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Abstract 

Single-cell technologies are emerging fast due to their ability to unravel the 
heterogeneity of biological systems. While scRNA-seq is a powerful tool that 
measures whole-transcriptome expression of single cells, it lacks their spatial 
localization. Novel spatial transcriptomics methods do retain cells spatial information 
but can only measure tens to hundreds of transcripts. To resolve this discrepancy, we 
developed SpaGE, a method that integrates spatial and scRNA-seq datasets to 
predict whole-transcriptome expressions in their spatial configuration. Using five 
dataset-pairs, SpaGE outperformed previously published methods and showed 
scalability to large datasets. Moreover, SpaGE predicted new spatial gene patterns 
that are confirmed independently.  
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Introduction 

Single cell technologies rapidly developed over the last decade and have become 
valuable tools for enhancing our understanding of biological systems. Single-cell 
RNA-sequencing (scRNA-seq) allows unbiased measurement of the entire gene 
expression profile of each individual cell and has become the de facto technology 
used to characterize the cellular composition of complex tissues [1, 2]. However, 
single cells often have to be dissociated before performing scRNA-seq and results in 
losing the spatial context and hence limits our understanding of cell identities and 
relationships. Recently, spatial transcriptomics technologies have advanced and 
provide localizations of gene expressions and cellular structure at the cellular level [3, 
4]. Current protocols can be divided in two categories: 1) imaging-based methods 
(e.g. osmFISH and MERFISH) [5, 6], and 2) sequencing-based methods (e.g. 
STARmap and Slide-seq) [7, 8]. Imaging-based protocols have a high gene detection 
sensitivity; capturing high proportion of the mRNA molecules with relatively small 
dropout rate. However, imaging-based protocols are often limited in the number of 
genes that can be measured simultaneously. On the other hand, sequencing-based 
protocols like STARmap can scale up to thousands of genes, it has a relatively lower 
gene detection sensitivity. Slide-seq is not limited in the number of measured genes 
and can be used to measure the whole transcriptome. However, similar to STARmap, 
Slide-seq suffers from a low gene detection sensitivity. In addition, osmFISH, 
MERFISH and STARmap can capture genes at the single-molecule resolution, which 
can be averaged or aggregated to the single-cell level. While Slide-seq has a 
resolution of 10μm, which is comparable to the average cell size, but does not always 
represent a single-cell. 
 
Given the complementary information provided by both scRNA-seq and spatial 
transcriptomics data, integrating both types would provide a more complete overview 
of cell identities and interactions within complex tissues. This integration can be 
performed in two different ways [9]: 1) dissociated single-cells measured with scRNA-
seq can be mapped to their physical locations in the tissue [10–12], or 2) missing 
gene expression measurements in the spatial data can be predicted from scRNA-
seq. In this study, we focus on the second challenge in which measured gene 
expressions of spatial cells can be enhanced by predicting the expression of 
unmeasured genes based on scRNA-seq data of a matching tissue. Several methods 
have addressed this problem using various data integration approaches to account 
for the differences between the two data types [13–16]. All these methods rely on 
joint dimensionality reduction methods to embed both spatial and scRNA-seq data 
into a common latent space. For example, Seurat uses canonical correlation analysis 
(CCA), Liger uses  non-negative matrix factorization (NMF), and Harmony uses 
principal component analysis (PCA). While Seurat, Liger and Harmony rely on linear 
methods to embed the data, gimVI uses a non-linear deep generative model. Despite 
recent benchmarking efforts [17], a comprehensive evaluation of these methods for 
the task of spatial gene prediction from dissociated cells is currently lacking. For 
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example, Seurat, Liger and gimVI, have only been tested using relatively small 
datasets (<2,000 cells) [13, 14, 16]. It is thus not clear whether a complex model, like 
gimVI, is really necessary. Moreover, Seurat, Harmony and gimVI lack interpretability 
of the integration procedure, so that it does not become clear which genes contribute 
in the prediction task.  
 
Here, we present SpaGE (Spatial Gene Enhancement), a robust, scalable and 
interpretable machine-learning method to predict unmeasured genes of each cell in 
spatial transcriptomic data through integration with scRNA-seq data from the same 
tissue. SpaGE relies on domain adaptation using PRECISE [18] to correct for 
differences in sensitivity of transcript detection between both single-cell technologies, 
followed by a k-nearest-neighbor (kNN) prediction of new spatial gene expression. 
We demonstrate that SpaGE outperforms state-of-the-art methods by accurately 
predicting unmeasured gene expression profiles across a variety of spatial and 
scRNA-seq dataset pairs of different regions in the mouse brain. These datasets 
include a large spatial data with more than 60,000 cells, used to illustrate the 
scalability and computational efficiency of SpaGE compared to other methods.  
 
 
Results 

SpaGE overview 

We developed SpaGE, a platform that enhances the spatial transcriptomics data by 
predicting the expression of unmeasured genes, from a dissociated scRNA-seq data 
from the same tissue (Fig. 1). Based on the set of shared genes, we align both 
datasets using the domain adaptation method PRECISE [18], to account for technical 
differences as well as gene detection sensitivity differences. PRECISE geometrically 
aligns linear latent factors computed on each dataset and finds gene combinations 
expressed in both datasets. These gene combinations thus define a common latent 
space and can be used to jointly project both datasets. Next, in this common latent 
space, we use the kNN algorithm to define the neighborhood of each cell in the 
spatial data from the scRNA-seq cells. These neighboring scRNA-seq cells are then 
used to predict the expression of spatially unmeasured genes. Finally, we end up 
with the full gene expression profile of each cell in the spatial data. 

