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Abstract 27 

Bacteriophages (phages) are being considered as alternative therapeutics for the treatment 28 

of multidrug resistant bacterial infections. Considering phages have narrow host-ranges, it is 29 

generally accepted that therapeutic phages will have a marginal impact on non-target bacteria. 30 

We have discovered that lytic phage infection induces transcription of type VIIb secretion 31 

system (T7SS) genes in the pathobiont Enterococcus faecalis. Membrane damage during 32 

phage infection induces T7SS gene expression resulting in cell contact dependent antagonism 33 

of different Gram positive bystander bacteria. Deletion of essB, a T7SS structural component, 34 

abrogates phage-mediated killing of bystanders. A predicted immunity gene confers protection 35 

against T7SS mediated inhibition, and disruption of its upstream LXG toxin gene rescues growth 36 

of E. faecalis and Staphylococcus aureus bystanders. Phage induction of T7SS gene 37 

expression and bystander inhibition requires IreK, a serine/threonine kinase, and 38 

OG1RF_11099, a predicted GntR-family transcription factor. Additionally, sub-lethal doses of 39 

membrane targeting and DNA damaging antibiotics activated T7SS expression independent of 40 

phage infection, triggering T7SS antibacterial activity against bystander bacteria. Our findings 41 

highlight how phage infection and antibiotic exposure of a target bacterium can affect non-target 42 

bystander bacteria and implies that therapies beyond antibiotics, such as phage therapy, could 43 

impose collateral damage to polymicrobial communities. 44 

 45 

Author Summary 46 

Renewed interest in phages as alternative therapeutics to combat multi-drug resistant 47 

bacterial infections, highlights the importance of understanding the consequences of phage-48 

bacteria interactions in the context of microbial communities. Although it is well established that 49 

phages are highly specific for their host bacterium, there is no clear consensus on whether or 50 

not phage infection (and thus phage therapy) would impose collateral damage to non-target 51 

bacteria in polymicrobial communities. Here we provide direct evidence of how phage infection 52 
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of a clinically relevant pathogen triggers an intrinsic type VII secretion system (T7SS) 53 

antibacterial response that consequently restricts the growth of neighboring bacterial cells that 54 

are not susceptible to phage infection. Phage induction of T7SS activity is a stress response 55 

and in addition to phages, T7SS antagonism can be induced using sub-inhibitory concentrations 56 

of antibiotics that facilitate membrane or DNA damage. Together these data show that a 57 

bacterial pathogen responds to diverse stressors to induce T7SS activity which manifests 58 

through the antagonism of neighboring non-kin bystander bacterial cells.      59 

 60 

Introduction 61 

Enterococci constitute a minor component of the healthy human microbiota [1]. Enterococci, 62 

including Enterococcus faecalis, are also nosocomial pathogens that cause a variety of 63 

diseases, including sepsis, endocarditis, surgical-site, urinary tract and mixed bacterial 64 

infections [2, 3]. Over recent decades, enterococci have acquired extensive antibiotic resistance 65 

traits, including resistance to “last-resort” antibiotics such as vancomycin, daptomycin, and 66 

linezolid [4-8]. Following antibiotic therapy, multi-drug resistant (MDR) enterococci can outgrow 67 

to become a dominant member of the intestinal microbiota, resulting in intestinal barrier invasion 68 

and blood stream infection [7, 9]. The ongoing evolution of MDR enterococci in healthcare 69 

settings [4-6, 10, 11] and their ability to transmit antibiotic resistance among diverse bacteria [9, 70 

12-15], emphasize the immediate need for novel therapeutic approaches to control enterococcal 71 

infections.  72 

Viruses that infect and kill bacteria (bacteriophages or phages) are receiving attention for 73 

their use as antibacterial agents [16]. Recent studies have demonstrated the efficacy of anti-74 

enterococcal phages in murine models of bacteremia [17-19] and the administration of phages 75 

to reduce E. faecalis burden in the intestine gives rise to phage resistant isolates that are 76 

sensitized to antibiotics [20]. Considering phages are highly specific for their target bacterium, 77 

coupled with the self-limiting nature of their host-dependent replication, this suggests that unlike 78 
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antibiotics which have broad off-target antimicrobial activity, phages should have nominal 79 

impact on bacteria outside of their intended target strain [21-23]. However, our understanding of 80 

how phages interact with bacteria and the bacterial response to phage infection is limited.  81 

While studying the transcriptional response of phage infected E. faecalis cells, we 82 

discovered that phage infection induces the expression of genes involved in the biosynthesis of 83 

a type VIIb secretion system (T7SS) [24]. Firmicutes, including the enterococci, harbor diverse 84 

T7SS genes encoding transmembrane and cytoplasmic proteins involved in the secretion of 85 

protein substrates [25], and T7SSs promote antagonism of non-kin bacterial cells through 86 

production of antibacterial effectors and/or toxins [26, 27]. The antibacterial activity of T7SSs 87 

from staphylococci and streptococci are well characterized [25] but T7SS-mediated antibacterial 88 

antagonism has not been described for enterococci. The environmental cues and regulatory 89 

pathways that govern T7SS expression and activity are poorly understood, although recent 90 

studies indicate that exposure to serum and membrane stresses triggered by pulmonary 91 

surfactants, fatty acids and phage infection stimulate T7SS gene expression [24, 28-31]. This 92 

motivated us to determine if phage induced T7SS gene expression in E. faecalis results in the 93 

inhibition of non-kin bacterial cells that are not phage targets (bystanders). We discovered that 94 

phage infected E. faecalis produces potent T7SS antibacterial activity against bystander 95 

bacteria. Expression of a T7SS antitoxin (immunity factor) gene in bystander cells and mutation 96 

of the LXG domain containing gene located immediately upstream of this immunity factor confer 97 

protection against phage mediated T7SS inhibition. We also investigated the potential impact of 98 

antimicrobials directed against bacterial physiological processes that are also targeted by 99 

phages, including cell wall, cell membrane and DNA damaging agents, on enterococcal T7SS. 100 

Sub-lethal challenge with specific antibiotics enhances T7SS gene expression resulting in T7SS 101 

dependent interspecies antagonism. Additionally, we discovered that membrane stress during 102 

phage infection induces transcription of T7SS genes via a non-canonical IreK signaling 103 

pathway. To our knowledge, the enterococcal T7SS is the first example of secretion system 104 
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induction during phage infection. These data shed light on how phage infection of a cognate 105 

bacterial host can influence polymicrobial interactions and raises the possibility that phages may 106 

impose unintended compositional shifts among bystander bacteria in the microbiota during 107 

phage therapy.  108 

 109 

Results 110 

Phage mediated induction of E. faecalis T7SS leads to interspecies antagonism.  111 

A hallmark feature of phage therapy is that phages often have a narrow host range, hence 112 

they do not influence the growth of non-susceptible bacteria occupying the same niche [22]. We 113 

discovered that infection of E. faecalis OG1RF by phage VPE25 induces the expression of 114 

T7SS genes [24]. The E. faecalis OG1RF T7SS locus is absent in the commonly studied 115 

vancomycin-resistant strain V583, despite conservation of flanking genes (Fig. 1A) [32, 33]. The 116 

OG1RF T7SS is found downstream of conserved tRNA-Tyr and tRNA-Gln genes, which could 117 

facilitate recombination or integration of new DNA [34], but no known recombination or 118 

integration sites were identified on the 3’ end of this locus. Homologs of the E. faecalis T7SS 119 

gene esxA are found throughout three of the four Enterococcus species groups [35], including 120 

Enterococcus faecium, suggesting a wide distribution of T7SS loci in enterococci (Fig. S1). In 121 

addition to EsxA, OG1RF encodes the core T7SS structural components EsaA, EssB, and 122 

