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ABSTRACT 25 

The mammalian cerebrum performs high level sensory, motor control and cognitive 26 

functions through highly specialized cortical networks and subcortical nuclei. Recent 27 

surveys of mouse and human brains with single cell transcriptomics1-3 and high-28 

throughput imaging technologies4,5 have uncovered hundreds of neuronal cell types and 29 

a variety of non-neuronal cell types distributed in different brain regions, but the cell-type-30 

specific transcriptional regulatory programs responsible for the unique identity and 31 

function of each brain cell type have yet to be elucidated. Here, we probe the accessible 32 

chromatin in >800,000 individual nuclei from 45 regions spanning the adult mouse 33 

isocortex, olfactory bulb, hippocampus and cerebral nuclei, and use the resulting data to 34 

define 491,818 candidate cis regulatory DNA elements in 160 distinct sub-types. We link 35 

a significant fraction of them to putative target genes expressed in diverse cerebral cell 36 

types and uncover transcriptional regulators involved in a broad spectrum of molecular 37 

and cellular pathways in different neuronal and glial cell populations. Our results provide 38 

a foundation for comprehensive analysis of gene regulatory programs of the mammalian 39 

brain and assist in the interpretation of non-coding risk variants associated with various 40 

neurological disease and traits in humans. To facilitate the dissemination of information, 41 

we have set up a web portal (http://catlas.org/mousebrain).    42 
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INTRODUCTION 43 

 44 

In mammals, the cerebrum is the largest part of the brain and carries out essential 45 

functions such as sensory processing, motor control, emotion, and cognition6.  It is divided 46 

into two hemispheres, each consisting of the cerebral cortex and various cerebral nuclei.  47 

The cerebral cortex is further divided into isocortex and allocortex. Isocortex, 48 

characterized by six cortical layers, is a phylogenetically more recent structure that has 49 

further expanded greatly in primates. It is responsible for sensory motor integration, 50 

decision making, volitional motor command and reasoning. The allocortex, by contrast, is 51 

phylogenetically the older structure that features three or four cortical layers. It includes 52 

the olfactory bulb responsible for processing the sense of smell and the hippocampus 53 

involved in learning, memory and spatial navigation.   54 

 55 

The cerebral cortex and basal ganglia are made up of a vast number of neurons and glial 56 

cells.  The neurons can be classified into different types of excitatory projection neurons 57 

and inhibitory interneurons, defined by the neural transmitters they produce and their 58 

connective patterns with other neurons7-9. Understanding how the identity and function of 59 

each brain cell type is established during development and modified by experience is one 60 

of the fundamental challenges in brain research. Recent single cell RNA-seq and high 61 

throughput imaging experiments have produced detailed cell atlases for both mouse and 62 

human brains3-5,10-15, leading to a comprehensive view of gene expression patterns in 63 

different brain regions, cell types and physiological states16-18.  Despite these advances, 64 

the gene regulatory programs in most brain cell types have remained to be characterized. 65 

A major barrier to the understanding of cell-type specific transcriptional control is the lack 66 

of comprehensive maps of the regulatory elements in diverse brain cell types. 67 

 68 

Transcriptional regulatory elements recruit transcription factors to exert control of target 69 

gene expression in cis in a cell-type dependent manner19.  The regulatory activity of these 70 

elements is accompanied by open chromatin, specific histone modifications and DNA 71 

hypomethylation19. Exploiting these structural features, candidate cis regulatory elements 72 

(cCREs) have been mapped with the use of tools such as DNase-seq, ATAC-seq, ChIP-73 
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seq and Whole genome bisulfite sequencing20,21. Conventional assays, typically 74 

performed using bulk tissue samples, unfortunately fail to resolve the cCREs in individual 75 

cell types comprising the extremely heterogeneous brain tissues. To overcome this 76 

limitation, single cell genomic technologies, such as single cell ATAC-seq, have been 77 

developed to enable analysis of open chromatin in individual cells22-28.  These tools have 78 

been used to probe transcriptional regulatory elements in the prefrontal cortex28,29, 79 

cerebellum29, hippocampus30, forebrain31 or the whole brain24,29, leading to identification 80 

of cell-type specific transcriptional regulatory sequences in these brain regions.  These 81 

initial studies provided proof of principle for the use of single cell chromatin accessibility 82 

assays to resolve cell types and cell-type specific regulatory sequences in complex brain 83 

tissues, but the number of cells analyzed, and the cis regulatory elements identified so 84 

far are still limited.     85 

  86 

In the present study, as part of the BRAIN Initiative Cell Census Network, we conducted 87 

the most comprehensive analysis to date to identify candidate cis regulatory elements 88 

(cCRE) in the mammalian brain at single cell resolution. Using a semi-automated single 89 

nucleus ATAC-seq (snATAC-seq) procedure22,31, we mapped accessible chromatin in 90 

>800,000 cells from the mouse isocortex, hippocampus, olfactory bulb, and cerebral 91 

nuclei (including striatum and pallidum).  We defined 160 sub-types based on the 92 

chromatin landscapes and matched 155 of them to previous cell taxonomy of the mouse 93 

brain1. We delineated the cell-type specificity for >490,000 cCREs that make up nearly 94 

14.8% of the mouse genome. We also integrated the chromatin accessibility data with 95 

available brain single cell RNA-seq data to assess their potential role in cell-type specific 96 

gene expression patterns, and gain mechanistic insights into the gene regulatory 97 

programs of different brain cell types. We further demonstrated that the human 98 

counterparts of the identified mouse brain cCREs are enriched for risk variants associated 99 

with neurological disease traits in a cell-type-specific and region-specific manner.  100 

 101 

  102 
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RESULTS 103 

 104 

Single cell analysis of chromatin accessibility of the adult mouse brain  105 

 106 

We performed snATAC-seq, also known as sci-ATAC-seq22,31, for 45 brain regions 107 

dissected from isocortex, olfactory bulb (OLF), hippocampus (HIP) and cerebral nuclei 108 

(CNU) (Fig. 1a, Extended Data Figure 1, Supplementary Table 1, see Methods) in 8-109 

week-old male mice. Each dissection was made from 600 µm thick coronal brain slices 110 

according to the Allen Brain Reference Atlas (Extended Data Figure 1)32. For each region, 111 

snATAC-seq libraries from two independent biological replicates were generated with a 112 

protocol31 that had been optimized for automation (Fig. 1a, see Methods). The libraries 113 

were sequenced, and the reads were deconvoluted based on nucleus-specific barcode 114 

combinations. We confirmed that the dataset of each replicate met the quality control 115 

metrics (Extended Data Figure 2a-e, see Methods). We selected nuclei with at least 116 

1,000 sequenced fragments that displayed high enrichment (>10) in the annotated 117 

transcriptional start sites (TSS; Extended Data Figure 2b). We also removed the snATAC-118 

seq profiles likely resulting from potential barcode collision or doublets using a procedure 119 

modified from Scrublet33 (Extended Data Figure. 2c, see Methods). Altogether, we 120 

obtained chromatin profiles from 813,799 nuclei with a median of 4,929 fragments per 121 

nucleus (Supplementary Table 2). Among them, 381,471 were from isocortex, 123,434 122 

from olfactory area, 147,338 from cerebral nuclei and 161,556 from hippocampus (Fig. 123 

1a, Extended Data Figure 2f). Thus, this dataset represents by far the largest number of 124 

chromatin accessibility profiles for these brain areas. Excellent correlation between 125 

datasets from similar brain regions (0.92-0.99 for isocortex; 0.89-0.98 for OLF; 0.79-0.98 126 

for CNU; 0.88-0.98 for hippocampus) and between biological replicates (0.98 in median, 127 

range from 0.95 to 0.99) indicated high reproducibility and robustness of the experiments 128 

(Extended Data Figure 2g).  129 

 130 

Clustering and annotation of mouse brain cells based on open chromatin 131 

landscapes 132 

 133 
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We carried out iterative clustering with the software package SnapATAC34 to classify the 134 

813,799 snATAC-seq profiles into distinct cell groups based on the similarity of chromatin 135 

accessibility profiles (Fig. 1b-e, Supplementary Table 2 and 3, see Methods)34. 136 

SnapATAC clusters chromatin accessibility profiles using a nonlinear dimensionality 137 

reduction method that is highly robust to noise and perturbation34. We performed three 138 

iterative rounds of clustering, first separating cells into three broad classes, then into 139 

major types within each class, and finally into more sub-types. In the first iteration, we 140 

grouped cells into glutamatergic neurons (387,060 nuclei, 47.6%), GABAergic neurons 141 

(167,181 nuclei, 20.5%) and non-neuronal cells (259,588 nuclei, 31.9%; Fig. 1b-d). For 142 

each main cell class, we performed a second round of clustering. We identified a total of 143 

43 major types including distinct layer-specific cortical neurons, hippocampal granular 144 

cells (GRC) and striatal D1 and D2 medium spiny neurons (D1MSN, D2MSN; Fig 1b, d) 145 

which were annotated based on chromatin accessibility in promoters and gene bodies of 146 

known marker genes (Fig. 1e)1,3. Finally, for each major type we conducted another round 147 

of clustering to reveal sub-types. For example, Lamp5+ neurons (LAMGA) and Sst+ 148 

neurons (SSTGA) were further divided into sub-types (Fig. 1d, e, Supplementary Table 149 

3)3,35. One of the LAMGA subtypes showed accessibility at Lhx6 and therefore might 150 

resemble an unusual transcriptomically defined putative chandelier-like cell type with 151 

features from caudal ganglionic and medial ganglionic eminence (Fig. 1b, e)3. Similarly, 152 

using this third layer clustering we found one SSTGA subpopulation with accessibility at 153 

Chodl locus which resembles long range projecting GABAergic neurons (Fig. 1b, e)35.  154 