The alignment step is the most crucial step in the pipeline of SpaGE. For this 
purpose, we use PRECISE, a domain adaptation method previously proposed to 
predict the drug response of human tumors based on pre-clinical model such as cell 
lines and mouse models. We adapted PRECISE to the task of integrating the spatial 
data with the scRNA-seq data by defining the common aligned subspace between 
both datasets (Fig. 1). PRECISE takes as input the expression matrix of both 
datasets, having the same set of (overlapping) genes but measured differently and 
within different cells. As we are aiming to fit each spatial cell to the most similar 
scRNA-seq cells, we may refer to the spatial dataset as the ‘query’ and the scRNA-
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seq dataset as the ‘reference’. First, PRECISE obtains a lower dimensional space for 
each dataset separately using a linear dimensionality reduction method, such as 
Principal Component Analysis (PCA). Next, the two independent sets of principal 
components (PCs) are aligned by applying a singular value decomposition. We align 
the two sets of principal components using the singular vectors to obtain the aligned 
components, named principal vectors (PVs). These PVs are sorted in decreasing 
order based on their similarity between the reference and the query datasets. This 
allows us to filter out dissimilar or noisy signals, by discarding PVs with relatively low 
similarity, thus keeping only the common latent space. The principal vectors of the 
reference dataset (𝑃𝑃𝑃𝑃𝑟𝑟) are considered as the aligned latent space. We project both 
datasets on 𝑃𝑃𝑃𝑃𝑟𝑟 to obtain the new aligned versions used for the kNN prediction. 

We performed SpaGE on five dataset pairs from different regions in the mouse brain, 
varying in the number of cells and the number of spatially measured genes, 
summarized in Table 1. To show the alignment performance, we calculated the 
cosine similarity between the PCs and the PVs i.e. before and after the alignment. 
Across all five dataset pairs, we observed that indeed the relation between the PCs is 
not one-to-one, as these PCs are obtained from two different datasets (Figure S1-2). 
However, after alignment using PRECISE, the diagonal cosine similarity between the 
PVs is maximized showing a one-to-one relationship between the PVs of both 
datasets. Figure S1A shows the diagonal cosine similarity before and after PRECISE 
(i.e. between PCs and PVs) across all dataset pairs, showing a relatively large 
increase in similarity after the alignment using PRECISE. 

Another interesting feature of SpaGE is the ability to interpret the most contributing 
genes defining the latent integration space. In general, these genes are highly 
variable and in most cases are related to cell type differences. A good example is the 
integration of the osmFISH_Zeisel dataset pair, in which the top six contributing 
genes are Tmem2, Mrc1, Kcnip2, Foxj1, Apln and Syt6 (Methods). These genes are 
related to six different cell categories previously defined in the osmFISH paper [5]: 
Oligodendrocytes, Immune cells, Inhibitory neurons, Ventricle, Vasculature and 
Excitatory neurons, respectively. 

 

Table 1 Summary of the dataset pairs used in this study. 

Spatial_scRNA-seq 
dataset pair 

Spatial data scRNA-seq data 

# of 
cells 

# of 
gene

s 
Tissue # of 

cells 
# of 

genes Tissue 

STARmap_AllenVISp [7, 19] 1,549 1,020 Visual 
cortex 14,249 34,617 Visual cortex 

osmFISH_Zeisel [5, 20] 
3,405 33 Somatosen

sory cortex 

1,691 15,075 Somatosensory 
cortex osmFISH_AllenSSp [5, 21] 5,613 30,527 

osmFISH_AllenVISp [5, 19] 14,249 34,617 Visual cortex 
MERFISH_Moffit [4] 64,373 155 Pre-optic 

region 31,299 18,646 Pre-optic region 
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SpaGE outperforms state-of-the-art methods on the STARmap dataset 

Using the first dataset pair STARmap_AllenVISp, we applied SpaGE to integrate 
both datasets and predict unmeasured spatial gene expression patterns. In order to 
evaluate the prediction, we performed a leave-one-gene-out cross validation 
(Methods). The STARmap_AllenVISp dataset pair shares 994 genes. In each cross-
validation fold, one gene is left out and the remaining 993 genes are used as input for 
SpaGE to predict the spatial expression pattern of the left-out gene. We evaluated 
the prediction performance by calculating the Spearman correlation between the 
original measured spatially distributed values and the predicted values of the left-out 
gene. We performed the same leave-one-gene-out cross validation using Seurat, 
Liger and gimVI, to benchmark the performance of SpaGE. Results show a 
significant improvement in performance for SpaGE compared to all three methods (p-
value <0.05, two-sided paired Wilcoxon rank sum test), with a median Spearman 
correlation of 0.125 compared to 0.083, 0.067 and 0.055 for Seurat, Liger and gimVI, 
respectively (Fig. 2a). 

Further, we compared the Spearman correlation of SpaGE versus the state-of-the-art 
methods per gene, to obtain a detailed evaluation. Results show better performance 
of SpaGE across the majority of genes, but not all (Fig. 2b-d). Next, we visually 
compared a few genes that had high correlations for each method. For the top three 
predicted genes of SpaGE (Pcsk2, Pgm2l1 and Egr1), Seurat obtained a good 
prediction as well, as these three genes are in the top 10 predicted genes of Seurat. 
Liger failed to predict Egr1, while gimVI failed to predict Pgm2l1 and Egr1 (Figure 
S3A). We further looked for examples where other methods obtained higher 
correlations than SpaGE, excluding the top 10 predicted genes by SpaGE. 
Compared to Seurat, SpaGE similarly predicted the expression of Arpp19, but 
predicted relatively higher contrast patterns for Pcp4 and Arc (Figure S3B). 
Compared to Liger, SpaGE similarly predicted the expression of Mobp, higher 
contrast pattern for Hpcal4, and better predicted the spatial pattern of Tsnax (Figure 
S3C). Compared to gimVI, SpaGE obtained good prediction for Tsnax, predicted 
wrong pattern for Ythdc2, and lower contrast prediction for Bcl6 (Figure S3D). 

