1 Clinical and biomarker changes in sporadic Alzheimer's disease:

2 Amyloid-β not useful marker for disease onset or progression

- Junjie Zhuo^{1,2}; Yuanchao Zhang⁵; Bing Liu^{1,3,4}; Yong Liu^{1,3,4}; Xiaoqing Zhou²; Perry F.
- 4 Bartlett^{2*}; Tianzi Jiang^{1-5*}; and the Alzheimer's Disease Neuroimaging Initiative*
- 5 ¹Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing
- 6 100190, China
- 7 ²The Queensland Brain Institute, University of Queensland, Brisbane, QLD 4072,
- 8 Australia
- 9 ³University of Chinese Academy of Sciences, Beijing 100049, China
- 10 4CAS Center for Excellence in Brain Science, Institute of Automation, Chinese Academy
- 11 of Sciences, Beijing 100190, China
- 12 ⁵ The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for
- 13 Neuroinformation, University of Electronic Science and Technology of China, Chengdu
- 14 625014, China
- ^{*} Tianzi Jiang and Perry F. Bartlett are the corresponding authors.
- 16

17 Group Information:

- 18 *Data used in preparation of this article were obtained from the Alzheimer's Disease
- 19 Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators
- 20 within the ADNI contributed to the design and implementation of ADNI and/or provided data
- 21 but did not participate in analysis or writing of this report.
- 22 A complete listing of ADNI investigators can be found at: <u>http://adni.loni.usc.edu/wp</u>
- 23 <u>content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf.</u>

25 Corresponding author:

- 26 Tianzi Jiang, PhD, Brainnetome Center, Institute of Automation, Chinese Academy of
- 27 Sciences, Beijing 100190, China (Phone: +86-1-82544778, Fax: +86-1 82544777, Email:
- 28 jiangtz@nlpr.ia.ac.cn)
- 29 Perry F. Bartlett, PhD, Queensland Brain Institute, The University of Queensland, Qld, 4072,
- 30 Australia (Phone: +617 3346-6311, Email: <u>p.bartlett@uq.edu.au</u>)

32 Abstract

33	The failure of all anti-amyloid- β (A β) drugs has led to a debate about the central role of amyloid
34	in sporadic Alzheimer's disease (SAD). In order to resolve this issue, it is necessary to evaluate
35	the impact of $A\beta$ biomarkers on SAD by measuring the dynamic changes in biomarkers and
36	clinical profiles in the progression of SAD. We identified a clearer picture of the clinical and
37	biomarker changes in the progression of SAD by aligning the clinical diagnosis of mild cognitive
38	impairment (MCI) or AD onset. We found that changes in hippocampal volume and FDG, rather
39	than $A\beta$ biomarkers, were associated with the changes in clinical measures in the progression of
40	SAD. In addition, cognitively normal people with elevated and with normal amyloid showed no
41	significant differences in clinical measures, hippocampal volume, or FDG. This study reveals
42	that $A\beta$ is not a useful biomarker for predicting the clinical progression of patients who develop
43	SAD.

45 Introduction

The diagnostic guidelines for Alzheimer's disease (AD)^{1,2} provide a clinical-pathological 46 47 framework. The National Institute on Aging-Alzheimer's Association (NIA-AA), in line with the amyloid hypothesis^{3,4}, defines AD on the basis of biomarkers, rather than by clinical 48 symptoms⁵. However, two observations, the failure of all anti-amyloid- β (A β) drugs⁶⁻¹⁰ to show 49 clinical efficacy and the discovery that amyloid plaques are not unique to AD^{11} , have led to a 50 51 debate about the central role of amyloid in the etiology of the disease and its usefulness as a 52 diagnostic marker of AD. 53 To address this debate, identifying which dynamic changes in biomarkers and clinical profiles 54 correlate directly with the progression of AD is essential. The relevant studies have primarily 55 relied on patients with autosomal dominant AD (ADAD), who often have a predictable age at onset¹²⁻¹⁴. In contrast, the precise timing of the disease for patients with sporadic AD (SAD) is 56 difficult to predict¹⁵. Because the ADAD genetic mutations (APP, PSEN1, and PSEN2) cause 57 58 alterations in A β processing, ADAD studies have consistently found that A β is the first and key biomarker, followed by changes in other biomarkers and clinical profiles¹²⁻¹⁴. However, 59 60 increasing evidence has shown that patients with SAD are associated with multiple gene factors, 61 which affect more than A β processing^{11,16-18}. Since ADAD only accounts for a very small 62 proportion (approximately 1%) of AD^{12} , how widely applicable the findings obtained from ADAD are to SAD remains a question¹¹. 63

A previous prospective SAD study based the stage of AD on the level of accumulation of
amyloid and found, consistent with ADAD studies, that the Aβ abnormality appeared first,

66	followed by other changes ¹⁹ . However, this approach was flawed due to its assumption that $A\beta$
67	is the etiological agent, which does not consider the possible dynamic biomarker and clinical
68	changes which occur in relation to symptom onset as in the previous ADAD studies ¹²⁻¹⁴ . Even
69	in subjects who have over 15 years of longitudinal data, the baseline has not been aligned
70	with the onset of clinical symptom to investigate longitudinal changes in biomarkers and
71	clinical profiles ²⁰ . However, as the progression of AD has been hypothesized to be
72	non-linear ^{21,22} , simply aligning the baseline with A β levels or studying the longitude data is not
73	sufficient to chart the progression of SAD. Thus, in the current study we aligned the timepoints
74	of the clinical diagnosis of mild cognitive impairment (MCI) or AD onset to investigate the
75	dynamic changes that occur from cognitively normal (CN) to MCI and from MCI to AD.

