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Abstract:  

Oncogenes are only transforming in certain cellular contexts, a phenomenon called oncogenic 

competence. The mechanisms regulating this competence remain poorly understood. Here, using 

a combination of a novel human pluripotent stem cell (hPSC)-based cancer model along with 

zebrafish transgenesis, we demonstrate that the transforming ability of BRAFV600E depends upon 5 

the intrinsic transcriptional program present in the cell of origin. Remarkably, in both systems, 

melanocytes (MC) are largely resistant to BRAF. In contrast, both neural crest (NC) and 

melanoblast (MB) populations are readily transformed. Molecular profiling reveals that NC/MB 

cells have markedly higher expression of chromatin modifying enzymes, and we discovered that 

the chromatin remodeler ATAD2 is required for response to BRAF and tumor initiation. ATAD2 10 

forms a complex with SOX10, allowing for expression of downstream oncogenic programs. 

These data suggest that oncogenic competence is mediated by developmental regulation of 

chromatin factors, which then allow for proper response to those oncogenes. 

 

Main Text:  15 

Alterations to DNA structure, including mutations, copy number variations and gene fusions are 

typically considered initiating events in most human cancers (1). However, these alterations are 

layered onto existing transcriptional programs in the cell of origin. The importance of these pre-

existing cellular lineage programs is highlighted by the fact that certain DNA mutations are only 

tumorigenic in certain cell types (2, 3), which we refer to as oncogenic competence. 20 

In melanoma, it has been shown that tumor initiation by BRAFV600E activates a neural crest 

lineage program (4, 5, 6, 7). In particular crestin, a gene that is specifically expressed in neural 
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crest cells and is downregulated later during embryonic development, is reactivated in melanoma 

initiating cells and then maintained in the tumor (6). The activation of NC-lineage specific 

mechanisms (4-10) together with oncogene mutations such as BRAFV600E are fundamental for 

the acquisition of a malignant state (11, 12). However, it is not known why a NC-like state is 

required and particularly susceptible to oncogenic transformation by BRAF and what the factors 5 

are regulating this state. 

Lineage programs are centrally intertwined with the cell of origin. Within a developmental 

lineage, cells can exist along a wide spectrum of differentiation states. After emergence from the 

neural crest, migrating neural crest progenitors give rise to populations of melanoblasts, 

melanocyte stem cells, or differentiated melanocytes. Which cell along that spectrum is 10 

intrinsically capable of giving rise to melanoma even above and beyond the influence of extrinsic 

microenvironmental factors has been a matter of debate (13, 14, 15). Here, we asked what 

mechanisms define melanoma competence and how it is regulated. 

 

Zebrafish models show that NC and MB, but not MC, are oncogenic competent 15 

The melanocyte lineage develops as a hierarchy of cells that start as undifferentiated neural crest 

cells, proceeding through a melanoblast stage and then finally differentiating into mature, 

pigmented melanocytes. To understand which cells within this lineage are most sensitive to an 

oncogenic insult, we engineered zebrafish to initiate tumors in either neural crest (NC), 

melanoblasts (MB) or melanocytes (MC) by using stage-specific promoters to drive BRAFV600E. 20 

We used the sox10 promoter to drive BRAFV600E expression in the NC, the mitfa promoter to 

drive it in the MB and the tyrp1 promoter to drive it in the MC. These transgenic constructs were 

injected into 1-cell embryos of a p53-/- deficient background, and the animals were allowed to 
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grow up to adulthood to monitor for tumor formation (Fig. 1A). We found that animals that 

expressed the BRAFV600E oncogene either in the NC cells or the MB developed aggressive 

tumors (Fig. 1B, 1C, 1D, fig. S1A and S1B) with nearly 100% penetrance in the NC lineage 

(Fig. 1B). Surprisingly, the tyrp1:BRAFV600E;p53-/- transgenic animals failed to develop tumors, 

but instead developed small patches of nevus-like cells (Fig. 1B, 1E, 1H, 1K and fig. S1C). We 5 

analyzed both the NC- and the MB-derived tumors and found that they stained equally for pERK 

(Fig. 1I, 1J), indicating that the BRAF pathway (Fig. 1F, 1G) was being activated. H&E showed 

that the NC- and MB-derived tumors were histologically distinct (fig. S1A, S1B). The NC-

derived tumors appeared undifferentiated and with little melanin. Immunohistochemistry showed 

that the NC-derived tumors were predominantly positive for the neuronal markers huc/hud and 10 

ncam and sparsely for sox10 (Fig. 1L, 1N, 1P), likely reflecting the multipotency of the NC (16, 

17, 18) and resembling reports of melanoma with neuronal type differentiation (19, 20). On the 

contrary, the MB-derived tumors had an appearance characteristic of typical cutaneous 

melanoma, with numerous pigmented areas, and they stained positive for not only sox10 (Fig. 