Although the correlation values are in general low, SpaGE is capable of accurately 
reconstructing genes with clear spatial pattern in the brain. Fig. 3 shows a set of 
genes known to have spatial patterns (previously reported by Seurat, Liger and 
gimVI). In this set of genes, Seurat and Liger are performing well, except that Liger 
produced a lower contrast expression pattern in some cases (e.g. Lamp5 and Bsg). 
However, gimVI is unable to predict the correct gene pattern, and even predicts a 
reverse pattern in the case of Plp1. 

Additionally, although it is important to accurately predict the expression of all genes, 
genes with distinct spatial patterns are more important to accurately predict 
compared to non- or randomly expressed genes. To quantify the existence of spatial 
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patterns, we calculate the Moran’s I statistics of each gene using the original 
STARmap spatial data (Methods). We compared the prediction performance of each 
gene with the corresponding Moran’s I value. For SpaGE, Seurat and Liger, we 
observed a positive relationship between the prediction performance and the Moran’s 
I values, i.e. genes with spatial patterns are better predicted (Figure S4A-C). On the 
other hand, gimVI performed worse on genes with high Moran’s I statistics (Figure 
S4D). 

In addition, we evaluated how well a gene can be predicted when using less shared 
genes. First, we selected a fixed test set of 50 genes, next we down-sampled the 
remaining set of 944 shared genes in a guided manner (Methods). For down-
sampled shared genes sets of 10, 30, 50, 100, 200 and all 944 genes, SpaGE 
performance always increases with the number of shared genes as expected (Figure 
S4E).  

 

SpaGE predicts unmeasured spatial gene patterns that are independently 
validated 

After validating SpaGE to accurately predict the spatially measured genes, we 
applied SpaGE to predict new unmeasured genes for the spatial data, with the aim to 
define novel spatial gene patterns. We illustrate SpaGE’s capability of such task 
using the STARmap_AllenVISp dataset pair. First, during the leave-one-gene-out 
cross validation, SpaGE was able to produce the correct spatial pattern for Rorb, 
Syt6 and Tbr1 (Fig. 4). These three genes were originally under-expressed, possibly 
due technical noise or low gene detection sensitivity in the STARmap dataset. Our 
predictions using SpaGE are in agreement with the highly sensitive cyclic smFISH 
dataset (osmFISH [5]) measured from the mouse somatosensory cortex, a similar 
brain region in terms of layering structure to the visual cortex measured by the 
STARmap dataset. Further, using SpaGE, we were able to obtain novel spatial gene 
patterns for five genes not originally measured by the STARmap dataset (Fig. 5). 
These predicted patterns are supported by the Allen Brain Atlas in-situ hybridization 
(Allen ISH). 

 

SpaGE produces better prediction with deeply sequenced reference dataset 

We wanted to test the effect of changing the reference scRNA-seq data on the spatial 
gene expression prediction. Here, we used the osmFISH dataset which represents a 
different challenge compared to the STARmap dataset. On one hand, the osmFISH 
dataset has a relatively higher gene detection sensitivity, but on the other hand, the 
osmFISH dataset includes only 33 genes. First, we evaluated the osmFISH_Zeisel 
dataset pair, in which we integrated the osmFISH dataset with a reference scRNA-
seq dataset from the same lab (Zeisel et. al [20]). We performed leave-one-gene-out 
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cross validation similar to the STARmap dataset. Compared to other methods, 
SpaGE has significantly better performance (p-value <0.05, two-sided paired 
Wilcoxon rank sum test), with a median Spearman correlation of 0.203 compared to 
0.007, 0.090 and 0.130 for Seurat, Liger and gimVI, respectively (Fig. 6, Figure S5A). 
For a more detailed comparison per gene: SpaGE is performing better on the 
majority of genes compared to Liger and gimVI, while compared to Seurat, SpaGE 
has better performance across all genes (Figure S5B-D). We further investigated the 
relation between the prediction performance and the Moran’s I statistics of the 
originally measured genes. Similar to the STARmap data, for SpaGE and Seurat, we 
found a positive relationship, i.e. the performance is higher for genes with distinct 
spatial patterns. However, Liger and gimVI have a negative relationship (Figure S6). 

Next, we tested the performance of all methods using the AllenVISp dataset as 
reference for the osmFISH dataset, similar to the STARmap dataset. For the 
osmFISH_AllenVISp dataset pair, we observed similar conclusions where SpaGE 
has significantly better performance compared to other methods, with a median 
Spearman correlation of 0.203 compared to 0.014, 0.082 and 0.189 for Seurat, Liger 
and gimVI, respectively (Fig. 6, Figure S7A). SpaGE has better performance across 
all genes compared to Seurat and Liger, while gimVI is performing better on a few 
genes (Figure S7B-D). All four methods have a positive relationship between their 
prediction performance and the Moran’s I statistics of the measured genes (Figure 
S8). These results show how the reference dataset can affect the prediction. 
Compared to the Zeisel dataset, the AllenVISp is more deeply sequenced data, with 
the average number of detected transcripts per cell being ~140x more than the 
Zeisel dataset (Figure S9A-B). However, not all methods benefit from this, as for 
Seurat and Liger, the prediction performance using the AllenVISp or the Zeisel 
datasets is quite similar (Fig. 6). On the other hand, SpaGE and gimVI get an 
increase in performance across all genes, although the median correlation for SpaGE 
remains the same.  

