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Abstract 
 
Local genetic correlation quantifies the genetic similarity of complex traits in specific 
genomic regions, which could shed unique light on etiologic sharing and provide 
additional mechanistic insights into the genetic basis of complex traits compared to global 
genetic correlation. However, accurate estimation of local genetic correlation remains 
challenging, in part due to extensive linkage disequilibrium in local genomic regions and 
pervasive sample overlap across studies. We introduce SUPERGNOVA, a unified 
framework to estimate both global and local genetic correlations using summary statistics 
from genome-wide association studies. Through extensive simulations and analyses of 
30 complex traits, we demonstrate that SUPERGNOVA substantially outperforms existing 
methods and identifies 150 trait pairs with significant local genetic correlations. In 
particular, we show that the positive, consistently-identified, yet paradoxical genetic 
correlation between autism spectrum disorder and cognitive performance could be 
explained by two etiologically-distinct genetic signatures with bidirectional local genetic 
correlations. We believe that statistically-rigorous local genetic correlation analysis could 
accelerate progress in complex trait genetics research. 
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Introduction 
 
Genome-wide association study (GWAS) has achieved remarkable success in the past 
15 years and has identified numerous single-nucleotide polymorphisms (SNPs) 
associated with complex human traits and diseases1. Increasingly accessible summary 
statistics from GWAS, in conjunction with advances in analytical methods that use 
marginal association statistics as input, have circumvented logistical challenges in data 
sharing and greatly accelerated research in complex trait genetics2.  
 
With these advancements, multi-trait modeling has undergone rapid developments, 
leading to the emergence of numerous methods that study the shared genetic basis 
across multiple phenotypes3-8. Among these methods, genetic correlation analysis is a 
statistically powerful and biologically interpretable approach to quantifying the overall 
genetic similarity of two traits9-15. It has gained popularity in the field, provided new 
insights into the shared genetics of many phenotypes10,16, and has a variety of 
downstream applications9. Properly modeling genetic correlation could enhance 
statistical power in genetic association studies3,4, improve risk prediction accuracy17-19, 
and facilitate causal inference and mediation analysis5,7,20-22. A number of methods have 
been developed for genetic correlation estimation. Built upon the GREML approach14,23, 
cross-trait linkage disequilibrium (LD) score regression (LDSC) was the first method that 
uses GWAS summary statistics alone as input10,24. Methods have also been developed 
to estimate annotation-stratified12 and trans-ethnic13 genetic correlation. Bioinformatics 
servers have been built to improve the computation and visualization of genetic 
correlations25. 
 
Local genetic correlation analysis is another important approach to tackling the underlying 
etiological mechanisms shared by multiple complex traits11,26. Instead of estimating the 
average correlation of genetic effects across the genome, local genetic correlation 
quantifies the genetic similarity of two traits in specific genomic regions. This approach 
could reveal local, heterogenous architecture of etiological sharing and is critical for 
understanding the heterogeneity in pleiotropic genetic effects. Existing methods have 
struggled to provide statistically principled and robust results due to technical challenges 
including extensive LD in local chromosomal regions and pervasive sample overlap 
across GWASs.  
 
Here, we introduce a novel statistical framework named SUPERGNOVA for local genetic 
correlation estimation. Based on the GNOVA approach which was designed for 
partitioning genetic correlation by functional annotation12, SUPERGNOVA is a principled 
framework for diverse types of genetic correlation analyses. Through extensive 
simulations, we demonstrate that SUPERGNOVA provides statistically rigorous and 
computationally efficient inference for both global and local genetic correlations and 
substantially outperforms existing methods when applied to local genomic regions. 
Additionally, our approach uses GWAS summary statistics alone as input, and is robust 
to overlapping GWAS samples even when the shared sample size is unknown. We 
applied SUPERGNOVA to 30 complex traits and report 150 pairs of phenotypes with 
significant local genetic correlations. In particular, we investigated an empirical paradox 
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– the robust, positive genetic correlation between autism spectrum disorder (ASD) and 
cognitive ability, which contradicts the comorbidity between ASD and intellectual 
disability27. We demonstrate that multiple distinct etiologic pathways contribute to the 
shared genetics between ASD and cognitive ability which could only be revealed by 
genetic correlation analysis at a local scale.  
 
 
 
Results 
 
Overview of SUPERGNOVA analytical framework  
 
Genetic covariance (correlation) is defined as the covariance (correlation) of genetic 
effects on two traits. It is commonly used as an informative metric to quantify the shared 
genetic basis between traits. Given the marginal association statistics from two GWASs 
(i.e. z-scores 𝑧" and 𝑧#), genetic covariance 𝜌 between two traits can be estimated by 
minimizing the “distance” between the empirical covariance of z scores, i.e., 𝐶𝑜𝑣( (𝑧", 𝑧#) =
	"
#
(𝑧"𝑧#. + 𝑧#𝑧".), and the theoretical covariance  

𝐶𝑜𝑣(𝑧", 𝑧#) = 	
√𝑛"𝑛#𝜌
𝑚 𝑉# +	

𝑛4𝜌5
√𝑛"𝑛#

𝑉 (1) 

where 𝑚 is the number of SNPs, 𝑛" and 𝑛# are the sample sizes of two GWASs, 𝑛4 is the 
number of individuals included in both studies, 𝑉 is the LD matrix, and 𝜌5 = 	𝜌 +	𝜌7 is the 
sum of genetic covariance (i.e. 𝜌) and the covariance of non-genetic effects (i.e. 𝜌7) on 
the two traits among shared individuals. Derivation of the theoretical covariance and other 
statistical details are reported in the Supplementary Note. In the Methods section, we 
show that with different definitions of “distance”, existing methods such as LDSC10 and 
GNOVA12 are special cases of this unified framework.  
 
Local genetic covariance (correlation) can be defined in a similar way by focusing only on 
SNPs in a pre-specified genomic region (Methods). Despite the conceptual similarity 
between global and local genetic correlation, local z-scores from each GWAS can be 
highly correlated due to the extensive LD in local regions. Hence, most methods 
developed for global genetic correlation cannot be directly applied to estimate local 
correlations. In addition, ubiquitous sample overlap across GWASs introduces technical 
correlations among association statistics from different studies, which further complicates 
the estimation of genetic correlation, especially in local regions. SUPERGNOVA resolves 
these statistical challenges by decorrelating local z-scores with eigenvectors of the local 
LD matrix (Figure 1). In practice, LD can be estimated from an external reference panel 
(e.g., 1000 Genomes Project28). Due to the noise in LD estimation, we only use the first 
𝐾9 eigenvectors to transform and decorrelate association statistics in any given region 𝑖 
where 𝐾9  can be determined adaptively in SUPERGNOVA. After decorrelation, local 
genetic covariance 𝜌9 is estimated through a weighted least squares regression in each 
region. When the number of SNPs is large, SUPERGNOVA is equivalent to GNOVA 
(Supplementary Note). Another technical challenge is that numerically unstable 
estimates of local heritability will lead to extreme variability in the estimates of local 
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genetic correlation. Therefore, we base our inference on local genetic covariance which 
is statistically equivalent. We discuss more statistical details in the Methods section. 
 

 
Figure 1. SUPERGNOVA workflow. Details on the statistical framework are described in the Methods 
section. 𝑤9 denotes the diagonal elements of Σ9, which are also the eigenvalues of each local LD matrix. 
Notation, ∘ in the last step indicates the element-wise product. 
 
 
Simulations 
 
We performed simulations to assess the performance of SUPERGNOVA for both global 
and local genetic correlation analyses. We compared SUPERGNOVA with multiple state-
of-the-art methods in six different simulation settings and repeated each setting 100 times. 
We used real genotype data from the Wellcome Trust Case Control Consortium (WTCCC) 
to simulate quantitative traits. After quality control, 15,918 samples and 287,539 SNPs 
remained in the dataset. We equally divided 15,918 samples into two subsets which we 
denote as set 1 and set 2. To assess the robustness of our approach to sample overlap 
between GWASs, we generated another dataset by combining 3,979 samples from set 1 
and 3,980 samples from set 2. We refer to it as set 3. This results in a 50% sample overlap 
between set 1 and set 3. Detailed simulation settings and quality control procedures are 
described in the Methods section. 
 