1M), as previously shown for most melanomas (8, 21), but also positive for mlana (Fig. 1Q), 15 

while being negative for the neuronal markers huc/hud (Fig. 1O). To further confirm the 

differences between the NC- and MB-derived tumors, we performed RNA-seq and found that 

these tumors clustered separately from each other by PCA and hierarchical clustering (Fig. 1R, 

fig. S1D and table S1). Examination of specific pathways in each tumor revealed that, consistent 

with our immunohistochemistry, the NC-derived tumors expressed neuronal genes while the 20 

MB-derived melanomas expressed genes related to the melanocytic lineage (fig. S1E). We 

performed Gene Set Association Analysis (GSAA) and confirmed that NC-derived tumors 

displayed a strong neuronal phenotype and a gene signature that characterizes poor survival in 
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neuroblastoma (fig. S1F) (22). These data suggest that competence to respond to BRAFV600E is 

biased towards cells of origin exhibiting either a NC or MB gene program, that these give rise to 

distinct tumors, and that MC are relatively resistant to this insult. 

 

A hPSC-based cancer model recapitulates the zebrafish models 5 

Because mouse studies routinely use MC promoters to efficiently drive melanoma (i.e. the tyr-

Cre line, 23), this raised the question of whether the above findings were unique to the zebrafish 

system. To interrogate this, we developed a novel human cancer paradigm based on the use of 

hPSCs to model oncogenic competence for melanoma in a manner similar to the zebrafish 

studies. We previously demonstrated that hPSCs can be progressively differentiated into NC 10 

cells, MB or MC (24). We used gene targeting in hPSCs to introduce oncogenic BRAFV600E and 

to inactivate the tumor suppressors RB1, TP53 and P16 (referred to hereafter as 3xKO cells) 

(Fig. 2A). These 3xKO engineered cells were then differentiated into NC cells, MB and mature 

MC (24, 25) (Fig. 2A and fig. S2A, S2B) and BRAFV600E induced by doxycycline (fig. S2L). 

Western blot analysis for pERK demonstrated equal activation of the BRAF pathway across all 15 

three cell types (Fig. 2B), similar to the results in the zebrafish studies above. To test their 

tumorigenic capacity, we transplanted each of three cell types subcutaneously in 

immunodeficient NOD-scid IL2Rgammanull (NSG) mice, a model that has been used before to 

assess the tumorigenic potential of the cells (26, 27), and the mice were exposed either to a dox-

containing or to a normal diet. Similar to the zebrafish, we found that both NC cells and MB 20 

expressing BRAFV600E in 3xKO background readily formed tumors in the mice (Fig. 2C, 2D), 

but that the 3xKO MC largely failed to do so, with only a single animal developing a tumor 

under this condition (Fig. 2E). Residual cells from the site of MC transplant at day 197 post 
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injection showed features of a benign nevus-like structure consistent with them becoming 

senescent over time (fig. S2K). As a control, we also transplanted wildtype (WT) NC cells, MB 

and MC and found that these were unable to grow in vivo, as expected (data not shown). We 

performed histological analysis of the NC- and MB-derived tumors (Fig. 2F-S and fig. S2C-J) 

and found high level expression of BRAFV600E and pERK in both (Fig. 2F-2I). Analogous to the 5 

zebrafish tumors, the human PSC-based 3xKO NC cells gave rise to tumors that showed a strong 

preponderance of neuronal markers (Fig. 2P, 2R), whereas the 3xKO MB were positive for all 

the common markers of melanoma and were pathologically categorized as desmoplastic 

melanomas (Fig. 2K, 2M, 2O). We performed Gene Set Enrichment Analysis (GSEA), and we 

found that NC cells were transcriptionally similar to the NC-derived tumors in the fish (Figure 10 

S3B) and that MB were transcriptionally similar to the MB-derived tumors in the fish (fig. S3C), 

which further corroborated the comparability between the zebrafish and the hPSC-derived cancer 

models. To ensure that our hPSC-derived tumors are relevant to human patients, we performed 

