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Abstract 1 

DNA replication follows a strict spatiotemporal program that intersects with chromatin structure 2 
and gene regulation. However, the genetic basis of the mammalian DNA replication timing 3 
program is poorly understood1-3. To systematically identify genetic regulators of DNA 4 
replication timing, we exploited inter-individual variation in 457 human pluripotent stem cell 5 
lines from 349 individuals. We show that the human genome’s replication program is broadly 6 
encoded in DNA and identify 1,617 cis-acting replication timing quantitative trait loci (rtQTLs4) 7 
– base-pair-resolution sequence determinants of replication initiation. rtQTLs function 8 
individually, or in combinations of proximal and distal regulators, to affect replication timing. 9 
Analysis of rtQTL locations reveals a histone code for replication initiation, composed of 10 
bivalent histone H3 trimethylation marks on a background of histone hyperacetylation. The H3 11 
trimethylation marks are individually repressive yet synergize to promote early replication. We 12 
further identify novel positive and negative regulators of DNA replication timing, the former 13 
comprised of pluripotency-related transcription factors while the latter involve boundary 14 
elements. Human replication timing is controlled by a multi-layered mechanism that operates 15 
on target DNA sequences, is composed of dozens of effectors working combinatorially, and 16 
follows principles analogous to transcription regulation: a histone code, activators and 17 
repressors, and a promoter-enhancer logic. 18 

 19 

Main  20 

Eukaryotic genomes are replicated according to a strict spatiotemporal program, in which 21 
replication initiates from specific locations along chromosomes and at reproducible times. The 22 
replication timing program is a fundamental property of chromosome organization, interfaces 23 
with gene regulation and shapes the mutational landscape of the genome. Efforts to 24 
understand the locations and nature of initiation sites and the factors that regulate DNA 25 
replication timing in mammalian cells have been ongoing for decades, with limited success1-3. 26 
Specifically, it is still unclear to what extent the DNA replication timing program is determined 27 
by local DNA sequences, by epigenetic factors, or by a combination thereof. Earlier studies 28 
suggested that specific sequence elements control replication initiation in human cells, with 29 
several distal and proximal elements often acting in concert5-11. More recently, CRISPR/Cas9-30 
mediated deletions have suggested that several DNA sequences locally interact to control 31 
early replication in mice12. 32 

Numerous lines of evidence link replication regulation to epigenetic states, in particular histone 33 
acetylations and methylations marking open chromatin3,13-17. However, no single epigenetic 34 
mark appears to be absolutely required nor sufficient for replication origin function. This has 35 
led to suggestions that a combination of histone marks may be required for specifying patterns 36 
of DNA replication18. Similarly, it has been proposed that indiscriminate DNA-binding patterns 37 
of the replication machinery may translate into a consistent, organized replication program by 38 
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means of combinatorial chromatin modifications influencing subsets of replication initiation 1 
sites3.  2 

The nature of such modular, combinatorial regulation of DNA replication at the genetic and 3 
epigenetic levels remains to be revealed. Previous studies applied stepwise reverse 4 
engineering approaches to probe for mechanisms controlling replication timing. However, such 5 
a complex system may be best studied with an unbiased and comprehensive interrogation of 6 
genetic and epigenetic factors and their interactions. While such an approach is currently 7 
challenging experimentally, an alternative is to take advantage of natural genetic variation. We 8 
previously showed that replication timing is variable among individuals, that it can be studied at 9 
fine-scale on a population level by sequencing the genomes of proliferating cells, and that 10 
genotype information from the same genome sequences can be used to associate replication 11 
timing variation with specific genetic polymorphisms. This results in the identification of 12 
replication timing quantitative trait loci (rtQTLs), DNA sequences that act in cis to affect 13 
replication initiation4. Leveraging human genetic variation enables the equivalent of numerous 14 
surgical genetic manipulations and their association with DNA replication timing alterations. 15 
Here, we apply this approach to hundreds of human embryonic stem cell (hESC) and induced 16 
pluripotent stem cell (iPSC) lines. Pluripotent stem cells are particularly useful for this analysis, 17 
since they are non-transformed, karyotypically stable and highly proliferative, and have a 18 
wealth of epigenetic data available for multi-omic analyses. We identify 1,617 cis-rtQTLs and 19 
analyze their locations and allelic differences. These analyses delineate the architecture of 20 
human replication timing as a quantitative trait involving combinatorial regulation by several 21 
layers of epigenetic mechanisms rooted in cis-acting DNA sequences.  22 

 23 

High-resolution population-scale replication timing profiles 24 

To comprehensively characterize human inter-individual replication timing variation and its 25 
genetic basis, we analyzed deep (~30x) whole-genome sequences of 121 hESC lines and 326 26 
iPSC lines19 and sequenced another 24 hESCs and 17 iPSCs for a total of 488 cell lines 27 
(Methods). ES and iPS cultures are highly proliferative, containing 35–55% cells in S phase. 28 
DNA replication timing leads to variation in DNA copy number along chromosomes among S 29 
phase cells (e.g., early-replicating regions are duplicated in most cells), causing read depth 30 
fluctuations in the sequencing data4. Indeed, we were able to generate high-resolution 31 
replication timing profiles for a total of 140 hESCs and 317 iPSCs (Methods). ES and iPS cells 32 
had similar replication profiles, as expected. 33 

Replication timing profiles were continuous along chromosomes, highly reproducible among 34 
samples (median r = 0.93), and consistent with previous replication timing measurements by 35 
Repli-Seq (median r = 0.86; Fig. 1, A–D). The replication profiles were exceptionally sharp, in 36 
line with recent high-resolution Repli-Seq data20, with discrete peaks and valleys (local maxima 37 
and minima) that were themselves highly reproducible among individuals. Replication timing 38 
peaks represent prominent initiation sites containing one or more replication origins. We further 39 
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improved data resolution using principal component (PC)-based correction across cell lines 1 
(Fig. 1, C and D; Methods). 2 

 3 

DNA replication timing is broadly influenced by cis-acting sequences 4 

While replication timing profiles were highly reproducible among individuals, we nonetheless 5 
observed genomic regions with substantial inter-individual variation. We identified 1,489 6 
autosomal replication timing variants in hESCs and 1,837 in iPSCs, cumulatively 7 
encompassing 795 Mb (34%) and 980 Mb (40.8%), respectively, of the analyzable genome 8 
(Fig. 1, C and D). We hypothesized that at least some of this variation is due to genetic 9 
polymorphism. To test this, we first compared replication timing variation between 24 pairs of 10 
hESC lines that are genetic siblings, versus unrelated cell lines; between genomic regions that 11 
are identical by descent (IBD), half-identical or non-identical between sibling cell lines; and 12 
between 108 pairs of iPSC lines derived from the same donor, compared to different donors 13 
(Methods). Consistent with a significant genetic contribution to replication timing variation, 14 
samples or genomic intervals that are genetically related consistently showed greater 15 
replication timing similarity than unrelated comparisons (Fig. 1, E–G).  16 

To further dissect genetic contributions to replication timing variation, we used our previously 17 
described rtQTL mapping approach4 to associate replication timing with specific genetic 18 
polymorphisms. This approach was applied here at larger scale, to deeper-sequenced data, 19 
and with refined algorithms than before (Methods). We limited this analysis to 108 hESCs of 20 
European ancestry and to 192 iPSCs from different individuals.  21 

We identified 1,617 cis-rtQTLs (FDR 0.1; 1,012 were identified with FDR 0.05; Fig. 1, I–M; 22 
Table S1), two orders of magnitude more than previous associations of replication timing with 23 
cis-acting sequences4,12. We used CAVIAR21 to fine-map (90% credible level) a median of 33 24 
SNPs per rtQTL, with 316 rtQTLs mapped to within 10 SNPs and 36 rtQTLs mapped to no 25 
more than three SNPs. rtQTL mapping was cross-validated between ES and iPS cells and 26 
further confirmed using additionally-sequenced cell lines and with a locus-specific single-27 
molecule assay (Fig. S1). 28 

rtQTLs influenced the replication timing of regions spanning 858 kb on average and a total of 29 
741.8 Mb of genomic sequence (31.8% of the genome, Fig. 1M). This is a lower bound 30 
estimate of the extent to which human replication timing is influenced by DNA sequence, since 31 
our approach will not detect weaker rtQTLs, invariant sequences or rare variant rtQTLs. 32 
Intriguingly, 67.9% (1,098) of rtQTLs coincided with sharp peaks in the replication profiles 33 
(binomial p = 2.24´10-25; Fig. 1, I–L), and rtQTL SNPs were significantly closer to peaks than 34 
expected (Wilcoxon rank-sum p = 1.77´10-16). This suggests that rtQTLs may influence 35 
replication initiation, as previously reported4,22, and that most rtQTLs can be used as fine-scale 36 
markers of replication initiation regions. The identification of rtQTLs as precise genetic 37 
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 5 

determinants of replication timing provides a unique opportunity to fine-map molecular 1 
mechanisms controlling replication initiation and timing.  2 
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Figure 1. The Human Genome’s Replication Timing Program is Extensively Encoded in DNA.  1 
(A) Replication timing inferred from read depth fluctuations. Read depth (gray dots) and replication timing profile 2 
(blue line; Z-score) of the H9 cell line. Green line: Repli-Seq data of the same cell line.23 (B) Replication timing 3 
profiles are highly reproducible among samples. (C, D) Leveraging the population-scale of the data, PC-based 4 
correction greatly improves replication profile accuracy. (E–G) Genetic relatedness is associated with replication 5 
timing similarity. (E) Comparison of sibling vs. unrelated hESC lines. (F) Genomic regions stratified by increasing 6 
identity-by-descent. (G) iPSCs from the same or different donors. (H) A genomic region (gray) with substantial 7 
inter-individual replication timing variation. (I–K) Genetic association reveals rtQTLs. (I) A SNP haplotype strongly 8 
associates in cis with the replication timing variant from panel H (panel K shows the genome-wide association). 9 
Mean replication timing profiles (left Y axis) for individuals with different genotypes at rs12713840, the top SNP, 10 
demonstrates that SNPs in cis (right Y axis) associate with replication initiation activity. Gray shaded area 11 
represents the affected genomic region. (J) Replication timing at the variant from panel H, stratifying individuals 12 
by rs12713840 genotype, demonstrates that genotype is the main determinant of replication timing variation. (L) 13 
Additional rtQTL examples. Similar to panels I and J. Most rtQTLs affect peaks (replication initiation regions). (M) 14 
All rtQTLs. Each horizontal line is an rtQTL, oriented from the replication timing locus with maximum difference 15 
between early- and late-replicating genotypes (ΔRT) and showing the averaged replication timing difference on 16 
both sides of that locus (i.e., the rtQTL-associated region spans twice the distance shown; refer to panel I). 17 
Foreground (gray-purple) shades are the rtQTL SNPs, color-coded by p-values, and placed according to their 18 
distance to the locus of maximal ΔRT. rtQTLs are encoded in localized haplotypes yet influence extended genomic 19 
regions up to 5.6 Mb. Most rtQTLs influence surrounding genomic region (“local”), while a subset show long-range 20 
effects.  21 
  22 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 10, 2020. ; https://doi.org/10.1101/2020.05.08.085324doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.08.085324
http://creativecommons.org/licenses/by-nc/4.0/