We compared the performance of LDSC, GNOVA, and SUPERGNOVA on global genetic 
covariance estimation. Both SUPERGNOVA and GNOVA showed superior statistical 
power compared to LDSC in all settings (Figures 2A-C). No method showed inflated type 
I error rates when the true covariance was 0. All three approaches provided unbiased 
estimates for global genetic covariance but LDSC estimates had substantially larger 
variance compared to GNOVA and SUPERGNOVA (Supplementary Figures 1-3).  
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Figure 2. Simulation results. Panels A-C compare the type-I error and statistical power of SUPERGNOVA, 
GNOVA, and LDSC in global genetic covariance estimation. (A) Two GWASs were simulated on two non-
overlapping datasets (set 1 and set 2). (B) GWASs were simulated on two datasets with a 50% sample 
overlap (set 1 and set 3). (C) Two GWASs were both simulated on the same dataset (set 1) with a 100% 
sample overlap. Panels D-F compare SUPERGNOVA and 𝜌-HESS on local genetic covariance estimation 
using GWASs (D) without sample overlap (set 1 and set 2), (E) with a partial sample overlap (set 1 and set 
3), and (F) with a complete sample overlap (set 1 only). 
 
Next, we compared 𝜌-HESS and SUPERGNOVA on their performance of estimating local 
genetic covariance. We used 395 SNPs from a selected genomic region of about 3.3 Mb 
on chromosome 2 as the local region of interest. The remaining SNPs on chromosome 2 
(23,839 SNPs) were used as the “background SNPs” in the analysis. We set the 
covariance in the small local region to be from 0 to 0.005. Outside of this region on 
chromosome 2, covariance was fixed as 0. The total heritability was set to be 0.5 and was 
equally distributed among all SNPs on chromosome 2 (24,234 SNPs). When there is no 
overlapping sample between two studies, SUPERGNOVA estimates were unbiased, 
showing well-controlled type I error and good statistical power. On the other hand, 𝜌-
HESS consistently underestimated local genetic covariance and had lower statistical 
power (Figure 2D; Supplementary Figure 4).  
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We repeated these simulations in set 1 and set 3 with a 50% sample overlap. 
SUPERGNOVA estimates of local genetic covariance remained unbiased with well-
controlled type I error (Supplementary Figure 5). Compared to 𝜌 -HESS, 
SUPERGNOVA showed superior statistical power (Figure 2E). 𝜌-HESS underestimated 
local genetic covariance even though we provided the correct sample size for shared 
samples (Supplementary Figure 5). We also performed simulations under a complete 
sample overlap by simulating two traits on set 1. SUPERGNOVA still achieved unbiased 
estimation and valid inference (Supplementary Figure 6 and Figure 2F). 𝜌-HESS lacked 
statistical power in all settings. Additionally, 𝜌-HESS was not robust to mis-specified 
overlapping sample size and suffered from type I error inflation when provided with 
inaccurate values of the overlapping sample size and phenotypic correlation 
(Supplementary Figures 7-8; Methods). We note that SUPERGNOVA does not need 
the shared sample size or phenotypic correlation as input. 
 
 
Global and local genetic correlations among 30 complex traits 
 
We applied SUPERGNOVA to estimate local and global genetic correlations among 30 
phenotypes (Supplementary Table 1). We partitioned the genome into 2,353 
approximately independent regions (about 1.6 centimorgan on average) using LDetect29, 
with LD estimated from the 1000 Genomes Project phase III samples of European 
ancestry28. 127 pairs of traits were globally correlated (p < 0.05/435 = 1.1e-4; 
Supplementary Figure 9) and 150 pairs of traits were locally correlated in 109 different 
regions under Bonferroni correction (p < 0.05/1,006,072 = 5.0e-8; Figure 3A and 
Supplementary Tables 2-3).  
 
The sums of local covariance across 2,353 regions were highly concordant with the 
estimated global genetic covariance (Figure 3B; R2=0.99), but local genetic covariance 
revealed diverse architecture of genetic sharing locally. We estimated the proportion of 
correlated regions for each pair of traits using ashr30 (Methods; Figure 3A; 
Supplementary Table 4). The proportion of correlated regions predicted global genetic 
correlation in general, with some notable outlier trait pairs (Figure 3C). Two subtypes of 
inflammatory bowel disease (IBD), Crohn's disease and ulcerative colitis (UC), had strong 
pairwise global correlations but relatively sparse local genetic correlations 
(Supplementary Figure 10). In fact, all 8 identified regions were positively correlated 
among Crohn’s disease, UC, and IBD and harbored genome-wide significant loci reported 
in the GWAS on IBD31, suggesting that a limited fraction of the genome contribute to 
different subtypes of IBD with strong and concordant effects. In contrast, SNPs in 93% of 
regions had correlated effects between cognitive performance (CP) and educational 
attainment (EA; global genetic correlation=0.63; p=6.1e-115), the highest among all trait 
pairs. 79% of regions showed correlated effects between body mass index (BMI) and 
high-density lipoprotein (HDL) cholesterol (global genetic correlation=-0.43; p=3.6e-41), 
the highest among negatively correlated traits. These results suggest extensive and 
‘omnigenic’ genetic sharing between these traits, which is also reflected in the substantial 
shift in the distribution of local genetic covariances (Supplementary Figure 10). 
Bidirectional correlations were also observed in several trait pairs, including ASD and 
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CP32 (Supplementary Figure 10; global correlation=0.15; 15% of regions were 
correlated). Across all trait pairs, we observed a modest association between the sample 
size of traits and the proportion of correlated regions (Supplementary Figure 11). 
 

 
Figure 3. Global and local genetic correlations among 30 complex traits. (A) Estimates of global 
genetic correlations (upper triangle) and estimated proportions of correlated regions among 435 trait pairs 
(lower triangle). Asterisks in the upper triangle highlight significant genetic correlations after Bonferroni 
correction for 435 pairs. Asterisks in the lower triangle indicate at least one significantly correlated region 
between the traits after Bonferroni correction for all 1,006,072 regions in 435 trait pairs. We grouped traits 
with hierarchical clustering applied to global genetic correlations. (B) Global genetic covariance estimates 
were highly concordant with the sums of local genetic covariance. Each point represents a trait pair. Color 
and shape of each data point denote the significance status in global and local correlation analyses. (C) 
Volcano plot comparing the global genetic correlation and proportion of correlated local regions. Each point 
represents a trait pair. Color of each data point represents the significance and direction of global correlation. 
Trait pairs discussed in the main text are labeled in the plot.  
 
We identified significant local genetic covariance for 86 trait pairs that were not 
significantly correlated in the global analysis (Supplementary Table 2-3; 
Supplementary Figure 12), including HDL cholesterol and low-density lipoprotein (LDL) 
cholesterol11, CP and major depressive disorder (MDD), obsessive-compulsive disorder 
(OCD) and anxiety disorder (AXD), and ASD and bipolar disorder (BD).  
 
Our analyses also implicated several genomic regions showing correlated genetic effects 
on more than two traits. The BDNF locus on chromosome 11 (hg19 coordinate: 
27,019,873-28,741,185) is known to control the development of neurons and synapses 
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and is vital to learning, memory, and vulnerability to stress33-36. We identified significant 
genetic covariance at this locus between 6 trait pairs among schizophrenia (SCZ), EA, 
smoking initiation (SmkInit), drinks per week (DrnkWk), and ADHD (Supplementary 
Figure 13-14). Another locus on chromosome 11 (111,985,737-113,103,996) was 
identified among 7 neuropsychiatric traits: anorexia nervosa (AN), BD, MDD, CP, SCZ, 
SmkInit, and neuroticism (NSM) (Supplementary Figure 15-16). NCAM1 at this locus is 
involved in development and maintenance of the nervous system and is associated with 
SCZ and comorbid alcohol and drug dependence37-39. These hub regions with pervasive 
correlations among psychiatric disorders hint at key regulators in the nervous system and 
provide guidance to functional genomic studies that interrogate the mechanisms of 
pleiotropic effects40. 
 
