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Abstract 

Background 

Insertion and deletion sequencing errors are relatively common in next-generation 

sequencing data and produce long stretches of mistranslated sequence. These frameshifting 

errors can cause very serious damages to downstream data analysis of reads. However, it is 

possible to obtain more precise alignment of DNA sequences by taking into account both 

coding frame and sequencing errors estimated by quality scores. 

 

Results 

Here we designed and proposed a novel hidden Markov model (HMM)-based pairwise 

alignment algorithm, Meta-Align, that aligns DNA sequences in the protein space, 

incorporating quality scores from the DNA sequences and allowing frameshifts caused by 

insertions and deletions. Our model is based on both an HMM transducer of a pair HMM 

and profile HMMs for all possible amino acid pairs. A Viterbi algorithm over our model 

produces the optimal alignment of a pair of metagenomic reads taking into account all 

possible translating frames and gap penalties in both the protein space and the DNA space. 

To reduce the sheer number of states of this model, we also derived and implemented a 

computationally feasible model, leveraging the degeneracy of the genetic code. In a 

benchmark test on a diverse set of simulated reads based on BAliBASE we show that 

Meta-Align outperforms TBLASTX which compares the six-frame translations of a 

nucleotide query sequence against the six-frame translations of a nucleotide sequence 

database using the BLAST algorithm. We also demonstrate the effects of incorporating 
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quality scores on Meta-Align. 

 

Conclusions 

Meta-Align will be particularly effective when applied to error-prone DNA sequences. The 

package of our software can be downloaded at https://github.com/shravan-repos/Metaalign. 

 

 

Background 

Metagenomics sequencing projects, the application of sequencing to environmental samples, 

have accumulated large numbers of DNA sequences and revealed millions of new protein 

coding genes [1]. However, the read coverage of typical metagenomic data results in many 

incomplete protein sequences and propagates sequencing error rates to gene predictions. 

With respect to error rates, next-generation sequencing (NGS) technologies, such as 

pyrosequencing, ion semiconductor sequencing and single molecule real time (SMRT) 

sequencing, used in metagenomics have relatively higher rates of insertion and deletion 

(indel) sequencing errors (i.e., too few or too many bases called) [2]. When present in a 

protein coding region an indel error causes a frameshift in the resulting gene, so that 

subsequent amino acids and the termination codon are incorrectly predicted. A situation in 

which the frameshifted sequence does not terminate prematurely is even worse, since the 

resulting scrambled amino acid sequence serves only to introduce noise. In combination, 

these effects mean that frameshift errors can produce very serious difficulties in any 

downstream analysis of reads. Frameshifts will be common in metagenomic sequence data 
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because a large fraction of organism’s genomes will be covered only with single- or a 

few-pass reads. In such circumstances, improving computational tools is required for the 

efficient analysis of those metagenomic data. 

When nucleotide sequences are available, a more precise alignment is possible that takes 

into account both coding frame and frameshifts. It is not desirable to simply align at the 

DNA level, since it is well known that for distant homology detection, it is far more 

effective to compare protein sequences than their coding DNA sequences (see e.g., [3]) 

because selection takes place at the level of the proteins. Thus, physicochemical similarities 

between amino acid residues are far more important in determining homology at moderate 

distances than the match of the aligned nucleotides that encode them. Furthermore, standard 

nucleotide gap penalties increase with length, with the result that a gap of length one will 

be assigned a smaller penalty than a gap of length three. However, in a coding region the 

reverse should be true, as a frameshift (implied by a gap of length one) is much less 

probable than a single amino acid deletion (gap of three nucleotides). In a typical 

nucleotide-peptide alignment framework such as BLASTX [4] which searches protein 

database using a translated nucleotide query, nucleotide sequences are translated to yield 

amino acids. However, this technique has several drawbacks when working with 

error-prone DNA sequence. In particular, it assumes that the reading frame is known 

perfectly throughout the whole sequence. In the presence of indels, this is not the case. 

For this reason, several groups have proposed variants of the Smith-Waterman-Gotoh 

algorithm [5, 6] to not only align DNA sequences scoring a codon at a time with an amino 

acid substitution matrix, but also allow frameshifts in the sequence [7-9]. For instance, Irie 
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et al. devised the nucleotide sequence alignment method which consider amino acid 

similarity and indels at the both DNA and protein levels, although the method only allows 

an insertion or a deletion for a codon at the DNA level [9]. 

Another major issue in the analysis of NGS reads is incorporating quality scores from reads. 