Altogether, we were able to resolve 160 sub-types, with the number of nuclei in each 155 

group ranging from 93 to 75,474 and a median number of 5,086 nuclei per cluster 156 

(Supplementary Table 3). 157 

 158 

We constructed a hierarchical dendrogram to represent the relative similarity in chromatin 159 

landscapes among the 43 major cell groups (Fig. 1d, Extended Data Figure 3).  This 160 

dendrogram captures known organizing principles of mammalian brain cells: Neurons are 161 

separated from non-neuronal types followed by separation of neurons based on 162 

neurotransmitter types (GABAergic versus glutamatergic) and finally into more specified 163 

cell types which might resemble the developmental origins (Fig. 1d)3. Consistent with 164 
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previous reports of brain cell types, we found that non-neuronal cells were broadly 165 

distributed in all regions while several classes of glutamatergic neurons and GABAergic 166 

neurons showed regional specificity (Fig. 1c, f, Extended Data Figure 4)3. We also found 167 

that glutamatergic neuron types showed more regional specificity than GABAergic types, 168 

consistent with transcriptomic analysis (Fig. 1c, f, Extended Data Figure 4)3. 169 

 170 

The chromatin-defined cell types matched well with the previously reported taxonomy 171 

based on transcriptomes and DNA methylomes3,36 (see companion manuscript by Liu, 172 

Zhou et al.37). To directly compare our single nucleus chromatin-derived cell clusters with 173 

the single cell transcriptomics defined taxonomy of the mouse brain1, we first used the 174 

snATAC-seq data to impute RNA expression levels according to the chromatin 175 

accessibility of gene promoter and gene body as described previously (Seurat package38). 176 

We then performed integrative analysis with scRNA-seq data from matched brain regions 177 

of the Mouse Brain Atlas1. We found strong correspondence between the two modalities 178 

which was evidenced by co-embedding of both transcriptomic (T-type) and chromatin 179 

accessibility (A-type) cells in the same joint clusters (Fig. 2a-c, Supplementary Table 4, 180 

see Methods). For this analysis, we examined GABAergic neurons, glutamatergic 181 

neurons and non-neuronal cell classes separately (Fig. 2a-c, Supplementary Table 4, see 182 

Methods). For 155 of 160 types defined by snATAC-seq (A-Type), we could identify a 183 

corresponding cell cluster defined using scRNA-seq data (T-Type, Fig. 2d, e); conversely, 184 

for 84 out of 100 T-types we identified one, or in some cases more, corresponding A-185 

types (Fig. 2d, f). Of note, two clusters fell into different classes. The Cajal-Retzius cells 186 

(CRC) was part of the GABAergic class in A-type but glutamatergic class in T-type and 187 

one small non-neuronal A-type cluster, VPIA3 (Vascular and leptomeningeal like cells) 188 

co-clustered with CRC T-type (Fig. 2d). Nevertheless, the general agreement between 189 

the open chromatin-based clustering and transcriptomics-based clustering laid the 190 

foundation for integrative analysis of cell-type specific gene regulatory programs in the 191 

mouse brain using single cell RNA and single nucleus chromatin accessibility assays, as 192 

for the mouse primary motor cortex15.  193 

 194 

Identification of cCREs in different mouse brain cell types 195 
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 196 

To identify the cCREs in each of the 160 A-types defined from chromatin landscapes, we 197 

aggregated the snATAC-seq profiles from the nuclei comprising each cell cluster and 198 

determined the open chromatin regions with MACS239.  We then selected the genomic 199 

regions mapped as accessible chromatin in both biological replicates, finding an average 200 

of 93,775 (range from 50,977 to 136,962) sites (500-bp in length) in each sub-type. We 201 

further selected the elements that were identified as open chromatin in a significant 202 

fraction of the cells in each sub-type (FDR >0.01, zero inflated Beta model, see Methods), 203 

resulting in a union of 491,818 open chromatin regions. These cCREs occupied 14.8% of 204 

the mouse genome (Supplementary Table 5 and 6).   205 

 206 

96.3% of the mapped cCREs were located at least 1 kbp away from annotated promoter 207 

regions of protein-coding and lncRNA genes (Gencode V16) (Fig. 3a)40. Several lines of 208 

evidence support the function of the identified cCREs.  First, they largely overlapped with 209 

the DNase hypersensitive sites (DHS) previously mapped in a broad spectrum of bulk 210 

mouse tissues and developmental stages by the ENCODE consortium (Fig. 3b)41,42. 211 

Second, they generally showed higher levels of sequence conservation than random 212 

genomic regions with similar GC content (Fig 3c). Third, they were enriched for active 213 

chromatin states or potential insulator protein binding sites previously mapped with bulk 214 

analysis of mouse brain tissues (Fig. 3d)43-45.  215 

 216 

To define the cell-type specificity of the cCREs, we first plotted the median levels of 217 

chromatin accessibility against the maximum variation for each element (Fig 3e).  We 218 

found that the majority of cCREs displayed highly variable levels of chromatin accessibility 219 

across the brain cell clusters identified in the current study, with the exception for 8,188 220 

regions that showed accessible chromatin in virtually all cell clusters (Fig 3e). The 221 

invariant cCREs were highly enriched for promoters (81%), with the remainder including 222 

CTC-binding factor (CTCF) binding sites and strong enhancers (Fig 3f). To more explicitly 223 

characterize the cell-type specificity of the cCREs, we used non-negative matrix 224 

factorization to group them into 42 modules, with elements in each module sharing similar 225 

cell-type specificity profiles. Except for the first module (M1) that included mostly cell-type 226 
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invariant cCREs, the remaining 41 modules displayed highly cell-type restricted 227 

accessibility (Fig. 3g, Supplementary Table 7, 8). These cell-type restricted modules were 228 

enriched for transcription factor motifs recognized by known transcriptional regulators for 229 

such as the SOX family factors for oligodendrocytes OGC (Supplementary Table 9)46,47. 230 

We also found strong enrichment for the known olfactory neuron regulator LIM homeobox 231 

factor LHX2 in module M5 which was associated with GABAergic neurons in the olfactory 232 

bulb (OBGA1) (Supplementary Table 9)48. 233 

 234 

Integrative analysis of chromatin accessibility and gene expression across mouse 235 

brain cell types 236 

 237 

To dissect the transcriptional regulatory programs responsible for cell-type specific gene 238 

expression patterns in the mouse cerebrum, we carried out integrative analysis combining 239 

the single nucleus ATAC-seq collected in the current study with single cell RNA-seq data 240 

from matched brain regions1. Enhancers can be linked to putative target genes by 241 

measuring co-accessibility between enhancer and promoter regions of putative target 242 

genes and co-accessible sites tend to be in physical proximity in the nucleus49. Thus, we 243 

first identified pairs of co-accessible cCREs in each cell cluster using Cicero49 and inferred 244 

candidate target promoters for distal cCRE located more than 1 kbp away from annotated 245 

transcription start sites in the mouse genome (Fig. 4a, see Methods)40.  We determined 246 

a total of 813,638 pairs of cCREs within 500 kbp of each other, and connected 261,204 247 

cCREs to promoters of 12,722 genes (Supplementary Table 10).  248 

 249 

Next, we sought to identify the subset of cCREs that might increase expression of putative 250 

target genes and therefore function as putative enhancers in neuronal or non-neuronal 251 

types. To this end, we first identified distal cCREs for which chromatin accessibility was 252 

correlated with transcriptional variation of the linked genes in the joint cell clusters as 253 

defined above (Fig. 2a). We computed Pearson correlation coefficients (PCC) between 254 

the normalized chromatin accessibility signals at each cCRE and the RNA expression of 255 

the predicted target genes across these cell clusters (Fig. 4a, b).  As a control, we 256 

randomly shuffled the cCREs and the putative target genes and computed the PCC of 257 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 11, 2020. ; https://doi.org/10.1101/2020.05.10.087585doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.10.087585


10 
 

the shuffled cCRE-gene pairs (Fig. 4b, see Methods). This analysis revealed a total of 258 

129,404 pairs of positively correlated cCRE (putative enhancers) and genes at an 259 

empirically defined significance threshold of FDR < 0.01 (Supplementary Table 10). 260 

These included 86,850 putative enhancers and 10,604 genes (Fig. 4b). The median 261 

distances between the putative enhancers and the target promoters was 178,911 bp (Fig. 262 

4c). Each promoter region was assigned to a median of 7 putative enhancers (Fig. 4d), 263 

and each putative enhancer was assigned to one gene on average. To investigate how 264 

the putative enhancers may direct cell-type specific gene expression, we further classified 265 

them into 38 modules, by applying non-negative matrix factorization to the matrix of 266 

normalized chromatin accessibility across the above joint cell clusters. The putative 267 

enhancers in each module displayed a similar pattern of chromatin accessibility across 268 

cell clusters to expression of putative target genes (Fig 4e, Supplementary Table 11 and 269 

13). This analysis revealed a large group of 12,740 putative enhancers linked to 6,373 270 

genes expressed at a higher level in all neuronal cell clusters than in all non-neuronal cell 271 

types (module M1, top, Fig. 4e). It also uncovered modules of enhancer-gene pairs that 272 

were active in a more restricted manner (modules M2 to M38, Fig 4e). For example, 273 

module M33 was associated with perivascular microglia (PVM). Genes linked to putative 274 

enhancers in this module were related to immune gene and the putative enhancers were 275 

enriched for the binding motif for ETS-factor PU.1, a known master transcriptional 276 

regulator of this cell lineage (Fig. 4e, f, Supplementary Table 13 and 14)50. Similarly, 277 

module M35 was strongly associated with oligodendrocytes (OGC) and the putative 278 

enhancers in this module were enriched for motifs recognized by the SOX family of 279 

transcription factors (Fig. 4e, f, Supplementary Table 14)47. We also identified module 280 