EssC, which are predicted to localize to the membrane, and EsaB, a small predicted 123 

cytoplasmic protein (Fig. 1A) [36].  OG1RF_11102 encodes an additional putative membrane 124 

protein, although it does not share sequence homology with staphylococcal or streptococcal 125 

EssA.  We were unable to identify an EssA homolog in OG1RF using sequence-based 126 

homology searches, suggesting that the enterococcal T7SS machinery may differ from 127 

previously described T7SS found in other Gram-positive bacteria. In silico analyses predict that 128 

the E. faecalis T7SS locus encodes multiple WXG100 family effectors and LXG family 129 

polymorphic toxins [27, 37]. We hypothesized that induction of T7SS genes during phage 130 
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infection and consequently the heightened production of T7SS substrates would indirectly 131 

influence the growth of non-kin phage-resistant bacterial cells.   132 

To investigate if T7SS factors produced during phage infection of E. faecalis OG1RF 133 

interferes with the growth of phage-resistant bystander bacteria, we generated a strain with an 134 

in-frame deletion in the T7SS gene essB, encoding a transmembrane protein involved in the 135 

transport of T7SS substrates [38]. We chose to inactivate essB as opposed to the more 136 

commonly investigated secretion promoting ATPase essC [27, 38], because E. faecalis OG1RF 137 

harbours two essC genes in its T7SS locus that may have functional redundancy (Fig. 1A). The 138 

essB mutant is equally susceptible to phage VPE25 infection compared to wild type E. faecalis 139 

OG1RF (Fig. S2A). We performed co-culture experiments where phage susceptible wild type E. 140 

faecalis OG1RF or ∆essB were mixed with a phage resistant bystander, a strain of E. faecalis 141 

V583 deficient in the production of the VPE25 receptor (∆pipV583) [39], at a ratio of 1:1 in the 142 

absence and presence of phage VPE25 (multiplicity of infection [MOI] = 0.01) (Fig. 1B). VPE25 143 

infected E. faecalis OG1RF and the ∆essB mutant with similar efficiency and caused a 1000-144 

fold reduction in the viable cell count over a period of 24 hours relative to the starting cell count 145 

(Fig. S2B). Since sequence-based homology searches did not retrieve any homologs of 146 

potential antitoxins from the E. faecalis OG1RF T7SS locus in E. faecalis V583 genome, this 147 

strain likely lacks immunity to toxins encoded in this locus. The viability of E. faecalis ∆pipV583, 148 

was reduced nearly 100-fold when co-cultured with E. faecalis OG1RF in the presence of phage 149 

VPE25 (Fig. 1C, S2C). However, growth inhibition of E. faecalis ∆pipV583 was abrogated during 150 

co-culture with phage infected E. faecalis ∆essB and phage induced T7SS antagonism of E. 151 

faecalis ∆essB could be restored by complementation (Fig. 1C, S2C), indicating that inhibition of 152 

phage resistant E. faecalis ΔpipV583 by OG1RF is T7SS dependent.  153 

T7SS encoded antibacterial toxins secreted by Gram positive bacteria influence intra- and 154 

interspecies antagonism [26, 27]. While a nuclease and a membrane depolarizing toxin 155 

produced by Staphylococcus aureus target closely related S. aureus strains [26, 40], 156 
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Streptococcus intermedius exhibits T7SS dependent antagonism against a wide-array of Gram 157 

positive bacteria [27]. To determine the target range of E. faecalis OG1RF T7SS antibacterial 158 

activity, we measured the viability of a panel of VPE25 insensitive Gram positive and Gram 159 

negative bacteria in our co-culture assay (Fig. 1B). Growth inhibition of the distantly related 160 

bacterial species E. faecium and Gram positive bacteria of diverse genera, including S. aureus 161 

and Listeria monocytogenes, occurred following co-culture with phage infected wild type E. 162 

faecalis OG1RF but not the ∆essB mutant (Fig. 1D). Fitness of Lactococcus lactis, a lactic acid 163 

bacterium like E. faecalis, was modestly reduced during co-culture with phage infected E. 164 

faecalis OG1RF, although these data were not statistically significant. In contrast, Gram positive 165 

pathogenic and commensal streptococci were unaffected (Fig. 1D). Similarly, phage induced 166 

T7SS activity did not inhibit any Gram negative bacteria tested (Fig. 1D). Collectively, these 167 

results show that phage predation of E. faecalis promotes T7SS inhibition of select bystander 168 

bacteria.   169 

 170 

Molecular basis of E. faecalis phage–triggered T7SS antagonism 171 

Our data demonstrate that induction of E. faecalis OG1RF T7SS genes during phage 172 

infection hinder the growth of select non-kin bacterial species. Antibacterial toxins deployed by 173 

Gram negative bacteria via type V and VI secretion and Gram positive T7SS require physical 174 

contact between cells to achieve antagonism [26, 27, 41, 42]. Therefore, we investigated if 175 

growth inhibition of bystander bacteria is contingent upon direct interaction with phage infected 176 

E. faecalis using a trans-well assay [27]. We added unfiltered supernatants from wild type E. 177 

faecalis OG1RF and ∆essB mutant cultures grown for 24 hrs in the presence and absence of 178 

phage VPE25 (MOI = 0.01) to the top of a trans well and deposited phage resistant E. faecalis 179 

∆pipV583 in the bottom of the trans well. The 0.4 µm membrane filter that separates the two wells 180 

is permeable to proteins and solutes but prevents bacterial translocation. Supernatant from 181 

phage infected wild type E. faecalis OG1RF did not inhibit E. faecalis ∆pipV583 (Fig. S3A) 182 
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indicating that T7SS mediated growth interference relies on cell to cell contact. To exclude the 183 

possibility that T7SS substrates might adhere to the 0.4 µm membrane filter in the trans-well 184 

assay, we administered both filtered and unfiltered culture supernatants directly to E. faecalis 185 

∆pipV583 cells (5x105 CFU/well) at a ratio of 1:10 (supernatant to bystander cells) and monitored 186 

growth over a period of 10 hours. Growth kinetics of E. faecalis ∆pipV583 remained similar 187 

irrespective of the presence or absence of conditioned supernatant from wild type E. faecalis 188 

OG1RF or ∆essB mutant cultures (Fig. S3B – S3C), further supporting the requirement of 189 

contact-dependent engagement of phage mediated T7SS inhibition. 190 

We discovered that E. faecalis OG1RF inhibits proliferation of non-kin bacterial cells through 191 

increased expression of T7SS genes in response to phage infection, but the toxic effectors were 192 

unknown. LXG domain containing toxins are widespread in bacteria with a diverse range of 193 

predicted antibacterial activities [43, 44]. The OG1RF T7SS locus encodes two LXG-domain 194 

proteins, OG1RF_11109 and OG1RF_11121 (Fig. 2A). Both LXG domains were found using 195 

Pfam, but we were unable to identify predicted function or activity for either protein using 196 

sequence homology searches or structural modeling. 197 

Bacterial polymorphic toxin systems can encode additional toxin fragments and cognate 198 

immunity genes, known as “orphan” toxin/immunity modules, downstream of full-length secreted 199 

effectors [45, 46]. Orphan toxins lack the N-terminal domains required for secretion or delivery, 200 

although they can encode small regions of homology that could facilitate recombination with full-201 

length toxin genes [47]. Therefore, we sought to identify putative orphan toxins in OG1RF. We 202 

aligned the nucleotide sequences of OG1RF_11109 and OG1RF_11121 with downstream 203 

genes in the T7SS locus and looked for regions of similarity that might signify orphan toxins. 204 

Although the 3’ ends of OG1RF_11111 and OG1RF_11113 did not have homology to either 205 