 8 

 1 
Figure S1. rtQTL Validation. 2 
(A–D) Validation of rtQTLs in 192 iPSC lines (Methods). The left panels are examples of rtQTLs in hESCs. The 3 
right panels show replication timing in the same regions in iPSCs, stratified by the genotype of the top rtQTL SNP 4 
discovered in the hESCs (vertical line). Association p-values in iPSCs are indicated. Excellent agreement 5 
between hESCs and iPSCs demonstrate that the rtQTLs discovered in hESCs are reproducible in an independent 6 
cohort. (E–G) SMARD (single-molecule analysis of replicated DNA 22) analysis of an rtQTL on chromosome 2 7 
(Fig. 1I) in Mel1 and H9 cell lines confirms variation in initiation site activity consistent with rtQTL genotypes. (F) 8 
Replication timing flanking the rtQTL locus (gray region); green line: the region analyzed by SMARD. The initiation 9 
site on the left side of the green line is an rtQTL (panel E), at which Mel1 and H9 carry the early-replicating and 10 
heterozygous genotype, respectively. (G) SMARD results, where each line indicates one DNA molecule, and the 11 
shift from red to green reveals the location and direction of replication forks (yellow arrows). Significantly more 12 
forks are progressing from 5’ to 3’ in Mel1 when compared with H9 (p = 0.027, Fisher’s exact test), indicating that 13 
the upstream initiation site is much stronger in Mel1 than H9, consistent with the rtQTL analysis. (H, I) rtQTLs are 14 
highly reproducible between the ESCs and iPSCs. When directly testing ESC rtQTLs using iPSCs (H) or vice 15 
versa (I), the p-values show strong positive correlation. Among the 602 ESC rtQTLs tested, 38.7% (233/602) were 16 
validated (p < 0.05 and the same direction of effect) in at least one dataset (HipSci iPSC or ESC/iPSC additionally 17 
sequenced), much greater than expected (p = 1.15´10-80, binominal test). For rtQTLs with p £ 5´10-8, 85.6% 18 
(89/104) were validated (p = 3.75´10-74). Among the iPSC rtQTLs tested, 31.7% (303/955) were validated in ESC 19 
(p << 2.2´10-16). For iPSC rtQTLs with p £ 5´10-8, 82.3% (149/181) were validated (p << 2.2´10-16).  20 
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A promoter-enhancer logic of replication timing regulation 1 

We first used rtQTLs to examine the cis-regulatory logic of human replication timing. We 2 
observed that a subset of rtQTLs are distal to their associated genomic region (Fig. 1M), and 3 
that in many regions, separate rtQTLs clustered in close proximity. This suggests that multiple 4 
DNA sequences, local and distal, could interact to affect the replication timing of a given locus. 5 
We identified 318 cases, encompassing 803 rtQTLs, where at least two, and strikingly, up to 6 
seven rtQTLs were associated with the same region, each providing additional explanatory 7 
power (Fig. 2, A–D). We call these “multi-rtQTL” regions and refer to the strongest rtQTL as 8 
the “primary”, while all other rtQTLs are “secondary”. In some cases, one rtQTL quantitatively 9 
influenced replication timing, while several rtQTLs together explained the actual presence of 10 
active initiation (Fig. 2C). Thus, replication initiation is regulated along a continuum, one 11 
extreme of which is no activity at all despite the presence of a potential initiation site.  12 

We directly tested for interactions between primary and secondary rtQTLs at regions that 13 
harbored two rtQTLs, hence between zero and four early-replicating alleles. We further pooled 14 
all genomic regions containing three or four rtQTLs and evaluated the relationship between the 15 
number of early-replicating alleles and replication timing of the associated regions. Replication 16 
timing showed a linear relationship with the number of early-replicating alleles (linear 17 
regression p << 2.2´10-16; Fig. 2, E and F), and none of the individual regions showed 18 
evidence for synergistic interactions between rtQTLs. This suggests that primary and 19 
secondary rtQTLs additively affect local replication timing.  20 

Of the 318 multi-rtQTL regions, 176 were associated with replication timing peaks. In 115 of 21 
these cases (65.3%), primary rtQTLs were closer to the peak than secondary rtQTLs (Fig. 2G, 22 
p = 3.28´10-8). This resembles eQTLs (expression QTLs), in which primary eQTLs show 23 
stronger enrichment at promoters, while weaker eQTLs are enriched at enhancers24. Also in 24 
resemblance to enhancers and promoters, primary and secondary rtQTLs tended to cluster in 25 
nuclear space (based on Hi-C data) more than expected by chance (p = 9.73´10-3, Z-test). 26 
Drawing from this analogy, we propose that rtQTLs may follow a logic akin to promoters and 27 
enhancers, in which primary rtQTLs function as main cis-acting regulators of replication 28 
initiation, while other sequences, marked by secondary rtQTLs, serve as distal regulatory 29 
elements that fine-tune the replication dynamics of a given region.  30 

 31 
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 1 
Figure 2. Multiple DNA Sequences Interact to Regulate Replication Timing.  2 
(A) Hundreds of regions are controlled by multi-rtQTLs. (B, C) Two rtQTLs affecting the same region. Blue, 3 
yellow, and red lines represent one rtQTL. Purple and green lines represent the mean replication timing of 4 
individuals carrying the late- or early-replicating genotypes, respectively, at both rtQTLs. Considering both rtQTLs 5 
explains a larger fraction of variation (green lines are higher than blue lines; conversely for purple/red lines). 6 
Asterisks (in legends): any genotype at this rtQTL. In panel C, the GG/GG combination of alleles is associated 7 
with complete loss of initiation activity. (D) A replication initiation site associated with six rtQTLs. Each rtQTL was 8 
significant even after conditioning on all other five rtQTLs in the region. (E, F) rtQTLs exert additive effects. All 9 
regions with two (E) or three (F) rtQTLs were pooled; replication timing is linearly correlated to the number of 10 
early-replicating alleles. (G) Multi-rtQTLs conform to a “promoter-enhancer” logic, primary rtQTLs being closer to 11 
the affected replication timing peak than secondary rtQTLs. 12 
  13 
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A histone code for DNA replication initiation 1 

We next utilized the basepair-resolution sequence-specificity of rtQTLs to investigate the 2 
molecular determinants of DNA replication timing. We initially considered rtQTL locations per 3 
se, independently of allelic variation. Since extensive epigenetic data was available for seven 4 
of the hESC lines in our dataset, we focused this analysis on hESCs and used iPSCs for 5 
validation. Consistent with previously described correlations between early replication and 6 
open chromatin3, rtQTLs were enriched for active chromHMM states including enhancers and 7 
transcription start sites (although they were not specifically associated with genes; Fig. S2), 8 
DNase I hypersensitivity sites (p = 2.62×10-8, 4.11×10-19 in iPSCs), and H2A.Z sites25 (p = 9 
6.69×10-4; p = 3.20×10-17 in iPSCs). rtQTLs also significantly overlapped with 24 histone marks 10 
(25 in iPSCs), of which 20 were active marks (Fig. S2). The majority of these histone marks 11 
were acetylations, including several not linked to replication timing before, for example, 12 
H2BK120ac, H2BK12ac and H2BK20ac. H3T11ph was also consistently enriched at hESC 13 
and iPSC rtQTL sites, as so were, modestly, methylated forms of H3K4. 14 

Of note, the histone mark enrichments were modest, and each present at between 165 to 541 15 
(median: 429) of 608 hESC rtQTLs (median: 542 of 1,167 iPSC rtQTLs), while each rtQTL 16 
overlapped 20 histone marks on average. We surmised that this abundance of histone 17 
modifications may be suggestive of combinatorial regulation. To test this, we systematically 18 
searched for combinations of histone marks with stronger enrichments at rtQTLs when 19 
considered jointly (Methods). We identified 152 combinations of two overlapping histone marks 20 
that were more enriched than the individual marks. We further identified 128 co-enriched three-21 
mark combinations, 72 four-mark combinations, and 13 five-mark combinations (enrichment p-22 
values: 2.42×10-37–1.09×10-45), at which point no further improvements in enrichment were 23 
obtained (Fig. 3A). Importantly, since these enrichments controlled for replication timing, they 24 
were not identified because they mark early-replicating regions, but because they specifically 25 
mark rtQTL locations, and, by inference, replication initiation sites. 26 

Strikingly, all 13 combinations of five histone marks contained the trimethylation marks 27 
H3K9me3 and H3K36me3, and 12 of the combinations also contained H3K4me3. In addition, 28 
all 13 combinations included at least one histone acetylation mark. H3K56ac was included in 29 
11 of the combinations, while the additional acetylations occurred on variable histone residues 30 
(Fig. 3B). Further analysis indicated that various acetylation marks often coincided with the five 31 
histone mark combinations, e.g., in 70.8% of the cases, 11 or more acetylation marks co-32 
occurred at the location of a five-mark combination. We term this combination of three H3 33 
trimetylations together with hyperacetylation the “me3achyper histone code”. Genome-wide, 34 
there were 6,670 such locations in hESCs. They covered a median of 635 bp and cumulatively 35 
encompassed 0.24% of the genome, thus they represent specific, localized genomic sites.  36 

Importantly, when considered individually, the implicated histone modifications only showed 37 
weak enrichments (Fig. S2C). H3K9me3 and H3K36me3, in particular, showed marginal or no 38 
enrichment at rtQTLs. H3K9me3 is a marker of heterochromatin (although has been observed 39 
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in the bodies of actively transcribed genes)26, while H3K4me3 marks gene promoters and 1 
H3K36me3 is typically present in gene bodies. These histone trimethylations are largely 2 
mutually exclusive. However, in rare cases, they coincide in the same genomic locations (Fig. 3 
3, C and D) to form a previously undescribed bivalent chromatin that is not specifically 4 
associated with genes or gene expression (e.g., only 5.2% of me3achyper regions overlapped 5 
the TSS of an active gene). It is in these rare locations that rtQTLs tend to be present. 6 