While the AllenVISp is a deeply sequenced reference dataset, it has been measured 
from a different brain region than the osmFISH dataset (Table 1). Therefore, we 
decided to use a third reference dataset, AllenSSp, which has roughly the same 
sequencing depth as the AllenVISp (Figure S9B-C) but is measured from the 
somatosensory cortex, similar to the osmFISH dataset. We evaluated the prediction 
performance of all four tools for the new dataset pair osmFISH_AllenSSp. Again, 
SpaGE obtained a better performance with a median Spearman correlation of 0.194 
compared to 0.008, 0.095 and 0.176 for Seurat, Liger and gimVI, respectively (Fig. 6, 
Figure S10A). SpaGE has a better performance across all genes compared to 
Seurat, and better performance across the majority of genes compared to Liger and 
gimVI (Figure S10B-D). Similar to previous observations, SpaGE, Liger and gimVI 
have positive relationship between the prediction performance and Moran’s I 
statistics. However, Seurat has a negative relationship (Figure S11). 
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Changing the brain region did not affect the overall performance of SpaGE (Fig. 6), 
however, the prediction of genes with known patterns did improve (Fig. 7). When we 
visually inspect these genes, we can clearly observe that the predicted spatial pattern 
improved when the sequencing depth of the reference set improves or becomes from 
a similar tissue. Rorb and Tbr1 are clear examples, where the prediction using Zeisel 
was almost missing the correct pattern, this became clearer using the AllenVISp 
having a greater sequencing depth. Second, changing to a matching tissue adds 
further improves the predicted patterns of these genes (AllenSSp). Eventually, all 
five genes (Lamp5, Kcnip2, Rorb, Tbr1 and Syt6) are more accurately predicted 
using the AllenSSp dataset. 

 

SpaGE is scalable to large spatial datasets 

So far, SpaGE showed good prediction performance in the leave-one-gene-out 
predictions, and was also able to predict correct spatial patterns of unmeasured 
genes within the spatial transcriptomic datasets. All these results were, however, 
obtained using a relatively small spatial datasets including only a few thousand cells 
(STARmap and osmFISH). This opens the question of how does SpaGE scale to 
large spatial datasets, comparable to the datasets measured nowadays. To assess 
the scalability of SpaGE, we used a large MERFISH dataset with >60,000 cells 
measured from the mouse brain pre-optic region, and integrated it with the 
corresponding scRNA-seq dataset published in the same study by Moffit et al [4]. 
The MERFISH_Moffit dataset pair shares 153 genes on which we applied the same 
leave-one-gene-out cross validation using all four methods. Similar to the previous 
results, SpaGE significantly outperformed all other methods (p-value <0.05, two-
sided paired Wilcoxon rank sum test) with a median Spearman correlation of 0.275 
compared to 0.258, 0.027 and 0.099 for Seurat, Liger and gimVI, respectively (Fig. 
8A). Per gene comparisons shows a clear advantage of SpaGE versus Liger and 
gimVI, but more comparable performance with Seurat (Fig. 8B-D).   

Further, we compared the computation times of all four methods across all five 
dataset pairs. All experiments were run on a Linux HPC server but limited to a single 
CPU core, with 256 GB of memory, to be able to compare runtimes. The calculated 
computation time includes the integration and the prediction time. We did not observe 
large differences between the methods when testing for the STARmap and the 
osmFISH datasets, as these datasets are relatively small (Fig. 8E), even though 
SpaGE has the lowest average computation time per gene. For the large MERFISH 
dataset, SpaGE has a clear advantage compared to the other methods as the 
average computation time of SpaGE is ~30x, 63x and 4x faster than Seurat, Liger 
and gimVI, respectively. These results combined show an overall advantage of 
SpaGE over other methods for larger datasets with higher prediction performance 
and lower computation time. 
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Discussion 

We demonstrated the ability of SpaGE to enhance spatial transcriptomics data by 
predicting the expression of unmeasured genes based on scRNA-seq data collected 
from the same tissue. The ability of SpaGE to produce accurate gene expression 
prediction highly depends on the alignment part performed using PRECISE, which 
rotates the principal components of each dataset to produce principal vectors with 
high one-to-one similarity. Projecting the datasets to the latent space spanned by 
these principal vectors produces a proper alignment, making a simple kNN prediction 
sufficient to achieve accurate gene expression estimation. 

We benchmarked SpaGE against three state-of-the-art methods for multi-omics data 
integration, using five different dataset pairs. These dataset pairs represent different 
challenges to the integration and prediction task, as they differ in gene detection 
sensitivity level and the number of spatially measured genes, which are the basis for 
the alignment. Increasing the number of shared genes should, in principle, eases the 
integration task and produces better prediction of unmeasured genes. Further, 
imaging-based spatial transcriptomic methods, with high gene detection sensitivity, 
may also improve the integration and prediction, as they are able to capture the 
majority of the genes even the ones with relatively low expression. On the other 
hand, integrating this high sensitivity data with scRNA-seq, which has lower 
sensitivity, can be more challenging. That is because the differences in gene 
expression are higher compared to integrating a sequencing-based spatial data with 
scRNA-seq data, both having comparable sensitivity.   

Across all tested dataset pairs, SpaGE outperformed all methods producing better 
predictions for the majority of the genes. However, for few genes, SpaGE had lower 
prediction performance than other methods. Seurat produced good gene predictions 
for the STARmap and the MERFISH datasets, with similar predictions to SpaGE. 
However, Seurat did not properly work when there are very few shared genes, such 
as in the osmFISH dataset (33 genes). This problem is even more pronounced for 
Liger, as it performed relatively well for the STARmap dataset producing good gene 
predictions, but has a decreased performance for both the osmFISH (33 genes) and 
the MERFISH (155 genes) datasets. On the other hand, gimVI performed relatively 
well for the osmFISH and the MERFISH datasets. However, gimVI had overall the 
lowest performance for the STARmap dataset, with inaccurate predictions for genes 
with spatial patterns such as Cux2 and Lamp5, and good predictions for lowly 
expressed or non-patterned genes such as Ythdc2 and Bcl6. This suggests that 
gimVI works well with imaging-based technologies having high gene detection 
sensitivity, but not with the sequencing-based technologies. 