M15 associated with several cortical glutamatergic neurons (IT.L2/3,IT.L4,IT.L5/6,IT.L6),  281 

in which the putative enhancers were enriched for sequence motifs recognized by the 282 

bHLH factors NEUROD1 (Fig. 4e, f, Supplementary Table 14)51. Another example was 283 

module M10 associated with medium spiny neurons (MSN1 and 2), in which putative 284 

enhancers were enriched for motif for the MEIS factors, which play an important role in 285 

establishing the striatal inhibitory neurons (Fig. 4e, f, Supplementary Table 14)52. Notably 286 

and in stark contrast to the striking differences at putative enhancers, the chromatin 287 

accessibility at promoter regions showed little variation across cell types (Fig. 4g). This is 288 
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consistent with the paradigm that cell-type-specific gene expression patterns are largely 289 

established by distal enhancer elements42,53. 290 

 291 

Distinct groups of transcription factors act at the enhancers and promoters in the 292 

pan-neuronal gene module 293 

 294 

As shown above, genes associated with module M1 are preferentially expressed in both 295 

glutamatergic and GABAergic neurons, but not in glial cell types (Fig. 4e). De novo motif 296 

enrichment analysis of the 12,740 cCREs or putative enhancers in this module showed 297 

dramatic enrichment of sequence motifs recognized by the transcription factors CTCF, 298 

RFX, MEF2 (Supplementary Table 15), as well as many known motifs for other 299 

transcription factors (Fig. 4f, Fig. 5a, Supplementary Table 14).  CTCF is a ubiquitously 300 

expressed DNA binding protein with a well-established role in transcriptional insulation 301 

and chromatin organization54. Recently, it was recognized that CTCF also promotes 302 

neurogenesis by binding to promoters and enhancers of proto-cadherin alpha gene 303 

cluster and facilitating enhancer-promoter contacts55,56. In the current study we found 304 

putative enhancers with CTCF motif for 2,601 genes that were broadly expressed in both 305 

inhibitory and excitatory neurons (Fig. 4e, 5b), and involved in multiple neural processes 306 

including axon guidance, regulation of axonogenesis, and synaptic transmission (Fig. 5c, 307 

Supplementary Table 16). For example, we found one CTFC peak overlapping a distal 308 

cCRE positively correlated with expression of Lgi1 which encodes a protein involved in 309 

regulation of presynaptic transmission57 (Fig 5d). The RFX family of transcription factors 310 

are best known to regulate the genes involved in cilium assembly pathways58. 311 

Unexpectedly, we found the RFX binding sequence motif to be strongly enriched at the 312 

putative enhancers for genes encoding proteins that participate in postsynaptic 313 

transmission, postsynaptic transmembrane potential, mitochondrion distribution, and 314 

receptor localization to synapse (Fig. 5c, Supplementary Table 16). For example, we 315 

found RFX motif in a distal cCRE positively correlated with expression of Kif5a which 316 

encodes a protein essential for GABAA receptor transport (Fig. 5e)59. This observation 317 

thus suggests a role for RFX family of transcription factors in regulation of synaptic 318 

transmission pathways in mammals. Similar to CTCF and RFX, the MEF2 family 319 
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transcription factors have also been shown to play roles in neurodevelopment and mental 320 

disorders60. Consistent with this, the genes associated with putative enhancers containing 321 

MEF2 binding motifs were selectively enriched for those participating in positive 322 

regulation of synaptic transmission, long-term synaptic potentiation, and axonogenesis 323 

(Fig. 5c, Supplementary Table 16). For example, we found a distal cCRE harboring a 324 

MEF2 motif positively correlated with expression of Cacng2 which encodes a calcium 325 

channel subunit that is involved in regulating gating and trafficking of glutamate receptors 326 

(Fig 5f)61. Notably, in types with high accessibility levels, cCREs and promoters of putative 327 

target genes also showed low levels of DNA methylation (Fig. 5d-f, see companion 328 

manuscript by Liu, Zhou et al. 202037). 329 

 330 

Interestingly, motif analysis of promoters of genes linked to cCREs in the module M1 331 

revealed the potential role of very different classes of transcription factors in neuronal 332 

gene expression. Among the top ranked transcription factor motifs are those recognized 333 

by CREB (cAMP-response elements binding protein), NF-κB, STAT3 and CLOCK 334 

transcription factors (Supplementary Table 17).  Enrichment of CREB binding motif in 335 

module M1 gene promoters is consistent with its well-documented role in synaptic activity-336 

dependent gene regulation and neural plasticity62,63.  Enrichment of NF-κB64, STAT365 337 

and CLOCK66 binding motifs in the module M1 gene promoters is interesting, too, as it 338 

suggests potential roles for additional extrinsic signaling pathways, i.e. stress, interferon, 339 

circadian rhythm, respectively, in the regulation of gene expression in neurons.   340 

 341 

Non-coding variants associated with neurological traits and diseases are enriched 342 

in the human orthologs of the mouse brain cCREs in a cell type-specific manner  343 

 344 

Genome-wide association studies (GWASs) have identified genetic variants associated 345 

with many neurological disease and traits, but interpreting the results have been 346 

challenging because most variants are located in non-coding parts of the genome that 347 

often lack functional annotations and even when a non-coding regulatory sequence is 348 

annotated, its cell-type specificity is often not well known67,68.  To test if our maps of 349 

cCREs in different mouse brain cell type could assist the interpretation of non-coding risk 350 
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variants of neurological diseases, we identified orthologs of the mouse cCREs in the 351 

human genome by performing reciprocal homology search69. For this analysis, we found 352 

that for 69.2% of the cCREs, human genome sequences with high similarity could be 353 

identified (> 50 % of bases lifted over to the human genome, Fig. 6a). Supporting the 354 

function of the human orthologs of the mouse brain cCREs, 83.0% of them overlapped 355 

with representative DNase hypersensitivity sites (rDHSs) in the human genome41,42. Next, 356 

we performed linkage disequilibrium (LD) score regression (LDSC)70 to determine 357 

associations between different brain regions and distinct GWAS traits (Fig. 6b, Extended 358 

Data Figure 5). We found a significant enrichment of cCREs from 36 out of 45 brain 359 

regions for risk variants of Schizophrenia (Fig. 6b). In fact, most neurological traits 360 

showed widespread enrichment across brain regions, but a few like ADHD (Attention 361 

deficit hyperactivity disorder) showed some regional enrichment patterns (Fig. 6b). 362 

 363 

We also performed LDSC analysis and found significant associations between 20 364 

neuronal and non-neuronal traits and cCREs found in one or more major cell types (Fig. 365 

6c). We observed widespread and strong enrichment of genetic variants linked to 366 

psychiatric and cognitive traits such as major depressive disorder, intelligence, 367 

neuroticism, educational attainment, bipolar disorder and schizophrenia in cCREs across 368 

various neuronal cell types (Fig. 6c). Other neurological traits, such as attention deficit 369 

hyperactivity disorder, chronotype, autism spectrum disorder and insomnia were 370 

associated with specific neuronal cell-types in cerebral nuclei and hippocampus (Fig. 6c). 371 

Schizophrenia risk variants were not only enriched in cCREs in all excitatory neurons, but 372 

also in certain inhibitory neuron sub-types (Fig. 6c)71. The strongest enrichment of 373 

heritability for bipolar disorder was in elements mapped in excitatory neurons from 374 

isocortex (Fig. 6c). Risk variants of tobacco use disorder showed significant enrichment 375 

in the cell types from striatum, a cerebral nucleus previously implicated in addiction (Fig. 376 

6c)72. Interestingly, cCREs of non-neuronal mesenchymal cells were not enriched for 377 

neurological traits but showed enrichment for cardiovascular traits such as coronary 378 

artery disease (Fig. 6c). Similarly, variants associated with height were also significant in 379 

these cell types (Fig. 6c). cCREs in microglia were significantly enriched for variants 380 

related to immunological traits like inflammatory bowel disease, Crohn’s disease and 381 
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multiple sclerosis (Fig. 6c). Notably, most of these patterns were not apparent in the peaks 382 

called on aggregated bulk profiles from brain regions (Fig. 6b, Extended Data Fig. 5), 383 

demonstrating the value of cell type resolved open chromatin maps which was also 384 

highlighted by a recent study using single cell ATAC-seq profiling of human brain which 385 

focusing on Alzheimers’ and Parkinson’s disease73. 386 

 387 

DISCUSSION 388 

 389 

Understanding the cellular and molecular genetic basis of brain circuit operations is one 390 

of the grand challenges in the 21st century12,74. In-depth knowledge of the transcriptional 391 

regulatory program in brain cells would not only improve our understanding of the 392 

molecular inner workings of neurons and non-neuronal cells, but could also shed new 393 

light into the pathogenesis of a spectrum of neuropsychiatric diseases75. In the current 394 

study, we report comprehensive profiling of chromatin accessibility at single cell resolution 395 

in the mouse cerebrum. The chromatin accessibility maps of 491,818 cCREs, probed in 396 

813,799 nuclei and 160 sub-types representing multiple cerebral cortical areas and 397 

subcortical structures, are the largest of its kind so far. The cell type annotation based on 398 

open chromatin landscape showed strong alignment with those defined based on single 399 

cell transcriptomics1, which allowed us to jointly analyse the two molecular modalities 400 

across major cell types in the brain and identify putative enhancers for over 10,604 genes 401 

expressed in the mouse cerebrum. We further characterized the cell-type-specific 402 

activities of putative enhancers, inferred their potential target genes, and predicted 403 

transcription factors that act through these candidate enhancers to regulate specific gene 404 

modules and molecular pathways.  405 

 406 

We identified one large group of putative enhancers for genes that are broadly expressed 407 

in GABAergic and glutamatergic neurons, but at low levels or are silenced in all glial cell 408 

types. A significant fraction of these cCREs are bound by CTCF in the mouse brain 409 