The identified histone mark combinations have been previously linked to the recruitment of 7 
components of the replication machinery to DNA. Histone H3 trimethylations on lysines 4, 9 8 
and 36 have been shown to exert a cross-talk that serves as an “epigenetic addressing 9 
system” for site-specific replication initiation27,28. They recruit KDM4 and KDM5 family histone 10 
demethylases that directly interact with, and/or are required for recruitment to DNA of MCM, 11 
PCNA, DNA polymerases and other replication factors27-31. H3K4me3 also synergizes with 12 
flanking H3K9ac and H3K14ac (both identified as part of the me3achyper histone code) to recruit 13 
chromatin readers to DNA32. Another study showed that histone hyperacetylation synergizes 14 
with H3K9me3 to promote early replication of otherwise late-replicating mouse 15 
chromocenters33. In turn, acetylated histones have been shown to recruit replication initiation 16 
factors including TICRR/TRESLIN, ORC and MCM, via mediators such as BRD2, BRD4 and 17 
the histone acetyltransferase HBO1 (histone acetyltransferase binding to ORC)14,34-36. In 18 
particular, HBO1 promotes MCM loading by acetylating H4 on lysines 5, 8 and 12, and 19 
subsequently promotes origin activation by acetylating H3K1437; we identified all of these 20 
acetylations as part of the me3achyper combinations. Moreover, H4K12ac, the most strongly 21 
enriched mark at rtQTLs, is a preferred target of HBO1 at replication origins34,36. These 22 
biochemical evidence provide a plausible explanation for the combination of histone marks 23 
being associated with replication initiation activity. 24 

Taken together, we identified a combination of histone marks, consisting of three trimethylated 25 
H3 residues (H3K4me3, H3K9me3, H3K36me3) together with H3K56ac and broadly 26 
hyperacetylated chromatin that consistently coincide with rtQTLs. To further test the 27 
involvement of this histone “code” in replication initiation, we analyze below its association 28 
with: (1) replication timing peaks in general (independent of rtQTLs); (2) replication timing 29 
peaks in other cell types; (3) replication timing peaks that vary between cell types; and (4) 30 
replication timing variation among individuals at rtQTLs. 31 

 32 
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 1 
Figure S2. rtQTLs are Enriched for Active Chromatin States and Histone Marks. 2 
(A, B) Enrichment of chromHMM chromatin states at rtQTLs identified in hESCs (A) or iPSCs (B). Orange bars: 3 
95% confidence intervals. NS: not significant at Bonferroni-corrected p = 0.05. (C, D) Enrichment of histone marks 4 
at hESC (C) and iPSC (D) rtQTLs. Similar to panels A and B. (E) Breakdown of gene types located within rtQTL-5 
associated regions. The number of genes in rtQTL-associated regions was significantly lower than expected (p = 6 
4.85´10-17, Z-test) and these genes were not enriched for any gene ontology term38. (F) Breakdown of functional 7 
annotations of rtQTL genetic variants. (G) rtQTLs colocalize with active histone modifications. The bottom panels 8 
show ChIP-seq tracks of various active histone modifications in hESC. Imputed histone tracks39,40 from the 9 
Roadmap Epigenomics Project were used for plotting. Red arrows: locations of the rtQTL variants indicated in the 10 
top panels. (H) A multi-rtQTL region (same as Fig. 2C) at which both the primary and secondary rtQTLs overlap 11 
with various active histone marks.  12 
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Figure 3. A Histone Code for Replication Initiation.  1 

(A) Iterative identification of histone mark combinations enriched at rtQTLs. Shown are enrichment distributions; 2 
the number of combinations in each category is indicated. Fold-enrichment increases gradually and is maximal for 3 
five-mark combinations. (B) A histone code for human replication initiation. The 13 combinations of five histone 4 
marks converged to a consensus “code”. (C) The histone code represents a rare combination of both active and 5 
repressive histone marks. me3achyper regions comprised 0.7–3% of the regions that carry the individual histone 6 
marks. (D) Examples of histone mark combinations (Roadmap Epigenomics imputation)39,40 coinciding with 7 
replication timing peaks not identified as rtQTLs. (E, F) Distribution (after subtraction of permutations) of physical 8 
(E) and fractional distances (F) of the me3achyper locations to the nearest replication timing peak. (G) Combination 9 
of histone marks (gray, me3achyper locations) predict replication initiation sites in hESCs. (H, I) Histone code 10 
locations (gray vertical lines) correspond to replication timing peaks in iPSCs (H) and LCLs (I). (J) Cell-type-11 
specific histone code locations mark cell-type-specific replication initiation sites. At regions with distinct replication 12 
timing profiles for hESCs and LCLs, LCL (hESC)-specific replication timing peaks are predicted by LCL (hESC)-13 
specific histone code locations. Lower panels: initiation sites coincide (thick borders) with all three histone 14 
trimethylation marks in the cell type in which they are active, but with one or none of the marks in the cell type in 15 
which they are inactive.  16 

 17 

The histone code predicts replication initiation sites across cell types 18 

We considered whether a histone code could be a general property of replication initiation 19 
sites, revealed by leveraging the base-pair resolution of rtQTLs, but not limited to rtQTLs. We 20 
therefore tested whether the histone code also associated with the larger number of replication 21 
timing peaks (found in > 10% of the samples) not identified as rtQTLs (81.5% of all peaks). 22 
While the probabilities of having a peak near the 24 individually-enriched histone marks were 23 
significantly greater than expected (one-tailed Wilcoxon rank-sum p = 4.96×10-17) and were 24 
greatest at the actual histone mark sites (Fig. S3, A and B), individual histone marks are very 25 
common in the genome and insufficient for predicting peaks. Combining histone marks 26 
gradually increased their association with peaks, up to the five-mark combinations, which were 27 
significantly more likely than expected to coincide with peaks (p = 4.10×10-10). me3achyper sites 28 
had an even higher likelihood of overlapping peaks (Fig. S3, A–C). The distances of me3achyper 29 
regions to the nearest peak were significantly shorter than permutations (Fig. 3, E and F). Of 30 
all me3achyper sites, 57.3% corresponded to replication timing peaks within 100 kb (positive 31 
predictive value; Z-test p << 2.2×10-16; the median inter-peak distance was 971.2 kb); 41.7% 32 
were less than 10 kb from a peak. Conversely, 70.8% of peaks were located within 100 kb of 33 
predicted regions (sensitivity; p = 1.03×10-93); 60.3% were less than 10 kb from predicted 34 
regions. We further evaluated prediction performance of the me3achyper regions visually (Fig. 35 
3G) and with ROC curves (Fig. S3D). Peaks predicted by histone marks replicated earlier than 36 
other peaks (median: 0.61 vs. 0.14, Wilcoxon rank-sum p = 6.58×10-53) and were locally more 37 
prominent (timing difference compared to flanking valleys, median: 0.32 vs. 0.18, p = 1.19×10-38 
17). Consistently, the replication profiles surrounding me3achyper sites formed a sharp peak (Fig. 39 
S3E). The histone code was substantially more specific and matched replication timing profiles 40 
much better than DNase I hypersensitivity (Fig. S3G), which was previously suggested to 41 
explain 87% of replication timing profiles41. Taken together, the combinations of histone marks 42 
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that are enriched at rtQTLs predict ~70% of initiation site locations across the genome, even 1 
for those sites without rtQTLs, and particularly for the early and most prominent initiation sites. 2 
These histone mark combinations may thus promote replication initiation not just at specific 3 
genomic loci, as previously proposed27,28,42, but across a large fraction of the genome. We 4 
note, though, that some replication timing peaks did not co-localize with histone code 5 
locations, thus there must be additional mechanisms independently specifying replication 6 
initiation sites, underscoring the complexity of mammalian replication initiation. 7 

An even more rigorous test of the five-mark combinations being indicators of replication 8 
initiation is whether they could predict the location of replication timing peaks in other cell 9 
types. Examining both iPSCs and lymphoblastoid cell lines (LCLs)43-45, we found that the 10 
histone code can predict initiation sites as accurately and specifically as in hESC (Fig. 3, H and 11 
I), and similarly associates with early replication (Fig. S3E). In particular, LCLs have epigenetic 12 
and replication timing landscapes that are distinct from those of hESC (and iPSCs). In genomic 13 
regions at which LCL and hESC replication timing differed, LCL-specific histone code locations 14 
corresponded to LCL-specific initiation sites, and vice versa for hESCs (Fig. 3J). Predicted cell-15 
type-specific initiation sites resided in early-replicating genomic regions in the corresponding 16 
cell type, but not in other cell types (Fig. S3F). Thus, the histone code characterizes and 17 
predicts cell-type-specific replication initiation.  18 

 19 

 20 

Figure S3. Further Support for a Histone Code for Human DNA Replication Initiation Sites. 21 

(A) Histone mark combinations correspond to replication initiation sites. The probability of having an initiation site 22 
increases with proximity to the histone mark combinations (gray shade), peaks at the actual histone mark sites, 23 
and scales with the number of marks. (B) Probability of having an initiation site as a function of distance from 24 
histone marks (in 40 kb bins), similar to panel A but for each individual histone mark combination (as opposed to 25 
the averages of all combinations of a given number of marks). (C) Normalized cumulative probability of initiation 26 
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sites being present within 200 kb (i.e., area under the curve, gray shade in panel A) of individual histone marks or 1 
combinations thereof. The probabilities were normalized based on permutations by subtracting the permutation 2 
mean. Replication initiation sites are increasingly enriched as the number of histone marks increases. Error bar: 3 
standard deviation. Error bars: standard deviation. (D) ROC curves show the strength of the histone code for 4 
predicting replication initiation sites in various cell types. Diagonal lines represent random guesses. For all three 5 
ROC curves, the area under the ROC curve (AUCROC) is significantly larger than random permutations (all Z-test 6 
p << 2.2×10-16). (E) Cumulative replication timing profiles surrounding histone code locations suggest that they 7 
coincide with locally early replication across cell types. For LCLs, only methylation marks were available. Gray 8 
lines: ten permutations. (F) Cumulative replication timing profiles in hESCs and LCLs surrounding histone code 9 
locations found in both cell types (gray), LCLs only (orange), or hESCs only (blue). Histone code locations predict 10 
replication initiation patterns in a cell-type-specific manner. (G) The histone code performs better at predicting 11 
replication timing peaks than DNase hypersensitivity (HS) sites. Cumulative replication profile centered at histone 12 
code locations (blue) is sharper and higher than that centered at DNase HS sites (purple). In addition, there are > 13 
99,000 DNase HS sites in the genome, totaling > 304 Mb of sequence (i.e., ~10% of the genome; in contrast to 14 
the histone code covering 0.24% of the genome), which provides very low positive predictive value and resolution 15 
for predicting individual replication initiation sites. 16 

 17 

Co-variation of replication timing and histone modifications reveals combinatorial 18 
control of replication timing 19 

The previous analyses considered rtQTL locations per se. However, since rtQTLs represent 20 
replication timing variation among individuals, their allelic differences provide a powerful 21 
opportunity to investigate molecular mechanisms controlling replication timing. In particular, 22 
given that specific histone marks associate with replication initiation, we predicted that rtQTL 23 
SNP alleles will be associated with variation in the abundance of these marks among 24 
individuals.  25 