Local genetic covariance that did not achieve statistical significance may still be worth 
follow-up investigations. Despite evidence on phenotypic correlations, previous studies 
have suggested that Alzheimer’s disease (AD) is not genetically correlated with 
neuropsychiatric traits except education and cognition16. We identified suggestive local 
correlations of AD with 7 neuropsychiatric traits: NSM (p=1.2e-6), OCD (p=3.0e-6), CP 
(p=3.4e-6), DrnkWk (p=2.0e-5), MDD (p=2.7e-5), and AN (p=4.2e-4), at the SPI1 locus 
(chr11: 46,876,411-48,200,127). We replicated the local correlations with DrnkWk 
(p=7.5e-2) and NSM (p=1.4e-2) using an independent GWAS of AD family history 
(Methods; Supplementary Tables 5-6). The estimates for local genetic covariance were 
highly consistent between two analyses (R2=0.84; Supplementary Figure 17). The SPI1 
locus has been consistently identified in AD GWASs41,42. A recent genome-wide survival 
study of AD onset convincingly demonstrated that transcription factor (TF) PU.1 encoded 
by SPI1 is a key regulator for the development and function of myeloid cells and lower 
SPI1 expression delays the onset of AD by regulating gene expression in myeloid cells43. 
However, genetic covariance of AD with DrnkWk and NSM was not statistically significant 
in TF binding sites of PU.1 in macrophages and monocytes (Methods; Supplementary 
Table 7). Transcriptome-wide association study (TWAS) identified a number of PU.1-
regulated genes associated with these phenotypes in macrophages and monocytes 
(Methods; Supplementary Tables 8-9), but all the genes shared by multiple traits are 
located at the SPI1 locus (Supplementary Figure 17). These results suggest that 
although the SPI1 locus may have correlated roles in multiple psychiatric and 
neurodegenerative diseases, PU.1 may modulate the risk of these diseases through 
regulating the transcription of distinct susceptible genes in myeloid cells. 
 
 
Dissecting the shared genetic basis of ASD and cognitive ability 
 
We further demonstrate the power of SUPERGNOVA through an in-depth case study of 
the shared genetics between ASD and cognitive ability. Paradoxically, previous studies 
based on multiple different approaches have found a positive genetic correlation between 
ASD and CP16,44,45. We also identified significant positive global genetic correlations 
between ASD and measures of cognitive ability (Figure 3), e.g., CP (standardized score 
on neuropsychological tests; correlation=0.15, p=3.2e-8) and EA (years of schooling; 
correlation=0.18, p=3.8e-14). Cognitive phenotypes in these GWASs have been 
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previously described in detail46. However, such a positive correlation contradicts the 
known comorbidity of intellectual disability and ASD with regard to de novo variants of 
high penetrance27,47. In addition, other neurodevelopmental disorders such as ADHD 
showed negative genetic correlations with cognitive measures (correlation=-0.29 and 
p=2.9e-29 with CP; correlation=-0.41 and p=2.0e-59 with EA), but the genetic correlation 
between ASD and ADHD was positive (correlation=0.28, p=2.3e-9).  
 
A total of 64 genomic regions with significant local genetic covariance were identified 
among ADHD, ASD, and CP at a false discovery rate (FDR) cutoff of 0.1 (Supplementary 
Table 10; Supplementary Figure 18). The local covariances of CP with ASD and ADHD 
were bidirectional. No region with a negative covariance between ASD and ADHD was 
identified. The paradox that ASD and ADHD show opposite correlations with CP was not 
observed in any local region (Figure 4A; Supplementary Table 11). 18 regions showed 
significant positive correlations between ASD and CP, among which 3 regions were also 
significant and positive between ADHD and ASD and 2 regions were significant and 
positive between ADHD and CP. Similarly, we identified 32 regions with significant 
negative correlations between ADHD and CP. Among these regions, 3 were positive 
between ADHD and ASD and 3 were negative between ASD and CP. Three regions 
reached statistical significance in all three trait pairs. ASD and ADHD were positively 
correlated in all three regions. ASD and ADHD were both positively correlated with CP in 
the regions on chromosomes 4 (150,634,191-153,226,998) and 14 (36,683,516-
38,481,516) (Supplementary Figures 19-20) and were both negatively correlated with 
CP in the region on chromosome 7 (104,158,491-105,425,027) (Figure 4B; 
Supplementary Figure 21).   
 
The locus on chromosome 7 (104,158,491-105,425,027) showed significant and negative 
correlations between CP and both neurodevelopmental disorders (Supplementary Table 
11). We also identified a significant negative correlation of CP and SCZ in this region 
(p=1.8e-8; Supplementary Table 12; Supplementary Figure 21). Among genes at this 
locus, PUS7 is associated with intellectual disability and neurological defects48. De novo 
mutations in KMT2E cause a spectrum of neurodevelopmental disorders including ASD49. 
An intronic SNP in KMT2E, rs111931861, with a minor allele frequency (MAF) of 0.034, 
reached genome-wide significance in a recent ASD GWAS44 (Figure 4B). KMT2E was 
also implicated by a recent exome sequencing study50. It is the only gene that reached 
genome-wide significance in both GWAS and exome sequencing studies of ASD. TWAS 
did not identify any genes associated with ADHD, ASD, SCZ, or CP in this region 
(Supplementary Tables 13; Methods). These results, coupled with the findings about 
de novo and ultra-rare variants in KMT2E, suggest that common variants in this region 
may be tagging protein-altering variants instead of regulatory variants for transcriptional 
activities. A missense SNP in KMT2E, rs117986340, was nominally associated with ASD 
(p=5.7e-2) and ADHD (p=4.4e-2) in GWAS (Supplementary Table 14; Methods) but this 
hypothesis needs to be investigated in the future using sequencing data.  
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Figure 4. Bidirectional local genetic covariance between ASD and CP. (A) Regions with significant 
local genetic covariance among ADHD, ASD, and CP (FDR < 0.1). This plot uses bars to break down the 
Venn diagram of overlapped regions in different categories. The five categories shown in the lower panel 
are correlated regions of ADHD and CP (positive and negative), ASD and CP (positive and negative), and 
ASD and CP (positive only). We use different colors (red, blue, and gray) to annotate region categories of 
positive, negative, and mixed covariance directions. (B) LocusZoom plots for ASD and CP GWAS 
associations at the KMT2E locus. ASD and CP are negatively correlated in the highlighted region. (C) 
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LocusZoom plots for ASD and CP at the POU3F2 locus. ASD and CP are positively correlated in the 
highlighted region. POU3F2 is 700 kb downstream of the GWAS association peak. 
 
POU3F2 (also known as BRN2) is a key TF in the central nervous system and a master 
regulator of gene expression changes in BD and SCZ51,52. It is the first genome-wide 
significant locus identified for EA53. It has also been identified in a recent TWAS for ASD54. 
In our analysis, the POU3F2 locus on chromosome 6 (97,093,295-98,893,182) showed 
significant positive correlations between ASD and CP (p=1.8e-5; Figure 4C) and among 
many neuropsychiatric phenotypes including AN, BD, DrnkWk, EA, and SmkInit 
(Supplementary Table 12; Supplementary Figures 22-23). In addition, genes in other 
regions showing nominal negative correlations between ASD and CP were significantly 
enriched for POU3F2 protein-protein interactors (PPIs) (odds ratio=24.8; p=2.8e-3; 
Methods). This is consistent with our recent finding that genes regulated by TF POU3F2 
showed a 2.7-fold enrichment for loss-of-function de novo mutations in ASD probands 
which are known to cause comorbid intellectual disability54. These results hint at a 
pervasive, regulatory role of POU3F2 in cognitive ability and many neuropsychiatric 
disorders55,56. 
  

 
Figure 5. Enrichment for gene sets in correlated regions between ASD and CP. Regions with opposite 
correlations between ASD and CP were enriched for different mechanistic pathways. Fold enrichment 
values are labeled next to each bar. The red dashed lines mark the p-value cutoff of 0.05 and the black 
dashed lines denote the p-value thresholds after Bonferroni correction (p=2.8e-3). 
 