OG1RF_11109 or OG1RF_11121, the 5’ ends of OG1RF_11111 and OG1RF_11113 had >75% 206 

nucleotide homology to a portion of OG1RF_11109 (Fig. 2A, regions of homology indicated by 207 

gray shading). Similarly, OG1RF_11123 had sequence homology to OG1RF_11121 (Fig. 2A). 208 
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We searched Pfam and ExPasy for annotated domains but were unable to identify any in 209 

OG1RF_11111, OG1RF_11113, or OG1RF_11123. However, structural modeling with Phyre2 210 

[48] revealed that a portion of OG1RF_11123 has predicted structural homology to the channel-211 

forming domain of colicin 1a [49] (Fig. S4D). 212 

Orphan toxins encoded by a secretion system in a given strain can often be found as full-213 

length toxins in other bacteria [45, 46]. Therefore, we used the sequences of OG1RF_11111, 214 

OG1RF_11113, and OG1RF_11123 as input for NCBI Protein BLAST to determine whether the 215 

orphan toxins we identified in E. faecalis OG1RF were found in other T7SS loci. We identified 216 

homologs to these orphan toxins in other E. faecalis strains as well as Listeria sp. (Fig. S4A-C, 217 

gray shading indicates regions of homology).  These homologs were longer than the E. faecalis 218 

OG1RF genes and encoded N-terminal LXG domains, suggesting that in Listeria and other E. 219 

faecalis strains, homologs to OG1RF_11111, 11113, and 11123 are full-length toxins that could 220 

be secreted by the T7SS. 221 

Interestingly, we identified an additional LXG gene product, OG1RF_12414, in a distal locus 222 

that is again notably absent from E. faecalis V583 (Fig. S5A and S5B). OG1RF_12414 has 223 

predicted structural homology to Tne2, a T6SS effector with NADase activity from 224 

Pseudomonas protegens (Fig. S5C) [50]. Additionally, we identified numerous C-terminal 225 

domains in LXG proteins distributed throughout the enterococci (Fig. S6). These include EndoU 226 

and Ntox44 nuclease domains [43, 51, 52], which have been characterized in effectors 227 

produced by other polymorphic toxin systems. 228 

Polymorphic toxins are genetically linked to cognate immunity proteins that neutralize 229 

antagonistic activity and prevent self-intoxication [43, 52, 53]. Each of the five putative toxins in 230 

the OG1RF T7SS locus is encoded directly upstream of a small protein that could function in 231 

immunity. Whitney et al. demonstrated that the cytoplasmic antagonistic activity of S. 232 

intermedius LXG toxins TelA and TelB in Escherichia coli can be rescued by co-expression of 233 

cognate immunity factors [27]. Therefore, we examined if OG1RF_11110, 11112, 11122, or 234 
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12413 confer immunity to E. faecalis ∆pipV583 during phage infection of E. faecalis OG1RF. 235 

Constitutive expression of OG1RF_11122, and not OG1RF_11110, 11112, or 12413, partially 236 

neutralized phage induced T7SS antagonism (Fig. 2B), confirming an essential role for the 237 

OG1RF_11122 gene product in immunity, and suggesting that OG1RF_11121 is at least partly 238 

responsible for T7SS mediated intra-species antagonism. However, further investigation is 239 

needed to confirm whether the candidate immunity factors, OG1RF_11110, 11112 or 12413, 240 

are stably expressed under these experimental conditions. 241 

To determine the contribution of OG1RF_11121 on intra- and interbacterial antagonism 242 

during phage infection, we measured the viability of phage resistant E. faecalis ∆pipV583 and S. 243 

aureus in co-culture with an E. faecalis OG1RF variant carrying a transposon insertion in 244 

OG1RF_11121 (OG1RF_11121-Tn). OG1RF_11121-Tn is equally susceptible to phage VPE25 245 

infection compared to wild type E. faecalis OG1RF (Fig. S2A). Similar to the ∆essB (pCIEtm) 246 

strain carrying empty pCIEtm plasmid, phage infected OG1RF_11121-Tn (pCIEtm) did not 247 

inhibit the growth of the bystander bacteria (Fig. 2C – 2D). We were unable to clone 248 

OG1RF_11121 by itself into the inducible plasmid pCIEtm, suggesting leaky expression of 249 

OG1RF_11121 is toxic. Therefore, to complement E. faecalis OG1RF_11121-Tn we cloned 250 

both the OG1RF_11121 toxin and OG1RF_11122 antitoxin pair under the cCF10-inducible 251 

promoter in pCIEtm. Expression of both of these genes in the transposon mutant restored its 252 

ability antagonize T7SS susceptible bystanders (Fig. 2C – D). These data strongly suggest that 253 

the OG1RF_11121 encoded LXG toxin drives E. faecalis T7SS mediated antagonism of 254 

bystanders following phage infection. 255 

 256 

Sub-lethal antibiotic stress promotes T7SS dependent antagonism  257 

Considering two genetically distinct phages trigger the induction of T7SS genes in E. 258 

faecalis [24], we reasoned that T7SS induction could be a result of phage mediated cellular 259 

damage and not specifically directed by a phage encoded protein. Antibiotics elicit a range of 260 
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damage induced stress responses in bacteria [54-56]; therefore, independent of phage infection 261 

we investigated the effects of subinhibitory concentrations of antibiotics on T7SS expression in 262 

E. faecalis. 263 

To investigate the influence of sublethal antibiotic concentrations on E. faecalis OG1RF 264 

T7SS transcription, we determined the minimum inhibitory concentrations (MIC) of ampicillin, 265 

vancomycin, and daptomycin (Fig.S7A – S7C) and monitored T7SS gene expression in E. 266 

faecalis OG1RF cells treated with a sub-lethal dose of antibiotic (50% of the MIC). We found 267 

that bacterial T7SS genes were significantly upregulated in the presence of the cell membrane 268 

targeting antibiotic, daptomycin, relative to the untreated control (Fig. 3A). In contrast, the cell 269 

wall biosynthesis inhibitors ampicillin and vancomycin either did not induce or had a minor 270 

impact on T7SS mRNA levels, respectively (Fig.3A). Additionally, induction of T7SS 271 

transcription occurred when bacteria were challenged with sub-inhibitory concentrations of the 272 

DNA targeting antibiotics ciprofloxacin and mitomycin C (Fig. 3B, Fig. S7D – S7E).  273 

We next sought to assess the influence of daptomycin driven T7SS induction on inter-274 

enterococcal antagonism. E. faecalis V583 and its derivatives are more sensitive to daptomycin 275 

compared to E. faecalis OG1RF strains (Fig. S8A – S8C), so we applied a reduced 276 

concentration of 2.5 µg/ml daptomycin in the co-culture inhibition assay to prevent daptomycin 277 

intoxication of E. faecalis ∆pipV583 bystanders. Because E. faecalis OG1RF T7SS gene 278 

expression is less robust in the presence of 2.5 µg/ml compared to 6.25 µg/ml daptomycin, 279 

which was used in our previous experiments (Fig. 3A and S8D), a 10:1 ratio of daptomycin 280 

treated E. faecalis OG1RF was required for growth inhibition of E. faecalis ∆pipV583 during co-281 

culture (Fig. 3C). Consistent with our previous results, daptomycin induced T7SS inhibition of E. 282 

faecalis ∆pipV583 was contact dependent (Fig. 3D). To increase T7SS mediated contact-283 

dependent killing of the target strain during daptomycin exposure, we performed the inhibition 284 

assay on nutrient agar plates. The sub-inhibitory concentration of daptomycin (2.5 µg/ml) used 285 

in liquid culture was toxic to the cells on agar plates (Fig. S8E), so we lowered the daptomycin 286 
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concentration to 0.5 µg/ml to prevent drug toxicity in the agar-based antagonism assay. Plating 287 

T7SS producing E. faecalis OG1RF cells and E. faecalis ∆pipV583 bystander cells at a ratio of 288 

