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ABSTRACT 9 

Molecular phenotypes of cancer are complex and influenced by a multitude of factors. Conventional 10 

unsupervised clustering of heterogeneous cancer patient populations is inevitably driven by the dominant 11 

variation from major factors such as cell-of-origin or histology. Drawing from ideas in supervised text 12 

classification, we developed survClust, an outcome-weighted clustering algorithm for integrative patient 13 

stratification. We show survClust outperforms unsupervised clustering in identifying cancer patient 14 

subpopulations characterized by specific genomic phenotypes with more aggressive clinical behavior. 15 

The algorithm and tools we developed have direct utility toward clinically relevant patient stratification 16 

based on tumor genomics to inform clinical decision-making.  17 

 18 
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 21 

INTRODUCTION 22 

Cancer is a complex disease with heterogeneous clinical outcomes. Understanding how patients respond 23 

to treatment and what drives disease progression and metastasis is critical for managing and curing the 24 

disease.  Linking comprehensive molecular profiling data with patient outcome carries great promise in 25 

addressing such important clinical questions. This requires innovative statistical and computational 26 
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methods designed for integrative analysis of multidimensional data sets to model intra-tumor and inter-27 

patient heterogeneity at genomic, epigenetic, and transcriptomic levels. Each of these molecular 28 

dimensions is correlated yet characterize the disease in their own unique way. In order to arrive at a 29 

comprehensive molecular portrait of the tumor, multiple groups have proposed statistical and 30 

computational algorithms to synthesize various channels of information including methods developed by 31 

us (iCluster1,2) and others (PARADIGM3, CoCA4, SNF5, CIMLR6) to stratify disease populations. However, 32 

the majority of the work has focused on unsupervised clustering, utilizing the molecular data alone.  33 

 34 

Unsupervised learning does not necessarily lead to unique answers as the data are often 35 

complex and multi-faceted. Consider the problem of clustering a collection of documents in text mining 36 

where multiple structures can be present including authorship, topic, and style. The outcome of the 37 

clustering is likely driven by a mixture of these underlying structures. As a result, there is often no single 38 

“right” answer in unsupervised clustering problems. In most complex data applications, many local optima 39 

exist that poses special challenges in optimization. Xing et al.7 proposed a weighted distance metric 40 

allowing users to specify what they consider “meaningful” in defining similarity toward a more efficient and 41 

local-optima free clustering performance.  42 

 43 

Drawing analogy with the text learning problem described above, the molecular profile of a tumor 44 

is influenced by a multitude of factors including tissue-of-origin8, histology (e.g., squamous vs. 45 

adenocarcinoma), tumor microenvironment (e.g., immune cell infiltration9), dedifferentiation states10, and 46 

specific pathway activation11. Conventional unsupervised clustering applied to the most variable features 47 

is inevitably driven by the dominant variation from major factors, for example, cell-of-origin8 or ancestry12 48 

(germline variation) in the study cohort. When patient outcome related stratification is of interest, a more 49 

directed clustering approach is needed.  50 

 51 

We present survClust, an outcome-weighted integrative clustering algorithm for survival 52 

stratification based on multi-dimensional omics-profiling data. The algorithm learns a weighted distance 53 

matrix that down-weights molecular features with no relevance to the outcome of interest. This method 54 
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can be used on individual platforms alone, or by integrating various molecular platforms, to mine 55 

biological information leading to distinct survival subgroups. We analyzed over 6,000 tumors across 18 56 

cancer types. Each disease type was classified by survClust, based on six molecular assays – somatic 57 

point mutations, DNA copy number, DNA methylation, mRNA expression, miRNA expression, protein 58 

expression, and the integration of the six assays. The results have revealed novel survival subtypes not 59 

previously identified by unsupervised clustering. 60 

RESULTS 61 

The survClust model: motivation and method overview 62 

The molecular profile of a tumor often harbors information on a multitude of factors including cell lineage, 63 

tumor microenvironment, cell differentiation and other clinical and histopathological features. Some of 64 

these factors are associated with treatment response and/or survival outcome, while others are not. If a 65 

particular patient outcome (e.g., patient survival) is of interest, a more supervised approach is needed. 66 

We demonstrate this using a simulated data example (Fig. 1a, Supplementary Fig 1). In this scenario, 67 

we simulated three risk subgroups in a cohort of 300 hypothetical patient samples with distinct survival 68 

hazard rates in each subgroup (a median survival of 4, 3, and 2 years respectively). A set of 15 features 69 

was then simulated from a mixture Gaussian distribution with different means in the three risk subgroups. 70 