Regions showing opposite correlation directions between ASD and CP were enriched for 
distinct mechanistic pathways (Methods; Figure 5; Supplementary Tables 15-18). 
Genomic regions with negative correlations between ASD and CP were significantly 
enriched for chromatin modifier genes (enrichment=3.2; p=3.8e-4; Supplementary Table 
15). De novo protein-truncating mutations in these genes are known to cause ASD, 
intellectual disability, and a variety of congenital anomalies27,57,58. Regions positively 
correlated between ASD and CP were significantly enriched for postsynaptic density 
(PSD) proteins (enrichment=1.8; p=3.5e-4; Supplementary Table 16). FMRP targets 
also showed a significant enrichment in positively correlated regions (enrichment=1.9; p-
value=2.7e-3; Supplementary Table 16). The enrichment of FMRP targets in negatively 
correlated regions was comparable but did not reach statistical significance after multiple 
testing correction (enrichment=1.8; p-value=0.032; Supplementary Tables 15). PSD 
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genes are known to be enriched for associations identified in ASD TWAS54. FMRP targets 
are enriched for both ASD heritability quantified using common variants59 and de novo 
mutations of ASD60,61. FMRP target genes showed a 12.4-fold enrichment (p=3.5e-15) in 
the 102 risk genes identified in the latest exome sequencing study of ASD50. Notably, 
findings from exome-sequencing studies (e.g., the 102 ASD genes50) and gene sets 
known to be enriched for ultra-rare or de novo protein-truncating variants in ASD 
probands (e.g., chromatin modifiers27) showed substantially stronger enrichment in the 
regions with negative ASD-CP correlations than the regions with positive correlations 
(Supplementary Tables 15-16).  
 
We then assessed the enrichment of associations for other complex traits in genetically 
correlated regions between ASD and CP (Methods). Regions with positive correlations 
between ASD and CP were significantly enriched for associations for 10 traits 
documented in GWAS Catalog (p<0.05/664=7.5e-5), including extremely high 
intelligence (odds ratio=9.7; p=3.5e-9), household income (odds ratio=52.6; adjusted 
p=5.7e-9), and loneliness (odds ratio=5.5; p=4.1e-5) (Supplementary Table 19; 
Supplementary Figure 24). Negatively correlated regions were enriched for associations 
with a variety of neurodevelopmental and psychiatric disorders including SCZ (odds 
ratio=6.1; p=2.2e-31), BD (odds ratio=13.3; p=2.7e-24), and NSM (odds ratio=10.0; 
p=6.0e-12) (Supplementary Table 20; Supplementary Figure 24). We also estimated 
stratified genetic covariance of 28 other traits with ASD and CP in these identified regions 
(Supplementary Figure 25). EA, MDD, and rheumatoid arthritis (RA) showed significant 
stratified covariance with ASD or CP (p<0.05/112=4.5e-4) in regions positively correlated 
between ASD and CP (Supplementary Table 21). On the other hand, ADHD, EA, and 
AXD showed significant stratified covariance with ASD or CP in regions showing 
significant negative correlations between ASD and CP (Supplementary Table 22). 
Overall, traits showed consistent covariances with ASD and CP in regions with positive 
ASD-CP covariances, while the covariances with ASD and CP have opposite directions 
in regions with negative ASD-CP covariances (Supplementary Figure 25). In other 
words, no paradoxical covariances were present when we zoomed in by ASD-CP 
correlated regions. 
 
Genes in positively correlated regions of ASD and CP were expressed in a substantially 
higher proportion of cells in fetal brains compared to background genes (p=0.012; log-
rank test) (Methods; Supplementary Figure 26; Supplementary Table 23) while the 
elevation of gene expression rate in negatively correlated regions was not significant 
(p=0.15, log-rank test). We did not identify a significant difference in the expression rate 
between genes in the ASD-CP positively correlated regions and genes in the ASD-CP 
negatively correlated regions (p=0.71, log-rank test). The average expression of both 
gene sets was significantly higher than background genes across prenatal and postnatal 
stages (p=9.7e-525 and 2.5e-99 for genes in positively and negatively correlated regions, 
respectively) (Methods; Supplementary Figure 27). We also identified significantly 
higher expression of genes in positively correlated regions than in negatively correlated 
regions across developmental stages (p=1.92e-61; Supplementary Figure 27). We did 
not identify differential expression between prenatal and postnatal brains for either gene 
set (p=0.83 and 0.81; Methods; Supplementary Table 24).  
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We then investigated the phenotypic heterogeneity of ASD probands with different 
genetic signatures. We constructed two polygenic risk scores (PRSs) of ASD based on 
independent SNPs from genomic regions with positive and negative local correlations 
between ASD and CP, respectively, for 5,469 ASD probands and 2,132 healthy siblings 
in the Simons Foundation Powering Autism Research for Knowledge (SPARK) cohort 
(Methods). We refer to these scores as PRS+ and PRS-. Both PRS+ and PRS- are 
normally distributed in SPARK (Supplementary Figure 28). PRS+ could significantly 
distinguish ASD probands and healthy siblings (odds ratio= 1.08; p=0.026) while the 
association between PRS- and ASD status was not significant (odds ratio=1.02; p=0.71; 
Methods). 1,803 probands had both genotype data and intelligence quotient (IQ) 
information. Probands with high PRS+ had higher IQ compared to probands with high 
PRS-, with the average IQ changing sharply in the right tail of the PRS distribution, from 
93.8 and 94.7 (p=0.64; two-sample t-test) in the 75% percentile to 101.7 and 84.0 
(p=0.046) in the 99% percentile (Figure 6A; Supplementary Figure 29). At the 99% 
percentile, the proband subgroups with extreme PRS+ and PRS- did not have overlapping 
samples. 10.5% of probands with extreme PRS+ and 31.6% of probands with extreme 
PRS- had an IQ below 70 (Figures 6A and 6B). Four probands in the extreme PRS- 
group had relatively high PRS+ (greater than the 90% percentile). All of them had IQ>70 
(Figure 6B). No proband in the extreme PRS+ group had high PRS- (Figures 6C).  
 
4,267 probands in SPARK had genotype data and social communication questionnaire 
(SCQ) scores (Methods). We used SCQ score as a proxy for ASD symptom severity. 
Probands with extreme PRS- at the 99% percentile showed significantly elevated SCQ 
scores compared to other probands (p=0.03; two-sample t-test) (Supplementary Table 
25). Average SCQ score rose from 22.4 in the 75% percentile to 24.4 in the 99% 
percentile (Figure 6D). We did not identify a significant elevation in probands with 
extreme PRS+ (p=0.56). The repetitive behaviors scale-revised (RBS-R) questionnaire 
was used to quantify repetitive behaviors, including self-injuries, restricted behavior, 
compulsive behavior, stereotyped behavior, ritualistic behavior, and sameness behavior62. 
We observed a significant increase of RBS-R scores in probands with extreme PRS+ 
(p=0.016; Figure 6E) but not in probands with extreme PRS- (p=0.4; Supplementary 
Table 25). We also investigated motor ability quantified by the developmental 
coordination disorder questionnaire63,64 (DCDQ) in SPARK. We observed a downward 
trend of DCDQ score (i.e., worse motor ability) as PRS increases (Figure 6F) but the 
changes were not statistically significant (Supplementary Table 25). Follow-up analyses 
examining RBS-R and DCDQ subscales found that the pattern of results was not driven 
by any one of the subdomains. Finally, we assessed the enrichment of ASD subtypes in 
extreme PRS+ and PRS- groups. No subtype reached statistical significance 
(Supplementary Table 26), with Asperger’s disorder showing the strongest yet modest 
enrichment (enrichment=1.58; p=0.082) in probands with extreme PRS+ 
(Supplementary Figure 30). 
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Figure 6. Phenotypic heterogeneity of ASD probands with high PRS+ and PRS-. (A) Average IQ is 
computed for different groups defined by PRS. Each interval indicates standard error of the estimated mean. 
(B) PRS percentiles and IQ of probands with extreme PRS-. PRS- was calculated using six negatively 
correlated regions between ASD and CP. The blue heatmap indicates the percentile of ASD PRS in each 
contributed region for each proband. The percentiles of PRS+ values are shown in the red boxes. IQ is 
shown as green bars. (C) PRS percentiles and IQ of probands with extreme PRS+. PRS+ was calculated 
using 18 positively correlated regions between ASD and CP and the per-locus percentiles are shown in red. 
The percentiles of PRS+ are shown in blue and the green bars denote IQ. In panel D-F, average phenotypic 
scores of ASD were computed for ASD probands at various PRS percentiles. Intervals denote standard 
errors for the estimated means. The phenotypic scores are (D) SCQ score, (E) RBS-R score, and (F) DCDQ 
score. 
 