10:1 resulted in ~10–fold inhibition of bystander growth (Fig. 3E). Although 0.5 µg/ml of 289 

daptomycin did not dramatically increase E. faecalis OG1RF T7SS transcript abundances, this 290 

was sufficient to promote daptomycin mediated T7SS inhibition of bystanders on agar plates 291 

(Fig. 3E and Fig. S8E). These data show that in addition to phages, antibiotics can be sensed 292 

by E. faecalis thereby inducing T7SS antagonism of non-kin bacterial cells. These data also 293 

show that the magnitude of T7SS gene expression and forcing bacteria-bacteria contact is 294 

directly related to the potency of T7SS inhibition. 295 

 296 

The primary bile acid sodium cholate does not modulate E. faecalis T7SS gene 297 

expression   298 

To gain insight into host-associated environmental cues that could trigger E. faecalis 299 

OG1RF T7SS, we measured T7SS transcription in the presence of a sub-inhibitory 300 

concentration of the primary bile acid sodium cholate, an abundant compound found in the 301 

mammalian intestinal tract and that is known to promote bacterial cell membrane stress [57, 58]. 302 

4% sodium cholate, a concentration that has been shown to severely impair the growth of E. 303 

faecalis OG1RF cell envelop mutants, caused only a minor reduction in cell density of wild type 304 

E. faecalis OG1RF [59] (Fig. S9A) and it did not stimulate T7SS gene expression (Fig. S9B). 305 

Collectively, these data show that T7SS induction in E. faecalis occurs in response to select cell 306 

envelope stressors. 307 

 308 

IreK and OG1RF_11099 facilitate T7SS expression in phage infected E. faecalis OG1RF 309 

via a non-canonical signaling pathway 310 

Having established that both phage and daptomycin mediated membrane damage 311 

independently stimulates heightened E. faecalis OG1RF T7SS gene expression and 312 
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antagonistic activity, we next sought to identify the genetic determinants that sense this damage 313 

and promote T7SS transcription. Two-component systems, LiaR/S and CroS/R, and the PASTA 314 

kinase family protein IreK are well-characterized modulators of enterococcal cell envelope 315 

homeostasis and antimicrobial tolerance [60-62]. Aberrant cardiolipin microdomain remodeling 316 

in the bacterial cell membrane in the absence of the LiaR response regulator results in 317 

daptomycin hypersensitivity and virulence attenuation [63]. CroS/R signaling and subsequent 318 

modulation of gene expression govern cell wall integrity and promote resistance to 319 

cephalosporins, glycopeptides and beta—lactam antibiotics [64-66]. The ireK encoded 320 

transmembrane Ser/Thr kinase regulates cell wall homeostasis, antimicrobial resistance, and 321 

contributes to bacterial fitness during long-term colonization of the intestinal tract [61, 67, 68]. 322 

Recently it has been shown that direct cross-talk between IreK and the CroS/R system 323 

positively impacts enterococcal cephalosporin resistance [69].  324 

Wild type E. faecalis OG1RF, an ireK in-frame deletion mutant [61] and transposon (Tn) 325 

insertion mutants of liaR, liaS, croR, and croS [70] all display similar growth kinetics in the 326 

absence of phage VPE25 infection (Fig. S10A). Although croR-Tn and croS-Tn exhibit 327 

reductions in the plaquing efficiency of VPE25 particles, none of these genetic elements of 328 

enterococcal cell wall homeostasis and antibiotic resistance were required for VPE25 infection 329 

(Fig. S10B). We queried the expression levels of T7SS genes in these isogenic mutants during 330 

phage VPE25 infection (MOI = 1). T7SS gene expression was not enhanced in the ∆ireK mutant 331 

during phage infection (Fig. 4A), whereas liaR-Tn, liaS-Tn, croR-Tn, and croS-Tn produced 332 

heightened levels of T7SS transcripts similar to the wild type E. faecalis OG1RF compared to 333 

the uninfected controls (Fig. S11A – S11F). A sub-lethal concentration of the cephalosporin 334 

ceftriaxone did not induce T7SS gene expression (Fig. S12A), indicating that expression of 335 

T7SS genes following phage mediated membrane damage signals through a pathway that is 336 

distinct from the IreK response to cephalosporin stress. Additionally, the ∆ireK mutant 337 

phenocopies the ∆essB mutant strain in the interbacterial antagonism co-culture assay, wherein 338 
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the ∆ireK mutant is unable to mediate phage induced T7SS dependent killing of the phage 339 

resistant E. faecalis ∆pipV583 non-kin cells (Fig. 4B). T7SS antagonism is restored in E. faecalis 340 

∆ireK by introducing the wild type gene in trans (Fig. 4B). Collectively, these results indicate that 341 

IreK senses phage mediated membrane damage promoting T7SS transcription independent of 342 

the CroS/R pathway.  343 

OG1RF_11099, located immediately upstream of the T7SS cluster is predicted to encode a 344 

GntR family transcriptional regulator, thus we sought to assess the contribution of 345 

OG1RF_11099 on T7SS transcription and functionality. E. faecalis OG1RF carrying a 346 

transposon insertion in OG1RF_11099 is equally susceptible to phage VPE25 infection 347 

compared to wild type E. faecalis OG1RF (Fig. S2A) In contrast to wild type E. faecalis OG1RF, 348 

T7SS genes were not induced during phage predation of E. faecalis OG1RF_11099-Tn (Fig. 349 

4C). We evaluated the influence of OG1RF_11099-dependent regulation on the activity of T7SS 350 

in intraspecies antagonism using our co-culture assay. Similar to E. faecalis ∆essB, the 351 

OG1RF_11099-Tn mutant displayed attenuated T7SS activity in phage infected co-cultures 352 

(Fig. 4D). T7SS dependent antagonism of E. faecalis OG1RF_11099-Tn could be restored 353 

following complementation (Fig. 4D). Collectively, these results indicate that OG1RF_11099 354 

encodes a positive regulator of E. faecalis T7SS important for phage mediated inhibition of 355 

bystander bacteria. Given that IreK governs downstream signaling events via phosphorylation 356 

[71], and the fact that OG1RF_11099 was not differentially expressed in response to phage 357 

infection of wild type E. faecalis OG1RF or ireK mutant strains (Fig. S12B), suggests that either 358 

post-translational modification of OG1RF_11099 or a yet unidentified protein downstream of 359 

IreK engaging with OG1RF_11099 accounts for T7SS gene expression during phage infection. 360 

 361 

Discussion 362 

Despite the fact that bacteria exist in complex microbial communities that socially interact 363 

[72, 73], phage predation studies have primarily been performed in monoculture [24, 74-76]. 364 
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Studies report phage-mediated effects on non-target bacteria linked to interbacterial interactions 365 

and evolved phage tropism for non-cognate bacteria [77-79], whereas other studies have 366 

identified minimal changes in microbiota diversity during phage therapy [77, 80].  367 

Our results extend previous work that observed the induction of E. faecalis OG1RF T7SS 368 

gene expression in response to phage infection [24]. By using an in vitro antibacterial 369 

antagonism assay, we discovered that phage predation of E. faecalis OG1RF has an inhibitory 370 

effect on non-phage targeted bacterial species during co-culture. Our work shows that phage 371 

mediated inhibition of Gram positive bystander bacteria relies on the expression and activity of 372 

T7SS genes. This work establishes a framework to begin investigating if and how phage 373 

infection of target bacteria influences non-target bacterial populations in complex communities 374 

such as the microbiota. 375 

Our data suggest that membrane stress associated with phage infection or sub-lethal 376 

daptomycin treatment stimulates T7SS mediated antibacterial antagonism of E. faecalis OG1RF 377 