76 **Results**

Characteristics of Study Participants. Data of the downloaded 665 subjects from the ADNI
dataset, we utilized the data from 663 participants in the group analysis (CN: 294, CN2MCI:
69, and MCI2AD: 300, for more details of the participants' characteristics see Table 1) and 24
CN2MCI2AD participants in the individual analysis (the data from the group of 22
participants in the CN2MCI stage was combined into the above CN2MCI group analysis).
Some participants were followed for up to 13 years with a mean follow-up period of 4.90 ±
2.83 years.

Estimated group trajectories of clinical profiles and biomarkers in the progression of
SAD. Figure 1 shows the trajectories of the biomarkers estimated by the linear mixed
effects models across groups (for the spaghetti plot of the raw data, see eFigure 2). Consistent

with the clinical profiles of AD progression, the hippocampal volume and FDG levels
remained stable throughout the CN stage followed by slow, non-linear changes in the
CN2MCI stage and rapid non-linear changes in the MCI2AD. In contrast, florbetapir PET and
the CSF biomarkers did not show changes consistent with the clinical profile. The details of
the linear mixed model for each biomarker are displayed in eTables 1-9.

92	The CN, CN2MCI, and MCI2AD subgroups' medians (interquartile range [IQR]) annual
93	change in ADAS13 were (0.388 [-0.278, 0.818], 1.000 [0.239, 2.330], and 3.388 [1.750, 6.169],
94	p < .001, respectively). The annual changes in CDRSB for each group were (0.000 [0.000,
95	0.000], 0.214 [0.100, 0.500], and 1.250 [0.750, 2.000], $p < .001$, respectively). The annual
96	changes in MMSE for each group were (0.000 [-0.250, 0.161], -0.286 [-0.571, 0.000], and
97	-1.500 [-2.775, -0.800], $p < .001$, respectively). The annual changes in hippocampal volume for
98	each group were (-0.005 %ICV [-0.011, -0.001], -0.006 %ICV [-0.012, -0.002], and
99	-0.014 %ICV [-0.021, -0.009], $p < .001$, respectively). The annual changes in FDG PET SUVR
100	for each group were (-0.011 [-0.030, 0.010], -0.027 [-0.056, -0.012], and -0.039 [-0.063, 0.014],
101	p < .001, respectively). The annual changes in Florbetapir PET SUVR for each group were
102	$(0.004 \ [-0.002, \ 0.012], \ 0.004 \ [-0.001, 0.011], \text{ and } 0.005 \ [-0.006, \ 0.014], p = .840, \text{ respectively}).$
103	The annual changes in CSF A β_{42} for each group were (-1.500 pg/ml [-6.000, 4.000], -2.200
104	[-5.667, 4.000], and -2.000 [-7.000, 2.650], <i>p</i> = .564, respectively). The annual changes in CSF
105	tau for each group were (0.775 pg/ml [-1.887, 4.500], 2.150 [-0.500, 7.900], and 3.000 [-3.900,
106	14.175], $p = .121$, respectively). The annual changes in CSF ptau for each group were (1.050
107	pg/ml [-1.450, 4.500], 1.980 [-0.200, 5.050], and 1.408 [-1.321, 8.325], <i>p</i> = .628, respectively).

108	Estimated elevated and normal amyloid group trajectories of clinical profiles and
109	biomarkers in the progression of SAD. Figure 2 shows the trajectories of the biomarker
110	changes in relationship to either the normal or elevated amyloid groups. Qualitatively, the
111	pattern remained stable in the CN, exhibited slow non-linear changes in the CN2MCI, and
112	ended with a phase in which rapid non-linear changes appeared in the MCI2AD. We found no
113	significant differences in the clinical profiles, hippocampal volume, or FDG changes between
114	the elevated and normal amyloid subjects at the $p < .05$ level. The statistical results showed
115	no difference for CDRSB and FDG in any of the three (CN, CN2MCI, and MCI2AD)
116	subgroups at $p < .05$. The ADAS13 analysis showed significant group differences for the
117	6-9-year time period in the CN subgroup, for the < -4.5 and > 4 years to onset time in the
118	CN2MCI subgroup, and for the > -0.5 years to onset time in the MCI2AD subgroup at $p < .05$.
119	The MMSE analysis showed a significant group difference for the time period > -1 year in the
120	CN2MCI subgroup at $p < .05$. Although the likelihood ratio test showed a significant
121	difference in hippocampal volume between the elevated and normal amyloid subjects (p
122	=.047), the post-hoc results showed no significance at $p < .05$ in the CN2MCI and only
123	showed a significant group difference for the time period < -1 years in the MCI2AD at $p < .05$.
124	All subgroups showed obvious significant differences with respect to florbetapir PET and
125	CSF A β_{42} between the elevated and normal amyloid subjects at $p < .001$. For CSF Tau and
126	CSF Ptau, only the CN2MCI subgroup showed no amyloid effect at $p < .05$; the other two
127	subgroups showed significant differences at $p < .05$ (Figure 2; for the post hoc analysis results,
128	see eTables 10-15).