(Figure 5)43. Recently, it was shown that CTCF is involved in promoter selection in the 410 

proto-cadherin gene cluster by promoting enhancer-promoter looping55,56. Our data now 411 

suggest that CTCF could regulate a broader set of neuronal genes than previously 412 
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demonstrated55,76, which need to be verified in future experiments. In addition, the RFX 413 

family of transcription factors was described to regulate cilia in sensory neurons58. Our 414 

data suggest a more widespread role for RFX family of transcription factors in the brain 415 

in regulation of synaptic transmission.  Consistent with this proposal, deletion of Rfx4 416 

gene in mouse was shown to severely disrupt neural development77. We have previously 417 

shown that RFX motif was enriched in elements that were more accessible after birth 418 

compared to prenatal time points in both GABAergic and glutamatergic neuronal types31. 419 

RFX was also found to be strongly enriched in mouse forebrain enhancers with increased 420 

activity after birth78. Similar to CTCF and RFX, the MEF2 family transcription factors have 421 

been demonstrated to play roles in neurodevelopment and mental disorders60. The MEF2 422 

motif was enriched at enhancers with higher chromatin accessibility in late forebrain 423 

development in mice coinciding with synapse formation78.   424 

 425 

Thus, our results are consistent with the notion that cell identity is encoded in distal 426 

enhancer sequences, executed by sequence-specific transcription factors during different 427 

stages of brain development. The reference maps of cCREs for the mouse cerebrum 428 

would not only help to understand the mechanisms of gene regulation in different brain 429 

cell types, but also enable targeting and purification of specific neuronal or non-neuronal 430 

cell types or targeted gene therapy28,79. In addition, the maps of cCREs in the mouse 431 

brain would also assist the interpretation of non-coding risk variants associated with 432 

neurological diseases73. The datasets described here represent a rich resource for the 433 

neuroscience community to understand the molecular patterns underlying diversification 434 

of brain cell types in complementation to other molecular and anatomical data.    435 
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 455 

Figure 1: Chromatin accessibility profiling, clustering and annotation of over 456 

800,000 nuclei in adult mouse cerebrum. 457 

a Schematic of sample dissection strategy. The brain regions studied were dissected from 458 

600 µm-thick coronal slices generated from 8-week-old mouse brains (top panel). A total 459 
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of 45 regions were dissected according to the Allen reference atlas. Shown is the frontal 460 

view of slice 4 and the dissected brain regions (middle panel, alphabetically labeled). For 461 

example, dissection region 4B: MOp-3 denotes part 3 of the primary motor cortex (MOp) 462 

region which corresponds to region B from slice 4. The dissected regions represent 17 463 

sub regions from four main brain areas: isocortex, olfactory bulb (OLF), hippocampus 464 

(HIP) and cerebral nuclei (CNU). A detailed list of regions can be found in Supplementary 465 

Table 1. b Uniform manifold approximation and projection (UMAP)80 embedding and 466 

clustering analysis of snATAC-seq data from 813,799 nuclei, revealing 43 major types 467 

and 160 sub-types assigned to non-neuronal (21, purple), GABAergic (71, blue/green) 468 

and Glutamatergic neuron clusters (68, red/brown). Clusters were annotated based on 469 

chromatin accessibility at promoter regions and gene bodies of canonical marker genes. 470 

Each dot in the UMPA represents a nucleus and the nuclei are colored and labeled by 471 

major cluster ID. For example, ITL23GL denotes excitatory neurons from cortex layer 2/3. 472 

For a full list and description of cluster labels see Supplementary Table 3. c Same 473 

embedding as in b but colored by sub-regions, e.g. SSp (primary somatosensory cortex). 474 

For a full list of brain regions see Supplementary Table 1. Dotted lines demark major cell 475 

classes. d Hierarchical organization of cell clusters based on chromatin accessibility 476 

depicting level 1 and 2 clusters (left panel). Each major type represents 1-10 sub-types 477 

(middle). Total number of nuclei per major type ranged from 93 to 88,286 nuclei (right). 478 

For a full list and description of cluster labels see Supplementary Table 2. e Genome 479 

browser tracks of aggregate chromatin accessibility profiles for each major cell cluster at 480 

selected marker gene loci that were used for cell cluster annotation. The inlets highlight 481 

the 10 subtypes of Sst+ (SSTGA) inhibitory neurons including Chodl-Nos1 neurons 482 

(bottom track in SSTGA inlet)35 and 4 subtypes of Lamp5+ (LAMGA) inhibitory neurons 483 

including Lhx6 positive putative chandelier like cells (top track in LAMGA inlet)3. For a full 484 

list and description of cluster labels see Supplementary Table 3. f Bar chart representing 485 

the relative contributions of sub-regions to major clusters. Color code is the same as in b. 486 

Based on these relative contributions, an entropy-based specificity score was calculated 487 

to indicate if a cluster was restricted to one or a few of the profiled regions (high score) or 488 

broadly distributed (low score). Several neuronal types showed high regional specificity 489 

whereas non-neuronal types were mostly unspecific. Glutamatergic neurons showed 490 
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higher regional specificity than GABAergic neurons consistent with transcriptomic 491 

analysis3.  492 
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 493 

Figure 2: Alignment of chromatin-based cell clustering to scRNA-seq-based cell 494 

type taxonomy. 495 

a-c SnATAC-seq data were integrated with scRNA-seq profiles from matched brain 496 

regions1 using the Seurat package38. Uniform manifold approximation and projections 497 

(UMAPs)80 illustrate co-embedding of snATAC-seq and scRNA-seq datasets from three 498 

main cell classes, namely c GABAergic neurons, d glutamatergic neurons, and e non-499 

neurons (top: colored by snATAC-seq clusters (A-type), bottom: colored by scRNA-seq 500 
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clusters (T-type); labelling denotes integrated A/T-types). d Heatmap illustrating the 501 

overlap between A-type and T-type cell cluster annotations. Each row represents a 502 

snATAC-seq sub-type (total of 160 A-types) and each column represents scRNA-seq 503 

cluster (total of 100 T-types). The overlap between original clusters and the joint cluster 504 

was calculated (overlap score) and plotted on the heatmap. Joint clusters with an overlap 505 

score of >0.5 are highlighted using black dashed line and labeled with joint cluster ID. For 506 

a full list of cell type labels and description see Supplementary Table 4.  e, f Bar plots 507 

indicating the number of clusters that overlapped (dark grey) and that did not overlap (light 508 

grey) with clusters from the other modality. e 155 out of 160 A-types had a matching T-509 

type. f 84 out of 100 T-types had a matching A-type. 510 

  511 
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 512 

Figure 3: Characterization of candidate cis regulatory elements identified in mouse 513 

cerebral cell types.  514 

a Fraction of the identified cCREs that overlap with annotated transcriptional start sites 515 

(TSS), introns, exons, transcriptional termination sites (TTS) and intergenic regions in the 516 

mouse genome. b Venn diagram showing the overlap between cCREs and DNase 517 

hypersensitive sites (DHS) from developmental and adult mouse tissue from the 518 

SCREEN database42. c Box-Whisker plot showing that sequence conservation measured 519 

by PhastCons score81 is higher for cCREs than the controls consisting of GC-matched 520 

random genomic sequences (*** p <0.001, Wilcoxon rank sum test, the box is drawn from 521 

lower quartile (Q1) to upper quartile (Q3) with a horizontal line drawn in the middle to 522 

denote the median, whiskers with maximum 1.5 IQR). d Enrichment analysis of cCREs 523 
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with a 15-state ChromHMM model45 in the mouse brain chromatin43. e Density map 524 

showing two main groups of elements based on the median accessibility and the range 525 

of chromatin accessibility variation (maximum – minimum) across cell clusters for each 526 

cCRE. Each dot represents a cCRE. Red box highlights elements with low chromatin 527 

accessibility variability across clusters. f 81 % of sites with low variability (red box in e) 528 

overlapped promoters, 10 % enhancers and 9 % CTCF regions.  g Heatmap showing 529 

association of 43 major cell types (rows) with 42 cis regulatory modules (top). Each 530 

column represents one of 491,818 cCREs. These cCREs were combined into cis 531 

regulatory modules based on accessibility patterns across major cell types. For each 532 

cCRE a feature score was calculated to represent the specificity for a given module. 533 

Module 1 comprised invariable elements and was enriched for promoters. For a full list 534 

and description of cell cluster labels see Supplementary Table 3, for a full list of cluster-535 

module association see Supplementary Table 7 and for association of cCREs to modules 536 

see Supplementary Table 8. CPM: counts per million. 537 

  538 
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 539 

Figure 4: Identification and characterization of putative enhancer-gene pairs. a 540 

Schematic overview of the computational strategy to identify cCREs that are positively 541 

correlated with transcription of target genes. The cCREs were first assigned to putative 542 

target gene promoters in specific cell clusters using co-accessibility analysis with 543 

Cicero49.  Next, chromatin accessibility at cCREs was correlated with RNA-seq signals of 544 

the putative target gene across different cell clusters (PCC: Pearson correlation 545 

coefficient). b Detection of putative enhancer-gene pairs. 129,404 pairs of positively 546 

correlated cCRE and genes (highlighted in orange) were identified using an empirically 547 

defined significance threshold of FDR<0.01 (see Methods). Grey filled curve shows 548 

distribution of PCC for randomly shuffled cCRE-gene pairs. c Histogram illustrating 549 

distance between positively correlated distal cCRE and putative target gene promoters. 550 

Median distance was 178,911 bp. d Box-Whisker plot showing that genes were linked 551 

with a median of 7 putative enhancers (box is drawn from Q1 to Q3 with a horizontal line 552 
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drawn in the middle to denote the median, whiskers with maximum 1.5 IQR). e Heatmap 553 

of chromatin accessibility of 86,850 putative enhancers across cell clusters (left) and 554 

expression of 10,604 linked genes (right). Note genes are displayed for each putative 555 

enhancer separately. For association of modules with cell types see Supplementary Table 556 