Another set of 15 features was simulated in the same way but permutated to disrupt the feature-risk 71 

group association. A third group of 270 features were simulated from Gaussian noise. Figure 1b shows 72 

that an unsupervised clustering using the K-means algorithm failed to identify the survival subtypes in the 73 

context of complex feature variations. To identify outcome-associated clustering solution, survClust 74 

utilizes a weighted distance metric: 75 

���, �� � ��� 	  ��� ��� 	  ��, 
where  ��, �� denote a pair of sample vectors measured for � features, and � is a diagonal weight matrix 76 

over � features with � �  ��� ���, … , ���. The weights ���� are obtained by fitting a univariate cox 77 

proportional hazards model for each feature in the training data with repeated training-test sample splits 78 

for cross-validation (see more details in the Methods Section). Figure 1c shows that survClust was able to 79 

identify the true risk groups with 97.15% accuracy [95% CI = 94% - 100%], whereas the accuracy from an 80 
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unsupervised clustering was 67.50% without reducing the effect of the survival unrelated and noise 81 

features.  82 

Our algorithm allows the integration of multiple data modalities. Given m data types measured 83 

over respective feature space (Fig. 1d), the algorithm learns a weighted distance matrix from each 84 

molecular data type incorporating a vector of Cox regression hazard ratio as weights. Each feature is 85 

weighed and a pairwise distance matrix is calculated (we refer to this step as getDist). This step reduces 86 

the computation space considerably by transforming the problem from sample by feature to sample by 87 

sample. Note that, different sample sizes across data types are allowed, i.e., a sample can be measured 88 

for some but not all platforms. Next, the weighted pairwise distance matrices are integrated by summing 89 

over weighted m data types (combineDist), which retains all samples with at least one data type 90 

available, with complete pairwise information. survClust then projects the integrated and weighted 91 

distance matrix into a lower dimensional space via multidimensional scaling (MDS) and then clusters 92 

sample points into subgroups via the K-means algorithm. More details can be found in the Methods 93 

Section. 94 

 95 

survClust is more powerful than unsupervised clustering in identifying clinically relevant 96 

molecular subtypes 97 

We applied survClust to the TCGA data set including 6,209 tumor samples in 18 cancer types to identify 98 

survival outcome-associated subtypes defined by somatic mutation, DNA copy number, DNA methylation, 99 

mRNA expression, and protein expression, individually and integratively. A summary of the sample sizes 100 

and feature space is included in Supplementary Table 1. Supplementary Table 2 compares the survival 101 

association (log-rank statistic) for the survClust integrated subtypes versus those derived from 102 

unsupervised clustering methods commonly used in TCGA studies including COCA and iCluster. The log-103 

rank statistic compares estimates of the hazard functions of each subgroup comparing to the expected 104 

values under the null hypothesis (all subgroups have identical hazard functions). Larger log-rank statistic 105 

suggests stronger evidence of survival association. By differentially weighting the molecular features by 106 

the corresponding survival association in constructing the distance matrix, we show that survClust is more 107 

powerful in identifying subtypes that are directly relevant to stratify the outcome of interest, leading to 108 
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substantially more distinct survival subgroups than those existing molecular subclasses obtained by 109 

unsupervised clustering. To further demonstrate, we highlight the survClust analysis of low-grade glioma 110 

and kidney papillary renal cell carcinoma below. 111 

 112 

survClust  identifies a poor prognostic IDH-mutant low-grade glioma subgroup. Low Grade Gliomas 113 

(LGG) have a unique molecular footprint, characterized by IDH1/2 mutation status and co-deletion in 114 

chromosome 1p and19q regions of the genome13. As shown previously, mutations in IDH1 and IDH2 115 

genes are present in a majority of the low-grade gliomas and define a subtype associated with favorable 116 

prognosis14. IDH-mutant tumors with chromosome 1p and 19q codeletion (IDHmut-codel) exhibit the most 117 

prolonged survival times followed by IDH-mutant tumors without the codeletion (IDHmut-non-codel), with 118 

IDH-wt tumors demonstrating more aggressive clinical behavior. We performed survClust on 6 available 119 

molecular platforms (somatic mutation, DNA copy number, DNA methylation, mRNA expression, and 120 

protein expression) in 512 LGG samples as profiled by the TCGA. The optimal number of clusters k was 121 

chosen by assessing survClust fits over log-rank test statistics and standardized pooled within-cluster 122 

sum-of-squares in cross-validation (see Methods Section). Cross-validation was performed to ensure 123 

unbiased estimation of survival association and to avoid over-fitting. 124 

 125 

The integrated survClust solution for LGG was optimized at k=5, with the IDH-mutant-codel (c3) 126 

and IDH-mutant-non-codel (c1) subtypes associated with good prognosis as expected (Fig 2a). By 127 

contrast, the IDH-wt subclass (c5) showed association with poor survival, enriched for mutations in EGFR 128 

and PTEN gene and concurrent chromosome 7 gain and 10 loss, resembling glioblastomas. Interestingly, 129 

survClust identified a small IDH-mutant subtype characterized by CDKN2A deletion (c4), which showed 130 

markedly worse survival among the IDH-mutant tumors, similar to the IDH-wt group (c5) that tends to 131 

behave far more aggressively with prognosis similar to glioblastomas. In addition, a copy number quiet  132 

subgroup (c2) was identified, showing high expression of mir-1307 and mir-29c  (Supplementary Fig 3). 133 

These results highlight the strength of survClust in identifying clinically relevant molecular stratifications 134 

and the potential to refine the existing paradigm in glioma subtyping to inform clinical decision-making.   135 