Next to the overall best performance, SpaGE is an interpretable algorithm as it allows 
to find the genes driving the correspondence between the datasets. The principal 
vectors, used to align the datasets to a latent space, show the contribution of each 
gene in defining this new latent space. Further, SpaGE is scalable to large spatial 
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data with significantly lower computation time compared to the other methods, as 
shown on the MERFISH dataset having more than 60,000 cells measured spatially. 
Moreover, SpaGE is a flexible pipeline. Here we used PCA as the initial independent 
dimensionality reduction algorithm. However, this step can be replaced by any linear 
dimensionality reduction method. 

We used the Spearman Rank correlation to quantitatively evaluate the predicted 
gene expressions. The overall evaluation showed relatively low correlations across 
all methods and all dataset pairs. These low correlations express the difficulty of the 
problem, as the predicted gene expressions are obtained from a different type of 
data. However, the Spearman correlation is not the optimal evaluation metric, as it 
does not always reflect the spatially predicted patterns, i.e. visual inspection showed 
good predictions for genes with known spatial pattern in the mouse cortex, while the  
correlation values were less than 0.2. 

 

Conclusion 

SpaGE presents a robust, scalable, interpretable and flexible method for predicting 
spatial gene expression patterns. SpaGE uses domain adaptation to align the spatial 
transcriptomics and the scRNA-seq datasets to a common space, in which 
unmeasured spatial gene expressions can be predicted. SpaGE is less complex and 
much faster when compared to other approaches and generalizes better across 
datasets and technologies.  
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Methods 

SpaGE algorithm 

The SpaGE algorithm takes as input two gene expression matrices corresponding to 
the scRNA-seq data (reference) and the spatial transcriptomics data (query). Based 
on the set of shared genes between the two datasets, SpaGE enriches the spatial 
transcriptomics data using the scRNA-seq data, by predicting the expression of 
spatially unmeasured genes. The SpaGE algorithm can be divided in two major 
steps: 1) Alignment of the two datasets using the domain adaptation algorithm 
PRECISE [18], and 2) gene expression prediction using k-nearest-neighbor 
regression. 

First, PRECISE was used to project both datasets into a common latent space. Let 
𝑅𝑅(𝑛𝑛 × 𝑔𝑔) be the gene expression matrix of the reference dataset having 𝑛𝑛 cells and 𝑔𝑔 
genes, and let 𝑄𝑄(𝑚𝑚 × ℎ) be the gene expression matrix of the query dataset having 𝑚𝑚 
cells and ℎ genes. Using the set of shared genes 𝑝𝑝 = 𝑔𝑔 ∩ ℎ, PRECISE applies 
independent Principal Component Analysis (PCA) for each dataset to define two 
independent sets of Principal Components (PCs), such that: 

 
𝑅𝑅(𝑛𝑛 × 𝑝𝑝) =   𝑅𝑅′(𝑛𝑛 × 𝑑𝑑)𝑃𝑃𝑃𝑃𝑟𝑟 (𝑑𝑑 × 𝑝𝑝) 

 
with 𝑃𝑃𝑃𝑃𝑟𝑟𝑃𝑃𝑃𝑃𝑟𝑟𝑇𝑇 = 𝐼𝐼𝑑𝑑 

(1) 

 
and 

 

 
𝑄𝑄(𝑚𝑚 × 𝑝𝑝) =  𝑄𝑄′(𝑚𝑚 × 𝑑𝑑)𝑃𝑃𝑃𝑃𝑞𝑞 (𝑑𝑑 × 𝑝𝑝) 

 
with 𝑃𝑃𝑃𝑃𝑞𝑞𝑃𝑃𝑃𝑃𝑞𝑞𝑇𝑇 = 𝐼𝐼𝑑𝑑 

(2) 

     
 
where 𝑑𝑑 is the number of desired PCs, 𝑃𝑃𝑃𝑃𝑟𝑟 and 𝑃𝑃𝑃𝑃𝑞𝑞 represents the principal 
components of the reference and the query datasets, respectively. We choose 𝑑𝑑 = 50 
for the STARmap_AllenVISp and MERFISH_Moffit dataset pairs, and 𝑑𝑑 = 30 for all 
the osmFISH dataset pairs. Next, PRECISE compares these independent PCs by 
computing the cosine similarity matrix and decomposing it by SVD [22]: 
 

 𝑃𝑃𝑃𝑃𝑟𝑟𝑃𝑃𝑃𝑃𝑞𝑞𝑇𝑇 = 𝑈𝑈𝑈𝑈𝑃𝑃𝑇𝑇 (3) 
 

      
where U and V represent orthogonal (of size d) transformations on the reference and 
query PCs, respectively, and 𝑈𝑈 is a diagonal matrix. U and V are then used to align 
the PCs, yielding the so-called Principal Vectors (PVs), such that: 
 

 𝑃𝑃𝑃𝑃𝑟𝑟 = 𝑈𝑈𝑇𝑇𝑃𝑃𝑃𝑃𝑟𝑟 (4) 
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and 

 
 𝑃𝑃𝑃𝑃𝑞𝑞 = 𝑃𝑃𝑇𝑇𝑃𝑃𝑃𝑃𝑞𝑞 (5) 

