Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

Changes in electrophysiological static and dynamic human brain functional architecture from childhood to late adulthood

N Coquelet, V Wens, A Mary, M Niesen, D Puttaert, M Ranzini, M Vander Ghinst, M Bourguignon, P Peigneux, S Goldman, M Woolrich, X De Tiège
doi: https://doi.org/10.1101/2020.05.11.047894
N Coquelet
1Laboratoire de Cartographie fonctionnelle du Cerveau (LCFC), UNI–ULB Neuroscience Institute, Université libre de Bruxelles, Brussels, Belgium
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: ncoquele@ulb.ac.be
V Wens
1Laboratoire de Cartographie fonctionnelle du Cerveau (LCFC), UNI–ULB Neuroscience Institute, Université libre de Bruxelles, Brussels, Belgium
2Department of Functional Neuroimaging, CUB Hôpital Erasme, Université libre de Bruxelles, Brussels, Belgium
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A Mary
1Laboratoire de Cartographie fonctionnelle du Cerveau (LCFC), UNI–ULB Neuroscience Institute, Université libre de Bruxelles, Brussels, Belgium
3Neuropsychology and Functional Neuroimaging Research (UR2NF), Centre for Research in Cognition and Neurosciences (CRCN), UNI–ULB Neuroscience Institute, Université libre de Bruxelles, Brussels, Belgium
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M Niesen
1Laboratoire de Cartographie fonctionnelle du Cerveau (LCFC), UNI–ULB Neuroscience Institute, Université libre de Bruxelles, Brussels, Belgium
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
D Puttaert
1Laboratoire de Cartographie fonctionnelle du Cerveau (LCFC), UNI–ULB Neuroscience Institute, Université libre de Bruxelles, Brussels, Belgium
3Neuropsychology and Functional Neuroimaging Research (UR2NF), Centre for Research in Cognition and Neurosciences (CRCN), UNI–ULB Neuroscience Institute, Université libre de Bruxelles, Brussels, Belgium
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M Ranzini
4Laboratoire Cognition Langage et Développement, UNI–ULB Neuroscience Institute, Université libre de Bruxelles, Brussels, Belgium
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M Vander Ghinst
1Laboratoire de Cartographie fonctionnelle du Cerveau (LCFC), UNI–ULB Neuroscience Institute, Université libre de Bruxelles, Brussels, Belgium
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M Bourguignon
1Laboratoire de Cartographie fonctionnelle du Cerveau (LCFC), UNI–ULB Neuroscience Institute, Université libre de Bruxelles, Brussels, Belgium
4Laboratoire Cognition Langage et Développement, UNI–ULB Neuroscience Institute, Université libre de Bruxelles, Brussels, Belgium
5BCBL – Basque Center on Cognition, Brain and Language, 20009 San Sebastian, Spain
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
P Peigneux
3Neuropsychology and Functional Neuroimaging Research (UR2NF), Centre for Research in Cognition and Neurosciences (CRCN), UNI–ULB Neuroscience Institute, Université libre de Bruxelles, Brussels, Belgium
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S Goldman
1Laboratoire de Cartographie fonctionnelle du Cerveau (LCFC), UNI–ULB Neuroscience Institute, Université libre de Bruxelles, Brussels, Belgium
2Department of Functional Neuroimaging, CUB Hôpital Erasme, Université libre de Bruxelles, Brussels, Belgium
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M Woolrich
6Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, United Kingdom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
X De Tiège
1Laboratoire de Cartographie fonctionnelle du Cerveau (LCFC), UNI–ULB Neuroscience Institute, Université libre de Bruxelles, Brussels, Belgium
2Department of Functional Neuroimaging, CUB Hôpital Erasme, Université libre de Bruxelles, Brussels, Belgium
3Neuropsychology and Functional Neuroimaging Research (UR2NF), Centre for Research in Cognition and Neurosciences (CRCN), UNI–ULB Neuroscience Institute, Université libre de Bruxelles, Brussels, Belgium
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Preview PDF
Loading

Abstract

This magnetoencephalography study aimed at characterizing age-related changes in resting-state functional brain organization from mid-childhood to late adulthood. We investigated neuromagnetic brain activity at rest in 105 participants divided into three age groups: children (6–9 years), young adults (18–34 years) and healthy elders (53–78 years). The effects of age on static resting-state functional integration were assessed using band-limited power envelope correlation, whereas those on transient functional dynamics were disclosed using hidden Markov modeling of power envelope activity. Brain development from childhood to adulthood came with (i) a strengthening of functional integration within and between resting-state networks and (ii) an increased temporal stability of transient (100–300 ms lifetime) and recurrent states of network activation or deactivation mainly encompassing lateral or medial associative neocortical areas. Healthy aging was characterized by decreased static resting-state functional integration and dynamical stability within the visual network. These results based on electrophysiological measurements free of neurovascular biases suggest that functional brain integration mainly evolves during brain development, with limited changes in healthy aging. These novel electrophysiological insights into human brain functional architecture across the lifespan pave the way for future clinical studies investigating how brain disorders affect brain development or healthy aging.

Competing Interest Statement

The authors have declared no competing interest.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.
Back to top
PreviousNext
Posted May 12, 2020.
Download PDF
Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Changes in electrophysiological static and dynamic human brain functional architecture from childhood to late adulthood
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Changes in electrophysiological static and dynamic human brain functional architecture from childhood to late adulthood
N Coquelet, V Wens, A Mary, M Niesen, D Puttaert, M Ranzini, M Vander Ghinst, M Bourguignon, P Peigneux, S Goldman, M Woolrich, X De Tiège
bioRxiv 2020.05.11.047894; doi: https://doi.org/10.1101/2020.05.11.047894
Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
Changes in electrophysiological static and dynamic human brain functional architecture from childhood to late adulthood
N Coquelet, V Wens, A Mary, M Niesen, D Puttaert, M Ranzini, M Vander Ghinst, M Bourguignon, P Peigneux, S Goldman, M Woolrich, X De Tiège
bioRxiv 2020.05.11.047894; doi: https://doi.org/10.1101/2020.05.11.047894

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Neuroscience
Subject Areas
All Articles
  • Animal Behavior and Cognition (2633)
  • Biochemistry (5220)
  • Bioengineering (3643)
  • Bioinformatics (15706)
  • Biophysics (7210)
  • Cancer Biology (5589)
  • Cell Biology (8038)
  • Clinical Trials (138)
  • Developmental Biology (4731)
  • Ecology (7457)
  • Epidemiology (2059)
  • Evolutionary Biology (10518)
  • Genetics (7694)
  • Genomics (10079)
  • Immunology (5144)
  • Microbiology (13819)
  • Molecular Biology (5349)
  • Neuroscience (30568)
  • Paleontology (211)
  • Pathology (870)
  • Pharmacology and Toxicology (1519)
  • Physiology (2233)
  • Plant Biology (4980)
  • Scientific Communication and Education (1036)
  • Synthetic Biology (1379)
  • Systems Biology (4129)
  • Zoology (802)