129 Changes in Aβ biomarkers were not associated with changes in ADAS13 during the

disease status conversion. We found that the changes in the CDRSB (Figure 3.1A and 2A), MMSE (Figure 3.1B and 3.2B), hippocampal volume (Figure 3.1C and 3.2C), and FDG PET in the post-cingulate cortex (Figure 3.1D and 3.2D) were associated with the change in the ADAS13 in both the CN2MCI and MCI2AD subgroups. However, the changes in the amyloid related biomarkers florbetapir PET and CSF $A\beta_{42}$ were not significantly associated with the change in the ADAS13 in either group (Figure 3.1 E, 3.1F, 3.2 E, and 3.2 F).

136 Temporal evolution of relative abnormality in clinical measures and biomarkers. 137 Combining the biomarker findings, we assessed the trajectories and order of 138 pathophysiological changes for the clinical, imaging, and biochemical measures (Figure 4.A 139 and 4.B). As can be seen in Figures 1 and 2, the clinical profiles, hippocampal volume, and 140 FDG changed slowly in the initial stage of CN2MCI and accelerated in the late MCI2AD 141 stage. The order in which these measures changed in the CN2MCI subgroup was that the 142 hippocampus and FDG PET changed earlier than ADAS13 and that CDRSB and MMSE were 143 the last measures to change. Further, a post hoc analysis showed that the change in 144 hippocampal volume preceded the symptom onset of MCI by 2.5 years and ADAS13 145 preceded the symptom onset of MCI by 1 year. Significant changes in MMSE and CDRSB 146 were concurrent with MCI onset (Figure 5). Even in patients with elevated amyloid, the 147 trajectory of the amyloid-related biomarker was not consistent with the clinical profiles, 148 hippocampal volume, or FDG (Figure 4.B). More importantly, florbetapir PET was stable 149 during the CN2MCI stage. Although CSF A β_{42} showed some nonlinear changes before MCI 150 onset, the change was smaller than those of the other biomarkers. Thus, these results do not support previous reports^{12,13}, suggesting that amyloid-related biomarker changes largely lead 151

152 other biomarker changes at the onset of the disease.

153	Within-individual trajectories of clinical measures and biomarkers. We further assessed
154	each biomarker for the individuals who progressed from CN to MCI and to AD for each
155	biomarker (Figure 4.C and eFigure 3). The mean time for conversions from MCI to AD was
156	2.44±1.49 (range 1-7) years in these 24 subjects. The individual results were consistent with
157	the previous group results: The trajectories of their clinical profiles changed slowly in the
158	initial period in the CN2MCI stage and accelerated in the MCI2AD stage, the dynamic
159	changes of hippocampal volume paralleled the disease status changes, and there were no
160	significant changes in amyloid-related biomarkers in the CN to MCI to AD progression.

161 **Discussion**

162 Identifying the dynamic changes in clinical assessments and biomarkers during a patient's 163 progression to AD is critical for defining the stage of the disease and its etiology and for 164 monitoring the efficacy of potential therapies. In the present study, we avoided preconceptions 165 about disease etiology and aligned the clinical symptom onset timepoints of the different 166 stages from CN, through MCI, to AD using various clinical assessments and biomarkers to 167 obtain a panorama of disease progression. One of the most surprising and important results from our study is the consistent finding that amyloid biomarkers (CSF $A\beta_{42}$ and florbetapir 168 169 PET) were not useful biomarkers for predicting clinical changes from CN to MCI or from 170 MCI to AD in SAD.

These results suggest that SAD is a clinical-pathological entity¹⁶, the stages of which cannot
be defined using in vivo amyloid biomarkers. First, the accumulation of amyloid in the CN

173	did not predict future cognitive impairment in either people who maintained a stable CN or
174	those in the CN2MCI stage (Figure 2.A-C). This result is consistent with recent reports that
175	indicated that brain A β is not clinically relevant ^{23,24} . Other studies, however, reported that
176	elevated amyloid in CN individuals was associated with a higher likelihood of cognitive
177	decline compared with normal amyloid CN subjects ^{25,26} . Although these findings are
178	insightful, using the same ADNI dataset, we found that cognitive decline did not depend on
179	the accumulation of amyloid but on the clinical stage of the disease. Therefore, it appears
180	evident that we cannot determine whether CN subjects are in a preclinical stage based on the
181	accumulation of amyloid alone. Second, dynamic changes in amyloid-related biomarkers
182	were not associated with a change in disease status even in elevated amyloid subjects (Figures
183	2.F, 2.G, 4.B, 4.C). A previous prospective study, based on the amyloid hypothesis, reported
184	that brain $A\beta$ deposition continuously changed with SAD progression ¹⁹ . However, they found
185	that the raw data of $A\beta$ deposition was stable and changed slowly ¹⁹ , a finding that is in
186	keeping with our results. Finally, in our study the changes in clinical profiles, unlike the
187	changes in amyloid-related biomarkers, reflected the disease status changes. Non-linear
188	changes in clinical profiles were found in both the CN2MCI and MCI2AD stages (Figure
189	1A-C, 4A). ADAS13 showed dramatic changes about 1 year before the clinical MCI onset, a
190	finding which was not consistent with the general concept that clinical profiles change only
191	after the onset of MCI ^{21,22} . Since SAD is a clinical-pathological entity and given previous
192	evidence that neither clinical profiles ⁵ nor biomarkers ¹¹ are unique to AD, we suggest that
193	combining clinical and biomarkers to reveal individual longitudinal changes rather than
194	depending on specific biomarkers or clinical profiles alone may be a better way to diagnose

195 SAD.

196	By assessing the full range from CN to MCI to AD, we found that the trajectory of
197	hippocampal volume and FDG were consistent with the clinical profiles in that they did not
198	follow a sigmoid curve ^{21,22} but rather showed a slow change in the initial stage and
199	accelerated changes in the later stage from MCI to AD (Figure 4). Although previous studies
200	based on the ADNI dataset reported that the changes in these biomarkers followed a sigmoid
201	curve ²⁷⁻²⁹ , these studies did not align their findings with the stage of disease, so they could not
202	be considered to accurately reflect the trajectory of biomarker changes that occur in the
203	progression of AD.