 
𝑃𝑃𝑃𝑃𝑟𝑟 and 𝑃𝑃𝑃𝑃𝑞𝑞 are the principal vectors of the reference and the query datasets, 
respectively, retaining the same information as the principal components. However, 
these PVs have now a one-to-one correspondence as their cosine similarity matrix is 
diagonal (the matrix 𝑈𝑈). PVs are pairs of vectors �𝑃𝑃𝑃𝑃𝑟𝑟1,𝑃𝑃𝑃𝑃𝑞𝑞1�, … , �𝑃𝑃𝑃𝑃𝑟𝑟𝑑𝑑, 𝑃𝑃𝑃𝑃𝑞𝑞𝑑𝑑� sorted in 
decreasing order based of similarity. To remove noisy components, we choose a 
limited number of PVs, 𝑑𝑑’, for further analysis, where the cosine similarity is higher 
than a certain threshold (0.3). The reference PVs, 𝑃𝑃𝑃𝑃𝑟𝑟, are then used to project and 
align both the scRNA-seq (reference) and the spatial transcriptomics (query) 
datasets:  
 

 𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎𝑔𝑔𝑛𝑛𝑎𝑎𝑑𝑑 (𝑛𝑛 × 𝑑𝑑′) =   𝑅𝑅(𝑛𝑛 × 𝑝𝑝)𝑃𝑃𝑃𝑃𝑟𝑟 (𝑝𝑝 × 𝑑𝑑′)
𝑇𝑇  (6) 

 
and 

 
 𝑄𝑄𝑎𝑎𝑎𝑎𝑎𝑎𝑔𝑔𝑛𝑛𝑎𝑎𝑑𝑑   (𝑚𝑚 × 𝑑𝑑′) =  𝑄𝑄(𝑚𝑚 × 𝑝𝑝)𝑃𝑃𝑃𝑃𝑟𝑟 (𝑝𝑝 × 𝑑𝑑′)

𝑇𝑇  (7) 
    
After aligning the datasets, SpaGE predicts the expression of the spatially 
unmeasured genes, 𝑙𝑙 = 𝑔𝑔 − 𝑝𝑝, from the scRNA-seq dataset. For each spatial cell 
𝑖𝑖 ∈ 𝑚𝑚, we define the k-nearest-neighbors (k = 50) from the 𝑛𝑛 dissociated scRNA-seq 
cells, using the cosine distance. Next, we calculate an array of weights 𝑤𝑤𝑎𝑎𝑖𝑖 between 
spatial cell 𝑖𝑖 and its nearest neighbors 𝑗𝑗 ∈ 𝑁𝑁𝑁𝑁(𝑖𝑖). Out of the 50 neighbors, we only 
keep neighbors with positive cosine similarity with cell 𝑖𝑖 (i.e. cosine distance < 1), 
such that:  

∀ 𝑗𝑗 ∈ 𝑁𝑁𝑁𝑁(𝑖𝑖) 𝑎𝑎𝑛𝑛𝑑𝑑  𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑(𝑖𝑖, 𝑗𝑗) < 1 
 

 𝑤𝑤𝑎𝑎𝑖𝑖 = 1 −  
𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑(𝑖𝑖, 𝑗𝑗)
∑ 𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑(𝑖𝑖, 𝑗𝑗)𝑖𝑖

 (8) 

         

 𝑤𝑤𝑎𝑎𝑖𝑖 =
𝑤𝑤𝑎𝑎𝑖𝑖

𝑙𝑙𝑙𝑙𝑛𝑛𝑔𝑔𝑑𝑑ℎ(𝑤𝑤𝑎𝑎𝑖𝑖)− 1 (9) 

 
The predicted expression 𝑌𝑌𝑎𝑎𝑎𝑎 of the set of spatially unmeasured genes 𝑙𝑙 for cell 𝑖𝑖 is 
calculated as a weighted average of the nearest neighbors dissociated cells: 
 

 
𝑌𝑌𝑎𝑎𝑎𝑎 = � 𝑤𝑤𝑎𝑎𝑖𝑖 ∗ 𝑅𝑅𝑖𝑖𝑎𝑎

𝑖𝑖∈𝑁𝑁𝑁𝑁(𝑎𝑎)
𝑑𝑑𝑎𝑎𝑑𝑑𝑑𝑑(𝑎𝑎,𝑖𝑖)<1

 
(10) 
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Gene contribution to the integration 

To evaluate the contribution of each gene in forming this common latent space 𝑃𝑃𝑃𝑃𝑟𝑟, 
we calculated the gene contribution 𝑃𝑃𝑔𝑔 of gene 𝑔𝑔 as follows: 

 

 𝑃𝑃𝑔𝑔 = �𝛽𝛽𝑔𝑔𝑎𝑎2
𝑑𝑑

𝑎𝑎=1

 (11) 

 

where 𝛽𝛽𝑔𝑔𝑎𝑎  is the loading of gene 𝑔𝑔 to the 𝑖𝑖-th principal vector in 𝑃𝑃𝑃𝑃𝑟𝑟, and 𝑑𝑑 is the 
number of PVs in 𝑃𝑃𝑃𝑃𝑟𝑟. To obtain the top contributing genes, the 𝑃𝑃𝑔𝑔 values are sorted 
in descending order across all genes. 

 

Datasets 

We used five dataset pairs (Table 1) composed of four scRNA-seq datasets 
(AllenVISp [19], AllenSSp [21], Zeisel [20], Moffit [4]) and three spatial 
transcriptomics datasets (STARmap [7], osmFISH [5], MERFISH [4]). The 
AllenVISp (GSE115746) and the AllenSSp datasets were downloaded from 
https://portal.brain-map.org/atlases-and-data/rnaseq. The AllenVISp is obtained from 
the ‘Cell Diversity in the Mouse Cortex – 2018’ release. The AllenSSp is obtained 
from the ‘Cell Diversity in the Mouse Cortex and Hippocampus’ release of October 
2019. We downloaded the whole dataset and used the metadata to only select cells 
from the SSp region. The Zeisel dataset (GSE60361) was downloaded from 
http://linnarssonlab.org/cortex/, while the Moffit 10X dataset (GSE113576) was 
downloaded from GEO.  