(Fig. 5). Given that daptomycin is used to target vancomycin-resistant enterococcal infections, 378 

this finding provides a hypothesis for how antibiotic-resistant enterococci achieve overgrowth 379 

and dominate the microbiota following antibiotic treatment. Further investigation is required to 380 

understand how T7SS induction might contribute to enterococcal fitness in polymicrobial 381 

environments. Although exposure to a sub-inhibitory level of primary bile salt (a common 382 

molecule found in the intestine) did not elicit T7SS expression, it is possible that other stressors 383 

encountered in the intestinal tract, including lysozyme, antimicrobial proteins, and nutrient 384 

availability could influence T7SS activity in E. faecalis. Indeed, E. faecalis T7SS mutants are 385 

defective in their ability to colonize the murine reproductive tract, which like the intestine is a 386 

polymicrobial environment [36].  387 

We discovered that transcriptional activation of the T7SS during phage infection relies on 388 

IreK (Fig. 5). Previously characterized IreK–mediated stress response pathways, including 389 

cephalosporin stress or CroS/R signaling, did not contribute to T7SS expression. We 390 
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hypothesize that IreK senses diverse environmental stressors and coordinates distinct outputs 391 

in response to specific stimuli. Considering that IreK signaling is important for E. faecalis 392 

intestinal colonization [68], it is possible that IreK–dependent T7SS expression in response to 393 

intestinal cues modulate interbacterial interactions and enterococcal persistence in the intestine. 394 

However, the molecular mechanism by which IreK facilitates T7SS transcription remains 395 

unanswered. Additionally, we currently do not know if IreK directly senses phage or daptomycin 396 

mediated membrane damage or some other signal feeds into IreK to facilitate T7SS induction. 397 

Additionally, we discovered that E. faecalis OG1RF T7SS transcription is regulated by a 398 

GntR-family transcriptional regulator encoded by OG1RF_11099, a gene found immediately 399 

upstream of the T7SS cluster (Fig. 5). Interestingly, OG1RF_11099 is highly conserved across 400 

enterococci, including E. faecalis V583 (Fig. 1A) and other strains that lack T7SS. The presence 401 

of a conserved transcriptional regulator in the absence of its target genetic region supports the 402 

idea that certain strains of enterococci have undergone genome reduction as an evolutionary 403 

strategy to adapt to unique host and non-host environments. It is possible that in E. faecalis 404 

V583, the OG1RF_11099 homolog (EF1328) has been retained to regulate other genes within 405 

the regulon that are less dispensable than T7SS. Additionally, our data indicate that 406 

OG1RF_11099 transcription is not dependent on IreK or and is not induced during phage 407 

infection of wild type E. faecalis OG1RF. Previously published work demonstrated that IreK 408 

kinase activity is essential for driving the cell wall stress response in E. faecalis [67, 71]. 409 

Therefore, we hypothesize that IreK directly or indirectly regulates OG1RF_11099 activity for 410 

T7SS expression via post-translational modification. 411 

Antibacterial properties of T7SS substrates have been demonstrated [26, 27, 40]. Here we 412 

provide evidence that mutation in the LXG toxin encoded by OG1RF_11121 abrogates phage 413 

induced T7SS dependent inhibition of bystander bacteria while expression of the downstream 414 

immunity gene OG1RF_11122 in T7SS targeted E. faecalis ∆pipV583 cells conferred partial 415 

protection from this inhibition. It is possible that constitutive expression of OG1RF_11122 from a 416 
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multicopy plasmid results in elevated accumulation of OG1RF_11122 in the bystander strain 417 

which is toxic and could account for the partial protection phenotype. Aside from its LXG 418 

domain, OG1RF_11121 does not harbor any other recognizable protein domains, hence the 419 

mechanism underlying its toxicity is unclear. Whitney et al. demonstrated that LXG toxin 420 

antagonism is contact–dependent, having minimal to no impact on target cells in liquid media 421 

[27]. Although we found that physical engagement is crucial for E. faecalis T7SS mediated 422 

antagonism, we observed a significant reduction in target cell growth in liquid media both during 423 

phage and daptomycin treatment of T7SS proficient E. faecalis. 424 

In contrast to the broad antagonism of S. intermedius T7SS [27], the E. faecalis OG1RF 425 

T7SS targets a more limited number of bacterial species. Interestingly, E. faecalis OG1RF T7SS 426 

antagonism is ineffective against various species of streptococci, which like the enterococci are 427 

lactic acid bacteria.  Nucleotide– and protein–based homology searches did not reveal 428 

homologs of candidate immunity proteins, OG1RF_11110, OG1RF_11112, OG1RF_11122, or 429 

OG1RF_12413, in S. agalactiae COH1. Genome sequences of the other four streptococci used 430 

in this present study are not available, and hence we cannot comment on the presence of 431 

potential immunity proteins against OG1RF T7SS toxins in these strains. However, resistance of 432 

multiple streptococcal species to OG1RF T7SS mediated inhibition suggest that common cell 433 

surface modifications, e.g., capsule or surface polysaccharides, might be responsible for 434 

blocking toxin activity. Narrow target range is a common attribute of contact-dependent toxins 435 

that interact with specific membrane receptors on target cells to exert inhibitory activity [81]. 436 

However, specific receptors of T7SS toxins are yet to be identified. It is possible that specific or 437 

non-specific interactions between the E. faecalis OG1RF and S. aureus or L. monocytogenes 438 

cell surfaces facilitate T7SS interbacterial antagonism and such interactions are incompatible or 439 

occluded for the streptococci. 440 

It is currently unknown whether T7SS toxin delivery requires contact with a receptor on 441 

target cells or whether delivery can occur in the absence of a receptor. Examples of both 442 
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methods of toxin delivery are widespread in bacteria. Toxins such as colicins and R-pyocins 443 

mediate contact with target cells via protein receptors and LPS, respectively [82-84]. Delivery of 444 

colicins and toxins produced by contact-dependent inhibition systems in Gram-negative bacteria 445 

requires interactions with receptors at the outer and inner membranes [85, 86]. Conversely, the 446 

T6SS needle-like machinery that punctures target cell envelopes delivers toxins in a contact-447 

dependent, receptor-independent manner [87]. Cell surface moieties can also affect recognition 448 

of target cells and subsequent toxin delivery. The presence of capsule can block target cell 449 

recognition by contact-dependent growth inhibition systems in Acinetobacter baumannii [88], E. 450 

coli [89] and Klebsiella pneumoniae [90]. Therefore, it is possible that a feature of the 451 

streptococcal cell surface, such as capsule modifications, renders them insensitive to killing by 452 

toxins delivered by the E. faecalis OG1RF T7SS. 453 

Enterococci occupy polymicrobial infections often interacting with other bacteria [91-94]. 454 

Although commensal E. faecalis antagonize virulent S. aureus through the production of 455 

superoxide [95], the two species also exhibit growth synergy via exchange of critical nutrients 456 

[96]. Here, we show that phage treatment of E. faecalis OG1RF can indirectly impact the growth 457 

of neighboring phage-resistant bacteria, including S. aureus, in a T7SS–dependent manner, 458 

suggesting that phage therapy directed against enterococci and driving T7SS activity could be 459 

useful for the treatment of polymicrobial infections. However, the counter argument is that 460 

phage therapy directed against enterococci could push a bacterial community toward dysbiosis, 461 

as phage induced T7SS activity could directly inhibit beneficial bystander bacteria. This raises 462 

questions about the consequences of phage mediated off-target effects on bacteria. Could 463 

phage induced T7SS activity be used to reduce phage expansion into other closely related 464 

strains as a means to dilute phages out of a population, or is it simply that phage induction of 465 

the T7SS serves as a mechanism that benefits a select few within a population to aid in their 466 

reoccupation of a niche upon overcoming phage infection? Future studies aimed at exploring 467 
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enterococcal T7SS antagonism in polymicrobial communities should help elucidate the impact 468 

of phages on microbial community composition.     469 

 470 

Materials and Methods 471 

Bacteria and bacteriophages. Bacteria and phages used in this study are listed in Table S1. 472 