 136 
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survClust identifies prognostic subtypes of kidney papillary renal-cell carcinoma (KIRP). Three 137 

survival distinct subtypes were identified using survClust integrating DNA copy number, mRNA 138 

expression, DNA methylation, miRNA and protein expression assay profiled in 289 tumor samples.  The 139 

c3 subtype was associated with poor survival (median survival time = 1.63 yrs) (Fig 2b), associated with 140 

younger age (median age 57 yrs) and more female gender (55%). The defining genomic characteristics 141 

include CDKN2A loss, arm-level gains in multiple chromosomes including 7, 12, 15 and 17 as described 142 

previously15.  143 

 144 

survClust identifies clinically relevant mutational subgroups across cancer types 145 

survClust is a flexible framework and can be applied to individual data types for patient stratification. For 146 

example, somatic mutation based stratification is often of interest in a clinical sequencing setting.  To 147 

illustrate that, we applied survClust to mutation data alone using a hazard ratio weighted binary distance-148 

based clustering. A circomap plot was created to facilitate annotation and visualization of the results 149 

across cancer types (Fig 3a). survClust identified high TMB subgroups in nearly all cancer types included 150 

in this analysis. Correlating mutational signatures16 with these subtypes in the circomap plot further 151 

revealed etiology underlying these hypermutated tumors. The smoking signature tracks lung cancer 152 

(LUSC and LUAD) and the subset of head and neck cancer (HNSC) with elevated TMB. The DNA 153 

mismatch repair (MMR) signature tracks high TMB subgroups in  stomach (STAD), endometrial cancer 154 

(UCEC), and colon cancer (COAD). The APOBEC signature is prevalent in bladder (BLCA) and cervical 155 

cancers (CESC). Finally, the aristolochic acid signature (signature 22) is enriched in a liver cancer 156 

subgroup identified by survClust (Supplementary Fig 4e), which is consistent with aristolochic acid and 157 

their derivatives being implicated in liver cancers in Asian populations17. 158 

 159 

In endometrial cancer, survClust confirmed a previously known ultra-high mutated subtype 160 

associated with the POLE mutation signature (c2) and a hypermutated microsatellite instability (MSI) (c4) 161 

subtype18 (Fig 3b). The panelmap in Figure 3b (middle panel) shows that c4 correlated well with clinical 162 

MSI status (P<0.001) and predominantly carried mutants in ARID1A, PIK3CA and PTEN genes. The c1 163 

subtype, consisting of primarily high-grade serious tumors, was associated with worse outcome with a 5-164 
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year survival of 58% compared to 95%, 84%, and 83% for c2 (POLE), c3, and c4 (MMR) respectively, 165 

and characterized by higher frequency of mutations in TP53, PPP2R1A genes, low TMB and older 166 

patients with serous endometrial tumors (60%). The c3 subtype was characterized by higher frequency of 167 

CTNNB1 mutants. Immune cell decomposition data derived using the CIBERSORT19 algorithm was also 168 

correlated with the subgroups. Interestingly, high expression of CD8 T-cell immune marker was observed 169 

in the POLE (c2) and MSI (c4) subtype (P < 0.001) (Fig 3b).    170 

 171 

survClust stratified the bladder cancer cohort into 3 TMB subgroups – with high (c1), intermediate 172 

(c3) and low (c2) mutation burden. The c1 subtype was associated with good outcome, high TMB, high 173 

neoantigen load, high APOBEC load, and high expression of the CD8 T-Cell immune marker (P=0.002) 174 

(Fig 3c).  The c3 subtype showed intermediate TMB and APOBEC load with a median survival time of 175 

3.48 yrs. Patients with a low TMB and low APOBEC load performed the worst in terms of survival with a 176 

median survival time of 1.91 yrs.  177 

 178 

A similar pattern emerged when survClust was run on colorectal cancer mutation data classifying 179 

the disease population into three clusters – two low TMB groups and a MMR-associated high TMB group 180 

(c1) (Supplementary Fig 4b). c1 was also associated with CD8 T-cell infiltration (P = 0.004) and showed 181 

concordance with MLH1 silencing status. A similar subdivision of low TMB group by TP53 mutation status 182 

was seen where c3 carried TP53 mutant samples unlike c2. Correlation with histology revealed significant 183 

enrichment of mucinous adenocarcinoma subtype in c1 and c2 (c1, n=20, 29%; c2, n=24, 20%) 184 

compared to c3 (n=9, 5%).  In addition to the hypermutated subtypes of endometrial, bladder and 185 

colorectal cancers, we also observed high TMB subgroups with concurrently high expression of CD8 T-186 

cell markers in cervical cancer c1 subtype (Supplementary Fig 4a and 5a), head and neck cancer c4 187 

subtype (Supplementary Fig 4c, 5c), lung adenocarcinoma c3 subtype (Supplementary Fig 4f and 5f), 188 

lung squamous cell carcinoma c4 subtype (Supplementary Fig 4g and 5g) and stomach cancer c1 189 

subtype (Supplementary Fig 4h and 5h). There are prior observations that high mutational burden is 190 

associated with increased neo-antigen load and activated T-cell infiltration in lung cancer20.  Our analysis 191 

revealed that such association may be more widely present in multiple cancer types.  192 
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 193 

survClust identifies distinct copy number subtypes associated with clinical features across 194 

cancer types 195 

To identify copy number alterations that define clinically relevant subtypes, segmented data of 18 cancer 196 

types was processed via the CBS algorithm21 and analyzed with survClust. Subtypes characterized by 197 

different degrees in the Fraction of Genome Altered (FGA) emerged in various cancer types (Fig 4). 198 