We took an unbiased approach using seven hESC lines with both replication timing and 26 
histone modification data (Methods). Cell lines carrying early-replicating genotypes at rtQTLs 27 
were more likely than individuals with late-replicating genotypes to harbor active histone marks 28 
and chromHMM states at those rtQTL sites (Fig. 4 and S4). Across individuals and genomic 29 
sites, eight histone modifications were consistently present in individuals with rtQTL alleles 30 
indicative of early replication. Of those, seven were acetylations, consistent with histone 31 
acetylation promoting early replication3,13-17,34,36. Of the 12 acetylation marks that are part of 32 
the replication initiation histone code, nine individually associated with early-replicating rtQTL 33 
genotypes (five of which reached statistical significance). We also identified seven 34 
modifications that consistently coincided with late replicating alleles, of which six were 35 
methylation marks (Fig. 4A); Thus, histone methylation emerges as being generally repressive 36 
for replication.  37 

Counter-intuitively, the histone code trimethylation marks (H3K4me3, H3K9me3 and 38 
H3K36me3) were individually more likely to be associated with late-replicating genotypes (Fig. 39 
4A). In contrast, the combination of all three trimethylation marks was 2.5-times more likely to 40 
be carried by early-replicating than by late-replicating genotypes. Furthermore, a combination 41 
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that also included H3K56ac was 7.24-times more likely to be carried by early-replicating 1 
genotypes (Fig. 4A). Thus, these marks appear to individually act as weak repressors of 2 
replication but act synergistically, in non-canonical ways, to strongly promote early replication. 3 
Taken together, the involvement of me3achyper in replication initiation is supported by several 4 
lines of evidence: enrichment at rtQTLs (Fig. 3A); correspondence with replication timing 5 
peaks in general, and across several cell types (Fig. 3, D–I, Fig. S3, A–E); co-variation with 6 
cell-type-specific replication initiation patterns (Fig. 3J and Fig. S3F); and correlation with inter-7 
individual replication timing variation (Fig. 4). 8 

 9 

 10 
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Figure 4. Histone Marks Affect DNA Replication Timing. 1 

(A) Association of rtQTL genotypes with individual (left panel) or combinations (right panel) of histone marks. 2 
Positive (negative) values indicate that individuals with early (late)-replicating genotypes are more likely to carry a 3 
histone mark at those rtQTL sites. Right panel: while individual H3 methylation marks associate with late 4 
replication, the H3K4me3-H3K9me3-H3K36me3 combination is strongly associated with early replication, and 5 
even more so when combined with H3K56ac. Note the different Y scale. (B) Examples of rtQTLs associated with 6 
histone mark variations. Replication timing and corresponding histone ChIP-seq tracks for individual cell lines 7 
homozygous for the early- or late-replicating alleles. Early replication correlates with the presence of the specified 8 
histone marks.  9 

 10 

 11 

Figure S4. rtQTLs Impact Replication Timing by Affecting Chromatin States.  12 

(A) Associations of rtQTL genotypes with chromHMM states. Positive values indicate that the early-replicating 13 
genotypes are more likely to carry a given chromatin state, and vice versa for negative / late genotypes. (B) 14 
Examples of rtQTLs associated with chromatin states. The right panels show chromatin states flanking the rtQTL 15 
in the same cell lines. Orange: active states (TSS, enhancer, or weak transcription), blue: heterochromatin or 16 
quiescent states, gray: other states.  17 
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 1 

DNA-binding factors modulate DNA replication timing  2 

The above results indicate that cis-acting sequences, manifesting as rtQTLs, influence the 3 
positions and timing of replication initiation by associating with histone modifications. To 4 
identify additional factors that influence replication timing via cis-acting sequences,  we 5 
analyzed the binding sites of 51 DNA binding factors in hESCs43,46. Binding of eight factors 6 
was significantly enriched at rtQTLs, including the main pluripotency factors SOX2, POU5F1 7 
(OCT4) and NANOG, the latter two reproducible with available data in iPSCs (Fig. S5). Three 8 
chromatin remodelers, EP300 (P300), SP1, and RBBP5, were also enriched at rtQTLs. EP300 9 
is a histone acetyltransferase that catalyzes at least six acetylation marks in the replication 10 
initiation histone code, including H3K56ac47.  11 

Transcription factors (TFs) bind DNA in a sequence-specific manner at characteristic motifs. 12 
This offers an opportunity to test, at base pair resolution, whether TF binding affects replication 13 
timing at rtQTLs (Methods). Strikingly, OCT4 and NANOG had significantly higher binding 14 
affinity for early- compared to late-replicating alleles in both hESCs and iPSCs, while EP300 15 
and ATF3 (Activating Transcription Factor 3, which is enriched at EP300 sites48), were linked 16 
to early replication at least in hESCs (Fig. 6, A and B). These associations appeared to be 17 
independent from gene expression, as they were reproduced for rtQTLs > 250 kb away from 18 
expressed genes. For these early-replication-associated TFs, the rtQTLs fell within the TF 19 
binding motifs such that a single base-pair change disrupted or even abolished binding; this 20 
was associated with delayed replication of the rtQTL-affected initiation site (Fig. 6C). An 21 
unexpected finding was rtQTL alleles with the opposite effect, i.e., higher binding affinity 22 
associated with later-replication. We infer that in these cases protein binding suppresses 23 
replication initiation (Fig. 6). These included CTCF, an insulator of topologically associated 24 
domains (TADs); REST(NRSF), a repressor of transcription49; ZNF143, which associates with 25 
the CTCF-cohesin cluster50; and at least in hESCs also RAD21 (part of the cohesin complex) 26 
and YY1, which co-localize with CTCF at TAD boundaries51-54. These associations were yet 27 
stronger when considering only motifs with biochemically confirmed TF binding when data was 28 
available (Methods). Taken together, we conclude that some rtQTL alleles alter DNA binding 29 
protein motifs, abolish a DNA binding site or generate a new one, and consequently alter DNA 30 
replication timing through specific protein binding. This analysis uncovers several new factors 31 
that can thus regulate DNA replication timing. In addition, different factors influence subsets of 32 
replication initiation sites, further illuminating the complex combinatorial landscape that 33 
controls human DNA replication timing. Finally, these results demonstrate how a single base-34 
pair alteration could affect the replication timing of an extended genomic region. 35 
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 1 

Figure 5. rtQTLs Affect Replication Timing by Altering TF Binding Motifs.  2 

(A, B) Binding of TFs such as OCT4 and NANOG promotes earlier replication, while binding of CTCF, REST and 3 
other factors is associated with later replication in hESCs (A) and iPSCs (B). Chi-squared test, FDR <10%. (C) 4 
Examples of rtQTLs altering binding affinity of TFs that function as replication activators or repressors. 5 
Heterozygous profiles are not plotted. Center panels: ChIP-seq tracks. Lower panels: sequence logos of the 6 
motifs containing the rtQTL SNPs, motif names, and changes in binding affinity (calculated based on motif 7 
scores). Asterisk indicates that the motif was on the negative strand and the sequence shown is the reverse 8 
complement. Red arrows: locations of the rtQTL SNPs. For activators, the rtQTL allele associated with early 9 
replication encodes an intact binding motif, while the allele associated with late replication abolishes the motif. 10 
Repressors have the opposite pattern: the early allele abolishes the motif. 11 

 12 
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 1 

Figure S5. Enrichment of TFs at hESC (A) and iPSC (B) rtQTLs. rtQTLs are enriched at binding sites of central 2 
pluripotency factors (red) and chromatin remodelers (blue). NS: not significant at 10% FDR. Only TFs overlapping 3 
with at least 15 rtQTLs are plotted.  4 

 5 

Discussion 6 

The spatiotemporal regulation of DNA replication, and its dependence on regulatory DNA 7 
sequences, are poorly understood. Here, we leveraged population-scale replication timing and 8 
genetic polymorphism data to perform the equivalent of millions of surgical genetic 9 
interrogations of replication timing determinants. This approach enabled us to identify an 10 
unprecedented number of precise sequence determinants of replication timing.  11 

Studying chromatin structure at rtQTL sites revealed a histone code that accurately predicts 12 
replication initiation across cell types. This code represents non-canonical functions of histone 13 
H3 lysine methylations that form a previously undescribed bivalent chromatin state55 present at 14 
specific sites throughout the genome. Prior biochemical evidence supports an involvement of 15 
these histone marks in DNA replication initiation14,27-32,34-37. We propose that this histone code 16 
promotes local replication activity, although we do not necessarily imply that it marks the 17 
locations of replication origins per se. 18 

rtQTLs further associated with inter-individual variation in histone marks and TF binding 19 
affinity. In many cases, several cis-acting sequences affected a region’s replication timing both 20 
proximally as well as distally. Altogether, we were able to assign at least one molecular 21 
determinant to 98.8% of rtQTLs, while two or more determinants were implicated in 93.9% of 22 
rtQTLs (Fig. S6). Replication timing determinants acted additively among nearby sequences, 23 
synergistically between histone modifications, and combinatorially across transcription factors. 24 
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This system generates a continuum of replication activities: some epigenetic marks may 1 
contribute only modestly to replication activity, or even suppress it, yet can interact with other 2 
factors to ultimately promote robust early replication. Taken together, this study systematically 3 
reveals a complex, combinatorial landscape of genetic regulation of human DNA replication 4 
timing.  5 

A recent study using CRISPR/Cas9-mediated deletions in mouse ESCs identified several 6 
interacting sequence elements responsible for early replication (“early replicating control 7 
elements”12). Consistent with our results, the identified elements bound P300 and pluripotency-8 
related TFs. However, the specific features identified with deletions represented the properties 9 
of only 1.5% of rtQTLs. Instead, rtQTLs associated with replication throughout S phase (not 10 
just with early replication); some interacted with others while many did not; and there was no 11 
single DNA-binding factor that was always bound to them. rtQTL mapping reveals a much 12 
more complex picture of replication timing regulation than previous approaches were powered 13 
to uncover. Replication timing regulation emerges as a quantitative trait, requiring a 14 
quantitative genetics approach to elucidate its complex sequence underpinnings. rtQTL 15 
mapping in larger sample sets and additional cell types will further refine the details of 16 
replication timing regulation and reveal additional cis-acting sequences and their mode of 17 
action. In addition, rtQTL mapping refines the relationship between DNA replication timing and 18 
gene expression and reveals influences of replication timing on personalized mutational 19 
landscapes and on human phenotypes including disease risk4,22 (our unpublished results). 20 

Our findings draw corollaries between replication timing regulation and classical concepts of 21 
gene expression regulation: promoter/enhancer logic, activators and repressors, and a histone 22 
code. Thus, replication and transcription regulation appear to be based at least in part on 23 
similar principles and building blocks. Replication timing is robustly encoded in DNA, yet 24 
multiple DNA sequences dictate DNA replication combinatorially via chromatin effectors. The 25 
replication timing program of the human genome emerges as being sequence-dependent, 26 
without being sequence-specific. 27 