Bacteria were grown with aeration in Todd-Hewitt broth (THB) or on THB agar supplemented 473 

with 10mM MgSO4 at 37°C. The following antibiotic concentrations were added to media for the 474 

selection of specific bacterial strains or species: E. faecalis OG1RF (25�μg/ml fusidic acid, 50 475 

μg/ml rifampin), E. faecalis V583 ∆pipV583 (25 μg/ml or 100�μg/ml gentamicin in liquid and agar 476 

media, respectively), S. aureus AH2146 LAC Φ11:LL29 (1�μg/ml tetracycline), L. 477 

monocytogenes 10403S (100�μg/ml streptomycin), S. gordonii ATCC 49818 (500 μg/ml 478 

streptomycin), S. salivarius K12 (100 μg/ml spectinomycin), V. cholerae C6706 int I4::TnFL63 479 

and S. enterica serovar Typhimurium 140285 put::Kan (50�μg/ml kanamycin). S. agalactiae 480 

COH1 was distinguished from E. faecalis on Chrome indicator Agar (CHROMagar StrepB 481 

SB282). We were unable to differentially select E. coli, L. lactis, S. pyogenes and S. mitis from 482 

E. faecalis based on antibiotic sensitivity. Therefore, colony counts of these bacteria in co-483 

culture experiments were acquired by subtracting the E. faecalis colony numbers on selective 484 

media from the total number of colonies on non-selective media. Strains harboring pLZ12A and 485 

its derivatives were grown in the presence of 20�μg/ml chloramphenicol and strains carrying 486 

pCIEtm and pCIEtm derivatives were selected on media containing 5 μg/ml tetracycline.  487 

 488 

Bioinformatic analyses. Genome sequences of E. faecalis V583 (NC_004668.1) and OG1RF 489 

(NC_017316.1) were obtained from NCBI. Alignments were generated and visualized using 490 

EasyFig [97]. OG1RF protein domains were identified using KEGG [98] and ExPASy PROSITE 491 

[99]. Structure modeling of OG1RF_12414 was done with Phyre2 [48]. Crystal structures 492 

overlays were generated using Pymol [100].  The EsxA phylogenetic tree was constructed in 493 
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MEGA version X [101] using non-redundant protein sequences obtained from NCBI BLAST 494 

[102] with OG1RF_11100 as input and was edited using the Interactive Tree Of Life browser 495 

[103]. OG1RF_11109 was used as an input for the NCBI Conserved Domain Architecture 496 

Retrieval Tool [104] to identify protein domains that co-occur with LXG domains in Enterococcus 497 

(NCBI:txid1350).   498 

 499 

Antibiotic sensitivity profiles. Antibiotic susceptibility profiles for ampicillin, vancomycin, and 500 

daptomycin were determined using a broth microdilution assay. Overnight (O/N) E. faecalis 501 

OG1RF cultures were diluted to 5�×�106 CFU/ml and 100 µl was added to each well of a 96-502 

well plate to give a final cell density of 5�×�105 CFU/ml. Antibiotic stocks were added to the 503 

first column of each row, mixed thoroughly, and serially diluted 2-fold across the rows. The last 504 

column was used as a no drug control. Cultures containing daptomycin were supplemented with 505 

50�µg/ml CaCl2. Bacterial growth was monitored by measuring absorbance (OD600) using a 506 

Synergy H1 microplate reader set to 37°C with continuous shaking O/N. Growth curves are 507 

presented as the average of three biological replicates. A concentration of antibiotic just below 508 

the drug amount that inhibits bacterial growth was deemed sub-lethal and used to examine 509 

T7SS genes expression.  510 

 511 

Co-culture bacterial antagonism assays.  For inter- and intraspecies antagonism assays in 512 

liquid media, O/N cultures of different bacteria were diluted in THB containing 10mM MgSO4 to 513 

an OD600 of 0.2 and mixed together in a 1:1 or 10:1 ratio. The mixed cell suspensions were 514 

either left untreated or treated with phage VPE25 (MOI 0.01) or daptomycin (2.5 μg/ml) and 515 

grown at 37oC with aeration. For pheromone induction of genes OG1RF_11121, ireK and 516 

OG1RF_11099 cloned into pCIEtm, 10 ng/ml cCF10 (from Mimotopes) was added at the time of 517 

phage administration. For antagonism experiments on agar plates, O/N cultures of different 518 

strains were diluted to an OD600 of 0.2 and mixed together in a 1:1 or 10:1 ratio. A total of 107 519 
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cells from mixed culture suspension was added to 5 ml THB + 0.35% agar at 55oC and were 520 

poured over the surface of a THB agar plate in the absence or presence of daptomycin (0.5 521 

µg/ml). The plates were incubated at 37oC under static conditions for 24 hours. Cells were 522 

harvested by scraping off the top agar, resuspending in 5 ml of PBS, and the cfus were obtained 523 

by plating serially diluted cell suspension on appropriate selective agar plates. Relative viability 524 

was calculated from the ratio of target strain cfu in the treated versus the untreated co-culture. 525 

The assays were performed in biological triplicates. 526 

 527 

RNA extraction and quantitative PCR. RNA was extracted from phage, antibiotic, or 4% 528 

sodium cholate treated or untreated E. faecalis OG1RF cells using an RNeasy Mini Kit (Qiagen) 529 

with the following published modifications [24]. cDNA was generated from 1 µg of RNA using 530 

qScript cDNA SuperMix (QuantaBio) and transcript levels were analyzed by qPCR using 531 

PowerUp SYBR Green Master Mix (Applied Biosystems). Transcript abundances were 532 

normalized to 16S rRNA gene transcripts and fold–change was calculated by comparing to 533 

untreated controls. All data are represented as the average of three biological replicates. All the 534 

primers used for qPCR are listed in Table S1. 535 

 536 

Bacterial growth curves. 25 ml of 10mM MgSO4 supplemented THB was inoculated with O/N 537 

cultures of E. faecalis diluted to an OD600 of 0.025 and distributed to a 96-well plate in 0.1 ml 538 

volumes. Cultures were incubated at 37° C with aeration. OD600 was measured periodically for 539 

18 hours in a Synergy H1 microplate reader.  540 

 541 

Efficiency of plating (EOP) assays. To investigate if phage VPE25 can infect and lyse E. 542 

faecalis mutants and various other bacterial species, 107 PFU/ml of phage was serially diluted 543 

and the phage was titered on each strain using a THB agar overlay plaque assay. EOP is 544 
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expressed as the percentage of phage titer from each strain relative to the wild type E. faecalis 545 

OG1RF control. Data are presented as the average of three biological replicates. 546 

 547 

Construction of E. faecalis mutants and complementation. Isolation of E. faecalis genomic 548 

DNA was performed using a ZymoBIOMICS DNA Miniprep Kit (Zymo Research). All PCR used 549 

for cloning were performed with high fidelity KOD Hot Start DNA Polymerase (EMD Millipore). E. 550 

faecalis ∆essB was generated by allelic replacement by cloning an in frame essB deletion 551 

product into pLT06 using Gibson Assembly® Master Mix (New England Biolabs), integrating this 552 

construct into the chromosome, and resolving the deletion mutant by homologous 553 

recombination [105-107]. For ectopic expression of putative immunity proteins, coding regions 554 

of OG1RF_11110, OG1RF_11112, OG1RF_11122, and OG1RF_12413 were cloned 555 

downstream of the bacA promoter (PbacA) by restriction digestion and ligation into the shuttle 556 

vector pLZ12A [20]. Coding regions of ireK and OG1RF_11099 were cloned downstream of the 557 

cCF10 responsive promoter (PQ) by restriction digestion and ligation into pCIE and pCIEtm 558 

vectors, respectively. As attempts to clone OG1RF_11121 by itself were unsuccessful, we 559 

cloned the OG1RF_11121 and OG1RF_11122 open reading frames, which overlap by 13 base 560 

pairs, together under the PQ promoter in pCIEtm plasmid. Primer sequences and restriction 561 

enzymes used for cloning are listed in Table S1. Plasmids were introduced into 562 

electrocompetent E. faecalis cells as previously described [20].  563 

 564 

Statistical analysis. Statistical tests were performed using GraphPad – Prism version 8.2.1. 565 