Interestingly, low FGA was associated with better survival in several cancer types including colon, head 199 

and neck, lung adenocarcinoma, soft tissue sarcoma and endometrial cancer (Supplementary Fig 6 and 200 

7). 201 

 202 

The circomap plot in Figure 4a also revealed association of subtypes with high-level amplification 203 

of major cancer genes including CCND1 amplification in head and neck cancer (c3), CCNE1 (c5) and 204 

AKT2(c6) amplification in ovarian cancer, and MDM2 amplification (c4) in sarcoma (Supplementary Fig 205 

6). Notably, amplification of 19q13.2 region in ovarian cancer c6 subtype harboring the AKT2 gene is 206 

associated with poor survival (Supplementary Fig 7f, Supplementary Table 8) which was consistent 207 

with previous findings that AKT2 amplification is associated with ovarian cancer aggressiveness22. 208 

CCND1 amplified subtype of head and neck cancer (c3) was also associated with poor survival 209 

(Supplementary Fig 7b). Amplification in the MYC gene is broadly present in multiple cancer types (Fig 210 

3a circomap). Among cancer gene deletions, CDKN2A loss was observed to define multiple subgroups 211 

associated with poor survival including papillary kidney cancer (c1), low-grade glioma (c4), lung 212 

adenocarcinoma (c4), and soft tissue sarcoma (c1) (Supplementary Fig 6 and 7).  213 

 214 

Colorectal cancer was classified into three varying FGA subtypes with prognostic implications. c1 215 

had low FGA and, c2 and c3 carried heavy genome alterations (Supplementary Fig 6a). Even though c1 216 

and c2 had dissimilar FGA, they performed similar in terms of survival as compared to c3, which had poor 217 

outcome with median survival time of 4.5 yrs. (Supplementary Fig 7a). Gain in the MYC gene was seen 218 

throughout the cancer type and c2 was uniquely characterized by loss of the chromosome 20 p-arm, 219 

which harbors the hsa-mir-103–2 previously reported to be downregulated in colorectal tumors23,24. 220 
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 221 

 survClust is designed to capture the contribution of survival associated molecular features and 222 

reduce the influence from those that are not related to the outcome of interest. Figure 4b provides another 223 

example that this approach is better in identifying prognostically relevant subtypes compared to the 224 

unsupervised clustering approach applied in the original study25. survClust identified 6 unique CN groups 225 

in liver cancer, with significant survival differences among subgroups. The c5 subtype was characterized 226 

by high FGA and associated with poor outcome with a median survival time of 0.77 yrs. This cluster was 227 

distinguished by a loss of chromosome 15. The c2 subtype was associated with the lowest FGA and a 228 

median survival time of 6.81 yrs. The c4 subtype was enriched for CDKN2A deletion with a median 229 

survival time of 2.15 years. By contrast, unsupervised clustering generated subgroups with distinct 230 

molecular differences but did not show any separation in terms of survival.  231 

 232 

Integration of multiple data types enhances the identification of survival distinct subgroups 233 

Figure 5 shows that the integrated survClust solution outperformed individual platforms based on the 234 

cross validated log rank statistics for multiple cancer types including cervical cancer, head and neck 235 

cancer, papillary kidney cancer, lower grade glioma, liver and endometrial cancers. In general, the 236 

integrated solutions always emerge at or near the top in performance as compared to the individual 237 

platform specific solutions.  238 

 239 

Next, we used the adjusted Rand index (RI) to evaluate the concordance between different 240 

solutions. RI is calculated as the proportion of sample pairs that are assigned together in the same cluster 241 

in one solution versus another, adjusted for what is expected by random chance. It provides an indirect 242 

measure of how much a particular data type contributes to the integrated solution. A non-zero adjusted RI 243 

across solutions would suggest shared biology across assay types in some tumors. For example, the 244 

mutation subtypes of endometrial cancer  (Fig 5h) have the highest adjusted RI (0.56) as compared to 245 

the integrated solution, which is consistent with the fact that POLE and MSI are the two major prognostic 246 

subtypes that are predominantly defined through mutation burden (Fig 3b). Nevertheless, the integrated 247 

solution also clearly shows that there is additional information in DNA methylation, DNA copy number, 248 
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and mRNA expression being effectively incorporated by survClust that improved the survival stratification. 249 

In bladder cancer, the integrated solution is most concordant with the mRNA cluster solution (adjusted RI 250 