204 Our finding that cognitive decline and A β deposition did not occur in parallel (Figures 3 and 4) 205 is consistent with previous studies that reported that A β dysregulation poorly correlates with AD severity³⁰, progressive neurodegeneration³¹, cognitive dysfunction³², or brain atrophy³³. 206 207 During the rapid cognitive decline from MCI to AD, $A\beta$ deposition only mildly increased. 208 This may partially explain why anti-A β drugs have failed in clinical trials. Medications, such 209 as solanezumab, a medication designed to clear soluble A β from the brain, are used in the 210 mild AD stage¹⁰, which is too late to prevent rapid cognitive decline. Thus, the slow stage 211 from pre-MCI to pre-AD may be a better time window for future drug design.

212 Our results suggest that applying ADAD results directly to SAD research may not be 213 appropriate¹¹. We found that the rate of $A\beta$ biomarker changes during CN conversion to MCI 214 stage did not reflect those of other biomarkers and were not associated with clinical changes 215 (Figure). This result is not consistent with previous ADAD studies that found that amyloid biomarkers undergo greater changes and lead to other biomarker changes in the initial stage of
symptom onset¹²⁻¹⁴. The most likely explanation for this difference is that the ADAD and
SAD have different etiologies¹¹. In addition, we found that dramatic hippocampal atrophy
starts 2.5 years prior to MCI onset, which is later than recent ADAD brain atrophy
findings^{14,15}. The concept that AD involves a long pre-symptomatic period and is derived from
ADAD studies¹⁶ may need to be reconsidered.

222 One of the limitations of the current study is that the CN2MCI subgroup was older than the 223 MCI2AD subgroup, which may have influenced the pattern of biomarker changes. The 224 ongoing ADNI dataset maybe resolve this limitation in future studies. Another limitation is 225 the small sample size of the tau and Aβ biomarkers in the pre-MCI stage, which meant that 226 we could not fully reveal the dynamic changes in these biomarkers in the preclinical stage. 227 The ongoing ADNI collection of plasma Aβ biomarkers³⁴ and ADNI3 tau-related PET data³⁵ 228 will improve the likelihood of fully understanding the preclinical stage of SAD in the future.

229 Whereas changes in hippocampal volume, FDG, and clinical profiles are useful markers of 230 SAD progression, $A\beta$ is not a useful biomarker for predicting the clinical progression of 231 patients who develop SAD.

232 Methods

233 Study design

The data were obtained from the ADNI dataset (<u>http://adni.loni.usc.edu/</u>) and downloaded in
December 2018. The ADNI was launched in 2003 as a public-private partnership, led by

Principal Investigator Michael W. Weiner, MD. The primary goal of ADNI has been to test
whether serial magnetic resonance imaging (MRI), PET, other biological markers, and clinical
and neuropsychological assessment can be combined to measure the progression of MCI and
early AD.

240 To estimate the timing, order, and trajectory of clinical and biomarker changes from normal 241 aging to AD, we labeled the data of the three subgroups as CN, subjects with normal 242 cognition who were confirmed to convert to MCI (CN2MCI), and subjects with MCI who 243 were confirmed to convert to AD (MCI2AD). The CN subgroup was defined as either 244 subjects who had a baseline that was cognitively normal, showed no significant memory 245 concern (SMC), and had at least two years' follow-up without conversion to MCI or AD or as 246 subjects with a baseline of MCI who reversed to CN within one year and remained stable CN 247 for at least 2 years to the end of follow-up. The CN2MCI subgroup was defined as subjects 248 with a baseline diagnosis of cognitively normal and a subsequent diagnosis of having 249 converted to MCI in the follow-up or as subjects with a SMC confirmed as having converted 250 to MCI. To increase the sample size and statistical power, the CN2MCI timepoint of subjects 251 who converted to MCI and finally to AD were also included in the CN2MCI group. The 252 MCI2AD subgroup was defined as subjects with a baseline diagnosis of MCI who converted 253 to stable AD in the follow-up.

To precisely reflect the stage of disease, we selected those subjects within the CN2MCI and MCI2AD subgroups who had one year or less between the initial one-time assessment before the disease onset and the disease onset of MCI or AD.

257 Assessments

270

258	The clinical profiles and biomarkers used in the present study included the 13-item cognitive
259	subscale of the Alzheimer's Disease Assessment Scale (ADAS13), Mini-Mental State
260	Examination (MMSE), Clinical Dementia Rating Scale-Sum of Boxes (CDRSB),
261	hippocampal volumes, fluorodeoxyglucose (FDG) positron emission tomography (PET),
262	florbetapir PET, and CSF biomarkers (including tau, phosphor-tau (Ptau), and $A\beta_{42}$). FDG and
263	florbetapir PET, were measured by the standardized uptake value ratio (SUVR). Please see
264	the Supplementary materials for all the metadata downloaded from the ADNI dataset and the
265	detailed assessment of each clinical profile and biomarker.
266	Participants were categorized into elevated amyloid or normal amyloid subsets depending on
267	their florbetapir SUVR or CSF $A\beta_{42}\text{status}.$ Elevated amyloid was defined as a florbetapir
268	SUVR greater than 0.79^{36} or a CSF A β_{42} value less than 192 pg/mL ³⁷ . Participants were
269	classified as having elevated amyloid if they met the cutoff threshold at any timepoint.