For qPCR and bacterial competition assays, unpaired Student’s t-tests were used. P values are 566 

indicated in the figure legends.  567 

 568 

Data availability. All raw data are available upon request. 569 

 570 
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Figure 1. Phage mediated inhibition of bystander bacteria is dependent on enterococcal 999 

T7SS. (A) Diagram showing the location of T7SS genes in E. faecalis OG1RF (NC_017316.1) 1000 

compared to E. faecalis V583 (NC_004668.1). Sequences were obtained from NCBI, and 1001 

homology comparisons were rendered in EasyFig. Nucleotide alignments generated by Clustal 1002 

Omega are enlarged for clarity (dashed lines). Stop codons of genes EF1328/OG1RF_11099 1003 

and EF1337/OG1RF_11127 are boxed. (B) Schematic representation of the co-culture assay 1004 

used to assess the viability of bystander bacteria during phage induced T7SS activity of wild 1005 

type E. faecalis OG1RF and ∆essB. Relative viability of bystander strains is calculated by 1006 

measuring the ratio of bystander cfus in the phage infected culture compared to the bystander 1007 

cfus from an uninfected control culture. (C) The relative abundance of viable bystander 1008 

bacterium E. faecalis ∆pipV583. Complementation of the E. faecalis ∆essB mutant, ∆essB 1009 

(pLZ12A::essB), restores T7SS dependent bystander inhibition. ∆essB (pLZ12A) is the empty 1010 

vector control. (D) T7SS inhibition of other bacterial species in the presence and absence of 1011 

phage infected E. faecalis OG1RF or ∆essB. Data represent three biological replicates. Error 1012 

bars indicate standard deviation. *P < 0.00001 by unpaired Student’s t-test. 1013 

 1014 

Figure 2. Identification of E. faecalis T7SS toxin and immunity proteins that dictate 1015 

bystander growth inhibition. (A) Putative toxin-encoding genes in the OG1RF T7SS locus.  1016 

LXG domains in OG1RF_11109 and OG1RF_11121 were identified using KEGG and ExPASy 1017 

PROSITE. Putative orphan toxins were identified by homology to OG1RF_11109 or 1018 

OG1RF_11121. Gray lines between diagrams indicate the regions and degree of nucleotide 1019 

conservation between genes.  Homology diagrams were rendered in EasyFig. Gene colors for 1020 

OG1RF_11109, OG1RF_11111, and OG1RF_11121 match the color scheme in panel (B).  1021 

OG1RF_11113 and OG1RF_11123 are shaded black to indicate that their corresponding 1022 

immunity genes were not tested in panel (B).  (B) E. faecalis OG1RF T7SS mediated growth 1023 

inhibition of phage resistant E. faecalis ∆pipV583 during infection is alleviated by expressing 1024 
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OG1RF_11122 in E. faecalis ∆pipV583 but not in the presence of pLZ12A empty vector, or 1025 

expressing OG1RF_11110, OG1RF_11112, or OG1RF_12413. (C – D) Disruption of 1026 

OG1RF_11121 by a transposon insertion rescues growth of phage resistant E. faecalis ∆pipV583 1027 

(C) and S. aureus (D) strains during co-culture. Complementation of OG1RF_11121-Tn restores 1028 

bystander intoxication. Data represent three biological replicates. Error bars indicate standard 1029 

deviation. *P < 0.0001 by unpaired Student’s t-test. 1030 

 1031 

Figure 3. Sub-lethal antibiotic treatment enhances T7SS gene expression leading to 1032 

inhibition of bystander bacteria. Altered expression of T7SS genes upon exposure to sub-1033 

inhibitory concentrations of (A) ampicillin (0.19 µg/ml), vancomycin (0.78 µg/ml) or daptomycin 1034 

(6.25 µg/ml) and (B) ciprofloxacin (2 µg/ml) or mitomycin C (4 µg/ml) for 40 minutes relative to 1035 

the untreated control. clpX is shown as a negative control. (C-E) Contact–dependent T7SS 1036 

mediated inhibition of bystander bacteria in the presence of daptomycin. Relative viability of E. 1037 

faecalis ∆pipV583 was measured during co-culture with E. faecalis OG1RF or ∆essB antagonists 1038 

in the presence and absence of daptomycin treatment in (C) liquid culture (2.5 µg/ml 1039 

daptomycin), (D) trans-well plates to prevent physical engagement between cells (2.5 µg/ml 1040 

daptomycin) and (E) in contact on agar media (0.5 µg/ml daptomycin). ∆essB (pLZ12A) and 1041 

∆essB (pLZ12A::essB) represent the empty vector control and complemented strains. Data 1042 

show three biological replicates. Error bars indicate standard deviation. *P < 0.01, **P < 0.001 to 1043 

0.0001 by unpaired Student’s t-test.  1044 

 1045 

Figure 4. IreK and OG1RF_11099 control transcription of enterococcal T7SS genes and 1046 

subsequent inhibition of bystander bacteria during phage infection. (A) Phage infection 1047 

leads to enhanced expression of T7SS genes in wild type E. faecalis OG1RF but not in a ∆ireK 1048 

mutant strain. (B) Growth inhibition of E. faecalis ∆pipV583 during phage infection of E. faecalis 1049 

OG1RF is abrogated in the ∆essB and ∆ireK mutants carrying empty pCIEtm. pCIEtm::ireK 1050 
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complemented the T7SS activity defect of the ∆ireK strain. (C) Disruption of OG1RF_11099 1051 

leads to reduced expression of T7SS genes during phage infection. The data are represented 1052 

as the fold change of normalized mRNA relative to uninfected samples at the same time 1053 

points. (D) T7SS dependent intraspecies antagonism during phage infection is alleviated in the 1054 

presence of OG1RF_11099-Tn mutant carrying empty pCIEtm. pCIEtm::11099 complemented 1055 

the T7SS activity defect of the OG1RF_11099-Tn mutant strain. Data represent three biological 1056 

replicates. Error bars indicate standard deviation.  *P < 0.00001 by unpaired Student’s t-test. 1057 

 1058 

Figure 5.  A model for inhibition of bystander bacteria by the E. faecalis OG1RF T7SS.  1059 

Phage and select antibiotics trigger a response involving IreK that results in induction of 1060 

expression of T7SS genes.  Transcription of T7SS genes is regulated by the predicted GntR-1061 

family transcription factor OG1RF_11099.  The predicted core components of the OG1RF T7SS 1062 

machinery are putative membrane proteins EsaA (OG1RF_11101), OG1RF_11102, EssB 1063 

(OG1RF_11104), and EssC1 (OG1RF_11105) as well as the putative cytoplasmic protein EsaB 1064 

(OG1RF_11103).  EssC2 (OG1RF_11115) lacks transmembrane domains and is thus not 1065 

predicted to be membrane-anchored.  Upon induction of the T7SS, OG1RF_11121 is secreted 1066 

from the cell, resulting in antibacterial activity against select neighboring bacteria.  Expression of 1067 

OG1RF_11122 can partially block toxicity caused by OG1RF_11121.  Predictions of membrane 1068 

topology were obtained using TMHMM [108].  The figure was created with Biorender.com.   1069 