 
 
Discussion 
 
Owing to increasingly accessible GWAS summary statistics and advances in statistical 
methods to directly model summary-level data, genetic correlation estimation, especially 
at the genome-wide scale, has become a routine procedure in post-GWAS analyses. 
These correlation estimates effectively summarize the complex etiologic sharing of 
multiple traits into concise, robust, and interpretable values, which provided novel insights 
into the shared genetic architecture of a spectrum of phenotypes. However, genome-wide 
genetic correlations only reflect the average concordance of genetic effects across the 
genome and often fail to reveal the local, heterogenous pleiotropic effects, especially 
when the underlying genetic basis involves multiple etiologic pathways. To this end, 
methods that partition genetic covariance by functional annotation or local genetic region 
have achieved some success11,12. These methods generally use more sophisticated 
statistical models and are more adaptive to diverse types of shared genetic architecture. 
On the downside, it is statistically more challenging to estimate all the parameters in these 
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models using GWAS summary statistics alone. The problem is further exacerbated by 
technical issues such as strong LD among SNPs in local regions and sample overlap 
across different GWASs. Due to these challenges, stratified genetic correlation analysis 
has not been as popular as its genome-wide counterpart.  
 
In this paper, we have introduced SUPERGNOVA, a unified framework for both genome-
wide and stratified genetic correlation analysis. Improved upon our previous work12, 
SUPERGNOVA directly addresses the technical challenges in local genetic correlation 
inference while retaining the statistical optimality in analyses at the genome-wide scale. 
Through extensive simulations, we demonstrated that SUPERGNOVA provides 
statistically robust and efficient estimates and substantially outperforms other methods in 
estimation accuracy and statistical power. Notably, SUPERGNOVA uses GWAS 
summary statistics as the input and is robust to arbitrary sample overlap between GWAS 
datasets.  
 
Applied to 30 complex traits, SUPERGNOVA identified 150 trait pairs with significant local 
genetic covariance, including 86 pairs without a significant global correlation. We 
identified various patterns in the shared genetic architecture between traits, with some 
traits (e.g., EA and CP) showing ubiquitous genetic covariance in a large fraction of the 
genome and other traits (e.g., Crohn’s disease and UC) showing relatively sparse genetic 
sharing with strong pleiotropic effects. Our analyses also implicated hub regions in the 
genome that are significantly correlated across numerous neuropsychiatric phenotypes. 
These results can guide future modeling efforts on these traits as well as functional 
genomic studies that interrogate key regions with pervasive regulatory roles across many 
phenotypes. 
 
ASD and cognitive ability showed significant, bidirectional local genetic correlations in our 
analysis. We performed in-depth analyses to further dissect the shared genetics of ASD 
and cognition. Human genetic studies for ASD have been fruitful in the past decade. 
Numerous consortium-scale whole-exome and whole-genome sequencing studies have 
been conducted to assess the roles of de novo mutations and very rare transmitted 
variants in ASD27,50,65,66. These studies have convincingly identified more than 100 risk 
genes and a number of etiologic pathways for ASD. Additionally, overwhelming evidence 
suggests that rare and de novo pathogenic variants in pathways such as chromatin 
modifiers and FMRP target genes contribute to the comorbidity of ASD and intellectual 
disability27. In contrast, successful GWASs for ASD have just begun to emerge44. It was 
notable that risk genes implicated by common SNPs do not have an apparent overlap 
with ASD genes identified in rare variant studies. Interestingly, based on GWAS data, 
researchers have identified a positive genetic correlation between ASD and cognition16. 
A recent study further demonstrated that PRS of EA is over-transmitted from healthy 
parents to ASD probands, including probands who have pathogenic de novo mutations 
in known ASD genes, but not to the unaffected siblings45. These findings raised two 
important questions. Why are ASD genes affected by common SNPs different from genes 
harboring rare protein-altering variants? Why do common and rare variants suggest 
opposite genetic relationships between ASD and cognition? 
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We aimed to address these questions head-on using local genetic correlations. We 
identified significant positive correlations of ASD and CP in 18 genomic regions but also 
6 regions showing significant negative correlations. Locally, we did not observe the 
paradoxical correlation pattern seen in the global analysis, i.e., two positively correlated 
neurodevelopmental disorders ASD and ADHD showing opposite correlations with 
cognitive measures. Regions that were significantly correlated in all three trait pairs (e.g., 
the KMT2E locus) all showed consistent local correlations between both ASD and ADHD 
with CP. Of note, the set of regions negatively correlated between ASD and CP had a 
3.2-fold enrichment for chromatin modifier genes. Thus, a genetic signature with 
consistent results between common and rare variants was hidden in plain sight. These 
genes, affected by both rare protein-altering variants and common (possibly regulatory) 
SNPs, may contribute to ASD with comorbid intellectual impairment in part through 
dysregulating chromatin modification in the developing brain. The positive global 
correlation between ASD and cognition was explained by a second genetic signature 
driven by a different set of regions that showed positive local correlations and were 
significantly enriched for PSD genes. When calculating the total genetic covariance 
between ASD and CP in the genome, negatively correlated regions were overwhelmed 
by the positive covariance in regions involved in the second signature, thus showing a 
positive global covariance. PRS based on these two signatures (PRS+ and PRS-) showed 
distinct associations with ASD phenotypes in the SPARK cohort. Compared to PRS-, 
PRS+ could better distinguish ASD cases from healthy controls. Both PRS+ and PRS- 
were associated with IQ in ASD probands but with opposite directions. In addition, PRS- 
significantly predicted overall ASD symptom severity while PRS+ significantly predicted 
repetitive behaviors. We also observed an enrichment of Asperger’s disorder in probands 
with high PRS+ (and a slight depletion in probands with high PRS-) but the results remain 
to be validated using larger samples in the future.  
 
Our method still has some limitations. Although SUPERGNOVA can effectively estimate 
local genetic covariance, local genetic correlation estimates are numerically unstable due 
to the non-negligible noise in the estimates of local heritability. Second, due to the distal 
regulatory nature of common genetic variations, causal genes may not always be 
included in the pre-defined genetic region harboring GWAS associations. We suggest 
researchers also investigate regions adjacent to the identified region when interpreting 
local correlation results from SUPERGNOVA. Our implemented software allows users to 
re-define their local region of interest if needed. Third, a future direction is to extend our 
method to estimate transethnic local genetic correlation13. The local correlation estimates 
provided by SUPERGNOVA may also improve other types of multi-trait analysis such as 
multi-trait association mapping3 and genomic structural equation modeling 
(GenomicSEM)4. We believe SUPERGNOVA may play a critical role in accelerating the 
development of novel statistical genetics tools in the future. 
 
Taken together, SUPERGNOVA provides a biologically-motivated and statistically 
principled analytical strategy to tackle etiologic sharing of complex traits. A combination 
of global and local genetic correlation could provide new insights into the shared genetic 
basis of many phenotypes. We believe SUPERGNOVA will have wide applications in 
complex trait genetics research.  
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Methods 
 
Statistical model 
 
We start with the statistical framework for global genetic covariance. Assume there are 
two studies with sample sizes 𝑛" and 𝑛#, respectively. Standardized trait values 𝜙" and 
𝜙# follow the linear models below: 

𝜙" = 𝑋𝛽 + 𝜀 
𝜙# = 𝑌𝛾 + 𝛿, 

where 𝑋 and 𝑌 are 𝑛" × 𝑚 and 𝑛# ×𝑚 standardized genotype matrices; 𝑚 is the number 
of shared SNPs between the two studies; 𝜖  and 𝛿  are the noise terms; and 𝛽  and 𝛾 
denote the genetic effects for 𝜙" and 𝜙#. We adopt a model with random effects and 
random design matrices10,12,24 to define genetic covariance 𝜌. The combined random 
vector of 𝛽 and 𝛾 follows a multivariate normal distribution given by: 

G𝛽𝛾H~𝑁
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where ℎ"# and ℎ## are the heritability of the two traits, respectively; 𝐼V is the identity matrix 
of size 𝑚. In practice, two different GWASs may share a subset of samples. Without loss 
of generality, we assume the first 𝑛4 samples in each study are shared (𝑛4 ≤ 𝑛" and 𝑛4 ≤
𝑛#). The non-genetic effects of the shared samples for the two traits are correlated: 

𝐶𝑜𝑣]𝜀9^, 𝛿9_` = a𝜌7, 1 ≤ 𝑖" = 𝑖# ≤ 𝑛4
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 . 

Since trait values 𝜙"  and 𝜙#  are standardized, we have 𝑉𝑎𝑟h𝜀9^i = 1 − ℎ"#  and 
𝑉𝑎𝑟h𝛿9_i = 1 − ℎ## for 1 ≤ 𝑖" ≤ 𝑛" and 1 ≤ 𝑖# ≤ 𝑛#.  
 