- 271 information for a participant, their data were classified as missing.
- As the ADAS has usually been used to monitor the progression of AD^{8,10}, we calculated the correlations between the ADAS13 and each marker in the CN2MCI and MCI2AD stages separately to evaluate whether the markers could predict AD progression.

Otherwise, they were classified as having normal amyloid. If there was no amyloid

To compare the progression curve for all the markers and verify the model of the fitted results,
the scaled value for each marker was defined by (raw data – mean CN baseline value) / the
standard deviation (SD) of the whole dataset. To further verify the abnormal pattern of the

markers in the progression of AD, we also analyzed the within-individual trajectories for all
24 subjects who were initially diagnosed as CN, subsequently converted to MCI, and then to
AD (CN2MCI2AD). Each marker in these individuals was also scaled by the mean of the
baseline data for the CN subgroup and for the SD of the entire dataset.

282 Statistical analysis

283 For the longitudinal trajectory analyses of the CN2MCI and MCI2AD subgroups, the 284 follow-up years were categorized into pre-symptom onset (<0 onset years) and post-symptom 285 onset (>0 onset years). To increase model convergence, we excluded the data of timepoints 286 for which the sample size was less than 3 for each clinical profile or biomarker, (See Fig. S1 287 for the detailed sample size for the various timepoints for each clinical profile or biomarker) 288 Statistical analyses and plotting performed using R (version 3.5.3. were 289 https://www.r-project.org/)

290 Longitudinal trajectory models were constructed for the various biomarkers using linear 291 mixed effects models³⁸. For each marker, we started by fitting an appropriate function to the 292 time (baseline or onset time) e.g. time + time 2 + time 3 . Disease progression (CN, CN2MCI, 293 and MCI2AD) was included in the models to extract disease-specific biomarker trajectories. 294 Covariates such as age at baseline or onset year, sex, APOEE4, and education were included 295 as confounds, and a backward elimination method was used for model selection. We then 296 selected a structure for the random effects and covariance structure for the residuals in the 297 model. All the model selections were based on the Akaike Information Criterion^{15,39}, an 298 objective model selection tool. Maximum likelihood was used to fit the mixed-effect models 299 as it is robust to the absence of random data 25 .

300	We further compared the trajectories for each marker in the progression of AD to uncover
301	differences between the elevated amyloid and normal amyloid groups. The overall amyloid
302	effect was tested using likelihood ratio tests that compared the full model to a reduced model
303	with no amyloid factor in each subgroup for each marker. For any subgroup that showed a
304	significant amyloid effect as the disease progressed, a supplementary post hoc analysis was
305	performed between the elevated amyloid and normal amyloid groups at each timepoint based
306	on the estimated marginal means derived from the model.
307	To determine the timing of the dysfunctions, we fitted a linear mixed effects model to the
308	CN2MCI subgroup with time as a categorical variable for each biomarker. The post hoc
309	analysis was conducted between each timepoint based on estimated marginal means derived
310	from the model.

Author Contributions: T.J. and P.F.B. supervised the study. J.Z., P.F.B., and T.J. were responsible for the design of the concept and the study. J.Z. contribution to the data analysis and statistical analysis; Y.Z., B.L., Y.L., and X.Z. made substantial contributions to the discussion on the results and the manuscript; J.Z., P.F.B., and T.J. wrote the manuscript.

Acknowledgments: This work was partially supported by the Natural Science Foundation of
China (Grant Nos. 31620103905 and 81701781), the Science Frontier Program of the Chinese
Academy of Sciences (Grant No. QYZDJ-SSW-SMC019), the Guangdong Pearl River
Talents Plan (2016ZT06S220), and the International Postdoctoral Exchange Fellowship
Program 2017 by the Office of China Postdoctoral Council.

320	Data collection and sharing for this project was funded by the Alzheimer's Disease
321	Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904) and
322	DOD ADNI (Department of Defense award number W81XWH-12-2-0012). ADNI is funded
323	by the National Institute on Aging, the National Institute of Biomedical Imaging and
324	Bioengineering, and through generous contributions from the following: AbbVie, Alzheimer's
325	Association; Alzheimer's Drug Discovery Foundation; Araclon Biotech; BioClinica, Inc.;
326	Biogen; Bristol-Myers Squibb Company; CereSpir, Inc.; Cogstate; Eisai Inc.; Elan
327	Pharmaceuticals, Inc.; Eli Lilly and Company; EuroImmun; F. Hoffmann-La Roche Ltd and
328	its affiliated company Genentech, Inc.; Fujirebio; GE Healthcare; IXICO Ltd.; Janssen
329	Alzheimer Immunotherapy Research & Development, LLC.; Johnson & Johnson
330	Pharmaceutical Research & Development LLC.; Lumosity; Lundbeck; Merck & Co., Inc.;
331	Meso Scale Diagnostics, LLC.; NeuroRx Research; Neurotrack Technologies; Novartis
332	Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Takeda Pharmaceutical
333	Company; and Transition Therapeutics. The Canadian Institutes of Health Research is
334	providing funds to support ADNI clinical sites in Canada. Private sector contributions are
335	facilitated by the Foundation for the National Institutes of Health (www.fnih.org). The grantee
336	organization is the Northern California Institute for Research and Education, and the study is
337	coordinated by the Alzheimer's Therapeutic Research Institute at the University of Southern
338	California. ADNI data are disseminated by the Laboratory for Neuro Imaging at the
339	University of Southern California.