 28 
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 1 

Figure S6. rtQTLs Regulate Replication Timing via Numerous Activating and Repressing Effectors.  2 

Different combinations of TFs and histone marks exert positive and negative effects on subsets of replication 3 
initiation sites. Both examples show 10 ESC rtQTLs spanning a ~30-Mb region (on chromosomes 1 and 7). The 4 
blue and red lines are mean replication profiles of individuals carrying the early- and late-replicating genotypes, 5 
respectively. The rtQTL at 225 Mb of chromosome 1 exerts a long-range effect (arrow). Histone marks and TFs 6 
overlapping rtQTL genetic variants are shown below. They include positive (magenta) and negative (green) 7 
determinants of replication timing (Fig. 4 and 5), and instances of the replication initiation histone code (blue, Fig. 8 
3).   9 
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Data Availability Statement 1 

Data of hESC and iPSC lines sequenced in this study were desposited in dbGaP (accession 2 
number: phs001957).  3 

 4 

Code Availability Statement 5 

Computer codes used in this study are available from the corresponding author upon request.  6 
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 2 

Materials and Methods 1 

Whole-genome sequence data 2 

Whole-genome sequence data and genotype calls for 121 hESC lines were obtained from 3 
Merkle et al. (submitted). We denote these as “Merkle_batch1”. Nine additional hESCs were 4 
sequenced in another batch from Merkle et al. (submitted), denoted as “Merkle_batch2”. We 5 
further used whole-genome sequence data from 326 iPSC lines from the HipSci Project19 6 
(ENA accession number: PRJEB15299), denoted as “HipSci”. We sequenced an additional 15 7 
hESCs and 17 iPSCs (dbGaP accession number: phs001957), denoted as “in_house_hESC” 8 
and “in_house_iPSC”, respectively.  9 

For the in-house datasets, DNA was extracted using the MasterPure Complete DNA and RNA 10 
Purification Kit (Lucigen). Sequencing libraries were prepared using the Illumina TruSeq PCR-11 
free kit and sequenced on an Illumina HiSeq X Ten to ~16-fold coverage with 150×2 paired-12 
end reads. Sequencing was performed at GeneWiz (South Plainfield, NJ). No approval was 13 
needed for sequencing. Reads were aligned to GRCh37 using BWA, and genetic variants 14 
were called following the GATK Best Practices. Variants were filtered using GATK’s variant 15 
quality score recalibration, such that SNPs had a 99.9% sensitivity to true variants (HapMap 16 
3.3 and Omni 2.5M)56 and a 99.0% sensitivity to true indels (Mills / 1000 Genomes indels)57,58.  17 

 18 

Inference of DNA replication timing  19 

DNA replication timing was inferred by analyzing sequence read depth (corrected for GC 20 
content bias) in non-overlapping windows of 10 kb of uniquely alignable sequence using 21 
GenomeSTRiP 4,59. Among the 121 hESC lines from Merkle_batch1, five did not optimally 22 
thrive in culture, resulting in read depth profiles with low correlations to other samples; these 23 
cell lines were excluded from further analysis. We excluded 26 of the 326 iPSC lines from the 24 
HipSci dataset for the same reasons. As described below, further filtering were performed for 25 
Merkle_batch1 and HipSci datasets. Replication timing inference for the in-house datasets is 26 
described separately (see the “validation of rtQTLs” section below).  27 

Replication timing windows falling under any of the following categories were filtered out in all 28 
cell lines: (1) spanning GRCh37 gaps; (2) overlapping structural variants (SV) with ≥ 1% MAF 29 
in the 1000 Genomes European individuals; (3) overlapping short CNVs (median size: 3.51 kb) 30 
identified directly in the analyzed cell lines (applicable for Merkle_batch1 only, Merkle et al., 31 
submitted); (4) having a median window copy number (across samples) at least 0.4 copies 32 
away from the median (across windows) of median copy number of all autosomal windows 33 
(across samples); and (5) the 25% / 75% percentile (across samples) copy number of the 34 
window was at least 0.4 copies away from the median (across windows) of 25% / 75% 35 
percentile copy number of all autosomal windows (across samples). Criteria 2 and 3 remove 36 
windows that are possibly affected by SVs or CNVs, while criteria 4 and 5 remove windows 37 
that had outlying copy number values across a significant portion of samples. Specific 38 
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 3 

parameters for criteria 4 and 5 (as well as the filtering steps described below) were chosen 1 
after evaluation of data values that were consistent across chromosomal replication profiles 2 
and across samples. Altogether, 28,769 data windows (11.0% of all windows) were removed, 3 
leaving 232,027 windows after filtering for Merkle_batch1. For the HipSci dataset, 239,516 4 
windows remained.  5 

Replication timing windows falling under any of the following categories were filtered out in 6 
individual cell lines: (1) at least 0.6 copies away from the median (across windows) of median 7 
copy number of all windows (across samples); (2) at least 0.25 copies away from the median 8 
copy number of that replication timing window; (3) in a large CNV (median size: 3.02Mb) 9 
identified in that individual (applicable for Merkle_batch1 only); and (4) in a region suspected to 10 
be a large subclonal CNV (sub-integer change in copy number over a large region, usually an 11 
entire chromosome or a chromosome arm). These criteria were implemented to further remove 12 
outlier data points. Data after the above filtering steps is referred to as “filtered raw data”.  13 

Processing of the X chromosome data was performed separately for males and females. For 14 
males, because they only carry one X chromosome, all the thresholds above were divided by 15 
two.  16 

The filtered raw data was further normalized to Z-score (i.e., autosomal mean of zero and 17 
standard deviation of one) by subtracting the mean then dividing by the standard deviation of 18 
all data points, and smoothed using a penalized smoothing spline using the R pspline 19 

package with smoothing parameter 10-16. For each chromosome, we smoothed across gaps 20 
only if the gaps were shorter than 300 kb. Continuous genomic segments (between gaps) that 21 
were smaller than 300 kb were removed from further analysis. Data after the above 22 
normalization and smoothing is referred to as “smoothed data” (Fig. 1A) and was used in 23 
further analyses. The total length of replication timing windows in the smoothed data was 24 
2,330.66 Mb for autosomes (referred to as the “analyzable genome”), 121.15 Mb for the X 25 
chromosome in females, and 121.19 Mb for the X chromosome in males. For analyses 26 
involving the analyzable genome, only autosomal rtQTLs were counted.  27 

For correlation calculations involving sib pairs vs. non-sib pairs (Merkle_batch1) and cell lines 28 
derived from the same donor vs. different donors (HipSci), we used replication timing data from 29 
chromosomes 1 to 5. The Wilcoxon rank-sum test was used to assess significance. For the 30 
analysis regarding IBD segments in sib pairs, we first inferred pairwise IBD using TRUFFLE60, 31 
then binned the IBD segments into 2.5 Mb regions. The purpose was to minimize bias in 32 
correlation estimation because of variable IBD segment sizes. We calculated pairwise 33 
correlation in these regions, and assigned the estimate to one of three groups (IBD 0/1/2).  34 
ANOVA was used to assess significance of difference in average correlation among IBD 0/1/2 35 
groups. For all box plots in this study, the center line represents median, box limits represent 36 
the first and third quartile, and the whiskers represent the maximum and minimum. Outliers as 37 
determined by the R boxplot function were not plotted. 38 

 39 
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 4 

Identification of replication timing peaks 1 

We identified peaks in the Merkle_batch1 dataset. For each sample, peaks were identified in 2 
the replication timing profile as local maxima. Peaks across all samples were then clustered 3 
using agglomerative hierarchical clustering in MATLAB (functions linkage and cluster) 4 

with a distance threshold of 200 kb, which yields a list of peak clusters, each containing one or 5 
more peak locations. When a cluster contained multiple peaks from the same sample, the 6 
peak closest to the cluster center was retained and all other peaks from the sample were 7 
dropped. For each peak cluster, the boundary was defined as the full range of peak locations 8 
in this cluster. We only used peak clusters that contained peaks from more than 10% of the 9 
samples.  10 

 11 

Identification of replication timing variants 12 

We searched for replication timing variants using the Merkle_batch1 and HipSci datasets. We 13 
expect genomic regions with strong replication timing variation to have greater standard 14 
deviation (SD) across samples, compared to average genomic regions. We calculated SD 15 
across samples for each replication timing window across the genome. Since local maxima will 16 
indicate the highest regional SD values, we called peaks in SD across the genome. To prevent 17 
calling peaks at single outlier data points, we first smoothed the SD curve. Then, we removed 18 
peaks that were below a SD threshold equal to the mean of the genome-wide SD distribution. 19 
We performed pairwise t-tests on pairs of samples for replication timing difference on 500 kb 20 
windows centered at the remaining SD peaks. For example, in the Merkle_batch1 dataset, 21 
2,154 windows were tested, of which 1,785 (82.7%) were significant at a Bonferroni-corrected 22 

significance threshold of p = 4´10-9. These significant windows were extended by testing 23 

adjacent 200 kb windows, sliding 100 kb at a time, until there were no longer any significantly 24 
different cell line pairs. After the extension step, SD peaks in close proximity occasionally 25 
resulted in overlapping replication timing variants. In these cases, if the correlation of 26 
replication timing across samples at the SD peaks was greater than 0.9, we merged these 27 
variants. Otherwise, adjacent variants were separated at the valley between SD peaks. Last, 28 
replication timing variants driven by less or equal than 1% of the samples were removed. This 29 
resulted in a total of 1,489 and 1,837 replication timing variants in the Merkle_batch1 and 30 
HipSci dataset, respectively.  31 

 32 

Data processing prior to rtQTL mapping 33 

Sample selection 34 

We performed principal component analysis (PCA) on the genotypes of the hESC lines, using 35 
the 1000 Genomes Phase 3 European, East Asian, and African samples as references. Eight 36 
samples appearing to have non-European ancestry (admixed or East Asian) were removed 37 
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 5 

from rtQTL mapping, leaving 108 individuals for further analysis. PCA was performed using the 1 
SNPRelate package in R 61. We also performed PCA with the HipSci dataset, and confirmed 2 

that all samples were of European ancestry. A total of 192 unrelated samples in the HipSci 3 
dataset were used for rtQTL mapping. While we kept sib pairs in the ESC dataset, all rtQTLs in 4 
ESC were reproducible (at nominal p < 0.05) when using only unrelated samples.  5 

 6 

Genotype imputation 7 

Imputation was performed with IMPUTE2 62 using the 1000 Genomes Project Phase 3 8 
reference panel and default parameters. Variants with minor allele frequency (MAF) ≤ 1% in 9 
Europeans or Americans were not used for imputation. Imputed variants with average 10 
genotype probability ≥ 80% were used in subsequent analyses. 11 