= 0.39), indicating influence by mRNA features towards integration (Fig 5a). Classification by mutation 251 

data type seemed to have little or no overlap between other assays (adjusted RI close to 0), although the 252 

integrated solution retained some information. (adjusted RI=0.03).  253 

 254 

The integrated solution classified cervical cancer samples better than rest of the platforms and 255 

pointed towards a 5-cluster solution (Fig 5b). Interestingly, a high degree of heterogeneity among 256 

different platforms was observed as represented by a small adjusted RI across the board. The head and 257 

neck cancer integrated solution showed great improvement over individual platforms for k > 2 solutions. 258 

The k=4 integrated solution clearly resulted from effective integration of multiple data types including DNA 259 

methylation, DNA copy number, and mRNA expression with an adjusted RI of 0.33, 0.26 and 0.25 260 

respectively (Fig 5c). In this case, RPPA provided very little information toward the integrated solution.   261 

 262 

The integrated survClust analysis stratified papillary kidney cancer type into 3 groups, with CN 263 

sharing maximum information with the integrated solution (adjusted RI = 0.32), followed by mRNA (0.31), 264 

miRNA (0.24), RPPA (0.23), and Methylation (0.19). Lower grade glioma displayed a wide range of 265 

variability among platform type in terms of the logrank statistic (logrank statistic, x-axis from 0-250). The 266 

k=5 integrated solution performed the best among the 6 platforms with larger contributions from mRNA 267 

(RI = 0.63), copy number (RI = 0.62) and mutation (RI = 0.57) (Fig 5e). The integrated solution of liver 268 

cancer did not show much improvement over individual assay types. Note that we did not use protein 269 

data while integrating as more than half of the samples were not assayed with the protein platform 270 

(RPPA, n=182; integrated n=371). miRNA, mRNA and copy number showed high median logrank 271 

statistics over rounds of cross-validation demonstrating their role as potential prognostic classifiers.  272 

 273 

DISCUSSION 274 

We proposed a supervised clustering algorithm, survClust, that directly incorporates time to event (e.g., 275 

death, disease progression) information with molecular features to stratify patients into clinically relevant 276 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 12, 2020. ; https://doi.org/10.1101/2020.05.11.084798doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.11.084798
http://creativecommons.org/licenses/by-nc-nd/4.0/


11 

 

subtypes. We further developed two visualization tools, circomap and panelmap for displaying and 277 

annotating the resulting stratification. As more clinically annotated genomic data is becomes available as 278 

a result of clinical sequencing programs26,27, our method will provide a useful tool to facilitate patient 279 

stratification for clinical decision making. In this study, we analyzed 18 cancer types in ~ 6200 tumors. 280 

Each disease type was classified by survClust based on six molecular assays – somatic point mutation, 281 

DNA copy number, DNA methylation, mRNA expression, miRNA expression, protein expression and 282 

integration of the aforementioned six assays.  283 

  284 

The supervised clustering approach provides a more direct way to identify survival associated 285 

molecular subclasses, often leading to substantially more distinct survival subgroups than those existing 286 

molecular subclasses obtained by unsupervised clustering. For example. The integrated survClust 287 

stratification of the hepatocellular carcinomas (LIHC) was associated with a survival log-rank statistic of 288 

45.19 (P<0.001) versus 1.69 (P=0.42) under the unsupervised clustering solution (Supplementary Table 289 

2, Supplementary Fig 8), suggesting that survClust is a more powerful approach for identifying outcome-290 

associated subtypes. Supplementary Tables 2-7 show comparisons of the log-rank statistics in survival 291 

differences across the various integrated and individual platform survClust solutions with those from 292 

existing molecular clustering solutions reported in the TCGA publications (wherever available). Note that 293 

survClust solutions have all been cross-validated to avoid overfitting.  294 

 295 

The outcome-weighted learning framework we propose in this study can be extended to model 296 

binary outcome types such as treatment response or toxicity (which is an important outcome category in 297 

immunotherapy settings). In addition, the integration framework can facilitate the inclusion of other data 298 

modalities including histopathological data and radiological images. 299 

 300 

METHODS 301 

survClust workflow 302 

Let �� be the ��� (m=1,…,M) data type of dimension �� (number of samples in ��� data type, can vary) 303 

by �� (number of features). Data types may consist of continuous (gene expression, copy number log-304 
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ratio, DNA methylation, miRNA, protein expression) or binary (mutation status) data. Overall survival is 305 

defined as time from diagnosis to death or last follow-up. The data needs to be pre-processed as 306 

described in Supplementary Information.  307 

For a pair of two samples � and �, the weighted distance7 is calculated as follows: 308 

����, �� �  ��� 	  ��	 ��� 	  �� ,                           �1�           309 

where, � and � are feature vectors of length � for samples a and b respectively, � is a � � � diagonal 310 

weight matrix with � �  ��� ���, … , ���. Samples are close to each other when the value of �� is small 311 

and dissimilar when �� is large.  312 

 313 

The weights �
  �� � 1, … , �� are obtained by fitting a univariate cox proportional hazards model for each 314 

feature:  315 

���|!�" �  ��  � exp�!
	 & '",                                   �2� 

where � represents the survival time, ! is the jth column of matrix � of length �, �� is the baseline hazard 316 

function, ' is the regression coefficient and exp�'� is the Hazard Ratio (HR). 317 