We thank Dr. Alan Ho who help statistical analysis, Dr. Wen Zhang who help access the data,Dr. Lingzhong Fan who offered constructive comments, and Dr. Rhoda E., Edmund F. Perozzi,

- 342 and Rowan Tweedale for their editing assistance and discussions.
- 343 **Conflict of interest:** The authors declare that they have no competing financial interests.

344 **References**

- 345 1. McKhann, G.M., et al. The diagnosis of dementia due to Alzheimer's disease:
- 346 recommendations from the National Institute on Aging-Alzheimer's Association
- 347 workgroups on diagnostic guidelines for Alzheimer's disease. *Alzheimers Dement* **7**,
- 348 263-269 (2011).
- Dubois, B., *et al.* Advancing research diagnostic criteria for Alzheimer's disease: the
 IWG-2 criteria. *Lancet Neurol* **13**, 614-629 (2014).
- 351 3. Hardy, J.A. & Higgins, G.A. Alzheimer's disease: the amyloid cascade hypothesis.
- 352 *Science* **256**, 184-185 (1992).
- 353 4. Selkoe, D.J. & Hardy, J. The amyloid hypothesis of Alzheimer's disease at 25 years.
- 354 *EMBO Mol Med* **8**, 595-608 (2016).
- Jack, C.R., Jr., *et al.* NIA-AA Research Framework: Toward a biological definition of
 Alzheimer's disease. *Alzheimers Dement* 14, 535-562 (2018).
- 357 6. Panza, F., Lozupone, M., Seripa, D. & Imbimbo, B.P. Amyloid-beta immunotherapy for
- alzheimer disease: Is it now a long shot? Ann Neurol 85, 303-315 (2019).
- 359 7. Panza, F., Lozupone, M., Logroscino, G. & Imbimbo, B.P. A critical appraisal of
- amyloid-beta-targeting therapies for Alzheimer disease. *Nat Rev Neurol* 15, 73-88
 (2019).
- 362 8. Egan, M.F., et al. Randomized Trial of Verubecestat for Mild-to-Moderate Alzheimer's

- 363 Disease. *N Engl J Med* **378**, 1691-1703 (2018).
- 364 9. Egan, M.F., et al. Randomized Trial of Verubecestat for Prodromal Alzheimer's
- 365 Disease. *N Engl J Med* **380**, 1408-1420 (2019).
- 10. Honig, L.S., et al. Trial of Solanezumab for Mild Dementia Due to Alzheimer's Disease.
- 367 *N Engl J Med* **378**, 321-330 (2018).
- 368 11. Morris, G.P., Clark, I.A. & Vissel, B. Questions concerning the role of amyloid-beta in
- 369 the definition, aetiology and diagnosis of Alzheimer's disease. Acta Neuropathologica
- **136**, 663-689 (2018).
- 371 12. Bateman, R.J., *et al.* Clinical and biomarker changes in dominantly inherited
 372 Alzheimer's disease. *N Engl J Med* 367, 795-804 (2012).
- 373 13. Yau, W.W., et al. Longitudinal assessment of neuroimaging and clinical markers in
- 374 autosomal dominant Alzheimer's disease: a prospective cohort study. *Lancet Neurol*
- **14**, 804-813 (2015).
- 376 14. McDade, E., *et al.* Longitudinal cognitive and biomarker changes in dominantly
 377 inherited Alzheimer disease. *Neurology* **91**, e1295-e1306 (2018).
- 378 15. Gordon, B.A., et al. Spatial patterns of neuroimaging biomarker change in individuals
- from families with autosomal dominant Alzheimer's disease: a longitudinal study.
- 380 *Lancet Neurol* **17**, 241-250 (2018).
- Ryan, N.S., Rossor, M.N. & Fox, N.C. Alzheimer's disease in the 100 years since
 Alzheimer's death. *Brain* 138, 3816-3821 (2015).
- 383 17. Jansen, I.E., et al. Genome-wide meta-analysis identifies new loci and functional
- 384 pathways influencing Alzheimer's disease risk. *Nature Genetics* **51**, 404-413 (2019).

- 385 18. Heart, C.F., Genetic, Ad, E.R.I., Genetic, P.D. & Perades. Genetic meta-analysis of
- 386 diagnosed Alzheimer's disease identifies new risk loci and implicates Aβ, tau,

387 immunity and lipid processing. *Nature Genetics* **51**, 414-430 (2019).

- Villemagne, V.L., *et al.* Amyloid beta deposition, neurodegeneration, and cognitive
 decline in sporadic Alzheimer's disease: a prospective cohort study. *Lancet Neurol* 12,
- 390 357-367 (2013).
- 391 20. Veitch, D.P., *et al.* Understanding disease progression and improving Alzheimer's
 392 disease clinical trials: Recent highlights from the Alzheimer's Disease Neuroimaging

393 Initiative. *Alzheimers Dement* **15**, 106-152 (2019).

- 394 21. Jack, C.R., Jr., et al. Tracking pathophysiological processes in Alzheimer's disease:
- an updated hypothetical model of dynamic biomarkers. *Lancet Neurol* 12, 207-216
 (2013).
- 397 22. Jack, C.R., Jr., *et al.* Hypothetical model of dynamic biomarkers of the Alzheimer's
 398 pathological cascade. *Lancet Neurol* 9, 119-128 (2010).
- 399 23. Jansen, W.J., *et al.* Association of Cerebral Amyloid-beta Aggregation With Cognitive
- 400 Functioning in Persons Without Dementia. *JAMA Psychiatry* **75**, 84-95 (2018).
- 401 24. Dubois, B., *et al.* Cognitive and neuroimaging features and brain β-amyloidosis in
 402 individuals at risk of Alzheimer's disease (INSIGHT-preAD): a longitudinal
- 403 observational study. *Lancet Neurol* **17**, 335-346 (2018).
- 404 25. Donohue, M.C., *et al.* Association Between Elevated Brain Amyloid and Subsequent
 405 Cognitive Decline Among Cognitively Normal Persons. *JAMA* 317, 2305-2316 (2017).
- 406 26. Insel, P.S., et al. Amyloid pathology in the progression to mild cognitive impairment.