RNA-seq of the BRAFV600E 3xKO NC cells, MB and MC and compared their expression profiles 

to data from The Cancer Genome Atlas (TCGA), using a published signature for melanoma 15 

subgroups (28). Strikingly, we observed that the hPSC-derived 3xKO dox NC cells and 3xKO 

dox MB strongly clustered with the human melanoma patient samples (Fig. 2T), whereas the 

hPSC-derived 3xKO dox MC did not. Interestingly, we unexpectedly found that the 3xKO NC 

cells and 3xKO MB, even without BRAFV600E induction, could form tumors in mice indicating 

that loss of tumor suppressors alone gives these cells enough of a proliferative advantage to grow 20 

in this context. As mentioned, we did find a single animal that grew a tumor after transplant with 

3xKO MC, but exome sequencing showed that this single tumor had gained copy number 

alterations in MYC (padj=2.30E-15) (data not shown), among other genomic changes, likely 
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contributing to its capacity to grow in vivo. Thus, similar to what we found in the zebrafish, 

tumorigenic capacity in our novel human melanoma model is strongly biased towards NC or MB 

lineage, and that MC are relatively refractory to tumorigenesis although can be coaxed to do so 

with additional genetic lesions. 

 5 

NC/MB cells have strong transcriptional responses to BRAF, but MC have little, despite 

comparable activation of pERK 

To gain insight into why these cells differed in oncogenic competence, we performed RNA-seq 

of NC, MB and MC cells ± BRAFV600E on both the WT and 3xKO background. We observed that 

dox-induced BRAFV600E expression caused dramatic transcriptional changes in both the NC and 10 

MB (Fig. 2U, 2V, 2W, 2X, fig. S3A and S3D). In contrast, the transcriptional response to BRAF 

in MC was nearly absent, with only few genes being altered (23 genes upregulated (padj < 0.01) 

and 114 downregulated (padj < 0.01)) (Fig. 2Y, 2Z, fig. S3A, S3D and table S2). Thus, despite 

equally robust activation of pERK across all three cell types (as above in Fig. 2B), this indicates 

that the MC state was refractory to eliciting a transcriptional response following oncogene 15 

activation. This refractoriness to BRAF was not because the MC were post-mitotic, as 

proliferation of the 3xKO ± dox MC was comparable to the proliferation of 3xKO NC cells (see 

Fig. 5G). Because pERK ultimately acts to promote tumorigenesis via activation of downstream 

transcriptional responses, it appears that the failure of MC to be transformed is likely related to a 

failure of BRAF-dependent transcriptional induction in this lineage. This raised the question of 20 

what was intrinsically different between these cell types. To address this, we performed RNA-

seq on WT NC, WT MB and WT MC (i.e. no transgenes) and analyzed the differentially 

expressed genes by GSEA pathway analysis (table S2). Amongst the most enriched pathways 
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that separated the NC/MB cells from the MC was the GO term Chromatin modification (NES= 

1.901, FDR= 0.06, Fig. 3A). In examining individual genes which were enriched in these stages, 

we found a striking enrichment for many chromatin modifier genes, including readers (e.g. 

ATAD2, CHD9, BAZ1A), writers (e.g. EZH2, PRMT8, HDAC9) and erasers (e.g. JMJD1C, 

TET1, TET2), all of which were markedly higher in the NC/MB cells compared to the MC (Fig. 5 

3B and 3C). This suggested the possibility that the NC/MB cells might have intrinsically higher 

capability to rewire their chromatin state in response to BRAFV600E and render them competent 

for melanoma initiation. 

 

ATAD2 is a key chromatin modifier shared between NC/MB cells and melanoma cells 10 

To identify which of these chromatin factors is likely most important in establishing competence, 

we analyzed the top 50 epigenetic-related factors that are higher in MB compared to MC (Fig. 

3C) and then asked which of these is most commonly amplified or overexpressed in the human 

melanoma TCGA cohort. This analysis demonstrated that the top gene was ATAD2, an ATPase- 

and bromodomain-containing protein (29), which was altered in 20.4% of melanoma patients 15 

(Fig. 3D). We further asked if expression of ATAD2 correlated with patient survival and found 

that patients in the highest 20% of expression had significantly worse survival compared to the 

remaining patients (Fig. 3E and fig. S6A). Although there is no available information about 

ATAD2 in neural crest or melanoma development, these data nominated it as a key factor for 

promoting oncogenic competence in the NC/MB lineage. 20 
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ATAD2 acts to reshape chromatin around key NC/MB loci 

We wished to determine if ATAD2 was required for establishment of the NC/MB state and 

subsequent tumorigenesis. We generated a lentivirus that induced ATAD2 expression in the 

3xKO MC (Fig. 4A) to a level comparable to what would be found in the NC cells or MB (fig. 

S4A). While MC without ATAD2 are deeply pigmented with melanin, reflecting their 5 

differentiated state, we noted that the 3xKO MC expressing ATAD2 lost their pigmentation (Fig. 