11 and association of individual putative enhancer with modules see Supplementary 557 

Table 13. CPM: counts per million, UMI: unique molecular identifier. f Enrichment of 558 

known transcription factor motifs in distinct enhancer-gene modules. Displayed are known 559 

motifs from HOMER46 with enrichment p-value <10-10. Motifs were sorted based on 560 

module. For full list see Supplementary Table 14. g Accessibility at promoter regions 561 

across joint A/T-types, same order as e. 562 

  563 
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 564 

Figure 5: Transcription factors involved in a pan neuronal gene regulatory 565 

program. 566 

a Enrichment of sequence motifs for CTCF, MEF2 and RFX from de novo motif search in 567 

the putative enhancers of module M1 using HOMER46. For a full list see Supplementary 568 

Table 16. b Venn diagram illustrating the overlap of putative target genes of cCREs 569 

containing binding sites for MEF2, RFX and CTCF, respectively. c Gene ontology (GO) 570 

analysis of the putative target genes of each factor in module M1 was performed using 571 

Enrichr82. The combined score is the product of the computed p value using the Fisher 572 

exact test and the z-score of the deviation from the expected rank82. d-f Examples distal 573 

cCRE overlapping peaks/motifs and positively correlated putative target genes. For 574 

CTCF, cCREs were intersected with peak calls from  ChIP-seq experiments in the adult 575 

mouse brain43 (d)  and cCREs overlapping RFX (e) and MEF2 (f) were identified using 576 

de novo motif search in HOMER46. Genome browser tracks displaying chromatin 577 

accessibility, mCG methylation levels (see companion manuscript by Liu, Zhou et al. 578 

202037) and positively correlated cCRE and genes pairs.   579 
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 580 

Figure 6: Association of different brain regions and cell types with risk variants for 581 

neurological diseases and traits. 582 

a For 69.2 % of cCREs identified in the current study, we found a human ortholog (> 50 583 

% of bases lifted over to the human genome). b Brain-region-specific enrichment of 584 

sequence variants associated with indicated neurological traits and diseases (* FDR < 585 

0.05, ** FDR < 0.01, ***FDR < 0.001). Displayed are all regions and all tested phenotypes 586 

with at least one significant association. c Enrichment of sequence variants associated 587 

with the indicated traits/disease in the human orthologs of cCREs in major mouse cerebral 588 

cell types (* FDR < 0.05, ** FDR < 0.01, ***FDR < 0.001). Displayed are all major cell 589 

clusters and tested traits/diseases with at least one significant association (FDR < 0.05). 590 

A detailed list of regions can be found in Supplementary Table 1 and a full list of cell 591 

cluster labels can be found in Supplementary Table 3.  592 
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 593 

Extended Data Figure 1: Maps of mouse brain regions that were dissected in the 594 

current study. a Schematic of brain sample dissection strategy. Mouse brains were cut 595 

into 600 µm thick coronal slices; b 45 regions were dissected from eleven coronal slices 596 

according to the Allen reference atlas. Shown is the frontal view of slice 1-11 and isolated 597 
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regions. For example, dissection region 1A: MOs-1 denotes part 1 of the secondary motor 598 

cortex (MOs) region which corresponds to region A from slice 1. A detailed list of regions 599 

can be found in Supplementary Table 1. 600 

  601 
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 602 

Extended Data Figure 2: Quality metrics of snATAC-seq datasets. a Fragment size 603 

distribution of a typical snATAC-seq library. b Dot-blot illustrating fragments per nucleus 604 

and individual TSS (transcriptional start site) enrichment. Nuclei in the upper right 605 
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quadrant were selected for analysis. c Fraction of potential barcode collisions detected in 606 

snATAC-seq libraries using a modified version of Scrublet33 (the box is drawn from lower 607 

quartile (Q1) to upper quartile (Q3) with a horizontal line drawn in the middle to denote 608 

the median, whiskers with maximum 1.5 IQR). Potential barcode collisions were removed 609 

for downstream processing. d Distribution of TSS enrichment (the box is drawn from lower 610 

quartile (Q1) to upper quartile (Q3) with a horizontal line drawn in the middle to denote 611 

the median, whiskers with maximum 1.5 IQR) and e number of uniquely mapped 612 

fragments/nucleus for individual libraries. f Number of nuclei passing quality control for 613 

sub-regions. g Spearman correlation matrix of snATAC-seq libraries.  614 
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 615 

Extended Data Figure 3: Hierarchical dendrogram of the major cell types. 616 

Dendrogram for major cell types was constructed using 1000 rounds of bootstrapping for 617 

major cell types using R package pvclust83. Nodes are labeled in grey, approximately 618 

unbiased (AU) p-values (in red) and bootstrap probability (BP) values (in green) are 619 

labeled at the shoulder of the nodes, respectively. For a full list and description of cell 620 

cluster labels see Supplementary Table 3.  621 
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 622 

Extended Data Figure 4: Relative cell cluster proportion at region resolution. a 623 

Cluster dendrogram based on chromatin accessibility. b-d Major cell-type composition in 624 
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b the four major regions, c the sub-regions and d the dissected regions. Indicated are 625 

row normalized percentages (pct) of clusters per major region and the total number of 626 

nuclei for each major region. Bar plots to the right show total number of nuclei sampled 627 

for each region.   628 
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 629 

Extended Data Figure 5: GWAS enrichment for additional traits in open chromatin 630 

of distinct cell types.  631 

Brain region specific enrichment of indicated GWAS traits (* FDR < 0.05, ** FDR <0.01, 632 

***FDR < 0.001). Displayed are all brain regions and all tested phenotypes with at least 633 

one significant association.  634 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 11, 2020. ; https://doi.org/10.1101/2020.05.10.087585doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.10.087585


36 
 

TABLES 635 
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Supplementary Table 2: Metadata table for nuclei  637 

Supplementary Table 3: Cell cluster annotation 638 

Supplementary Table 4: Overlap score for integration of snATAC-seq and scRNA-seq 639 

clusters 640 

Supplementary Table 5: List of the genomic locations of cCREs 641 

Supplementary Table 6: Cluster assignment of cCREs 642 

Supplementary Table 7: Association of cis regulatory modules with major cell types 643 
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Supplementary Table 9: Known motif enrichment in cis regulatory modules 645 

Supplementary Table 10: Summary of gene-cCRE correlations 646 

Supplementary Table 11: Association of modules with joint cell clusters  647 

Supplementary Table 12: Association of modules with individual putative enhancers 648 

Supplementary Table 13: Gene Ontology analysis of candidate target genes of putative 649 

enhancers 650 

Supplementary Table 14: Known motif enrichment in putative enhancers 651 

Supplementary Table 15: De novo motif enrichment in module M1 putative enhancers 652 

Supplementary Table 16: Gene Ontology analysis of candidate target gene of putative 653 

enhancers with motif sites in module M1 654 
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Supplementary Table 18: Primer sequences and nuclei barcodes for version 1 and 2 657 
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METHODS 659 

Tissue preparation and nuclei isolation 660 

All experimental procedures using live animals were approved by the SALK Institute 661 

Animal Care and Use Committee under protocol number 18-00006. Adult C57BL/6J male 662 

mice were purchased from Jackson Laboratories. Brains were extracted from 56-63 day 663 

old mice and sectioned into 600 µm coronal sections along the anterior-posterior axis in 664 

ice-cold dissection media.14,15 Specific brain regions were dissected according to the 665 

Allen Brain Reference Atlas32 (Extended Data Figure 1) and nuclei isolated as 666 

described.15 667 

 668 

Single nucleus ATAC-seq 669 

Single nucleus ATAC-seq was performed as described with steps optimized for 670 

automation15,31,34. A step-by-step-protocols for library preparation are available here 671 

(nuclei indexing versions (v1 or v2) used for each library is indicated in Supplementary 672 

Table 1): https://www.protocols.io/view/sequencing-open-chromatin-of-single-cell-nuclei-673 

sn-pjudknw/abstract.   674 

Brain nuclei were pelleted with a swinging bucket centrifuge (500 x g, 5 min, 4°C; 5920R, 675 

Eppendorf). Nuclei pellets were resuspended in 1 ml nuclei permeabilization buffer (5 % 676 

BSA, 0.2 % IGEPAL-CA630, 1mM DTT and cOmpleteTM, EDTA-free protease inhibitor 677 

cocktail (Roche) in PBS) and pelleted again (500 x g, 5 min, 4°C; 5920R, Eppendorf). 678 

Nuclei were resuspended in 500 µL high salt tagmentation buffer (36.3 mM Tris-acetate 679 

(pH = 7.8), 72.6 mM potassium-acetate, 11 mM Mg-acetate, 17.6% DMF) and counted 680 

using a hemocytometer. Concentration was adjusted to 1,000-4,500 nuclei/9 µl, and 681 

1,000-4,500 nuclei were dispensed into each well of a 96-well plate. For tagmentation, 1 682 

μL barcoded Tn5 transposomes34 were added using a BenchSmart™ 96 (Mettler Toledo, 683 

RRID:SCR_018093, Supplementary Table 18), mixed five times and incubated for 60 min 684 

at 37 °C with shaking (500 rpm). To inhibit the Tn5 reaction, 10 µL of 40 mM EDTA were 685 

added to each well with a BenchSmart™ 96 (Mettler Toledo, RRID:SCR_018093) and 686 

the plate was incubated at 37 °C for 15 min with shaking (500 rpm). Next, 20 µL 2 x sort 687 

buffer (2 % BSA, 2 mM EDTA in PBS) were added using a BenchSmart™ 96 (Mettler 688 