- 407 *Neurobiol Aging* **64**, 76-84 (2018).
- 408 27. Caroli, A., Frisoni, G.B. & Alzheimer's Disease Neuroimaging, I. The dynamics of
- 409 Alzheimer's disease biomarkers in the Alzheimer's Disease Neuroimaging Initiative
- 410 cohort. *Neurobiol Aging* **31**, 1263-1274 (2010).
- 411 28. Schuff, N., et al. Nonlinear time course of brain volume loss in cognitively normal and
- 412 impaired elders. *Neurobiol Aging* **33**, 845-855 (2012).
- 413 29. Jack, C.R., Jr., *et al.* Shapes of the trajectories of 5 major biomarkers of Alzheimer
 414 disease. *Arch Neurol* 69, 856-867 (2012).
- 415 30. Arriagada, P.V., Growdon, J.H., Hedley-Whyte, E.T. & Hyman, B.T. Neurofibrillary
- 416 tangles but not senile plaques parallel duration and severity of Alzheimer's disease.
- 417 *Neurology* **42**, 631-631 (1992).
- 418 31. Holmes, C., et al. Long-term effects of Aβ42 immunisation in Alzheimer's disease:
- follow-up of a randomised, placebo-controlled phase I trial. *The Lancet* **372**, 216-223
- 420 (2008).
- 421 32. Giannakopoulos, P., *et al.* Tangle and neuron numbers, but not amyloid load, predict
 422 cognitive status in Alzheimer's disease. *Neurology* 60, 1495-1500 (2003).
- 423 33. Jack, C.R., Jr., et al. Serial PIB and MRI in normal, mild cognitive impairment and
- 424 Alzheimer's disease: implications for sequence of pathological events in Alzheimer's
 425 disease. *Brain* 132, 1355-1365 (2009).
- 426 34. Nakamura, A., *et al.* High performance plasma amyloid-β biomarkers for Alzheimer's
 427 disease. *Nature* 554, 249-254 (2018).
- 428 35. Scholl, M., et al. PET Imaging of Tau Deposition in the Aging Human Brain. Neuron 89,

429 971-982 (2016).

- 430 36. Landau, S.M., Horng, A., Jagust, W.J. & Alzheimer's Disease Neuroimaging, I.
- 431 Memory decline accompanies subthreshold amyloid accumulation. *Neurology* 90,
- 432 e1452-e1460 (2018).
- 433 37. Shaw, L.M., et al. Cerebrospinal fluid biomarker signature in Alzheimer's disease

434 neuroimaging initiative subjects. *Ann Neurol* **65**, 403-413 (2009).

435 38. West, B.T., Welch, K.B. & Galecki, A.T. *Linear mixed models: a practical guide using*

436 *statistical software*, (Chapman and Hall/CRC, 2014).

- 437 39. Akaike, H. Information theory and an extension of the maximum likelihood principle. in
- 438 Selected papers of hirotugu akaike 199-213 (Springer, 1998).

440 Table

	CN	CN2MCI	MCI2AD	р
	N=294	N=69 (22 finally to AD)	N=300	
Sex:				.058
Female	146 (49.7%)	28 (40.6%)	121 (40.3%)	
Male	148 (50.3%)	41 (59.4%)	179 (59.7%)	
Education, mean (SD), y	16.5 (2.68)	16.1 (2.67)	15.9 (2.80)	.032
APOE allele:				<.001
APOEε4 noncarriers	221 (75.2%)	42 (60.9%)	98 (32.7%)	
APOE _ε 4 carriers	73 (24.8%)	27 (39.1%)	202 (67.3%)	
Follow-up, mean (SD), y	5.33 (2.83)	5.70 (3.43)	4.07 (2.29)	<.001
Amyloid characteristics:				<.001
Missing amyloid information	52 (17.7%)	8 (11.6%)	75 (25.0%)	
Elevated amyloid	115 (39.1%)	41 (59.4%)	202 (67.3%)	
Normal Amyloid	127 (43.2%)	20 (29.0%)	23 (7.7%)	
	Baseline	MCI onset	AD onset	
	characteristics	characteristics	characteristics	
Age, mean (SD), y	74.0 (6.18)	79.7 (5.70)	76.5 (7.39)	<.001
ADAS13, mean (SD)	8.60 (4.04)	15.0 (6.32)	27.1 (7.36)	<.001
CDRSB, mean (SD)	0.06 (0.26)	1.01 (0.76)	4.30 (1.59)	<.001
MMSE, mean (SD)	29.1 (1.17)	27.6 (1.83)	23.8 (2.91)	<.001
Hippocampal volume, mean (SD), %ICV	0.50 (0.06)	0.44 (0.05)	0.37 (0.06)	<.001
FDG PET SUVR, mean (SD)	1.41 (0.14)	1.20 (0.15)	1.16 (0.14)	<.001
Amyloid PET SUVR, mean (SD)	0.78 (0.09)	0.93 (0.14)	1.01 (0.12)	<.001
CSF Aβ42, mean (SD), pg/ml	207 (49.9)	194 (79.0)	137 (35.6)	<.001
CSF tau, mean (SD), pg/ml	63.8 (29.2)	90.4 (28.8)	130 (75.9)	<.001