Prior to rtQTL mapping, we filtered out variants that had MAF < 5%, were non-biallelic, or that 12 

deviated from Hardy-Weinberg equilibrium (p < 1´10-3). In addition, we required that variants 13 

should have all three genotypes (homozygous reference allele, homozygous alternative allele, 14 
and heterozygous genotypes) observed in the samples.  15 

 16 

PCA of replication timing data 17 

To account for potential batch effects and other unknown systematic biases in the replication 18 
timing data, we performed PCA using the filtered raw data with R function prcomp. Principal 19 

components (PCs) of the filtered raw data (“phenotype PCs”), along with the genotype PCs 20 
calculated above, were used as covariates in rtQTL mapping.  21 
 22 

rtQTL mapping 23 

Selection of phenotype PCs in rtQTL mapping 24 

We followed the eQTL mapping framework used in the GTEx Project 24 25 
(https://gtexportal.org/home/documentationPage) to map rtQTLs. We included the genotype 26 
(first three, similar to GTEx) and phenotype (first k) PCs in rtQTL mapping to account for non-27 
genetic confounding factors. To find the optimal k, we tested each integer from 1 to 40. We 28 
consider the optimal k as the one leading to the highest number of windows harboring rtQTLs 29 
identified in rtQTL mapping. In this analysis, permutation parameter “permut 50 500” was 30 

used in fastQTL. Window level p-values were calculated, and the R package qvalue 63 was 31 

used to identify windows harboring rtQTLs at 10% FDR. This resulted in 24 and 22 selected as 32 
the optimal k for ESC and iPSC rtQTL mapping analysis, respectively, which was used in all 33 
subsequent rtQTL mapping analyses.  34 

 35 

Cis-rtQTL mapping using fastQTL 36 
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 6 

We implemented a two-step approach to map rtQTLs using fastQTL 64. We generally restricted 1 
our analysis to cis-rtQTLs, defined as 1 Mb upstream or downstream of the center of each 2 
tested replication timing window. The first three genotype PCs and first 24 or 22 (for ESC and 3 
iPSC, respectively) phenotype PCs were included as covariates.  4 

In the first step, we calculated a window-level p-value for each replication timing window using 5 
fastQTL, and then identified “significant windows”, i.e., windows with at least one significant 6 
rtQTL at 10% FDR, using the R package qvalue. This step is analogous to the identification 7 

of “eGenes” in eQTL mapping. For each window, fastQTL computes the lowest variant-level p-8 
value and uses permutations to calculate the probability of observing a variant with equal or 9 
lower p-value under the scenario of no association, followed by beta approximation. Adaptive 10 
permutation parameter “permut 1000 10000” was used (similar to GTEx). We also repeated 11 

this step at 5% FDR. 12 

In the second step, we identified genetic variants (referred to as SNPs for simplicity) 13 
associated with the “significant windows” identified in step 1, at 10% FDR. Here, we used a 14 
permutation-based strategy to determine the significance threshold for each tested window. By 15 
definition, FDR is the ratio of false positives (FP) to the sum of FP and true positives (TP). At a 16 
given p-value threshold pt, variants passing pt are composed of both TP and FP. However, if 17 
we permute the phenotype, all variants with p-values lower than pt are FP. Therefore, for a 18 
given window, FDR for a given pt could be estimated as the mean number of variants passing 19 
pt in permutations (i.e., all FP) divided by the number of variants passing pt in the true 20 
association test (FP+TP). We then consider the maximum pt with FDR ≤ 10% as the 21 
significance threshold of the window. The mean number of variants passing pt in permutations 22 
was computed based on 500 permutations.  23 

 24 

Evaluation of inflation of rtQTL mapping 25 

To ensure that the computed variant-level p-values were not inflated, we calculated inflation 26 
factor with the Genomic Control method 65. We selected 200 windows (100 selected from 27 
windows carrying putative rtQTLs, and the other 100 randomly selected from the rest of the 28 
genome) and computed their association with genome-wide variants. We obtained variant-29 

level statistics (which follows !!" distribution under the null hypothesis) and computed the ratio 30 

of their median to the median of !!" (0.456) as the genomic inflation factor. We calculated a 31 
genomic inflation factor (λ) as 1.03 and 1.00 for the ESC and iPSC dataset, respectively, thus 32 
the nominal p-values were not inflated; this was also supported by quantile-quantile plots. 33 

 34 

Identification of rtQTLs 35 

The following procedure was used to identify discrete rtQTLs, i.e., independent (not in LD) 36 
association signals, based on the significant SNPs mapped using the aforementioned two-step 37 
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 7 

approach. For clarity, we denote independent association signals as rtQTLs, each of which 1 
contains multiple SNPs that are part of the association signal.  2 

For each window, we identified all SNPs (if any) that passed the significance threshold. We 3 
selected the SNP with the lowest p-value as the “tag” variant of an rtQTL and assigned SNPs 4 
in LD (r2 ≥ 0.2) with the tag variant to the rtQTL. If there were any SNPs remaining that passed 5 
the significance threshold, we selected the SNP with the lowest p-value among the remaining 6 
SNPs as the tag variant of a new rtQTL and assigned all variants in LD with the new tag 7 
variant to the new rtQTL. This step was repeated until no variants passing the significance 8 
threshold were left. For the rtQTLs identified above, we kept only those with at least 10 9 
variants and for which the p-value of the tag variant was less than 10-3.  10 

For all calculations involving LD, data from the 1000 Genomes Phase 3 Europeans was used 11 
whenever available. For SNPs not called in the 1000 Genomes dataset, the current dataset 12 
was used for LD calculation. 13 

Since nearby replication timing windows are highly correlated, the same rtQTL can be detected 14 
across multiple windows. We consolidated association signals detected in different windows if 15 
they satisfy all of the following three criteria: (1) the tag variants are in LD (r2 ≥ 0.2), (2) the 16 
replication timing windows are correlated (R2 ≥ 0.1), and (3) the distance between the windows 17 
is less than 2Mb.  18 

In addition to separating rtQTLs by LD, we performed conditional association for each 19 
identified rtQTL. We conditioned on the top variant of each rtQTL and examined whether any 20 
SNPs that belong to this rtQTL still have significant association p-value (at p = 0.05 after 21 
Bonferroni correction). If so, this rtQTL was divided into multiple rtQTLs, each representing an 22 
independent association signal.  23 

 24 

Filtering of rtQTLs 25 

The putative rtQTLs identified were subjected to further filtering. First, we determined the 26 
boundaries of regions that significantly associated with each putative rtQTL. Starting at the 27 
window that most strongly associated with the tag variant (i.e., with the lowest p-value) of an 28 
rtQTL, we extended the region bi-directionally until the association was no longer significant 29 
(p > 0.05). We refer to this region as the “associated region”.  30 

Next, we filtered false positives suspected to be potentially caused by short CNVs. During data 31 
processing (described above), we removed windows in which copy number measurement are 32 
potentially influenced by CNVs. However, short CNVs, spanning only one or two windows, may 33 
not have been detected and filtered and could lead to false positive rtQTLs (if they are in LD 34 
with SNPs). This type of false positive was identified by utilizing the raw unsmoothed data as 35 
follows: if a putative rtQTL is a false positive caused by a CNV, it would be (1) only observed in 36 
a small number of unsmoothed raw windows (overlapping with the CNV), and (2) will be more 37 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 10, 2020. ; https://doi.org/10.1101/2020.05.08.085324doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.08.085324
http://creativecommons.org/licenses/by-nc/4.0/


 8 

strongly associated with the raw data than with the smoothed data (in which the CNV will be 1 
smoothed within a broader region, thus decreasing association). Furthermore, it may have 2 
much stronger association with windows removed during replication timing data processing.  3 

We computed the association p-values of the tag variant of each rtQTL with the (1) smoothed 4 
data within the associated region, (2) filtered raw data within the associated region, and (3) 5 
data that were removed during data processing within 1 Mb upstream or downstream of the 6 
associated region (referred to as “removed data” below).  7 

Putative rtQTLs must satisfy all of the following criteria to be included in the final list of rtQTLs:  8 

(1) In the raw data, the tag variant must be associated (p < 0.05) with at least five windows.  9 
(2) The minimum p-value of the raw data must be higher (i.e., less significant), or no more 10 

than one order of magnitude lower, than that of the smoothed data.  11 
(3) The minimum p-value of the removed data must be higher, or no more than one order of 12 

magnitude lower, than that of the raw data. This criterion is relaxed to two or four orders 13 

of magnitude for rtQTLs with top p-value £ 5´10-6 and £ 5´10-8, respectively. 14 
(4) No more than two windows in the removed data have p-values lower than the minimum 15 

p-value for the raw data. This criterion is relaxed to three windows for rtQTLs with top p-16 

value £ 5´10-8. 17 

(5) The minimum p-value from the raw data must be less than 0.01.  18 
(6) The associated region must be larger than one replication timing window.  19 

In total, we identified 608 ESC rtQTLs, among which 603 were on autosomes and five were on 20 
the X chromosome in males. No rtQTLs were found on the X chromosome in females. This 21 
was not due to the reduced number of individuals tested, but likely resulted from the less 22 
structured replication timing profiles attributed to the female inactive X chromosomes: the 23 
similar-sized chromosome 7 had ten rtQTLs in the 50 male samples, not significantly different 24 
than the male X chromosome (p = 0.31, Fisher’s exact test), while there were fifteen rtQTLs on 25 
chromosome 7 in 66 female samples, significantly more than the none found on the female X 26 

chromosome (p = 7.41´10-5). We identified 1,167 iPSC rtQTLs. The nominal p-value of rtQTLs 27 

ranged from 1.02´10-69 to 9.63´10-4 (106 and 218 rtQTLs [17.4% and 18.7%] had p £ 5´10-8 in 28 

the ESC and iPSC dataset, respectively). The early- and late-replicating alleles were equally 29 
likely to be the reference allele (binomial p = 0.55), thus rtQTL mapping was not influenced by 30 
reference mappability bias. 31 

 32 

Prioritizing causal genetic variants  33 

For each rtQTL, CAVIAR21 was used to produce a shortlist of possible causal SNPs at 90% 34 
probability, from all SNPs in LD with the tag variant of the rtQTL (r2 ≥ 0.2). The shortlisted 35 
SNPs were used in all enrichment analyses.  36 

 37 
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 9 

rtQTL classification 1 

We classified each rtQTL as affecting peak (initiation site), valley (terminus), or slope 2 
(transition region). For each rtQTL, we identified the replication timing loci that have large 3 
difference in replication timing (at least 90% of the maximum difference) between the early-4 
replicating and late-replicating individuals (denoted as the “most variable replication timing 5 
loci”). We then calculated “fractional distance” of these loci along the peak-to-valley interval in 6 
which they reside. If a replication timing locus, with position a, resides in the interval between a 7 
peak (with position b) and a valley (with position c), its fractional distance was calculated as a 8 
minus b, divided by c minus b. We considered an rtQTL as affecting an initiation site if the 9 
fractional distance of at least one of the most variable replication timing loci was less than 0.3. 10 
Conversely, we considered an rtQTL as affecting a valley if the fractional distances of all of the 11 
most variable replication timing loci were greater than 0.7. rtQTLs that did not fall into either of 12 
these two categories were categorized as affecting slopes.  13 