4B). This suggested that ATAD2 expression leads to a dedifferentiated state possibly via 

affecting chromatin accessibility of NC-related genes in MC (30-33) (Fig. 4B). To test this idea, 

we performed ATAC-seq on 3xKO dox MB, 3xKO dox MC and 3xKO ATAD2 dox MC to 

assess global changes in chromatin accessibility. While MC had generally more open chromatin 10 

compared to MB, the addition of ATAD2 to the MC did not lead to a global increase in open 

chromatin (fig. S4B and S4C). Instead we found that overexpression of ATAD2 in the MC led to 

a significant increase in chromatin accessibility specifically at NC-related loci, to a level 

comparable if not greater than that found in the 3xKO dox MB themselves (Fig. 4C). GSEA 

analysis of the affected loci in the 3xKO ATAD2 dox MC versus the 3xKO dox MC showed a 15 

significant enrichment of NC-related genes (Fig. 4D, 4E). To gain insight into the transcription 

factors that are binding to these newly opened chromatin regions, we performed HOMER 

analysis on the 3xKO ATAD2 dox MC versus 3xKO dox MC. Strikingly, this revealed that the 

top motif enriched by ATAD2 was SOX10 itself (Fig. 4F, 4H), suggesting that ATAD2 was 

specifically allowing for SOX10 to bind to its target genes. Analogously, we also asked which 20 

peaks became closed after expression of ATAD2 and found that these were most highly enriched 

for the MITF motif (Fig. 4G, 4I), consistent with the idea that ATAD2 was associated with 

dedifferentiation and a decreased ability of MITF to activate target genes typically associated 
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with differentiation. Network analysis of the loci most affected by ATAD2 and that carried the 

SOX10 motif showed a strong enrichment for pathways associated with neural precursor 

proliferation and NC migration (Fig. 4J). 

 

ATAD2 is necessary for NC induction 5 

Because SOX10 is essential for proper NC induction, these data suggested that loss of ATAD2 

might impair proper NC formation. To test this, we utilized the hPSC system in which we could 

differentiate cells into the NC in the presence or absence of sgRNAs targeting ATAD2. We 

utilized a previously described inducible iCas9 system (34, 35) to trigger the knockout during 

hPSC differentiation and found significant reduction with 2 different sgRNAs targeting ATAD2 10 

confirmed by both immunofluorescence (fig. S5A and S5B) and Western blot (fig. S5C). We 

measured the percentage of NC cells derived from the hPSCs in this assay and found a greater 

than 50% reduction in NC formation with the most potent sgRNA (fig. S5D), in agreement with 

its requirement for activation of the SOX10 program. When taken together with the observation 

that the 3xKO ATAD2 dox MC become less pigmented, these data are consistent with the notion 15 

that ATAD2 facilitates access to an early NC state, in part by increasing expression of SOX10 

target genes while decreasing expression of MITF target genes. 

 

ATAD2 forms a complex with SOX10, allowing for expression of NC genes 

We next asked how ATAD2 might facilitate expression of these NC target genes. Previous work 20 

has shown that ATAD2 is able to build a protein complex together with MYC and in this way 

regulate a MYC-dependent signature in different cancer cell lines (36). We hypothesized that 
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ATAD2 might be acting in a similar way with SOX10, by directly binding to it and facilitating 

transcription of its target genes. In support of this idea, we analyzed genes differentially 

expressed in the ATAD2HI vs. ATAD2LO patients from the TCGA cohort (Fig. 5A and fig. S6A). 

Pathway analysis revealed a strong MYC signature in the ATAD2HI patients (Fig. 5A, 5C and 

fig. S6B), and motif analysis showed enrichment of the SOX motif (Fig. 5B). To more directly 5 

test this hypothesis, we performed co-IP experiments. As previously described, we confirmed 

that ATAD2 forms a complex with MYC in the 3xKO ATAD2 dox MC (Fig. 5E). Importantly, 

we also found that ATAD2 and SOX10 are indeed bound in the same protein complex by co-IP 

(Fig. 5D). Based on these findings, we hypothesized that ATAD2 might play a dual role and 

facilitate the expression of target genes of both MYC and SOX10 transcription factors. To test 10 

this hypothesis, we performed qRT-PCR to measure expression of representative gene targets of 

both of these transcription factors in the presence or absence of ATAD2 and found a significant 

increase in expression of key genes such as CD271, ETS1, DDX21 and E2F1. Interestingly, we 

also noted increases in MYC and SOX10 itself, suggesting a possible feed forward mechanism 

(Fig. 5F). These data indicate that ATAD2 is a critical factor that enables oncogenic gene 15 

programs by interacting with both MYC as well as the NC lineage factor SOX10. 