441 Table 1. Characteristics of Study Participants

Abbreviations: ADASA13, the 13-item cognitive subscale of the Alzheimer's Disease
Assessment Scale; CDRSB, the Clinical Dementia Rating Scale-Sum of Boxes; MMSE, the
Mini-Mental State Examination; ICV, intracranial volume; FDG, fluorodeoxyglucose; CSF,

445 cerebrospinal fluid; SUVR, standardized uptake value ratio; SD, standard deviation

446 Figure legends

447 Figure 1. Estimated group trajectories of clinical profiles and biomarkers

(A) ADAS13; range from 0 [best] to 85 [worst], (B) CDRSB; range from 0 [best] to 18
[worst], (C) MMSE; range from 0 [worst] to 30 [best], (D) the MRI measures of hippocampal
volumes adjusted by percent of the total intracranial volume (ICV), (E) the post-cingulate
cortex glucose metabolism measured by fluorodeoxyglucose (FDG) positron emission
tomography (PET) consistently showed stable changes in the stable cognitive normal (CN)
subgroup, slow non-linear changes in the confirmed CN conversion to MCI (CN2MCI)

454 subgroup, and acceleration non-linear changes in the confirmed MCI conversion to AD

- 455 (MCI2AD) subgroup. In contrast, (F) Florbetapir PET, (G) CSF $A\beta_{42}$, (H) CSF tau, and (I)
- 456 CSF phosphor-tau (Ptau) did not show changes consistent with the clinical profiles.
- 457 The estimated trajectory and 95% confidence interval from the linear mixed models (yellow
- 458 line and yellow shaded area, respectively) are plotted against years from baseline or symptom
- 459 (MCI or AD) onset for each marker. The black dashed line represents the MCI onset timepoint.
- 460 The red dashed line represents the AD onset timepoint.
- 461

462 Figure 2. Estimated elevated and normal amyloid group trajectories of clinical profiles463 and biomarkers

- 464 See Figure 1 for explanation of each panel sub-title.
- The estimated trajectory and 95% confidence interval from the linear mixed models are plotted against years from baseline or symptom (MCI or AD) onset for each marker. Red line and pink shaded area represent the elevated amyloid subjects. Blue line and blue shaded area represent the normal amyloid subjects.
- 469 L.R.= likelihood ratio
- 470

471 Figure 3. Relationship between the change in each biomarker and the change in 472 ADAS13 in the CN conversion to MCI and the MCI conversion to AD subgroups

- 473 The top panels show that the changes in the (1.A) CDRSB score, (1.B) MMSE score, (1.C) 474 hippocampal volume percent of ICV, and (1.D) post-cingulate FDG SUVR value significantly 475 correlated with the change in the ADAS13 scores in the CN conversion to MCI subgroup. 476 However, the changes in the amyloid-related biomarkers, (1.E) Florbetapir PET SUVR and 477 (1.F) CSF A β_{42} , were not significantly correlated with the change in ADAS13 scores.
- 478 The bottom panels show that the change in the (2.A) CDRSB score, (2.B) MMSE score, (2.C)
- 479 hippocampal volume percent of ICV, and (2.D) post-cingulate FDG SUVR value significantly
- 480 correlated with the change in ADAS13 scores in the MCI conversion to AD subgroup.
- 481 However, the changes in amyloid related biomarkers, (2.E) Florbetapir PET SUVR and (2.F)
- 482 CSF A β_{42} , were not significantly correlated with the change in ADAS13 scores.
- $483 \qquad df = degree of freedom$
- 484

Figure 4. Temporal evolution of marker changes and within-individual trajectories ofmarker changes

- 487 Raw data for each biomarker and clinical profile converted to scaled values. The scaled value
 488 for each marker was defined by: (raw data mean CN baseline value) / the standard deviation
- 489 of the whole dataset.
- 490 (A) Clinical profiles, hippocampal volume, and FDG scaled changes in all subjects;
- 491 (B) Clinical profiles and biomarkers scaled changes in the elevated amyloid subjects;
- 492 Clinical profiles and biomarkers scaled changes in 4 subjects who included the entire disease
- 493 process from CN conversion to MCI followed by conversion to AD (CN2MCI2AD),
- 494 within-individual changes.
- 495

496 Figure 5. Post hoc analysis results between the pre-MCI onset timepoint and all the

497 CN2MCI subgroup timepoints for the clinical profiles and hippocampal volume

498 The x-axis of each panel is the Dunnettx-adjusted p value, and the y-axis is the years from

499 MCI onset timepoint for hippocampal volume (Row A), ADAS13 (Row B), CDRSB (Row C),

 $\label{eq:solution} 500 \qquad \text{and MMSE (Row D). Each column represents the reference time for a stable stage timepoint}$

501 in the CN2MCI subgroup. The line between two points in each panel indicates the p value of

502 the t test for each marker between the two timepoints. The line located to the left of the p

value on the x-axis indicates the significance level of the post hoc results between these two

504 timepoints.

505

Elevated amyloid

Normal amyloid

Missing amyloid