We further classified rtQTLs that affect peaks based on whether the top rtQTL SNP was 14 
located proximal or distal to the peak. Specifically, we calculated fractional distance of the top 15 
rtQTL SNP for each rtQTL that affect peaks, using the same approach as described above. 16 
The top rtQTL SNP was considered proximal to the peak if its fractional distance was less than 17 
0.3 and was considered distal to the peak otherwise.  18 

 19 

Merging ESC and iPSC rtQTLs 20 

We combined ESC and iPSC rtQTLs for a number of analyses. To minimize double counting of 21 
rtQTLs discovered in both datasets, we generated a merged rtQTL list for these analyses. This 22 
list excluded iPSC rtQTLs that met the following criteria: (1) a genetic variant that belongs to 23 
the given iPSC rtQTL and has a p-value no more than two orders of magnitute higher than the 24 
top p-value of the iPSC rtQTL also belongs to a ESC rtQTL, and (2) the direction of effect of 25 
the given genetic variant is the same in the iPSC and ESC datasets. We merged the 608 ESC 26 
rtQTLs and 1,167 iPSC rtQTLs into a list of 1,617 combined rtQTLs.  27 

 28 

Validation of rtQTLs 29 

To validate the iPSC rtQTLs, we examined their reproducibility in the Merkle_batch1 ESC 30 
dataset (108 European ancestry samples only). Validation was performed using fastQTL64 by 31 
testing the association between the strongest rtQTL SNP and the replication timing locus 32 
closest to the locus with the strongest association in the discovery set (HipSci iPSCs). Three 33 
genotype PCs and 24 phenotype PCs were included as covariates. When the strongest rtQTL 34 
SNP was not available in the validation dataset (Merkle_batch1 ESCs), an rtQTL SNP from the 35 
same rtQTL that has p-value less than two orders of magnitude higher than that of the 36 
strongest rtQTL SNP was used instead. We found that the -log10(p-values) of rtQTLs are highly 37 
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 10 

correlated between the discovery and validation datasets (r = 0.75, p = 1.28´10-176). We then 1 
repeated this analysis in the opposite direction (validate ESC rtQTLs using HipSci iPSCs) and 2 

obtained similar results (r = 0.76, p = 7.81´10-113). These observations support that the rtQTLs 3 
identified in this study are highly reproducible.   4 

We also used three additional datasets to validate ESC rtQTLs. The first dataset contains 9 5 
hESCs in Merkle_batch2 and the 8 hESCs in Merkle_batch1 that were excluded in rtQTL 6 
mapping due to ancestry. The second and third datasets are the in-house hESC and iPSC 7 
dataset, respectively.  8 

For the first dataset, validation was performed in fastQTL. Validation using the second and 9 
third datasets were performed in MATLAB by calculating the Pearson correlation p-value 10 
between the strongest rtQTL genetic variant and the replication timing locus with the strongest 11 
association in the discovery set. We tested rtQTLs of which the top genetic variant was 12 
polymorphic and had all three genotypes in the validation dataset. rtQTLs were excluded if the 13 
alternative allele of the top genetic variant in the validation dataset was not consistent with that 14 
of in the discovery set. This left 427 regions that could be tested in the third dataset, and 396 15 
regions in the fourth dataset. Replication timing of these two datasets were inferred using 16 
GenomeSTRiP (as described above) in 2.5Kb windows of uniquely alignable sequence59. For 17 
each sample, windows with copy number >3 or <1 were removed. We used a segmentation 18 
algorithm (segment in MATLAB) to further remove outlier data points (segments with 19 

mean >2.45 or <1.55 were removed). The data was then smoothed using cubic smoothing 20 
spline with parameter 10-17.  21 

We considered an rtQTL as “validated” if it was associated with replication timing with nominal 22 
p < 0.05 and had the same direction of effect in at least one of the validation datasets. The 23 
binomial test was used to assess significance of the number of validated rtQTLs, with binomial 24 
parameter calculated as 1–(1–0.05/2)4 = 0.0963 (i.e., the probability under random chance that 25 
an rtQTL will be validated in at least one dataset).  26 

 27 

SMARD 28 

SMARD analysis was carried out as previously described22. Briefly, cells were pulse labeled 29 
sequentially with 25 μM IdU and CldU. The cells were then embedded in 1% InCert agarose 30 
and lysed. The remaining embedded genomic DNA was digested with restriction 31 
endonucleases. Pulsed field gel electrophoresis (PFGE) was used to separate DNA according 32 
to size. The segment containing the locus-of-interest was identified with Southern blot and the 33 
gel slice was excised. Agarose was then melted, and individual DNA strands were stretched 34 
on silanized glass slides. Immunostaining was employed to detect the halogenated nucleotides 35 
in the replicated DNA. Biotinylated FISH probes were used to identify DNA molecules 36 
containing the locus-of-interest.  37 

 38 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 10, 2020. ; https://doi.org/10.1101/2020.05.08.085324doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.08.085324
http://creativecommons.org/licenses/by-nc/4.0/


 11 

Multi-rtQTLs  1 

To identify multi-rtQTL regions, we considered separate rtQTLs to be associated with the same 2 

region if the replication timing loci most strongly associated with them were correlated (R2 ³ 3 

0.2) across individuals, were in physical proximity (< 2 Mb apart), and each provided additional 4 
explanatory power for replication timing. Secondary rtQTLs were either not in LD with the 5 
primary ones (130 and 265 multi-rtQTL regions in the ESC and iPSC dataset, respectively), or 6 
provided additional explanatory power despite being in LD (5 cases in ESC and 10 cases in 7 
iPSC).  8 

Some analyses were performed with ESC and iPSC multi-rtQTL regions combined. To avoid 9 
double-counting in these analyses, we excluded iPSC multi-rtQTL regions that has at least one 10 
rtQTL that was also found in the ESC dataset. We combined 135 ESC and 275 iPSC multi-11 
rtQTL regions into 318 multi-rtQTL regions.  12 

We examined the possible interaction between primary and secondary rtQTLs in regions with 13 
two, three, and four rtQTLs. If there was no interaction, we expect that the replication timing in 14 
these regions will be positively linearly correlated with the dosage of early-replicating alleles. 15 
To enable pooling of multi-rtQTL regions for Fig. 2E and 2F, we normalized replication timing 16 
for the loci with strongest association with the primary rtQTL of each multi-rtQTL region to Z-17 
score (by subtracting the mean and dividing by the standard deviation of replication timing of 18 
this locus among samples) and denoted them as relative replication timing. They were pooled 19 
and linear regression analysis was performed using the R lm function. 20 

We used a likelihood-ratio test to assess whether the additive or synergistic models better 21 
explained replication timing at multi-rtQTL regions. We tested the null hypothesis by which 22 
replication timing is proportional to the number of early-replicating rtQTL alleles carried by an 23 
individual at a multi-rtQTL region (additive effect), against the alternative, by which replication 24 
timing is more extremely biased in individuals carrying multiple early (or late) rtQTL alleles 25 
(synergistic interaction). We used 58 regions that harbored two rtQTLs and had at least one 26 
individual with zero and one with four early-replicating alleles. We fitted two linear models, with 27 
the response variable being replication timing and explanatory variable being genotype 28 
dosage. In the null (additive) model, genotype dosage was between zero to four, matching the 29 
number of early-replicating alleles that individual carried. In the alternative (synergistic) model, 30 
genotype dosages of individuals carrying zero or four early-replicating alleles were estimated 31 

from actual data. We then compared −2´(log likelihood ratio) with the chi-squared distribution 32 
with two degrees of freedom to obtain a p-value. 33 

We examined whether the primary and secondary rtQTLs in ESC were in close spatial 34 
proximity in nuclear space. We obtained Hi-C contact matrix of the H1 cell line from Juicebox66 35 
and computed contact score between each pair of primary and secondary rtQTLs. We 36 
compared the median of these scores with 100 permutations, in which the distances between 37 
primary and secondary rtQTLs were preserved but actual genomic locations were randomly 38 
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shifted between 1 and 2 Mb up- or downstream. P-value was computed using Z score, with 1 
mean and standard deviation estimated from the permutations. 2 

 3 

Epigenetic enrichment analyses 4 

Data sources 5 

Chromatin state and histone mark data for eight human ESC lines (seven of which are 6 
included in our primary replication timing data) and five human iPSC lines were obtained from 7 
the Roadmap Epigenomics Project39. For the analyses of overall enrichment of epigenetic 8 
features at rtQTL locations, we combined (i.e., took the union of) histone peaks and chromatin 9 
state calls from the eight cell lines. For histone marks, observed data was used when 10 
available, and imputed data (from ChromImpute40) was used when observed data was not 11 
available. Imputed data were used for plotting of histone tracks. Binding site information for 51 12 
TFs was obtained from the ENCODE Project43. SOX2 binding site information was obtained46. 13 
TFs with binding sites that overlapped < 15 rtQTLs were excluded from this analysis. 14 

 15 

Enrichment calculations 16 

For each feature (chromatin state, histone marks, TF, etc.), we are interested in the number of 17 
rtQTLs that have at least one SNP overlapping with the feature, and whether this is more or 18 
less likely (i.e., enriched or depleted) than expected by chance. Statistical significance was 19 
assessed with one-tailed binomial test. The binomial parameter p was estimated from 100 20 
random permutations, from which we estimated the probability of random SNPs (matched with 21 
the rtQTLs, see details below) overlapping with the feature. Correction for multiple testing was 22 
applied when multiple features from the same category (e.g., histone marks) were tested.  23 

For each rtQTL, we searched for random SNPs that match the characteristics of the tag variant 24 
of the rtQTL (denoted as “actual tag variant”) and used the matched variants (“matched tag 25 
variants”) to tag the random sets of SNPs used in permutations. We required that the matched 26 
tag variants must be at least 2 Mb away from the actual tag variant. The matched tag variants 27 
must also have satisfied all three following criteria: (1) have similar minor allele frequency (< 28 
5% difference), (2) have similar distances to the nearest replication initiation site and terminus 29 
(< 50 kb difference), and (3) have similar replication timing (< 0.5 units difference) with the 30 
actual tag variant. We require the matched tag variants to have the same number, or more, 31 
SNPs in LD (r2 ≥ 0.2) than the actual tag variant.  32 

In each permutation, and for each rtQTL, we constructed a set of random SNPs using SNPs in 33 
LD with a randomly selected matched tag variant. The number of variants in the set is the 34 
same number of variants included in the actual rtQTL. Eleven (1.82%) rtQTLs in hESC and 41 35 
(3.51%) rtQTLs in iPSC that had less than 200 matched tag variants genome-wide were 36 
excluded from the analysis.   37 
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Enrichment analyses were also repeated using epigenetic data from one hESC line only (as 1 
opposed to combining data from eight hESC lines), with consistent results. 2 