 

ATAD2 promotes melanoma phenotypes 

Because SOX10 has previously been shown to be required for melanoma initiation, and its 

function is facilitated via ATAD2, we next wanted to test its role in melanoma initiation and 20 

progression. We first assessed in vitro cellular phenotypes using the hPSC-based system.  We 

expressed ATAD2 in the 3xKO MC to a level similar to endogenous expression in MB cells (fig. 

S4A) and we analyzed their proliferation rates by incorporation of EdU followed by FACS 
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analysis (Fig. 5G). We observed that 3xKO ATAD2 ± dox MC had a comparable proliferation 

rate to 3xKO dox MB and that they were significantly more proliferative than 3xKO dox MC. 

Both proliferation rates in 3xKO NC cells and MB increased upon BRAFV600E expression, while 

in the already highly proliferative 3xKO ATAD2 dox MC did not.  Noteworthy, in vitro 3xKO 

MC were not entering a senescent state upon BRAFV600E expression and their proliferation rate 5 

did not change. The increased proliferation in 3xKO ATAD2 ± dox MC was accompanied by an 

increase in invasion, as measured by the invasion chamber analysis (fig. S7A, S7B) and as 

supported by ATAC-seq gene signatures consistent with an epithelial-to-mesenchymal (EMT) 

program (fig. S7C, S7D). We also assessed the metabolic profile of these hPSC-derived tumor 

lines and found evidence of significant metabolic rewiring. We used Seahorse assays to measure 10 

mitochondrial bioenergetics and glycolysis via oxygen consumption rate (OCR) and the 

extracellular acidification rate (ECAR). The ratio between OCR and ECAR showed that 3xKO 

MB were mostly relying on glycolysis for energy production and that this trend was amplified by 

dox-induced oncogene expression (37-39). On the contrary, 3xKO MC displayed a profoundly 

different metabolic profile, with sustained oxidative metabolism. Strikingly, upon ATAD2 15 

expression, the 3xKO ATAD2 dox MC had a reduced oxygen consumption and instead switched 

to a more glycolytic state, as evidenced by an increased ECAR/OCR ratio (Fig. 5H and fig. S8). 

These phenotypes all support the notion that overexpression of ATAD2 triggers mechanisms that 

promote tumorigenic phenotypes. 

 20 

ATAD2 is required for melanoma initiation in vivo 

Given these in vitro phenotypes and the known reliance on SOX10 for melanoma growth, these 

data led us to ask whether loss of ATAD2 would prevent melanoma initiation. To do this, we 
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established a highly sensitive assay to image and quantify true tumor initiation, rather than 

monitoring the later steps of tumor progression. We recently developed a method called TEAZ 

(40) that allows us to initiate melanoma in the zebrafish skin via transgene electroporation. These 

transgenes can be activated in our previously developed transparent casper strain of zebrafish 

(41), such that we can directly visualize even a single cell as it becomes transformed by 5 

BRAFV600E. Into a focal region of the dorsal skin of the zebrafish, we electroporated plasmids 

that will activate mitfa along with BRAFV600E and a GFP marker. These were co-electroporated 

with recombinant Cas9 as well as either non-targeting (NT) sgRNAs or sgRNAs against the 

zebrafish ortholog of ATAD2 (Fig. 6A). The fish were then monitored from days 3 through 21 

post-electroporation, and each fish imaged using brightfield (BF) and GFP fluorescence. In the 10 

non-targeting controls, 65% of the fish developed a patch of GFP+ melanocytes (Fig. 6B, 6C and 

6D), easily discernible from the surrounding normal skin. In contrast, in the animals which were 

electroporated with sgRNAs against ATAD2, we found that most fish were negative for any GFP 

(Fig. 6B, 6C and 6E). Quantification of the GFP+ area on day 14 revealed a significant decrease 

in overall tumor size in the ATAD2 knockout compared with the control fish (Fig. 6B). Taken 15 

together, our data supports a model in which high levels of ATAD2 expression, which is found 

in NC/MB cells, supports the ability of BRAF to initiate tumors by its ability to enhance lineage-

specific programs in the cell of origin. 

 

Discussion 20 

In this study, we have established a new hPSC-derived melanoma model in concert with 

engineered zebrafish transgenics to investigate oncogenic competence. We showed that the 

ability of a cell to respond to BRAFV600E depends upon the pre-existing transcriptional state of 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 10, 2020. ; https://doi.org/10.1101/2020.05.09.081554doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.09.081554


 

15 
 

that cell, which is in turn dependent upon developmental state at the time of transformation. We 

find that both NC and MB stages are able to respond to BRAFV600E, and that ATAD2 is an 

oncogenic competence factor required for melanoma initiation. 