In GWAS summary data, we can approximate z-scores of SNP 𝑗 for trait 1 and trait 2 by 
𝑧"l ≈ 𝑋∙l.𝜙"/√𝑛"  and 𝑧#l ≈ 𝑌∙l.𝜙#/√𝑛# . We use 𝑧"  and 𝑧#  to denote the vectors for all 
SNPs’ z-scores and use 𝑉  to denote the LD matrix. Under a random design model, 
𝐶𝑜𝑣h𝑋9^∙i = 𝐶𝑜𝑣h𝑌9_∙i = 𝑉 and the variance-covariance matrix of (𝑧"., 𝑧#.). is given by 
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, (2) 

where 𝜌5 is defined as the sum of genetic covariance and non-genetic effects covariance, 
i.e. 𝜌5 = 𝜌 + 𝜌7. We provide detailed derivations of (2) in the Supplementary Note. 
 
Most existing genetic covariance methods are based on the idea of minimizing the 
“distance” between the empirical covariance matrix 𝐶𝑜𝑣( (𝑧", 𝑧#) = 	

"
#
(𝑧"𝑧#. + 𝑧#𝑧".) and the 

theoretical covariance in (1). For example, LDSC10 regresses the diagonal elements of 
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empirical z-score covariance matrix on that of the theoretical covariance matrix. GNOVA12 
applies the method of moments estimator that compares the trace of the empirical and 
theoretical covariance matrices. Our new approach, SUPERGNOVA, is also based on 
this unified framework. 
 
The statistical framework we introduced above can be easily generalized to local genetic 
covariance. We assume 𝜙" and 𝜙# follow additive linear models: 

𝜙" =u𝑋9𝛽9

v

9w"

+ 𝜀 

𝜙# =u𝑌9𝛾9

v

9w"

+ 𝛿, 

where 𝑋9 and 𝑌9 are the genotypes and 𝛽9 and 𝛾9 are the effect sizes of SNPs in region 𝑖. 
In practice, 𝐼  genomic regions can be mutually independent LD blocks defined by 
LDetect29. Following the same derivations as shown above, the variance-covariance 
matrix of local z scores 𝑧"9 and 𝑧#9 is  
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⎥
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, (3) 

where 𝑉9 , ℎ∙9# , 𝜌9  and 𝑚9  are LD matrix, heritability, genetic covariance and number of 
SNPs for region 𝑖, respectively. 𝜌5 here is defined as the sum of local genetic covariance 
and non-genetic effects covariance, i.e. 𝜌5 = ∑ 𝜌9 + 𝜌7v

9w" . Details about the construction 
of statistical model for local genetic covariance are provided in Supplementary Note. 
 
 
Local genetic covariance estimation 
 
Following (3), the covariance of 𝑧"9 and 𝑧#9 (i.e. z-scores of trait 1 and trait 2 in region 𝑖) 
is 

𝐶𝑜𝑣(𝑧"9, 𝑧#9) =
√𝑛"𝑛#𝜌9
𝑚9

𝑉9# +
𝑛4𝜌5
√𝑛"𝑛#

𝑉9 

Assume eigen decomposition of 𝑉9 is 𝑉9 = 𝑈9Σ9𝑈9., then we have 

𝐶𝑜𝑣(𝑈9.𝑧"9, 𝑈9.𝑧#9) =
√𝑛"𝑛#𝜌9
𝑚9

Σ9# +
𝑛4𝜌5
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Σ9 

where Σ9 = 𝑑𝑖𝑎𝑔(𝑤9", 𝑤9#, … ,𝑤9V~) (𝑤9" ≥ 𝑤9# ≥ ⋯ ≥ 𝑤9V~ ≥ 0 are the eigenvalues of Σ9) 
and 𝑈9 is the corresponding orthogonal matrix of eigenvectors. Denote 𝑧̃"9 = 𝑈9.𝑧"9 and 
𝑧̃#9 = 𝑈9.𝑧#9 . For 𝑗 = 1, 2,… ,𝑚9 , the expected value and variance of 𝑧̃"9l 𝑧̃#9l  for the 𝑗th 
eigenvalue 𝑤9l  are  
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𝑉𝑎𝑟]𝑧̃"9l 𝑧̃#9l` = �√
𝑛"𝑛#𝜌9
𝑚9

𝑤9l# +
𝑛4𝜌5
√𝑛"𝑛#

𝑤9l�
#

+ �
𝑛"ℎ"9#

𝑚9
𝑤9l# + 𝑤9l� �

𝑛#ℎ#9#

𝑚9
𝑤9l# + 𝑤9l� (4) 

where ℎ"9#  and ℎ#9#  can be estimated by the method of moments67. Derivations of (3) and 
(4) are in the Supplementary Note. Due to the noise in LD estimation, we only use the 
first 𝐾9 eigenvalues to estimate 𝜌9. The procedure to adaptively determine 𝐾9 is described 
in the following section. In practice, the LD matrices are estimated from an external 
reference panel (e.g., the 1000 Genomes Project28) and the intercept of cross-trait 
LDSC10 provides an estimate of 𝑛4𝜌5/√𝑛"𝑛#, denoted as 𝑛4𝜌5�/√𝑛"𝑛#. For each genomic 
region, we can estimate local genetic covariance and test the significance of 𝜌�9 using the 
weighted regression of 𝑧̃"9l 𝑧̃#9l − (𝑛4𝜌5/√𝑛"𝑛#)𝑤9l , denoted by 𝜂9l , on the square of 
eigenvalue weighted by the reciprocal of the variance in (4) which is approximated by 
](𝑛"ℎ"9# /𝑚9)𝑤9l# + 𝑤9l`](𝑛#ℎ#9# /𝑚9)𝑤9l# + 𝑤9l`. Since 𝑧̃"9"𝑧̃#9", …… , 𝑧̃"9�~𝑧̃#9�~ are independent 
for any region 𝑖, the theoretical variance of 𝜌�9|(𝑛4𝜌5�/√𝑛"𝑛#) is analytically given by  

𝑉𝑎𝑟 G𝜌�9|
𝑛4𝜌5
√𝑛"𝑛#
�

H = �
𝑚9
#

𝑛"𝑛#
� u�~�

�

�~�
_

�~

lw"

� . (5) 

Here, we denote 𝑞9l# = ](𝑛"ℎ"9# /𝑚9)𝑤9l# + 𝑤9l`](𝑛#ℎ#9# /𝑚9)𝑤9l# + 𝑤9l` . In weighted 
regression, ](𝑛"ℎ"9# /𝑚9)𝑤9l# + 𝑤9l`](𝑛#ℎ#9# /𝑚9)𝑤9l# + 𝑤9l` is treated as the reciprocal of the 
weight’s square. So, the empirical variance of 𝜌�9|(𝑛4𝜌5�/√𝑛"𝑛#) is analytically given by 

𝑉𝑎𝑟( G𝜌�9|
𝑛4𝜌5
√𝑛"𝑛#
�

H = ��
𝑚9
#

𝑛"𝑛#
� u�~�

�

�~�
_

�~

lw"

� � ∙ �u
𝜂9l#

𝑞9l#

�~

lw"

−
p∑ 𝜂9l𝑤9l# 𝑞9l#��~

lw" s
#

∑ 𝑤9l� 𝑞9l#��~
lw"

� (𝐾9 − 1)� . (6) 

Derivations of (5) and (6) are in the Supplementary Note. To compensate for the 
variance introduced by LDSC in the estimation of 𝑛4𝜌5/√𝑛"𝑛# , we approximate 
𝑉𝑎𝑟]𝔼[𝜌�9|(𝑛4𝜌5�/√𝑛"𝑛#)]` by 

𝑉𝑎𝑟 M𝔼 G𝜌�9|
𝑛4𝜌5
√𝑛"𝑛#
�

HP ≈
𝑚9
#

𝑛"𝑛#
∙ �
∑ 𝑤9l� 𝑞9l#��~
lw"

∑ 𝑤9l� 𝑞9l#��~
lw"

�
#

∙ 𝑉𝑎𝑟 G
𝑛4𝜌5
√𝑛"𝑛#
�

H . (7) 

 
The derivation of (7) is in the Supplementary Note. The estimation of the last term in (7) 
𝑉𝑎𝑟[𝑛4𝜌5�/√𝑛"𝑛#] is from LDSC. We use (6) to approximate 𝔼]𝑉𝑎𝑟[𝜌�9|(𝑛4𝜌5�/√𝑛"𝑛#)]`. By 
the law of total variance, we combine the results in (6) and (7) to obtain 𝑉𝑎𝑟[𝜌�9]: 

𝑉𝑎𝑟[𝜌�9] = 𝑉𝑎𝑟 M𝔼 G𝜌�9|
𝑛4𝜌5
√𝑛"𝑛#
�

HP + 𝔼 M𝑉𝑎𝑟 G𝜌�9|
𝑛4𝜌5
√𝑛"𝑛#
�

HP. 