The STARmap dataset was downloaded from the STARmap resources website 
(https://www.starmapresources.com/data). We obtained the gene count matrix and 
the cell position information for the largest 1020-gene replicate. Cell locations and 
morphologies were identified using Python code provided by the original study 
(https://github.com/weallen/STARmap). The osmFISH dataset was downloaded as 
loom file from http://linnarssonlab.org/osmFISH/, we obtained the gene count matrix 
and the metadata using the loompy Python package. The MERFISH dataset was 
downloaded from Dryad repository (https://doi.org/10.5061/dryad.8t8s248), we used 
the first naïve female mouse (Animal_ID = 1). 

 

Data preprocessing 

For all the scRNA-seq datasets, we filtered out genes expressed in less than 10 cells. 
No filtration was applied on the cells, except for the AllenVISp dataset for which we 
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filtered low quality cells provided from the metadata (‘Low Quality’ and ‘No Class’ 
cells). For the Zeisel dataset, we only used the somatosensory cells excluding the 
hippocampus cells. Next, scRNA-seq datasets were normalized by dividing the 
counts within each cell by the total number of transcripts within that cell, scaling by 
106 and log(x+1) transformed. Further, we scaled the data by making each gene 
centered and scaled (zero mean and unit variance) using the SciPy Python package 
[23]. 

For spatial transcriptomics datasets all gene were used, except for the MERFISH 
dataset for which we removed the blanks genes and the Fos gene (non-numerical 
values). Additionally, we filtered out cells labeled as ‘Ambiguous’ from the MERFISH 
dataset. Similar to the Zeisel dataset, we only kept cells from cortical regions for the 
osmFISH dataset (‘Layer 2-3 lateral’, ‘Layer 2-3 medial’, ‘Layer 3-4’, ‘Layer 4’,’Layer 
5’, ‘Layer 6’ and ‘Pia Layer 1’). No cells were filtered from the STARmap dataset. 
Further, each dataset was normalized by dividing the counts within each cell by the 
total number of transcripts within that cell, scaling by the median number of 
transcripts per cell, and log1p transformed. Similar to the scRNA-seq data, we scaled 
the spatial data using the SciPy Python package [23]. 

It is important to note that in all experiments, the scaled datasets are used as input 
for the alignment part, while the prediction is applied using the normalized version of 
the scRNA-seq dataset (Equation 10). 

 

Benchmarked methods 

We compared the performance of SpaGE versus three state-of-the-art methods for 
data integration: Seurat, Liger, and gimVI. Seurat and Liger are available as R 
packages, while gimVI is available through the scVI Python package [24]. We were 
not able to include Harmony in the comparison, as the code to predict unmeasured 
gene expression is not available. During the benchmark, all methods were applied 
using their default settings, or the settings provided in the accompanying examples or 
vignettes. Data normalization and scaling were performed using the built-in functions 
in each package, NormalizeData and ScaleData functions in Seurat, normalize and 
scaleNotCenter functions in Liger, while gimVI implicitly preprocess the data while 
computing.  

 

Moran’s I statistic 

The Moran’s I statistic [25] is a measure of spatial autocorrelation calculated for each 
spatial gene. The Moran’s I values can range from -1 to 1, where a value close to 1 
indicates a clear spatial pattern, and a value close to 0 indicates random spatial 
expression, while a value close to -1 indicated a chess board like pattern. We 
calculated the Moran’s I using the following equation:  
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 𝐼𝐼 = 
𝑁𝑁
𝑊𝑊
∑ ∑ 𝑤𝑤𝑎𝑎𝑖𝑖  (𝑥𝑥𝑎𝑎 −  �̅�𝑥)�𝑥𝑥𝑖𝑖 −  �̅�𝑥�𝑖𝑖𝑎𝑎

∑ (𝑥𝑥𝑎𝑎 −  �̅�𝑥)2𝑎𝑎
 (12) 

 

Where 𝑥𝑥 is the gene expression array, �̅�𝑥 is the mean expression of gene 𝑥𝑥, 𝑁𝑁 is the 
total number of spatial cells, 𝑤𝑤𝑎𝑎𝑖𝑖 is a matrix containing spatial weights with zeros on 
the diagonal, and 𝑊𝑊 is the sum of 𝑤𝑤𝑎𝑎𝑖𝑖. We calculated the spatial weights 𝑤𝑤𝑎𝑎𝑖𝑖 using 
the XY coordinates of the spatial cells, for each cell we calculated the kNN using the 
spatial coordinates (k=4). We assigned 𝑤𝑤𝑎𝑎𝑖𝑖 = 1 if 𝑗𝑗 is in the nearest neighbors of 𝑖𝑖, 
otherwise 𝑤𝑤𝑎𝑎𝑖𝑖 = 0. 

 

Down-sampling 

For the 994 shared genes in the STARmap_AllenVISp dataset pair, we first selected 
the top 50 spatial genes with high Moran’s I statistic values to be used as test set. 
For the remaining 944 genes, we calculated the pairwise Pearson correlation 
between using the scRNA-seq dataset. If the absolute value of the correlation of two 
genes is larger than 0.7, we removed the gene with the lower variance. After 
removing highly correlated genes, we sorted the remaining genes according to their 
expression variance in the scRNA-seq dataset. We selected the top 10, 30, 50, 100 
and 200 genes with high variance, these genes were used for alignment of the two 
datasets and prediction of the expression of the test genes. The prediction 
performance of these gene sets was compared with using all 944 genes. 