NC and MB cells are most susceptible to BRAFV600E and have intrinsically higher level 

expression of epigenetic modifiers, which include a diverse array of chromatin readers, writers 5 

and erasers. We hypothesized that this might impart these cells with a greater capability to 

transcriptionally respond to oncogenic insult. Consistent with this, our RNA-seq analysis 

demonstrated a robust response to BRAFV600E only in NC and MB cells, with barely any 

response in the MC. This cannot be wholly explained by oncogene-induced senescence, since we 

find that the 3xKO MC are proliferative both before and after BRAF induction in vitro (Fig. 5G). 10 

Amongst the chromatin modifying enzymes we identified in our RNA-seq analysis, we identified 

ATAD2 as one example of a protein that allows for proper BRAFV600E-induced transformation 

and is amongst the most dysregulated chromatin modifying enzymes in human melanoma. 

In normal physiology, ATAD2 is expressed during development in embryonic stem cells, but in 

adults ATAD2 expression is restricted to the male germ cells and to the bone marrow (42). How 15 

ATAD2 acts to affect transcription, and cancer more broadly, remains under investigation. It 

contains both AAA-ATPase and bromodomains and can bind to acetylated histones (43, 44). It 

has previously been shown to act as a co-regulator of oncogenic transcription factors such as 

MYC (36), and it has been identified as portending a worse prognosis in a variety of cancers (29, 

45-48). One potential mechanism for its action may be via transcription elongation of target 20 

genes. The yeast ortholog, Yta7, localizes to the ORFs of highly transcribed genes (49) and may 

play a role in eviction or degradation of H3 during the elongation phase of transcription (50) as 

well as regulate the transcription of histones themselves (51). Our data is consistent with a model 
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in which ATAD2 binds to the key NC factor SOX10 and allows for expression of its target 

genes. 

One important difference between our observations and data using genetically engineered mouse 

models is that mature melanocytes (both zebrafish and hPSC-derived) are relatively resistant to 

oncogenesis. The most commonly available mouse models of melanoma utilize a Tyrosinase-Cre 5 

driver to activate BRAFV600E (52-55). These animals can develop melanoma, although this can 

be accelerated by inactivation of tumor suppressors such as CDKN2A, TP53 or PTEN (56-59). 

Which cells within these mice act as the melanoma cell of origin has not been fully resolved (13-

15), but our studies are not precisely comparable to the mouse studies since our zebrafish use 

Tyrp1-driven BRAFV600E. One possible explanation for this discrepancy is that in our system the 10 

Tyrp1 promoter is actually driving expression in a somewhat more fully differentiated 

melanocyte compared to the Tyr promoter used in mouse studies. Another explanation is that 

these differences may reflect different biological thresholds for tumorigenesis, in that a different 

number of DNA lesions may be required to transform melanocytes in human versus mice versus 

zebrafish. We noted that in our hPSC-derived MC, surprisingly, even with triple knockout (of 15 

RB1, TP53, and P16), BRAFV600E was still able to induce senescence in vivo. Therefore, in this 

particular human context these alterations are not enough to overcome oncogene-induced 

senescence. One possible mechanism affecting different thresholds for oncogenic competence 

might be the particular microenvironment, which our studies did not explicitly address. It would 

be important in future studies to ask how oncogenic competence might differ in each potential 20 

cell of origin depending on the local microenvironment. 

Our data argue for a model in which there may not be a discrete cell of origin of melanoma, but 

instead support the idea that multiple cells along the spectrum from NC to MC may be capable of 
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giving rise to tumors in the right context (Fig. 6F). It suggests that oncogenic competence is 

related to three interrelated factors that cooperate to determine susceptibility: DNA mutations 

(e.g. BRAF), cell-type specific transcription factors (e.g. SOX10), and the intrinsic levels of 

chromatin modifying enzymes which allow for a permissive chromatin landscape (e.g. ATAD2). 

 5 
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Fig. 1. Zebrafish models show that the NC and MB states, but not the MC state, are 

cancer competent.  

(A) Schematic drawing of zebrafish F0 transgenesis. F0 zebrafish transgenic fish were 

engineered by injection of p53−/− single-cell embryos with transposase mRNA together 

with TOL2 flanked plasmids, which encoded a stage-specific promoter (sox10, mitf, 

tyrp1) driving BRAF(V600E) fused to TdTomato.  