 3 

Using epigenetic features to predict replication initiation site locations 4 

Identification of epigenetic feature combinations   5 

To identify combinations of chromatin marks enriched at rtQTLs, we used a stepwise, iterative 6 
approach. The hESC rtQTLs and epigenetic data were used. We considered 29 histone marks 7 
(Fig. S2C) and also included H2A.Z, DNase I hypersensitivity, and binding sites of 51 TFs and 8 
other DNA binding factors (referred to as TFs for simplicity).  9 

First, we tested each individual epigenetic feature (histone mark or TF) to identify features that 10 
are enriched at rtQTL SNPs. Enrichment was examined using the same permutation-based 11 
approach described above. The only difference was that each rtQTL individual SNP was 12 
considered independently (as opposed to being considered together with other SNPs assigned 13 
to the same rtQTL), as our goal was to identify co-occurrence of epigenetic features at the 14 
same exact genomic locations. Statistical significance was assessed using Fisher’s exact test. 15 
We corrected for multiple testing at 5% FDR using the Benjamini-Hochberg correction.  16 

Next, for each enriched feature identified in the first step, we examined whether the pairwise 17 
combination of this feature and any of the other epigenetic features has stronger enrichment. 18 
Specifically, we restricted the enrichment analysis to the rtQTL SNPs that carry the enriched 19 
feature and tested whether the additional epigenetic feature is enriched in the set of restricted 20 
rtQTL SNPs. This step was repeated iteratively, each round restricting the analysis to the 21 
enriched combinations of epigenetic features identified in the previous round, until no further 22 
enrichment was found. In Fig. 3A, combinations containing TFs were not included for simplicity 23 
and since they were not carried through to the four- and five-mark combinations. 24 

To identify “me3achyper” regions, we first identified regions that carry one of the 13 five-mark 25 
combinations and kept regions that overlap with peaks from at least 11 variable acetylation 26 
marks. We merged me3achyper regions that co-occurred within 10 kb. In Fig. S4A–C, the 27 
position of initiation sites found in >10% of the samples were determined based on local 28 
maxima in the averaged replication timing profile. When calculating distances (fractional and 29 
physical), distance was set to zero for me3achyper regions that overlap with an initiation site (i.e., 30 
the interval between boundaries of the initiation sites). If a me3achyper region does not overlap 31 
with any initiation site, its physical distance was calculated as the distance to the nearest 32 
initiation site boundary. To explore the independence of the replication initiation histone code 33 
from gene expression, we divided me3achyper regions into two classes, based on whether there 34 
were TSS of expressed gene(s) (mean RPKM in ES cell lines > 0.5) within a given me3achyper 35 
region. RNA-seq data was obtained from the Roadmap Epigenomics Project39. We then 36 
compared the positive predictive value for these two classes of me3achyper regions. 37 
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 1 

Receiver Operating Characteristic (ROC) curves 2 

To obtain ROC curves, we used various thresholds (see below) to predict whether a replication 3 
timing window corresponds to a replication initiation site. Specifically, we predict a window as 4 
being an initiation site if it was located within k kb of a me3achyper region (in hESCs and iPSCs) 5 
or a region that carries the H3K4me3-H3K9me3-H3K36me3 combination (in LCLs). We used 6 
various values for k, from 0 to 2,000. We then compared the prediction with actual data 7 
(whether the replication timing windows fell within the boundaries of the identified initiation 8 
sites) to calculate true and false positive rates. For permutations, we randomly shifted the 9 
locations of the me3achyper regions between 1 Mb and 2Mb and obtained ROC curves and 10 
AUCROC based on these random intervals.  11 

 12 

Replication initiation site prediction in LCLs and iPSCs 13 

We assessed the generalizability of the replication initiation histone code in LCLs and iPSCs. 14 
LCL is a cell type that has a distinct epigenetic and replication landscape from hESC 15 
lines23,67,68, and iPSCs have similar but not identical to replication timing profiles to hESCs (r = 16 
0.90). Replication timing profile for the GM12878 LCL and 192 unrelated iPSCs were inferred 17 
from whole-genome sequencing data19,45. For iPSCs, initiation site locations were identified 18 
based on the averaged iPSC replication timing profile. When calculating physical distance of 19 
predicted initiation sites to actual initiation sites, we defined initiation site boundaries as 100 kb 20 
upstream and downstream of the local maxima in the replication timing profiles. Data for 21 
H3K4me3, H3K9me3, and H3K36me3 for the GM12878 LCL was from the ENCODE Project43. 22 
Additional data of H3K4me3 and H3K36me3 for 18 LCLs was obtained from44, and merged 23 
with the ENCODE data. Histone mark data for five iPSCs was from the Roadmap Epigenomics 24 
Project39. If a histone code location was found in one cell type (either hESC or LCL), but no 25 
histone code location was found within 100 kb in the other cell type, we denoted this region as 26 
cell-type-specific. Otherwise, this region was denoted as “shared” between the two cell types.  27 

 28 

Identification of features associated with replication timing 29 

Chromatin states and histone marks 30 

Replication timing data was available for seven of the eight hESC lines that were analyzed in 31 
the Roadmap Epigenomics Project. Using rtQTL and epigenetic data from these seven cell 32 
lines, we designed an analysis to identify chromatin states and histone marks associated with 33 
replication timing. The rationale is that epigenetic features promoting earlier replication would 34 
be more likely to be carried by early-replicating-associated rtQTL genotypes, and vice versa for 35 
late replication. We were only able to perform this analysis for hESC rtQTLs because we did 36 
not have replication timing, genotype, and epigenetic data for the same iPSC lines.  37 
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We aggregated information from all rtQTL SNPs, except those that are monomorphic in the 1 
seven cell lines. We assigned each cell line by genotype to one of three categories, i.e., early-2 
replicating, heterozygous, and late-replicating, at each rtQTL SNP. For each epigenetic 3 
feature, we tested whether the cell lines carrying the early-replicating genotypes are more (or 4 
less) likely to harbor it than the cell lines carrying the late-replicating genotypes, using the two-5 

tailed binomial test. The binomial parameter p was calculated as plate ´ (pperm_early / pperm_late), 6 
where plate is the proportion of late-replicating genotypes carrying this feature, and pperm_early 7 
and pperm_late are estimated from ten permutations (described below). Bonferroni correction was 8 
used to correct for multiple testing at the 0.05 level. 9 

In each permutation, we used random SNPs matched for rtQTLs (for details see the 10 
“enrichment analyses” section), and randomly designated one genotype as the early-11 
replicating genotype. We obtained genotype and epigenetic information from the seven cell 12 
lines at these random SNPs and calculated the proportion of early- and late-replicating 13 
genotypes carrying the feature in ten permutations (pperm_early and pperm_late). 14 

We examined the relationship between early-replicating genotypes and expression of nearby 15 
genes (within 200 kb of rtQTLs). Array-based expression data was obtained for nine ES cell 16 
lines69 for which replication timing data was also available. Genes with mean expression 17 
level > 1 were used, and expression level was normalized within each gene. We aggregated 18 
the expression levels of all genes near all rtQTLs for the nine ES cell lines (except for rtQTLs 19 
that were monomorphic in these cell lines), and tested the correlation between expression 20 
level and the number of early-replicating alleles.  21 

 22 

Transcription factors 23 

To identify TFs that regulate replication timing, we tested whether rtQTL alleles (in the CAVIAR 24 
90% causal set) influence the binding affinity (motif score) of 21 TFs70. Under the hypothesis 25 
that some rtQTLs function by altering sequence motifs of TFs that promote or repress 26 
replication, early-replicating alleles will be more likely to have higher binding affinities than late-27 
replicating alleles to the TFs that promote earlier replication, and vice versa for late-replicating 28 
alleles. We used this principle to identify TFs associated with replication timing. We tested the 29 
motifs of all TFs studied in Fig. S5A, if available. Of note, SOX2 was not included in this 30 
analysis because its motif information was not available. This analysis was repeated with iPSC 31 
rtQTLs. We were not able to perform the analysis described above for chromatin states and 32 
histone marks with TFs because TF ChIP-seq data was only available for one hESC or iPSC 33 
line.  34 

TF binding affinity data, measured by motif score, was obtained from HaploReg70. Sequence 35 
logos for TF binding motifs were created using WebLogo 371. For each rtQTL SNP, motif 36 
scores of the two alleles were obtained for the TFs, and their difference is the log2 fold 37 
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difference in probability that the allele is in a binding motif of the given TF. Higher difference in 1 
motif scores means that this SNP can more substantially alter the binding affinity of this TF.  2 

For each TF, we counted the weighted number of rtQTLs for which the early-replicating (or the 3 
late-replicating) allele had higher predicted binding affinity, weighted by the difference in motif 4 
scores between the two alleles, i.e., rtQTLs with a higher motif score difference will have 5 
heavier weight. This weighting scheme assigns heavier weights to those rtQTLs for which the 6 
changes in allele state will result in more substantial change in TF binding affinity. If there were 7 
more than one potential causal SNPs of an rtQTL located within binding motifs of a given TF, 8 
the SNP with the lowest p-value was used. We compared the numbers to permutations, in 9 
which SNPs matched for rtQTLs were randomly selected and the early-replicating alleles were 10 

randomly assigned, using the chi-squared test for a 2´2 contingency table. This test assesses 11 

whether the early-replicating alleles are more (or less) likely to have higher TF binding affinity 12 
than late-replicating alleles than expected by chance. Benjamini-Hochberg correction at 10% 13 
FDR was used to correct for multiple testing. 14 

For OCT4, NANOG, and CTCF (for which there are abundant ChIP-seq data available in 15 
hESC), we repeated this analysis using only motifs that overlap with TF ChIP-seq peaks (i.e., 16 
confirmed TF binding). Consistent with the results in Fig. 6A, we found that OCT4 and NANOG 17 

were significantly more likely to bind early-replicating alleles (p = 5.97´10-7 and 2.62´10-15; log2 18 

ratio improved from 0.27 and 0.29 to infinity and 2.58, respectively), while CTCF was 19 
significantly more likely to bind late-replicating alleles (p = 0.02, log2 ratio improved from -0.22 20 
to -1.19).  21 

 22 

Supplementary Figures were included in the main text near where they were mentioned.  23 

 24 

Table S1. List of rtQTLs Identified in This Study. 25 

For the last column (“classification”), “VALLEY” or “SLOPE” denotes that this rtQTL affects valley or slope, 26 
respectively. “PEAK (SNP proximal)” or “PEAK (SNP distal)” denotes that this rtQTL affects peak, and the top 27 
rtQTL SNP is proximal or distal to the peak, respectively.  28 

This table is provided in a separate Excel spreadsheet.  29 

 30 
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