 318 

We consider the absolute value of HR on the logarithmic scale as the weight �.  An HR=1 319 

corresponds to the null that the feature is not associated with survival. This is reflected in a log(1) =0 320 

weighting in the distance matrix.  Since � is a diagonal matrix with diagonal element  �
  �� � 1, … , ��, we 321 

can simply use euclidean distance for computing distances if we transform the data as follows:   322 

  �� �  � &  ��
�,                                                                 �3� 

 323 

Euclidean distances are sensitive to scale of the observations. After incorporating weights, we 324 

standardize the data by its grand total:  325 

��

∑ ∑ ������
 , 326 

 327 
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where, ∑ ∑ 0�
��  is the grand total of weighted matrix ��, with  rows (N samples) and � columns (p 328 

features). Then, one can compute the pairwise distance between samples � � � 1� and �� � 2) as:  329 

�����, ��� �  �����, ��� �  1∑ ��

� 	  �


����


��
. 330 

 331 

Conversely, a weighted distance matrix 2 is calculated for all pairwise samples across 3 data types. All 332 

samples having full survival information are kept, and the union of all samples (������) across 3 data 333 

types is utilized when analyzing a wide number of samples. Non-overlapping samples in data types are 334 

added as �4 to have a uniform set of ������ samples. 335 

 336 

The integrated weighted distance matrix is calculated by averaging over the weighted distance 337 

matrices: 338 

5� �  6 7�2� ,
�

���

                                          �4� 

where 7� � �

�
 9 :. The integrated weighted matrix 5�, averages the inter- and intra-sample similarity 339 

profiles over the 3 data types. 5� is then processed by survClust via classical multidimensional scaling 340 

(MDS) 28 and clustered using k-means29. Classical MDS assumes Euclidean distances; however, in cases 341 

of non-Euclidean distances, Mardia et al30 provided a method to obtain the resulting positive semidefinite 342 

scalar product matrix. Note that <� follows the Euclidean norm and hence can be represented in 343 

 = 	 1 dimensions. The strong assumption of the Euclidean norm is also important for k-means, as it is 344 

essentially trying to assign samples to the closest centroid or calculating the sum of squared deviations 345 

from centroids.    346 

 347 

Weighted distance metric for mutation data 348 

Somatic mutation data is represented as a binary data matrix where each entry is coded as 1 if the �th 349 

gene is mutated in the th sample, and 0 otherwise. A challenge with the mutation data matrix is the 350 

sparsity. It is known that somatic mutation data exhibit a long-tailed distribution in which a relatively small 351 

number of variants appear in tumors frequently while the vast majority of variants occur extremely 352 
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infrequently. We consider genes that are mutated in > 1% of the sample. After incorporating weights, this 353 

data is no longer binary, but it still remains sparse. Due to such data sparsity, computing Euclidean 354 

distance is not appropriate and may lead to inflated distance measures31. To combat this problem, we 355 

propose a weighted binary distance metric for such a scenario as described below.  356 

Let ����
�  be the weighted mutation data matrix (see Equation. 3) of dimension � (samples) by � 357 

(genes). Then, the pairwise distance between sample vectors � and � is calculated as follows: 358 

 359 

����, �� �  ����, �� �  ��� >  ��� ��� >  ��� > ���

, 
where  360 

��� = sum of weights of � features that are zero in sample vector � but non-zero in sample vector �; 361 

��� = sum of weights of � features that are non-zero in sample vector � but zero in sample vector �; 362 

��� = sum of weights of � features that are non-zero in sample vector � and non-zero in sample vector �. 363 

 364 

Note that, ����, �� is a proportion of sum of effect sizes in which only one is non-zero amongst those in 365 

which at least one is non-zero. 32 366 

 367 

Cross-validation 368 

survClust classifies sample populations by incorporating outcome information. Resulting clusters are 369 

overly optimistic and need to be cross validated to arrive at more generalizable solutions. The 370 

cv.survclust function provides cross validation for the desired number of folds and outputs cross-validated 371 

solution labels. In the results shown above, we performed 5-fold cross validation as follows: (1) Split the 372 

data into 5 random partitions, label 4 of them as the training sets and the remaining one as the test set. 373 

(2) The weighted distance matrix was calculated from the training data set alone (Eq.1). survClust 374 

clustering was performed to arrive at outcome weighted labels in the training set. (3) test labels were 375 

predicted according to training labels (4) Step 2 was repeated until predictions were made on all 5 test 376 

data sets across all 5 folds. (6) clusters were tracked by centroid relabeling (Supplementary Note 1.3) 377 

across folds, and we obtained outcome weighted class labels for our entire dataset. This concluded one 378 
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round of cross-validation. All results shown here are results from cross-validated labels across 50 rounds 379 

of cross-validation. Cluster meaning was preserved across rounds of cross validation via a similar 380 

approach to centroid relabeling. The final label for a sample was assigned to a class to which it was 381 

predicted in the maximum number of rounds. This is achieved by another function called 382 

consensus.summary.  383 

 384 

Choice of the number of clusters ? 385 

The logrank test statistic and standardized pooled within-cluster sum of squares were calculated from 386 

cross-validated labels to choose an appropriate @.  387 

 388 

Logrank test statistic  389 

For a particular @ cluster solution we have @ cross-validated labels. Each class is distinct in survival and 390 

we can compare the difference between classes using the logrank test statistic as follows33:   391 