Toledo, RRID:SCR_018093). All wells were combined into a FACS tube and stained with 689 
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3 µM Draq7 (Cell Signaling). Using a SH800 (Sony), 20 nuclei were sorted per well into 690 

eight 96-well plates (total of 768 wells) containing 10.5 µL EB (25 pmol primer i7, 25 pmol 691 

primer i5, 200 ng BSA (Sigma). Preparation of sort plates and all downstream pipetting 692 

steps were performed on a Biomek i7 Automated Workstation (Beckman Coulter, 693 

RRID:SCR_018094). After addition of 1 µL 0.2% SDS, samples were incubated at 55 °C 694 

for 7 min with shaking (500 rpm). 1 µL 12.5% Triton-X was added to each well to quench 695 

the SDS. Next, 12.5 µL NEBNext High-Fidelity 2× PCR Master Mix (NEB) were added 696 

and samples were PCR-amplified (72 °C 5 min, 98 °C 30 s, (98 °C 10 s, 63 °C 30 s, 72°C 697 

60 s) × 12 cycles, held at 12 °C). After PCR, all wells were combined. Libraries were 698 

purified according to the MinElute PCR Purification Kit manual (Qiagen) using a vacuum 699 

manifold (QIAvac 24 plus, Qiagen) and size selection was performed with SPRI Beads 700 

(Beckmann Coulter, 0.55x and 1.5x). Libraries were purified one more time with SPRI 701 

Beads (Beckmann Coulter, 1.5x). Libraries were quantified using a Qubit fluorimeter (Life 702 

technologies, RRID:SCR_018095) and the nucleosomal pattern was verified using a 703 

Tapestation (High Sensitivity D1000, Agilent). Libraries generated with indexing version 704 

134 (Supplementary Table 1) were sequenced on a HiSeq2500 sequencer 705 

(RRID:SCR_016383, Illumina) using custom sequencing primers, 25% spike-in library 706 

and following read lengths: 50 + 43 + 37 + 50 (Read1 + Index1 + Index2 + Read2). 707 

Libraries generated with indexing version 2 (Supplementary Table 1) were sequenced on 708 

a HiSeq4000 (RRID:SCR_016386, Illumina) using custom sequencing primers with 709 

following read lengths: 50 + 10 + 12 + 50 (Read1 + Index1 + Index2 + Read2). Indexing 710 

primers and sequencing primers are in Supplementary Table 18.  711 

 712 

Nuclei indexing schemes 713 

To generate snATAC-seq libraries we used initially an indexing scheme as described 714 

before (Version 1).29,31 Here, 16 p5 and 24 p7 indexes were combined to generate an 715 

array of 384 indexes for tagmentation and 16 i5 as well as 48 i7 indexes were combined 716 

for an array of 768 PCR indexes. Due to this library design, it is required to sequence all 717 

four indexes to assign a read to a specific nucleus with long reads and a constant base 718 

sequence for both index reads between i and p barcodes. Therefore, the resulting libraries 719 
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were sequenced with 25% spike-in library on a HiSeq2500 (RRID:SCR_016383) and 720 

these read lengths: 50+43+37+50.31  721 

To generate libraries compatible with other sequencers and not requiring spike-in libraries 722 

or custom sequencing recipes, we modified the library scheme (Version 2). For this, we 723 

used 384 individual indices for T7 and combined with one T5 with a universal index 724 

sequence for tagmentation (for a total of 384 tagmentation indexes). For PCR, we used 725 

768 different i5 indexes and combined with a universal i7 primer index sequence. 726 

Tagmentation indexes were 10 bp and PCR indexes 12 bp long. We made sure, that the 727 

hamming distance between every two barcodes was >=4, the GC content between 37.5-728 

62.5 % and the number of repeats <= 3. The resulting libraries were sequenced on a 729 

HiSeq4000 with custom primers and these read lengths: 50+10+12+50 (Supplementary 730 

Table 18).  731 

 732 

Processing and alignment of sequencing reads  733 

Paired-end sequencing reads were demultiplexed and the cell index transferred to the 734 

read name. Sequencing reads were aligned to mm10 reference genome using bwa84. 735 

After alignment, we used the R package ATACseqQC (1.10.2)85 to check for fragment 736 

length contribution which is characteristic for ATAC-seq libraries. Next, we combined the 737 

sequencing reads to fragments and for each fragment we performed following quality 738 

control: 1) Keep only fragments quality score MAPQ > 30; 2) Keep only the properly 739 

paired fragments with length <1000bp. 3) PCR duplicates were further removed with 740 

SnapTools (https://github.com/r3fang/SnapTools, RRID:SCR_018097)34. Reads were 741 

sorted based on the cell barcode in the read name.   742 

 743 

TSS enrichment calculation 744 

Enrichment of ATAC-seq accessibility at TSSs was used to quantify data quality without 745 

the need for a defined peak set. The method for calculating enrichment at TSS was 746 

adapted from previously described. TSS positions were obtained from the GENCODE 747 

database v16 (RRID:SCR_014966)40. Briefly, Tn5 corrected insertions (reads aligned to 748 

the positive strand were shifted +4 bp and reads aligned to the negative strand were 749 

shifted –5 bp) were aggregated ±2,000 bp relative (TSS strand-corrected) to each unique 750 
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TSS genome wide. Then this profile was normalized to the mean accessibility ±1,900-751 

2,000 bp from the TSS and smoothed every 11bp. The max of the smoothed profile was 752 

taken as the TSS enrichment. 753 

 754 

Doublet removal 755 

We used a modified version of Scrublet (RRID:SCR_018098)33 to remove potential 756 

doublets for every dataset independently. Peaks were called using MACS2 for aggregate 757 

accessibility profiles on each sample. Next, cell-by-peak count matrices were calculated 758 

and used as input, with default parameters. Doublet scores were calculated for both 759 

observed nuclei {xi} and simulated doublets {yi} using Scrublet (RRID:SCR_018098)33. 760 

Next, a threshold θ is selected based on the distribution of {yi}, and observed nuclei with 761 

doublet score larger than θ are predicted as doublets. To determine θ, we fit a two-762 

component mixture distribution by using function normalmixEM from R package mixtools. 763 

The lower component contained majority of embedded doublet types, and the other 764 

component contained majority of neo-typic doublets (collision between nuclei from 765 

different clusters. We selected the threshold θ where the 𝑝𝑝1  ∙ 𝑝𝑝𝑝𝑝𝑝𝑝(𝑥𝑥, μ1,σ1) = 𝑝𝑝2  ∙766 

𝑝𝑝𝑝𝑝𝑝𝑝(𝑥𝑥, μ2,σ2). This value suggested that the nuclei have same chance of belonging to 767 

both classes.  768 

 769 

Clustering and cluster annotation 770 

We used an iterative clustering strategy using the snapATAC package 771 

(RRID:SCR_018097) with slight modifications as detailed below.34 For round 1 clustering, 772 

we clustered and finally merged single nuclei to three main cell classes: non-neurons, 773 

GABAergic neurons and glutamatergic neurons. For each main cell class, we preformed 774 

another round of clustering to identify major cell types. Last, for each major cell types, we 775 

performed a third round of clustering to find sub-types.  776 

Detailed description for every step is listed below: 777 

1) Nuclei filtering  778 

Nuclei with >=1,000 uniquely mapped fragments and TSS (transcription start site) 779 

enrichment >10 were filtered for individual dataset. Second, potential barcode collisions 780 

were also removed for individual dataset.  781 
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2) Feature bin selection 782 

First, we calculated a cell-by-bin matrix at 500 kb resolution for every dataset 783 

independently and subsequently merged the matrices. Second, we converted the cell-by-784 

bin count matrix to a binary matrix. Third, we filtered out any bins overlapping with the 785 

ENCODE blacklist (mm10, 786 

http://mitra.stanford.edu/kundaje/akundaje/release/blacklists/mm10-787 

mouse/mm10.blacklist.bed.gz). Fourth, we focused on bins on chromosomes 1-19, X and 788 

Y. Last, we removed the top 5% bins with the highest read coverage from the count matrix.  789 

3) Dimensionality reduction 790 

SnapATAC applies a nonlinear dimensionality reduction method called diffusion maps, 791 

which is highly robust to noise and perturbation.34 However, the computational time of the 792 

diffusion maps algorithm scales exponentially with the increase of number of cells. To 793 

overcome this limitation, we combined the Nyström method (a sampling technique)86 and 794 

diffusion maps to present Nyström Landmark diffusion map to generate the low-795 

dimensional embedding for large-scale dataset. 796 

A Nyström landmark diffusion maps algorithm includes three major steps: 797 

1. sampling: sample a subset of K (K≪N) cells from N total cells as “landmarks”.  798 

2. embedding: compute a diffusion map embedding for K landmarks; 799 

3. extension: project the remaining N-K cells onto the low-dimensional embedding as 800 

learned from the landmarks to create a joint embedding space for all cells. 801 

Having more than 800,000 single nuclei at the beginning, we decided to apply this 802 

strategy on the level 1 and 2 clustering. 10,000 cells were sampled as landmarks and the 803 

remaining query cells were projected onto the diffusion maps embedding of landmarks. 804 

Later for the level III clustering, diffusion map embeddings were directly calculated from 805 

all nuclei.  806 

4) Principal Component (PC) selection 807 

To determine the number of principal components to include for downstream analysis, we 808 

generated “Elbow plot”, to rank all principal components based on the percentage of 809 

variance explained by each one. For each round of clustering, we selected the top 10-20 810 

principal components that captured the majority of the variance.  811 

5) Graph-based clustering 812 
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Using the selected significant components, we next construct a K Nearest Neighbor (KNN) 813 