Then, local genetic correlation is estimated by 𝜌�9/ ℎ¡"9# ℎ¡#9# . We approximate the standard 
error and the confidence interval of local genetic correlation estimation by the Delta 
method. However, local genetic correlation estimates might be numerically unstable due 
to the noise in the estimates of local heritability, which is in the denominator of the 
estimator of local genetic correlation. So, the estimates of genetic covariance of 
SUPERGNOVA are more reliable. 
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An adaptive procedure to determine 𝑲𝒊 
 
Sample LD information is rarely available for published GWASs. Therefore, we use an 
external reference panel to estimate LD. In practice, the number of SNPs is far greater 
than the number of individuals in the reference panel. For example, in this paper, we used 
503 samples of European ancestry from the 1000 Genomes Project phase III as the 
reference panel. The average number of SNPs in a local region is about 2,000. To achieve 
robust inference, we apply factor selection and only use the first 𝐾9  eigenvectors and 
eigenvalues for region 𝑖. There are several existing methods to perform factor selection68-

73. Here, we propose an adaptive procedure to determine the value of optimal 𝐾9. Under 
the optimal 𝐾9, theoretical variance in (5) and empirical variance in (6) should be close. 
We know from (5) that theoretical variance decreases with the increase of 𝐾9. However, 
the value of empirical variance rapidly increases when the cutoff for the eigenvalues 
approaches towards zero (Supplementary Figure 31). We adaptively determine the 
optimal 𝐾9 as follows. First, we set an upper bound for 𝐾9. In our paper, the upper bound 
is 503 which is the number of samples in the reference panel. Then, for region 𝑖, we 
compute the value of theoretical variance and empirical variance for 𝐾9 taking values from 
10 to the upper bound. We denote the maximum of theoretical variance and empirical 
variance for each 𝐾9 as 

𝑣(𝐾9) = 𝑚𝑎𝑥 a𝑉𝑎𝑟�~ G𝜌�9|
𝑛4𝜌5
√𝑛"𝑛#
�

H ,𝑉𝑎𝑟( �~ G𝜌�9|
𝑛4𝜌5
√𝑛"𝑛#
�

H¥. 

The optimal 𝐾9 is determined by arg	min
"¬­�~­®¯°	(V~,±¬�)

𝑣(𝐾9). 

 
 
Simulation settings 
 
We used genotype data from the Wellcome Trust Case Control Consortium (WTCCC) to 
conduct simulations. Samples were randomly divided into two equal subgroups with 7,959 
individuals. We denote them as set 1 and set 2. We randomly sampled 3,979 individuals 
from set 1 and 3,980 individuals from set 2 to create set 3 which has a 50% sample 
overlap with set 1. Samples with European ancestry from the 1000 Genomes Project 
phase III28 were used as the LD reference in our simulations. We kept common SNPs 
with MAFs greater than 5% and removed all SNPs with ambiguous alleles. After quality 
control, 287,539 SNPs remained in both WTCCC and 1000 Genomes Project data. 
 
We used LDetect29 to partition the genome into 2,197 LD blocks (~1.6 centimorgan in 
width on average). To estimate local genetic covariance, we selected the largest region 
partitioned by LDetect on chromosome 2 (176,998,822-180,334,969) to be the local 
region of interest. There are 395 SNPs in this region in the genotype data from WTCCC. 
The effects of SNPs on two simulated traits were only correlated in the local region. The 
remaining 23,839 SNPs on chromosome 2 were used as background SNPs whose 
genetic covariance was set as 0. The effect sizes of SNPs were generated by a 
multivariate normal distribution and we applied Genome-wide Complex Trait Analysis 
(GCTA)74 to simulate 𝜙" and 𝜙#. We used PLINK75 to run GWAS and obtain summary 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 10, 2020. ; https://doi.org/10.1101/2020.05.08.084475doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.08.084475
http://creativecommons.org/licenses/by-nc-nd/4.0/


 22 

statistics of the two simulated traits. We repeated each simulation setting 100 times. 
Detailed simulation settings are summarized below. 
 
For simulations of global genetic covariance analysis, we set the heritability of two traits 
to be 0.5 and set the genetic covariance to be 0, 0.05, 0.1, 0.15, 0.2, and 0.25, 
respectively. We conducted three simulations, corresponding to different levels of sample 
overlap. 

1. Independent studies: we used set 1 and set 2 to simulate 𝜙" and 𝜙#, respectively.  
2. Partial sample overlap: 𝜙"  and 𝜙#  were simulated on set 1 and set 3. The 

covariance of non-genetic effects on shared samples was set to be 0.2.  
3. Complete sample overlap: 𝜙"  and 𝜙#  were both simulated on set 1. The 

covariance of non-genetic effects on shared samples was set to be 0.2. 
 
For simulations of local genetic covariance analysis, we set the heritability of two traits to 
be 0.5. The total heritability is evenly distributed to all SNPs. The covariance of the local 
genetic effects was set to be 0, 0.001, 0.002, 0.003, 0.004, and 0.005, respectively. 
Similar to global analyses, we conducted three sets of simulations. 

1. Independent studies: 𝜙" and 𝜙# were simulated on set 1 and set 2, respectively. 
2. Partial sample overlap: we simulated 𝜙" and 𝜙# on set 1 and set 3. The covariance 

of non-genetic effects was set to be 0.2. 
3. Complete sample overlap: we simulated both 𝜙" and 𝜙# on set 1. The covariance 

of non-genetic effects was set to be 0.2.  
 
To evaluate the robustness of 𝜌-HESS11 against mis-specified overlapping sample size, 
we provided the method with an overlapping sample size of 1,000 and a phenotypic 
correlation of 0.05 as input in partial sample overlap and complete sample overlap 
scenarios to estimate local genetic covariance. 
 
 
GWAS data 
 
GWAS summary statistics of 29 complex traits included in our analyses are publicly 
available. We obtained the summary statistics of a recent lung cancer GWAS directly from 
the authors76. Details of the 30 GWASs are summarized in Supplementary Table 1. We 
used munge_sumstats.py script in LDSC to reformat these data and removed strand-
ambiguous SNPs from each dataset. For each trait pair, we took the intersection of SNPs 
in two GWAS and the 1000 Genomes Project. We matched the effect alleles after 
removing SNPs with MAF lower than 5%. We only included the SNPs in autosomes and 
excluded the MHC region in all analyses.  
 
We accessed samples from the SPARK study through the Simons Foundation Autism 
Research Initiative (SFARI). Samples in the SPARK study were genotyped by the Illumina 
Infinium Global Screening Array. Details on these samples have been previously reported 
and are available on the SFARI website77. Following data processing procedure in Huang 
et al.54, we performed pre-imputation quality control (QC) using PLINK. The genotype 
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data were phased and imputed to the HRC reference panel version r1.1 2016 using the 
Michigan Imputation server78. 
 
 
Estimation of the proportion of correlated regions 
 
We estimated the proportion of correlated regions with an R package called ashr30 after 
the estimation of local genetic covariance among the 30 phenotypes. The inputs were 
estimates of local genetic covariance and its standard error. The unimodal prior 
distribution was set to be “halfnormal” for all the results of pairs of traits. The method 
applied a Bayesian framework to compute FDR for each genomic region. To estimate the 
numbers of correlated regions for each pair of traits, we computed the sum of (1 – FDR) 
given by ashr for each region. 
 
 
Follow-up analyses in the SPI1 locus for AD and other neuropsychiatric traits 
 
To replicate local genetic covariance identified at the SPI1 locus, we defined a new 
genomic region centered at SPI1 with a 1-Mb span. We estimated the local genetic 
covariance between AD (IGAP201941) and the other 29 traits for this region. For 
replication, we implemented a GWAS for AD family history in the UK Biobank and 
estimated the local genetic covariance of this GWAS with other traits. Details on the AD-
proxy GWAS have been previously reported41,79. 
 