A� �  ∑ �B 	  C � √E ,  
where, B  = observed number of events in the @�� group over time,  C  = expected number of events in 392 

the @�� group over time and  E �  ∑ E�F �B 	  C � �  ∑ E .  393 

Standardized pooled within-cluster sum of squares   394 

Here we calculate the pooled within-cluster sum of squares and standardize it by the total sum of squares 395 

similar to methodology used in the gap statistic34 to select the appropriate number of clusters.  396 

Suppose that the final labels have clustered the data into @ clusters G�, G�, … . G , with G! denoting the 397 

indices of observations in cluster F , and =! �  |G!|. Let  398 

�! �  6 <��


�,
 $ %�

�&
 

  ,  

where �! is the sum of all pairwise distances in cluster F, ��� represents a pair of samples belonging to a 399 

cluster G! and  5� is calculated from Eq 4.  Then the standardized pooled within-cluster sum of squares is 400 

calculated as: 401 

 402 
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H' �  6 �!

 

!��

6 6 <��

   .


�
�&
 

I  

   403 

Here H' decreases monotonically as the number of clusters @ increases. The optimal number of clusters 404 

is where H' is minimized and creates an ‘elbow’ or a point of inflection, where addition of more clusters 405 

does not improve cluster separation. Another property of H' is that it can be used to compare amongst 406 

different datasets as it lies between 0 and 1 after standardization. This is useful in comparing survClust 407 

runs between individual data types and when we integrate them.  408 

 409 

Simulation 410 

Continuing from the simulation study presented in Fig 1, we go into detail about cross-validation and how 411 

to chose k for a survClust run. In Fig 1, the input matrix was subjected to 50 rounds of 3-fold cross-412 

validation (2/3 training and 1/3 test. The survClust fit for a cluster k based on training data from each fold 413 

was used to predict cluster membership for the remaining 1/3 test data. Final sample labels were 414 

aggregated over all folds and cluster meaning was preserved across folds via centroid relabeling. (See 415 

Supplementary Note 1.3).  416 

  417 

Logrank test statistic and standardized pooled within-cluster sum of squares was calculated for the 418 

consolidated test labels over 3-folds for each round. Supplementary Fig 1(c) summarizes these metrics 419 

for 50 rounds of cross validation for k=2-7. We see that logrank is maximized for k=3, and the 420 

standardized pooled within-cluster sum of squares elbows at k=3, pointing to the optimal selection of k at 421 

k=3. The final class labels are assigned by consolidating solutions across all folds in all rounds of cross 422 

validations.  423 

 424 

Implementation and availability. survClust is freely available as an R package at 425 

(https://github.com/arorarshi/survClust).  426 

For k-means clustering, we used the k-means implementation in the R base package. For 427 

multidimensional scaling, we used the cmdscale function in base R. The weighted distance metric for 428 
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binary data was programmed in C++ with R extension using Rcpp package, which is computationally fast. 429 

Hazard ratios were derived from the cox proportional hazard model came from the R survival package. 430 

Kaplan Meier curves were plotted using ggsurvplot in package survminer. Beeswarm plots were made 431 

using R package beeswarm. Mutation data along with relevant clinical annotations were plotted using 432 

panelmap (https://github.com/arorarshi/panelmap). The circlize R package was used to make pan-433 

cancer plots and the code used to plot these is available in a function called circomap 434 

https://github.com/arorarshi/panelmap#example---circomap)  435 

 436 

Below is the workflow of proposed survClust method: 437 

1. getDist – Compute a weighted distance matrix across given m data types. Standardization and 438 

accounting for non-overlapping samples is also accomplished in this step.   439 

2. combineDist – Integrate m data types by averaging over m weighted distance matrices.  440 

3. survClust and cv.survclust – Estimate the survClust solution for a given cluster number k based 441 

on the weighted and integrated distance matrix. Optimal k is estimated via cross-validation. Use 442 

the chosen k and the cross-validated results to arrive at final class labels. Cross-validated results 443 

are assessed over the following performance metrics – the logrank statistic, standardized pooled 444 

within-cluster sum of squares and cluster solutions with class size less than 5 samples.  445 

 446 
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Figure	1:	Overview	of	survClust.	
(a)  A	simulated	data	example,	consis4ng	of	features	that	define	3	pa4ent	subtypes	without	direct	associa4on	with	survival	(shaded	in	red),	features	that	

define	3	pa4ent	subtypes	with	dis4nct	survival		outcome	(shaded	in	blue),	and	random	features	generated	from	Gaussian	noise	(grey).		
(b)  	Euclidean	distance	matrix	demonstra4ng	pa4ent-level	pairwise	similarity,	with	darker	blue	shade	representa4ve	of	higher	similarity.	Color	panels	

above	the	distance	matrix	show	the	three	class	solu4on	obtained	by	unsupervised	algorithm	via	k-means	and	the	concordance	between	the	
simulated	3	survival	subtypes	(the	truth).		Kaplan	Meier	curves	for		the	3	unsupervised	subtypes	show	no	dis4nc4on	in	survival	outcome.	