 

Availability of data and materials 

The implementation code of SpaGE, as well as the benchmarking code, is available 
in the GitHub repository, at https://github.com/tabdelaal/SpaGE. The code is released 
under MIT license. All datasets used are publicly available data. 
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Figures 

 

Fig. 1 SpaGE pipeline. SpaGE takes as input two datasets, a scRNA-seq dataset and a spatial 
transcriptomics dataset measured from the same tissue. SpaGE uses gene combinations of equal 
significance in both datasets to predict spatial locations of unmeasured genes. Using PRECISE, 
SpaGE finds directions that are important for both datasets, by making use of a geometrical alignment 
of the independent PCs to produce the PVs. SpaGE aligns both datasets by projecting on the PVs of 
the reference dataset. Using the aligned datasets, SpaGE applies kNN prediction to define new gene 
expression patterns for spatially unmeasured genes, predicted from the dissociated scRNA-seq data. 
Each spatial cell can be enhanced by having the expression of the whole transcriptome.  
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Fig. 2 Prediction performance comparison for the STARmap_AllenVISp dataset pair. (A) 
Boxplots showing the Spearman correlations for the leave-one-gene-out cross validation experiment 
for each method. The blue lines show the median correlation across all genes with a better 
performance for SpaGE. The red dots show the correlation values for individual genes. The p-values 
show the significant difference between all correlation values of SpaGE and each other method, using 
a paired Wilcoxon rank-sum test. (B-D) Detailed performance comparison between SpaGE and (B) 
Seurat, (C) Liger, (D) gimVI. These scatter plots show the correlation value of each gene across two 
methods. The solid black line is the y=x line, the dashed lines show the zero correlation. Points are 
colored according to the Moran’s I statistic of each gene. All scatter plots show that the majority of the 
genes are skewed above the y=x line, showing an overall better performance of SpaGE over other 
methods.  
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Fig. 3 Predicted expression of known spatially patterned genes in the STARmap dataset. Each 
row corresponds to a single gene having a clear spatial pattern. First column from the left shows the 
measured spatial gene expression in the STARmap dataset, while other columns show the 
corresponding predicted expression pattern by SpaGE, Seurat, Liger and gimVI, using the leave-one-
gene-out cross validation experiment. Prediction is performed using the AllenVISp dataset. 
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Fig. 4 SpaGE accurately predicted the expression of Rorb, Syt6 and Tbr1 in agreement with the 
osmFISH data. These three genes (shown in rows) were wrongly measured in the original STARmap 
data (shown in the left column). Using the STARmap_AllenVISp dataset pair, SpaGE was able to 
reconstruct the correct spatial gene expression patterns (middle column). These predicted patterns are 
in agreement with the measured gene expression patterns measure by the osmFISH dataset (right 
column), a highly sensitive single-molecule technology. 
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Fig. 5 Novel gene expression patterns for five genes not originally measured by the STARmap 
dataset, validated using the Allen Brain Atlas in-situ hybridization ISH. The left column shows the 
predicted spatial patterns using SpaGE for these five genes (shown in rows). The middle column 
shows the Allen ISH data for each gene, stating the image ID on top of each tissue section. The red 
rectangle highlights the corresponding brain region measured by the STARmap dataset. The right 
column shows a zoomed-in view of the region highlighted using this red rectangle, showing an 
agreement with the expression patterns predicted by SpaGE.    
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Fig. 6 Prediction performance comparison for the osmFISH dataset using different reference 
scRNA-seq datasets. Boxplots showing the Spearman correlations for the leave-one-gene-out cross 
validation experiment for each method using three different scRNA-seq datasets, Zeisel, AllenVISp 
and AllenSSp. The median correlations shows a better performance for SpaGE in all dataset pairs. 
The black dots show the correlation values for individual genes. SpaGE showed a performance 
improvement when using the AllenVISp over the Zeisel data. Although the median correlation is the 
same, the overall correlation range did improve. Also, gimVI clearly benefits from using the AllenVISp 
and the AllenSSp datasets over the Zeisel dataset.  
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Fig. 7 Predicted expression of known spatially patterned genes in the osmFISH dataset using 
different reference scRNA-seq datasets. Each row corresponds to a single gene having a clear 
spatial pattern. First column from the left shows the measured spatial gene expression in the 
osmFISH dataset, while the second, third and fourth columns show the corresponding predicted 
expression pattern by SpaGE using Zeisel, AllenVISp and AllenSSp datasets, respectively. 
Changing from Zeisel to AllenVISp (deeply sequenced data) improved the prediction, while matching 
the brain region using the AllenSSp improved the prediction further. 
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Fig. 8 Prediction performance comparison for the MERFISH_Moffit dataset pair. (A) Boxplots 
showing the Spearman correlations for the leave-one-gene-out cross validation experiment for each 
method. The blue lines show the median correlation across all genes with a better performance for 
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SpaGE. The red dots show the correlation values for individual genes. The p-values show the 
significant difference between all correlation values of SpaGE and each other method, using a paired 
Wilcoxon rank-sum test. (B-D) Detailed performance comparison between SpaGE and (B) Seurat, (C) 
Liger, (D) gimVI. These scatter plots show the correlation value of each gene across two methods. 
The solid black line is the y=x line, the dashed lines show the zero correlation. All scatter plots show 
that the majority of the genes are skewed above the y=x line, showing an overall better performance of 
SpaGE over other methods. (E) Line plots showing the average computation time per gene of each 
method for each dataset pair. Numbers below each dataset pair show the number of cells in the 
spatial and the scRNA-seq datasets, respectively. 
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