We obtained PU.1 binding sites as ChIP-seq peaks from the ReMap datasets80 (GEO: 
GSE31621; SPI1, blood monocyte and macrophage datasets81). Following Huang et al.43, 
we expanded each ChIP-seq peak by 150 kb up- and downstream to define the 
transcription factor binding site annotation. We applied GNOVA12 to estimate the genetic 
covariance between AD and 29 other traits in the PU.1 binding sites. We trained elastic 
net gene expression imputation models82,83 using expression profiles adjusted by peer 
factors84 and PCs and matched genotypes from 758 monocyte and 599 macrophage 
samples in the Cardiogenics Consortium85 imputed by Michigan Imputation Server78. We 
downloaded Cardiogenics resources from European Genome-phenome Archive (EGA) 
platform. To investigate the regulatory relationship between PU.1 and the identified genes 
in myeloid cells, we used GREAT86 to map PU.1 each binding peak in macrophages and 
monocytes to the nearest gene. 
 
 
Cross-tissue transcriptome-wide association analysis 
 
To identify genes associated with ADHD, ASD, CP and SCZ in brain tissues in the KMT2E 
region (chr7: 104158491-105425027), we implemented cross-tissue transcriptome-wide 
association analysis using UTMOST87. We used gene expression imputation models 
trained by genotype and normalized gene expression data from the GTEx project88-91 
(version V8). We considered 13 brain tissues. For individual expression data, we 
regressed out the effects of confounding covariates including first five genotype PCs, 
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PEER factors optimized by sample sizes as in the GTEx V8 paper91, sequencing 
platforms, library construction protocol and donor sex. Cis-genotype data was extracted 
for SNPs located within 1MB distance from the transcription starting sites of all protein 
coding genes. Then we trained expression imputation models based on cis-genotypes for 
each gene in each tissue using 10-fold elastic net with alpha being 0.5. Models with 
credible imputation performances (FDR<0.05) were used in later analysis. 
 
 
Functional annotation for variants in GWAS data 
 
We used bedtools92 to extract sequence from the KMT2E region. We then performed 
gene annotations on each of the variants using ANNOVAR93. For exonic and splicing 
variants, missense variants were represented by nonsynonymous single nucleotide 
variants (SNVs) and loss-of-function variants were annotated as frameshift, stopgain, or 
stoploss mutations by ANNOVAR. We took overlapped SNPs and matched the effect 
alleles between ANNOVAR annotations and GWAS summary data of ADHD, ASD, CP 
and SCZ respectively. 
 
 
Gene set enrichment analysis 
 
We used R package TxDb.Hsapiens.UCSC.hg19.knownGene to identify genes in the 
correlated regions between ASD and CP with nominal significant covariances (p<0.01). 
We only included protein-coding genes in our analysis, resulting in 317 positively 
correlated genes and 179 negatively correlated genes. We applied Enrichr94,95 to 
implement enrichment analysis on GWAS catalog 201996 (Supplementary Tables 18-
19), and TF PPI94. We identified FMRP target genes, genes encoding PSD proteins, gene 
preferentially expressed in human embryonic brains, essential genes, chromatin modifier 
genes, genes with probability of loss-of-function intolerance (pLI) > 0.9, and SFARI 
evidence score based on previous literature54. We obtained a list of 102 genes identified 
by the refined transmitted and de novo association (TADA) model97 (FDR<0.1) in the 
recent exome sequencing study on ASD50. We performed hypergeometric test to assess 
the enrichment of ASD-CP positively and negatively correlated genes in these gene sets. 
 
 
Analysis of spatio-temporal RNA-seq data in brain tissues 
 
We used single-cell RNA-seq data generated by the PsychENCODE Consortium98 in fetal 
brains to test the elevation of gene expression of ASD-CP correlated genes in brain 
development. There were 762 cells collected from neocortical regions of eight fetal brains 
from 5 to 20 PCW. We kept only protein-coding genes which included 18,134 genes in 
this analysis. 310 of positively correlated and 175 of negatively correlated genes were 
overlapped with these genes. Following Satterstrom et al.50, for each time point, a gene 
was considered expressed if at least one transcript mapped to this gene in 25% or more 
of cells for at least one PCW period before. By definition, gene expression rate increased 
with fetal development. We performed log-rank test to test the difference of gene 
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expression rate in developmental brain between positively or negatively correlated genes 
and other genes. 
 
We downloaded developmental bulk RNA-seq data from BrainSpan. Gene-level RPKMs 
were used across 524 samples from 42 individuals in 26 brain regions98. We kept protein-
coding genes in our analysis. Following Satterstrom et al.50, we removed samples with 
RNA integrity number (RIN) ≤  7 and only used neocortical regions – dorsolateral 
prefrontal cortex (DFC), ventrolateral prefrontal cortex (VFC), medial prefrontal cortex 
(MFC), orbitofrontal cortex (OFC), primary motor cortex (M1C), primary somatosensory 
cortex (S1C), primary association cortex (A1C), inferior parietal cortex (IPC), superior 
temporal cortex (STC), inferior temporal cortex (ITC), and primary visual cortex (V1C). 
Genes were defined as expressed if their RPKMs were at least 0.5 in 80% samples from 
at least one neocortical region at one major temporal epoch. Consequently, 14,803 genes 
were defined as expressed in 325 samples from 8 post-conceptual weeks (PCW) to 40 
years of age. We then log-transformed RKPM (log2[RKPM+1]). We followed the definition 
of developmental stages in Li et al98. We performed t-test to determine the differential 
expression among ASD-CP positively correlated genes, negatively correlated genes, and 
background genes. 
 
To study the relative prenatal and postnatal bias, we performed linear regression for the 
transformed RKPM of each gene on a binary ‘prenatal’ stage variable. Sex was included 
as an adjustment variable. Genes were defined as prenatally (or postnatally) biased if 
log2 fold change> 0.1 (or <-0.1) and q-value<0.05 resulting in 5,562 prenatally biased 
genes and 5,361 postnatally biased genes. We followed the definition of ASD-CP 
positively and negatively correlated genes from gene set enrichment analysis. Chi-
squared test was performed to test if the distributions of prenatally and postnatally biased 
genes in ASD-CP positively and negatively correlated regions were significantly different 
from background genes. 
 
 
PRS analysis in SPARK 
 
We used the 18 positively correlated regions and 6 negatively corelated regions (FDR<0.1) 
between ASD and CP to construct PRS+ and PRS- of ASD. We clumped the SNPs by 
PLINK75. We set the significance threshold for index SNPs as 1, LD threshold for clumping 
as 0.1, and physical distance threshold for clumping as 250 kb. We generated scores for 
5,469 ASD probands and 2,132 healthy siblings in the SPARK cohort. We assessed 
associations between two PRSs and ASD using logistic regression. We then investigated 
the association between the two PRSs and ASD phenotypes in probands, including IQ, 
SCQ score, RBS-R score, DCDQ score, and subtypes of ASD. For each phenotype, we 
used the maximum sample with both genotype and phenotype data. Sample sizes for 
these phenotypes in SPARK are summarized in Supplementary Table 25. We 
performed two-sample t-test for quantitative phenotypes between probands with extreme 
PRS (top 1%) and other probands. We performed hypergeometric test to test enrichment 
of subtypes in the extreme PRS group. 
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URLs 
 
LDetect (https://bitbucket.org/nygcresearch/ldetect/src/master/); 
LDSC (https://github.com/bulik/ldsc); 
GNOVA (https://github.com/xtonyjiang/GNOVA); 
𝜌-HESS (https://huwenboshi.github.io/hess/); 
ReMap database (http://pedagogix-tagc.univ-mrs.fr/remap/); 
Cardiogenics dataset (https://ega-archive.org/studies/EGAS00001000411); 
Enrichr (https://amp.pharm.mssm.edu/Enrichr/); 
BrainSpan (http://brainspan.org/static/home); 
PsychENCODE (http://www.psychencode.org); 
SPARK (https://www.sfari.org/resource/spark/); 
 
 
Data and code availability 
 
SUPERGNOVA software is publicly available at https://github.com/qlu-
lab/SUPERGNOVA. 
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