(c)  survClust	employs	a	pa4ent	outcome	weighted	distance	matrix	to	iden4fy	the	desired	subtypes	with	dis4nct	Kaplan	Meier	curves.		
(d)		survClust	allows	integra4ve	analysis	of	mul4ple	data	modali4es	to	iden4fy	survival-associated	molecular	subtypes.		
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Figure	2:	Outcome-weighted	
integra9ve	clustering	of	low	
grade	glioma	and	kidney	
papillary	cell	carcinoma	using		
survClust.	
(a)  survClust	iden4fies	an	IDH-

mutant	CDKN2A-loss	subtype	
similar	to	IDH-wt	tumors	in	
terms	of	aggressive	clinical	
behavior.	Top:	Kaplan-Meier	
curves	of	the	integrated	
survClust	subtypes	of	LGG.	
Middle:	Panelmap	summarizing	
major	associa4on	of	muta4onal	
and	clinical	features	of		the	
integrated	LGG	subtypes.	
Bo[om:	Copy	number	profile	for	
each	of	the	integrated	subtypes.		

(b)  survClust	iden4fies	prognos4c	
kidney	papillary	renal	cell	
carcinoma	(KIRP)	subtypes.	
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Figure	3:	survClust	iden9fies	muta9onal	subtypes	associated	with	survival	across	cancer	types.	
(a)  Circomap	showing	total	muta4on	burden	(TMB)	in	brown	color	and	muta4onal	signatures	(smoking,	MMR,	APOBEC,	POLE	and	aging)	in	tumors	across	bladder	(BLCA),	cervical	(CESC),	

colon	(COAD),	head	and	neck	(HNSC),	liver	(LIHC),	lung	adenocarcinoma	(LUAD),	lung	Squamous	Cell	(LUSC),	stomach	(STAD),	and	endometrial	(UCEC)	cancers.	Outer	circle	indicates	
muta4on-based	survClust	membership.	

(b)  survClust	muta4on	subtypes	in	endometrial	cancer.	From	top	to	bo[om:	Kaplan-Meier	curves	for	the	4	muta4on	subtypes,	panelmap	depic4ng	significantly	mutated	genes,	MSI	status,	
Histology	and	TMB	associated	with	the	subtypes,	and	beeswarm	plot	showing	CD8	T-cell	marker	expression	(y-axis)	across	the	4	subtype	(x-axis).	Red	line	depicts	the	median,	and	top	
and	bo[om	black	bars	represent	the	25th	and	75th		percen4le	respec4vely.				

(c)  survClust	muta4on	subtypes	in	bladder	cancer.	From	top	to	bo[om:	Kaplan-Meier	curves	for	the	3	muta4on	subtypes,	panelmap	depic4ng	significantly	mutated	genes,	Papillary	
histology	(yes	–	black,	no-white),	APOBEC	load	and	TMB	associated	with	the	3	subtypes,	and	beeswarm	plot	showing	CD8	T-cell	expression	(y-axis)	across	the	3	subtypes	(x-axis).	
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Figure	4:	survClust	iden9fies	copy	number	paQerns	associated	with	pa9ent	survival	outcome	across	various	cancer	types	
(a)  Circomap	showing	frac4on	genome	altered	(FGA)	and		gene	level	copy	number	altera4ons	in	each	tumor	across	colorectal	(COAD),	head	and	neck	

(HNSC,)	kidney	renal	papillary	cell	carcinoma	(KIRP),	low	grade	glioma	(LGG),	liver	(LIHC),	lung	adenocarcinoma	(LUAD),	ovarian	(OV),	sol-4ssue	
sarcoma	(SARC)	and	endome4ral	(UCEC)	cancers.	Outer	circle	indicates	the	survClust	membership.		

(b)  survClust	is	more	powerful	than	unsupervised	clustering	in	iden4fying	survival-associated	copy	number	subtypes	in	liver	cancer.		

a	 b	

p<0.0001	 p=0.37	
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Figure	5:	Integra9on	of	mul9ple	data	
types	enhances	the	iden9fica9on	of	
survival	dis9nct	subgroups		
a-h:	Each	panel	has	two	plots:	the	plot	on	
the	lel	summarizes	median	cross	
validated	log	rank	sta4s4c	across	k=2	to	8	
(number	of	clusters).	Each	line	is	a	data	
type	(see	legend),	and	the	black	line	
represents	the	survClust	run	on	
integra4ng	all	6	plaPorms.	Plot	on	the	
right	summarizes	the	adjusted	rand	index	
between	cross	validated	survClust	
solu4ons	of	individual	data	types	and	the	
integra4on	of	all.	In	this	comparison,	the	
survClust	solu4on	was	chosen	for	an	
appropriate	k	which	maximized	logrank	
sta4s4c	and	minimized	the	standardized	
pooled	within	sum	of	squares.	
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