. 1072 
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Figure 5. Significant associations between microbial clades and sample metadata. (A) 1073 

Heatmap summarizing all the significant associations between microbial clades and 1074 

sample metadata. Color key: -log(q-value) * sign(coefficient). Cells that denote 1075 

significant associations are colored (red or blue) and overlaid with a plus (+) or minus (-) 1076 

sign that indicates the direction of association: Diet (+), higher abundance in salmon fed 1077 

the IM diet; Sample_origin (+), higher abundance in mucosa samples; Histology_lpc (+), 1078 
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higher abundance in salmon scored abnormal regarding lamina propria cellularity (lpc) in 1079 

the distal intestine; DISI (+), positive correlation between microbial clade abundance and 1080 

distal intestine somatic index (DISI); qPCR_immune_response (+) / 1081 

qPCR_barrier_function (+), negative correlation between microbial clade abundance and 1082 

the gene expression levels. (B) Taxa that are more abundant in the intestinal mucosa than 1083 

the digesta. (C) Representative taxa showing increased relative abundances in both 1084 

intestinal digesta and mucosa of salmon fed the IM diet. (D) The positive correlation 1085 

between the relative abundance of B. andersonii and immune gene expression levels in 1086 

the distal intestine. Note that the expression levels of the immune genes decreased as the 1087 

PC1 of the PCA increased. (E) The negative correlation between the relative abundance 1088 

of the unclassified Spirochaetaceae and the expression levels of barrier function relevant 1089 

genes. Also note that the expression levels of the barrier function relevant genes decreased 1090 

as the PC1 of the PCA increased. p__, phylum; o__, order; f__, family; FDR, false 1091 

discovery rate; N.not.zero, number of observations that are not zero; REF, reference diet; 1092 

IM, insect meal diet.1093 
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Supplemental tables 1094 

Table S1. Contaminating features removed from the ASV table (available online). 1095 

Table S2. The prevalence of core taxa in different sample types (available online). 1096 
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Supplemental figures 1097 

Figure S1. Quantification of bacterial 16S rRNA gene in different sample types using 1098 

qPCR. Since the Cq values of most mucosa-associated samples were out of the linear 1099 

range of the standard curve, the Cq value was used as a proxy of 16S rRNA gene quantity 1100 

which is reliable for the screening of contaminant sequences. Data are presented as mean 1101 

± 1 standard deviation overlaying the raw data points. Abbreviations: REF, reference diet; 1102 

IM, insect meal diet; DID, distal intestine digesta; DIM, distal intestine mucosa.1103 
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Figure S2. Taxonomic profile of the mock (A) and contaminating features in the 1104 

negative controls (B). The lowest level of taxonomic ranks was displayed for each taxon. 1105 

EB, extraction blank; LB, library blank.1106 
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Figure S3. Microbial clades showing significant associations with sample origin. 1107 

FDR, false discovery rate; N.not.zero, number of non-zero observations; REF, reference 1108 

diet; IM, insect meal diet.1109 
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Figure S4. Microbial clades showing significant associations with diet. FDR, false 1110 

discovery rate; N.not.zero, number of non-zero observations; REF, reference diet; IM, 1111 

insect meal diet. 1112 
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Figure S5. Microbial clades showing significant associations with histological scores 1113 

on lamina propria cellularity in the distal intestine. FDR, false discovery rate; 1114 

N.not.zero, number of non-zero observations.1115 
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Figure S6. Microbial clades showing significant associations with distal intestine 1116 

somatic index (DISI). FDR, false discovery rate; N.not.zero, number of non-zero 1117 

observations.1118 
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Figure S7. Microbial clades showing significant associations with immune gene 1119 

expressions in the distal intestine. Since the expression levels of immune genes were 1120 

highly correlated, we ran a principle component analysis (PCA) and used the first 1121 

principle component (PC1) for the association testing to avoid multicollinearity and 1122 

reduce the number of association testing. Note that the expression levels of immune genes 1123 

decrease as the PC1 increases from left to right. Hence, a positive correlation coefficient 1124 

denotes a negative association between the microbial clade and immune gene expressions, 1125 

and vice versa. FDR, false discovery rate; N.not.zero, number of non-zero observations.1126 
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Figure S8. Microbial clades showing significant associations with expressions of 1127 

barrier function related genes in the distal intestine. Since the expression levels of 1128 

barrier function related genes were highly correlated, we ran a principle component 1129 

analysis (PCA) and used the first principle component (PC1) for the association testing 1130 

to avoid multicollinearity and reduce the number of association testing. Note that the 1131 

expression levels of barrier function related genes decrease as the PC1 increases from left 1132 

to right. Hence, a positive correlation coefficient denotes a negative association between 1133 

the microbial clade and barrier function related gene expressions, and vice versa. FDR, 1134 

false discovery rate; N.not.zero, number of non-zero observations. 1135 
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