(B) Kaplan-Meier curves of F0 p53-/- transgenic zebrafish injected with plasmids driving 

BRAF(V600E) fused to TdTomato under either the NC-specific promoter sox10 (n=92 

biological replicates), the MB-specific promoter mitfa (n=94 biological replicates), or the 

MC-specific promoter tyrp1 (n=49 biological replicates) or uninfected control (n=86 

biological replicates). **** = p < 0.0001 for the comparison of the tumor-free survival 

curves of fish with MB-derived tumors and MC-derived nevus-like structures; **** = p < 

0.0001 for the comparison of the tumor-free survival curves of fish with NC- and MB-

derived tumors; log-rank (Mantel-Cox) test.  

(C) Representative NC-derived tumor developed in the sox10:BRAF(V600E) p53−/− 

transgenic fish.  

(D) Representative MB-derived tumor developed in the mitfa:BRAF(V600E) p53−/− 

transgenic fish.  

(E) Representative nevus-like structure developed in the tyrp1:BRAF(V600E) p53−/− 

transgenic fish.  

(F−K) Immunohistochemistry for BRAF(V600E) and phosphoERK in the NC- and MB-

derived tumors and in the MC-derived nevus-like structure.  
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(L−Q) Immunohistochemistry staining for sox10, huc/hud, ncam and mlana. NC-derived 

tumors were positive for the neuronal marks huc/hud and ncam (N, P) and mostly 

negative for sox10 expression (L). MB-derived tumors were melanomas positive for 

sox10 (M), mlana (Q), and negative for the neuronal marks huc/hud  (O).  

(R) PCA plot of mitfa-derived tumors (n=6, M, red) and sox10-derived tumors (n=12, S, 

blue) for whole genome RNA-seq demonstrated a clear separation at the transcriptional 

level. 
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Fig. 2. A hPSC-based cancer model recapitulates the zebrafish models and 

demonstrates that human NC and MB states are cancer competent, while the 

differentiated MC state is not.  

(A) Schematic summary of hPSCs differentiation into NC cells, MB and MC and 

Western blot of the dox-inducible BRAF(V600E) (iBRAF(V600E)) hPSC line knockout for 

RB1, P53 and P16 (3xKO) using CRISPR/Cas9 technology.  

(B) Western blot of NC cells, MB and MC differentiated from either the iBRAF(V600E) 

WT or the iBRAF(V600E) 3xKO hPSCs. The cells were exposed to dox (1µg/ml) for 72h.  

(C-E) In vivo growth curves of 3xKO NC cells + dox (n=6 per group) (C); in vivo 

growth curves of 3xKO MB + dox (n=6 per group) (D). 3xKO MC + dox were not able 

to grow in vivo (n=6 per group, 1 outlier) (E), but gave rise to nevus-like structures 

(Figure S2K). hPSCs-derived cells were injected subcutaneously in immunodeficient 

NSG mice exposed to a dox-containing diet.  

(F-S) Immunohistochemistry of NC-derived and MB-derived tumors + dox treatment. 

NC-derived tumors were undifferentiated and heterogeneous tumors, with strong 

neuronal features (P, R). MB-derived tumors were diagnosed as melanomas and they 

were positive for all the common melanocytic marks (K, M, O).  

(T) t-distributed Stochastic Neighbor Embedding (t-SNE) of 3xKO + dox NC cells, MB 

and MC samples and the TCGA melanoma samples using the Tsoi signature for 

melanoma subtypes.  

(U-Z) MA plots of the RNA-seq of WT NC cells, MB and MC ± dox treatment and 

3xKO NC cells, MB and MC ± dox treatment (n=3 per condition). The mean of 

normalized counts of each gene was plotted against the log fold change following dox-
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induced BRAF(V600E) expression within that condition. Adjusted p value cut-off of 0.05 

was used for significantly differentially expressed genes (red).  
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Fig. 3. Cancer competence is reflected by a distinct chromatin landscape and 

ATAD2 is a key chromatin modifier shared between human NC/MB cells and 

patient melanoma cells.  

(A) GSEA comparing WT MB to WT MC identified chromatin modification as the 

pathway most enriched in WT MB.  

(B) Unsupervised clustering of WT ± dox NC cells (purple), MB (orange) and MC 

(black) depending on the expression profile of epigenetic-related factors. WT ± dox MC 

showed a distinct profile from the one of the WT ± dox NC cells and MB.  

(C) Top 50 epigenetic-related factors expressed in WT MB and downregulated in the 

differentiated WT MC. 

(D) Alteration frequency of the top 10 epigenetic-related factors in TCGA SKCM 

melanoma patient samples.  