Graph. Each cell is a node and the k-nearest neighbours of each cell were identified 814 

according to the Euclidian distance and edges were drawn between neighbours in the 815 

graph. Next, we applied the Leiden algorithm on the KNN graph using python package 816 

leidenalg (https://github.com/vtraag/leidenalg)87. We tested different 817 

‘resolution_parameter’ parameters (step between 0 and 1 by 0.1) to determine the optimal 818 

resolution for different cell populations. For each resolution value, we tested if there was 819 

clear separation between nuclei. To do so, we generated a cell-by-cell consensus matrix 820 

in which each element represents the fraction of observations two nuclei are part of the 821 

same cluster. A perfectly stable matrix would consist entirely of zeros and ones, meaning 822 

that two nuclei either cluster together or not in every iteration. The relative stability of the 823 

consensus matrices can be used to infer the optimal resolution. To this end, we generated 824 

a consensus matrix based on 300 rounds of Leiden clustering with randomized starting 825 

seed 𝑠𝑠 . let Ms  denote the N × N  connectivity matrix resulting from applying Leiden 826 

algorithm to the dataset Ds with different seeds. The entries of Ms are defined as follows: 827 

Ms(i, j) = f(x) = �1, if single nucleus i and j belong to the same cluster
0, otherwise  828 

Let Is  be the N × N identicator matrix where the (i, j)-th entry is equal to 1 if nucleus i and 829 

j are in the same perturbed dataset Ds, and 0 otherwise. Then, the consensus matrix C is 830 

defined as the normalised sum of all connectivity matrices of all the perturbed Ds. 831 

C(i, j) =  �
∑ Ms(i, j)S
s=1

∑ IsS
s=1 (i, j)

� 832 

The entry (i, j) in the consensus matrix is the number of times single nucleus i and j were 833 

clustered together divided by the total number of times they were selected together. The 834 

matrix is symmetric, and each element is defined within the range [0,1]. We examined 835 

the cumulative distribution function (CDF) curve and calculated proportion of ambiguous 836 

clustering (PAC) score to quantify stability at each resolution. The resolution with a local 837 

minimal of the PAC scores denotes the parameters for the optimal clusters. In the case 838 

these were multiple local minimal PACs, we picked the one with higher resolution. 839 
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Finally, for every cluster, we tested whether we could identify differential features 840 

compared to all other nuclei (background) and to the nearest nuclei (local background) 841 

using the function ‘findDAR’. 842 

6) Visualization 843 

For visualization we applied Uniform Manifold Approximation and Projection (UMAP)80. 844 

 845 

Regional specificity 846 

For each cell type, fraction of nuclei is first calculated from each brain regions. Then, we 847 

use function ‘entropyDiversity’ from R package BioQC (cite) to calculate regional diversity 848 

for each cell types and minus the value by 1 as specificity.  849 

 850 

Identification of reproducible peak sets in each cell cluster 851 

We performed peak calling according to the ENCODE ATAC-seq pipeline 852 

(https://www.encodeproject.org/atac-seq/).  For every cell cluster, we combined all 853 

properly paired reads to generate a pseudobulk ATAC-seq dataset for individual 854 

biological replicates. In addition, we generated two pseudo-replicates which comprise half 855 

of the reads from each biological replicate. We called peak for each of the four dataset 856 

and a pool of both replicates independently. Peak calling was performed on the Tn5-857 

corrected single-base insertions using the MACS239 with these parameters: --shift -75 --858 

extsize 150 --nomodel --call-summits --SPMR --keep-dup all -q 0.01. Finally, we extended 859 

peak summits by 250 bp on either side to a final width of 501 bp for merging and 860 

downstream analysis. To generate a list of reproducible peaks, we kept peaks that 1) 861 

were detected in the pooled dataset and overlapped >=50% of peak length with a peak 862 

in both individual replicates or 2) were detected in the pooled dataset and 863 

overlapped >=50% of peak length with a peak in both pseudo-replicates.  864 

To account for differences in performance of MACS239 based on read depth and/or 865 

number of nuclei in individual clusters, we converted MACS2 peak scores (-log10(q-866 

value)) to “score per million”88. We filtered reproducible peaks by choosing a “score per 867 

million” cut-off of 2 was used to filter reproducible peaks. 868 

We only kept reproducible peaks on chromosome 1-19 and both sex chromosomes, and 869 

filtered ENCODE mm10 blacklist regions (mm10, 870 
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http://mitra.stanford.edu/kundaje/akundaje/release/blacklists/mm10-871 

mouse/mm10.blacklist.bed.gz). A union peak list for the whole dataset obtained by 872 

merging peak sets from all cell clusters using BEDtools (RRID:SCR_006646)89. 873 

Lastly, since snATAC-seq data are very sparse, we selected only elements that were 874 

identified as open chromatin in a significant fraction of the cells in each cluster. To this 875 

end, we first randomly selected same number of non-DHS regions (~ 670k elements) 876 

from the genome as background and calculated the fraction of nuclei for each cell type 877 

that that showed a signal at these sites. Next, we fitted a zero-inflated beta model and 878 

empirically identified a significance threshold of FDR < 0.01 to filter potential false positive 879 

peaks. Peak regions with FDR < 0.01 in at least one of the clusters were included into 880 

downstream analysis. 881 

 882 

Computing chromatin accessibility scores 883 

Accessibility of cCREs in individual clusters was quantified by counting the fragments in 884 

individual clusters normalized by read depth (counts per million: CPM).  885 

For each gene, we summed counts within the gene body + 2kb upstream to calculate 886 

“gene activity score (GAS)” using Seurat 887 

(https://satijalab.org/seurat/v3.1/atacseq_integration_vignette.html, 888 

RRID:SCR_016341)38,   GAS were used for visualization and integrative analysis with 889 

single cell RNA-seq. 890 

 891 

Integrative analysis of single nucleus ATAC-seq and single cell RNA-seq for mouse 892 

brain 893 

For integrative analysis, we downloaded level 5 clustering data from the Mouse Brain 894 

Atlas website (http://mousebrain.org)1. First, we filtered brain regions that matched 895 

samples profiled in this study using these attributes for “Region”: "CNS", "Cortex", 896 

"Hippocampus", "Hippocampus,Cortex", "Olfactory bulb", "Striatum dorsal", "Striatum 897 

ventral", "Dentate gyrus", "Striatum dorsal,Striatum ventral", "Striatum dorsal, Striatum 898 

ventral, Dentate gyrus", "Pallidum", "Striatum dorsal, Striatum ventral, Amygdala", 899 

"Striatum dorsal, Striatum ventral", "Telencephalon", "Brain", "Sub ventricular zone, 900 

Dentate gyrus" 901 
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Second, we manually subset cell types into three groups by checking the attribute in 902 

“Taxonomy_group”: Non-neurons: "Vascular and leptomeningeal cells", "Astrocytes", 903 

"Oligodendrocytes", "Ependymal cells", "Microglia", "Oligodendrocyte precursor cells", 904 

"Olfactory ensheathing cells", "Pericytes", "Vascular smooth muscle cells", "Perivascular 905 

macrophages", "Dentate gyrus radial glia-like cells", "Subventricular zone radial glia-like 906 

cells", "Vascular smooth muscle cells", "Vascular endothelial cells", "Vascular and 907 

leptomeningeal cells"; GABAergic neurons: "Non-glutamatergic neuroblasts", 908 

"Telencephalon projecting inhibitory neurons", "Olfactory inhibitory neurons", 909 

"Glutamatergic neuroblasts", "Cholinergic and monoaminergic neurons", "Di- and 910 

mesencephalon inhibitory neurons", "Telencephalon inhibitory interneurons", 911 

"Peptidergic neurons"; Glutamatergic neurons: "Dentate gyrus granule neurons", "Di- and 912 

mesencephalon excitatory neurons", "Telencephalon projecting excitatory neurons" 913 

We performed integrative analysis with single cell RNA-seq using Seurat 3.0 914 

(RRID:SCR_016341) to compare cell annotation between different modalities38. We 915 

randomly selected 200 nuclei (and used all nuclei for cell cluster with <200 nuclei) from 916 

each cell cluster for integrative analysis. We first generated a Seurat object in R by using 917 

previously calculated gene activity scores, diffusion map embeddings and cell cluster 918 

labels from snATAC-seq. Then, variable genes were identified from scRNA-seq and used 919 

for identifying anchors between these two modalities. Finally, to visualize all the cells 920 

together, we co-embedded the scRNA-seq and snATAC-seq profiles in the same low 921 

dimensional space.  922 

To quantify the similarity between cell clusters from two modalities, we calculated an 923 

overlapping score as the sum of the minimum proportion of cells/nuclei in each cluster 924 

that overlapped within each co-embedding cluster10. Cluster overlaps varied from 0 to 1 925 

and were visualized as a heat map with snATAC-seq clusters in rows and scRNA-seq 926 

clusters in columns. 927 

 928 

Identification of cis regulatory modules 929 

We used Nonnegative Matrix Factorization (NMF)90 to group cCREs into cis regulatory 930 

modules based on their relative accessibility across major clusters. We adapted NMF 931 

(Python package: sklearn91) to decompose the cell-by-cCRE matrix V (N×M, N rows: 932 
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cCRE, M columns: cell clusters) into a coefficient matrix H (R×M, R rows: number of 933 

modules) and a basis matrix W (N×R), with a given rank R:  934 

V ≈ WH , 935 

The basis matrix defines module related accessible cCREs, and the coefficient matrix 936 

defines the cell cluster components and their weights in each module. The key issue to 937 

decompose the occupancy profile matrix was to find a reasonable value for the rank R 938 

(i.e., the number of modules). Several criteria have been proposed to decide whether a 939 

given rank R decomposes the occupancy profile matrix into meaningful clusters. Here we 940 

applied two measurements “Sparseness”92 and “Entropy”93 to evaluate the clustering 941 

result. Average values were calculated from 100 times for NMF runs at each given rank 942 

with random seed, which will ensure the measurements are stable. 943 

Next, we used the coefficient matrix to associate modules with distinct cell clusters. In the 944 

coefficient matrix, each row represents a module and each column represents a cell 945 

cluster. The values in the matrix indicate the weights of clusters in their corresponding 946 

module. The coefficient matrix was then scaled by column (cluster) from 0 to 1. 947 