 1070 

Figure S1. Phylogenetic tree of EsxA sequences in enterococci. Non-redundant sequences 1071 

(n=96) were identified using NCBI BLAST with OG1RF EsxA (OG1RF_11100) as the input. The 1072 

tree was constructed in MEGAX using the Maximum Likelihood method and JTT matrix-based 1073 

model and is drawn to scale, with branch lengths measured in the number of substitutions per 1074 

site. The tree with the highest log likelihood (-3544.39) is shown. E. faecalis sequences are 1075 
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highlighted in purple, and the GenBank identifier for EsxA from OG1RF (AEA93787.1) is shown 1076 

in red font. 1077 

 1078 

Figure S2. Phage VPE25 infects wild type E. faecalis OG1RF and T7SS mutants with 1079 

similar efficacy. (A) The measurement of phage particles released from wild type E. faecalis 1080 

OG1RF, ∆essB, OG1RF_11121-Tn, and OG1RF_11099-Tn mutant strains following phage 1081 

VPE25 infection. (B) Viability of strains of the OG1RF background exhibiting differential T7SS 1082 

activity in the absence and presence of phage. (C) Viability of T7SS susceptible strains during 1083 

intraspecies competition experiments in the absence and presence of phage. Data represent 1084 

three biological replicates. Error bars indicate standard deviation. *P < 0.0001 by unpaired 1085 

Student’s t-test. 1086 

 1087 

Figure S3. Phage induced T7SS inhibitory activity is contact dependent. Intraspecies 1088 

competition experiment performed in the presence of unfiltered supernatant from phage treated 1089 

and untreated E. faecalis wild type OG1RF or ∆essB added (A) to the top of a well separated by 1090 

a 0.4 µm membrane from the bottom well containing E. faecalis ∆pipV583 culture, and bacterial 1091 

viability was determined after 24 hours, or (B) directly into E. faecalis ∆pipV583 culture in 1092 

microtiter plate wells (P = 0.7955 by two-way analysis of variance [ANOVA]). (C) Growth of 1093 

∆pipV583 was monitored in the presence of filtered supernatant from uninfected and phage 1094 

infected cultures of wild type E. faecalis OG1RF and ∆essB (P = 0.0883 by two-way analysis of 1095 

variance [ANOVA]). E. faecalis ∆pipV583 cultures in all of these three contact-dependent assays 1096 

contained gentamicin (25�μg/ml) to prevent growth of the OG1RF background strains that may 1097 

have carried over in unfiltered supernatants. Error bars indicate standard deviation.  1098 

 1099 
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Figure S4. Putative orphan toxins in OG1RF are found as full-length LXG-domain 1100 

proteins in other bacteria.  OG1RF_11111, OG1RF_11113, and OG1RF_11123 sequences 1101 

were used as input for NCBI BLAST.  Alignments and homology were rendered in EasyFig. 1102 

 1103 

Figure S5. A distal E. faecalis OG1RF locus encodes an additional LXG-domain protein.  1104 

(A) Schematic showing homology between V583 (NC_004668.1, top) and OG1RF 1105 

(NC_017316.1, bottom).  Sequences were obtained from NCBI, and homology comparisons 1106 

were rendered in EasyFig.  (B) Cartoon depicting the LXG domain of OG1RF_12414 (identified 1107 

using KEGG and ExPASy PROSITE). (C) Predicted structural homology between 1108 

OG1RF_12414 (lilac) and the Pseudomonas protogens Pf-5 Tne2/Tni2 complex (PDB 6B12). 1109 

Tne2 is shown in green, and Tni2 is shown in gray. Structural modeling was done using 1110 

PHYRE2, and images were rendered in Pymol. 1111 

 1112 

Figure S6. Domain architecture of enterococcal LXG proteins. Domain architectures were 1113 

identified using the NCBI Conserved Domain Architectural Retrieval Tool (DART) with 1114 

OG1RF_11109 as an input.  Diagrams are drawn to scale. 1115 

 1116 

Figure S7. Antibiotic susceptibility of E. faecalis OG1RF. Growth of wild type E. faecalis 1117 

OG1RF was monitored over 20 hours in the presence or absence of (A) ampicillin, (B) 1118 

vancomycin and (C) daptomycin in microtiter plates. The antibiotic concentrations highlighted 1119 

with a blue box were deemed sub-inhibitory and used to investigate T7SS gene expression 1120 

levels. Early log-phase cultures of E. faecalis OG1RF were grown in the presence or absence of 1121 

(D) mitomycin C (4 μg/ml) or (E) ciprofloxacin (2 μg/ml) to show that these concentrations of 1122 

DNA targeting antibiotics do not prevent bacterial growth. Error bars indicate standard deviation. 1123 

 1124 
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Figure S8. Impact of daptomycin concentration on E. faecalis growth and T7SS induction. 1125 

Growth of different enterococcal strains either untreated or treated with 6.25 μg/ml, 2.5 μg/ml or 1126 

0.5 μg/ml of daptomycin in (A – C) liquid media. (D) T7SS transcripts were measured from E. 1127 

faecalis OG1RF cells grown in liquid media containing either no daptomycin or 6.25 µg/ml, 2.5 1128 

µg/ml, or 0.5 µg/ml of daptomycin. The data are expressed as the average of three biological 1129 

replicates ± the standard deviation. P < 0.001 by unpaired Student’s t-test. (E) Viable bacterial 1130 

cells recovered from growth on daptomycin supplemented agar media for 24 hours. The dashed 1131 

line indicates the limit of detection.  1132 

 1133 

Figure S9. Effect of sub-lethal bile salt treatment on growth and T7SS transcription in E. 1134 

faecalis OG1RF. (A) Optical density of wild type E. faecalis OG1RF grown in the absence and 1135 

presence of 4% sodium cholate was measured for 18 hours. (B) Transcript levels of OG1RF 1136 

T7SS genes in untreated and 4% sodium cholate treated E. faecalis OG1RF after 4 hours. P < 1137 

0.001 to by unpaired Student’s t-test. Error bars indicate standard deviation. 1138 

 1139 

Figure S10. E. faecalis mutants of cell wall homeostasis show no growth defects and 1140 

respond to phage VPE25 infection. (A) Optical density of wild type E. faecalis OG1RF and 1141 

isogenic mutants were monitored for 18 hours. (B) While all strains were susceptible to phage 1142 

VPE25 infection, the proportion of released phage particles was diminished in the croR and 1143 

croS transposon mutant background. Data represent three biological replicates. Error bars 1144 

indicate standard deviation. *P < 0.001 by unpaired Student’s t-test. 1145 

 1146 

Figure S11. Quantitative PCR demonstrates that LiaR/S and CroS/R two-component 1147 

systems do not influence T7SS gene expression during phage infection. (A- F) mRNA 1148 

transcript levels of T7SS genes are enhanced in the transposon mutants of liaR, liaS, croR and 1149 

croS strains similar to wild type E. faecalis OG1RF during phage infection (MOI = 1) compared 1150 
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to untreated controls. Data represent three biological replicates. Error bars indicate standard 1151 

deviation. *P < 0.01, **P < 0.0001 by unpaired Student’s t-test. 1152 

 1153 

Figure S12. Influence of sub-lethal ceftriaxone challenge and phage infection on the 1154 

expression of E. faecalis T7SS genes. (A) Transcription of T7SS genes in E. faecalis OG1RF 1155 

are not elevated 20 minutes post ceftriaxone (128µg/ml) administration relative to an untreated 1156 

control. (B) OG1RF_11099 expression remains unaltered during phage predation of wild type E. 1157 

faecalis OG1RF and ΔireK strains relative to uninfected controls. Data represent three biological 1158 

replicates. Error bars indicate standard deviation. 1159 

 1160 

Table S1. List of bacterial strains, phages, plasmids and primers used in this study.  1161 
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