(E) Kaplan-Meier overall survival curve of TCGA SKCM patients belonging either to the 

ATAD2HI or to the ATAD2LO group with log-rank p value reported. 
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Fig. 4. ATAD2 expression in MC reshapes the chromatin around NC/MB loci and 

reactivates a developmental signature.  

(A) Western blot for lenti-induced ATAD2 expression in 3xKO dox MC.  

(B) Representative pictures of 3xKO dox MC, on the right side, and of 3xKO ATAD2 

dox MC, on the left side. Scale bars: 50 µm.  

(C) Tornado plots of the GSEA of the ATAC-seq for genes belonging to the NC 

signature in 3xKO dox MB, 3xKO dox MC and 3xKO ATAD2 dox MC.  

(D-E) GSEA of the ATAC-seq of 3xKO dox MC compared to 3xKO dox MB (D) and of 

3xKO ATAD2 dox MC compared to 3xKO dox MC (E).  

(F) Homer motif discovery shows that the SOX10 motif is one of the most enriched 

motifs (p value < 1e−50) in 3xKO ATAD2 dox MC compared to 3xKO dox MC.  

(G) Homer motif discovery shows that the MITF motif is the most closed motif (p value 

< 1e−191) in 3xKO ATAD2 dox MC compared to 3xKO dox MC.  

(H) Tornado plots depict the opening of the chromatin specific for the SOX10 motif.  

(I) Tornado plots depict the closure of the chromatin specific for the MITF motif.  

(J) Network analysis of the genes with increased accessibility for the SOX10 binding 

motif in 3xKO ATAD2 dox MC compared to 3xKO dox MC. 
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Fig. 5

DEG Expression Heatmap ATAD2 (20%, DEG fdr<0.00001,lgfc>1), Primary, pan−can, cut=2, n=231 
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Fig. 5. ATAD2 promotes melanoma phenotypes through cMYC and SOX10 in 

both clinical samples of cutaneous melanoma and in the hPSC-derived cancer 

model. 

(A) Heatmap plot of differentially expressed genes (DEG) in the ATAD2HI patient group 

versus the ATAD2LO patient group. 

(B) Identification of the SOX binding motif on genes co-expressed in the ATAD2HI 

patient groups, determined by analysis with the oPOSSUM software tool. 

(C) Top 10 hallmark pathways from GSEA enriched in the ATAD2HI patient group 

compared to the ATAD2LO patient group. 

(D-E) Co-IP analysis of protein lysates of 3xKO ATAD2 dox MC using either the 

ATAD2 or the control IgG antibody and then blotted against SOX10 (D) and cMYC (E). 

(F) qRT-PCR of a subset of NC-related, cMYC-related and invasion-related genes in 

3xKO dox MC, 3xKO ATAD2 MC and 3xKO ATAD2 dox MC. Heatmap depicts gene 

expression changes. n = 3 biological replicates. Significance illustrated in the figure 

refers to comparison to the control 3xKO MC. 

(G) EdU FACS analysis of 3xKO ± dox NC cells, 3xKO ± dox MB, 3xKO ± dox MC 

and 3xKO ATAD2 ± dox MC upon 30 min of EdU pulse. Data are shown as mean ± 

SEM, n=3. * = p < 0.05; ** = p < 0.005; **** = p < 0.0001. 

(H) Ratio between the OCR and the ECAR values of 3xKO ± dox MB, 3xKO ± dox MC 

and 3xKO ATAD2 ± dox MC. Data are shown as mean ± SEM, n=3. * = p < 0.05; ** = p 

< 0.005; **** = p < 0.0001. 
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Fig. 6
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Fig. 6. ATAD2 is required for melanoma initiation. 

(A) Schematic drawing for the TEAZ/Electroporation experiment. Fish that were p53-/-, 

mitfa-/-, mpv17-/- and mitfa:hBRAFV600E were electroporated with MiniCoopR-GFP 

(mitfa:MITF and mitfa:GFP), Ub-Cas9, gRB1, Tol2, AltR-Cas9, and either AltR-sgNT or 

a pool of AltR-sgATAD2. The fish were then monitored and quantified for melanoma 

initiation. 

(B) Quantification of the GFP+ area (µm2) in the transgenic fish two weeks after 

electroporation. Mann-Whitney test with ** p = 0.01. 

(C)  Percentage of fish that were either GFP+ or GFP- depending on the electroporation of 

AltR-sgNT or AltR-sgATAD2. 

(D) Representative images of a transgenic fish electroporated with AltR-sgNT. The 

images depict early lesions characterized by pigmentation and GFP expression. 

(E) Representative images of a transgenic fish electroporated with AltR-sgATAD2. 

(F) Summary of the roles of ATAD2 in the acquisition of melanoma competence. 
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