Subsequently, we used a coefficient > 0.1 (~95th percentile of the whole matrix) as 948 

threshold to associate a cluster with a module.  949 

In addition, we associated each module with accessible elements using the basis matrix. 950 

For each element and each module, we derived a basis coefficient score, which 951 

represents the accessible signal contributed by all cluster in the defined module. In 952 

addition, we also implemented and calculated a basis-specificity score called “feature 953 

score” for each accessible element using the “kim” method93. The feature score ranges 954 

from 0 to 1. A high feature score means that a distinct element is specifically associated 955 

with a specific module. Only features that fulfil both following criteria were retained as 956 

module specific elements:  957 

1. feature score greater than median + 3 standard deviation; 958 

2. the maximum contribution to a basis component is greater than the median of all 959 

contributions (i.e. of all elements of W). 960 

 961 

Dendrogram construction for mouse brain cell types 962 
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First, we calculated for cCRE the median accessibility per cluster and used this value as 963 

cluster centroid. Next, we calculated the coefficient of variant (CV) for the cluster centroid 964 

of each element across major cell types. Finally, we only kept variable elements with CV 965 

larger than 1.5 for dendrogram construction.  966 

We used the set of variable features defined above to calculate a correlation-based 967 

distance matrix. Next, we performed linkage hierarchical clustering using the R package 968 

pvclust (v.2.0)83 with parameters method.dist="cor" and method.hclust="ward.D2". The 969 

confidence for each branch of the tree was estimated by the bootstrap resampling 970 

approach.  971 

 972 

Motif enrichment 973 

We performed both de novo and known motif enrichment analysis using Homer (v4.11, 974 

RRID:SCR_010881)46. For cCREs in the consensus list, we scanned a region of ± 250 975 

bp around the center of the element. And for proximal/promoter regions, we scanned a 976 

region of ± 1000 bp around the transcriptional start site.  977 

 978 

GREAT analysis 979 

Gene ontology annotation of cCREs was performed using GREAT (version 4.0.4, 980 

RRID:SCR_005807)94 with default parameters. GO Biological Process was used for 981 

annotations. 982 

 983 

Gene ontology enrichment 984 

We perform gene ontology enrichment analysis using R package Enrichr 985 

(RRID:SCR_001575)82. Gene set library "GO_Biological_Process_2018" was used with 986 

default parameters. The combined score is defined as the p-value computed using the 987 

Fisher exact test multiplied with the z-score of the deviation from the expected rank. 988 

 989 

Predicting enhancer-promoter interactions 990 

First, co-accessible regions are identified for all open regions in each cell cluster 991 

(randomly selected 200 nuclei, and used all nuclei for cell cluster with <200 nuclei) 992 

separately, using Cicero49 with following parameters: aggregation k = 10, window size = 993 
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500 kb, distance constraint = 250 kb. In order to find an optimal co-accessibility threshold 994 

for each cluster, we generated a random shuffled cCRE-by-cell matrix as background and 995 

identified co-accessible regions from this shuffled matrix. We fitted the distribution of co-996 

accessibility scores from random shuffled background into a normal distribution model by 997 

using R package fitdistrplus95.  Next, we tested every co-accessibility pairs and set the 998 

cut-off at co-accessibility score with empirically defined significance threshold of 999 

FDR<0.01. 1000 

CCRE outside of ± 1 kb of transcriptional start sites (TSS) in GENCODE mm10 (v16, 1001 

RRID:SCR_014966).40 were considered distal. Next, we assigned co-accessibility pairs 1002 

to three groups: proximal-to-proximal, distal-to-distal, and distal-to-proximal. In this study, 1003 

we focus only on distal-to-proximal pairs. We further used RNA expression from matched 1004 

T-types to filter pairs that were linked to non-expressed genes (normalized UMI > 5).  1005 

We calculated Pearson's correlation coefficient (PCC) between gene expression and 1006 

cCRE accessibility across joint RNA-ATAC clusters to examine the relationship between 1007 

co-accessibility pairs. To do so, we first aggregated all nuclei/cells from scRNA-seq and 1008 

snATAC-seq for every joint cluster to calculate accessibility scores (log2 CPM) and 1009 

relative expression levels (log2 normalized UMI). Then, PCC was calculated for every 1010 

gene-cCRE pair within a 1 Mbp window centered on the TSS for every gene. We also 1011 

generated a set of background pairs by randomly selecting regions from different 1012 

chromosomes and shuffling of cluster labels. Finally, we fit a normal distribution model 1013 

and defined a cut-off at PCC score with empirically defined significance threshold of 1014 

FDR<0.01, in order to select significant positively correlated cCRE-gene pairs. 1015 

 1016 

GWAS enrichment 1017 

To enable comparison to GWAS of human phenotypes, we used liftOver with settings “-1018 

minMatch=0.5” to convert accessible elements from mm10 to hg19 genomic 1019 

coordinates.69 Next, we reciprocal lifted the elements back to mm10 and only kept the 1020 

regions that mapped to original loci.  We further removed converted regions with length > 1021 

1kb.  1022 

We obtained GWAS summary statistics for quantitative traits related to neurological 1023 

disease and control traits: Heart Failure96, Type 1 Diabetes97, Age First Birth and Number 1024 
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Children Born98, Lupus99, Primary Biliary Cirrhosis100, Tiredness101, Crohns_Disease102, 1025 

Inflammatory Bowel Disease102, Ulcerative_Colitis102, Asthma103, Attention Deficit 1026 

Hyperactivity Disorder104, Heart Rate105, Celiacs Disease106, HOMA-B107, HOMA-IR107, 1027 

Childhood Aggression108, Atopic Dermatitis109, Allergy110, HDL_Cholesterol111, 1028 

LDL_Cholesterol111, Total Cholesterol111, Triglycerides111, Autism Spectrum Disorder112, 1029 

Birth Weight113, Bipolar Disorder114, Multiple Sclerosis115, Insomnia116, Vitamin D117, 1030 

Primary Sclerosing Cholangitis118, Vitiligo119, Chronotype120, Sleep Duration120, 1031 

Alzheimer’s Disease121, BMI122, Neuroticism123, Type 2 Diabetes124, Stroke125, Fasting 1032 

Glucose126, Fasting Insulin126, Child Sleep Duration127, Coronary Artery Disease128, Atrial 1033 

Fibrillation129, Rheumatoid Arthritis130, Educational Attainment131, Chronic Kidney 1034 

Disease132, Obsessive Compulsive Disorder133, Post Traumatic Stress Disorder134, 1035 

Schizophrenia135, Age At Menopause136, Age At Menarche137, Tobacco use disorder 1036 

(ftp://share.sph.umich.edu/UKBB_SAIGE_HRC/, Phenotype code: 318)138, 1037 

Intelligence139, Alcohol Usage140, Fasting Proinsulin141, Head Circumference142, 1038 

Microalbuminuria143, Extraversion144, Birth Length145, Amyotrophic Lateral Sclerosis146, 1039 

Anorexia Nervosa147, HbA1c148, Major Depressive Disorder149, Height150. 1040 

We prepared summary statistics to the standard format for Linkage disequilibrium (LD) 1041 

score regression. We used homologous sequences for each major cell types as a binary 1042 

annotation, and the superset of all candidate regulatory peaks as the background control. 1043 

For each trait, we used cell type specific (CTS) LD score regression 1044 

(https://github.com/bulik/ldsc) to estimate the enrichment coefficient of each annotation 1045 

jointly with the background control70. 1046 

  1047 

External datasets 1048 

We listed all the datasets we used in this study for intersection analysis: 1049 

rDHS regions for both hg19 and mm10 are obtained from SCREEN database 1050 

(https://screen.encodeproject.org)41,42. 1051 

ChromHMM43,45 states for mouse brain are download from GitHub 1052 

(https://github.com/gireeshkbogu/chromatin_states_chromHMM_mm9), and coordinates 1053 

are LiftOver (https://genome.ucsc.edu/cgi-bin/hgLiftOver) to mm10 with default 1054 

parameters69. 1055 
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PhastCons81 conserved elements were download from the UCSC Genome Browser 1056 

(http://hgdownload.cse.ucsc.edu/goldenpath/mm10/phastCons60way/).  1057 

CTCF binding sites are download from Mouse Encode Project43 1058 

http://chromosome.sdsc.edu/mouse/). CTCF binding sites from cortex and olfactory bulb 1059 

were used in this study. Peaks are extended ± 500 bp from the loci of peak summits and 1060 

used LiftOver to mm1069. 1061 

 1062 

Statistics 1063 

No statistical methods were used to predetermine sample sizes. There was no 1064 

randomization of the samples, and investigators were not blinded to the specimens being 1065 

investigated. However, clustering of single nuclei based on chromatin accessibility was 1066 

performed in an unbiased manner, and cell types were assigned after clustering. Low-1067 

quality nuclei and potential barcode collisions were excluded from downstream analysis 1068 

as outlined above. For significance of ontology enrichments using GREAT, Bonferroni-1069 

corrected binomial p values were used94. For ontology enrichment using Enrichr the 1070 

combined score which represents the product of the p-value computed using the Fisher 1071 

exact test multiplied with the z-score of the deviation from the expected rank was used82. 1072 

For significance testing of enrichment of de novo motifs, a hypergeometric test was used 1073 

without correction for multiple testing46. 1074 

 1075 

Data availability 1076 

Demultiplexed data can be accessed via the NEMO archive (NEMO, RRID:SCR_016152) 1077 

here:  http://data.nemoarchive.org/biccn/grant/cemba/ecker/chromatin/scell/raw/  1078 

Processed data are available on our web portal and can be explored here:  1079 

http://catlas.org/mousebrain 1080 
 1081 
Code availability 1082 
Custom code and scripts used for analysis can be accessed here: 1083 

https://github.com/YoungLeeBBS/snATACutils and https://github.com/r3fang/SnapATAC.  1084 
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