By exploiting per-base quality scores, such as the Phred Q-score [10, 11], we anticipate 

further improvement in frameshift-permitting sequence alignment. For example, an 

alignment of the codon TGG with TAG has one nucleotide difference, but implies the 

low-probability substitution of Tryptophan with a stop codon. However, if the A in TAG has 

a poor Q-score, this increases the probability that the A is a mis-called G and that the 

Tryptophan is conserved. 

Incorporating quality information of bases to weight mismatches in the DNA sequence 

alignments is done for the comparison of EST sequences [12], and for mapping reads to a 

genomic sequence with use of multi- (3 or 4) dimensional substitution matrix [13]. 

However, sequence similarities at the protein level are not taken into account in both cases. 

To the best of our knowledge, there is no such method that would simultaneously consider 

both amino acid substitution probabilities implied by aligned pairs of codons and the 

quality scores for called DNA bases to align coding regions of DNA sequences. 

We therefore designed and implemented a novel pairwise alignment algorithm, called 

Meta-Align, that allows for aligning error-prone reads in amino acid (protein) space, 

incorporating quality scores from the DNA sequences, and tolerating frameshifts caused by 

insertions and deletions. The alignment algorithm is capable of accounting for the 

frameshifts, substitutions, and indels, and obtaining the most likely alignment of the amino 
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acids produced by matching pairs of triplets, that are predicted codons in each source DNA 

sequence. Each triplet may contain any numbers of gaps in its constituent DNA sequence, 

thereby seamlessly accommodating frameshift errors into the alignment process. In 

particular, unlike frameshift matrices, this type of algorithm has the ability to extend 

alignments across the point of a frameshift, which we expect to increase sensitivity when 

appropriately modified to compute local alignments. We anticipate that our algorithm will 

be particularly effective when applied to error-prone DNA sequences. 

 

 

Methods 

Overview of the model 

Our model is partly inspired by the comparative genomics gene finding HMM GeneWise 

[14], which uses an HMM transducer framework that combines a gene prediction HMM 

and a pair HMM homology model. In general, a pair HMM of two output sequences can be 

viewed as a transducer that translates one output sequence to the other output sequence. 

One can concatenate several transducers into a pipeline that translates one output sequence 

to the other through a series of intermediate translations. The transducer model has been 

used to various computational biology problems including pairwise gene finding [14] and 

phylogenetics contexts [15]. In our model, we consider the similarity between two input 

metagenomics read sequences through 4 intermediate sequences via 5 pairwise transducers 

(Figure 1). The full model can be specified by spelling out the transducer by applying the 

automata theory [16]. 
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We have developed our model based on both an HMM transducer of a pair HMM and 

profile HMMs so that the model can align two reads by considering simultaneously both 

similarity at the protein level and quality information of bases at the nucleotide level. The 

schematic representation of our HMM topology is shown in Figure 2. Our model consists 

of three parts, i.e. the Match/Mismatch, Insertion and Deletion moieties. These moieties 

correspond to the Match/Mismatch state, Insertion state, and Deletion state, respectively, in 

a standard three-state pair HMM for pairwise sequence alignment. Profile HMM units, 

designed to predict a codon pair in the true sequences within each moiety, are intended to 

incorporate quality information of reads to obtain most likely alignments. 

 

 

Algorithms 

Elaborate profile HMMs for DNA alignment and frameshift detection 

Let the two nucleotide sequences (i.e., reads) be X = x1x2…xn and Y = y1y2…ym, and their 

quality scores be Q = q1, q2, …, qn and R = r1, r2, …, rm, respectively. Three (i.e. 

Match/Mismatch, Insertion and Deletion) moieties in our model is used to align nucleotide 

sequences, find sequencing errors, and calculate the probability of alignments based on the 

model of a codon in the true DNA sequence. 

The Match/Mismatch moiety consists of 3721(=61×61) codon Match/Mismatch unit 

(CMU) for all possible amino acid pairs, and the Insertion and Deletion moieties have 61 

units, respectively. We named this model as the full model. In a CMU each triplet (a 

predicted codon in the true sequence) may contain any numbers of gaps in its constituent 
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DNA sequence, thereby seamlessly accommodating frameshift errors into the alignment 

process. As an example, we show a CMU, based on an elaborate profile HMM (Figure 3), 

which contains 22 states and 108 transitions. A CMU has six types of states, i.e., match M, 

insertion Ix, deletion Dx, insertion Iy, deletion Dy, and silent double deletion Dd states, in 

addition to the Begin and End states. The recursion equations are as follows: 

v M (i, j) = eM b
a

(xi,y j )max

π DxM v Dx (i −1, j −1),

π IxM v Ix (i −1, j −1),

π MM vM (i −1, j −1),

π IyM v Iy (i −1, j −1),

π DyM v Dy (i −1, j −1),

π Dd M v Dd (i −1, j −1);
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where e indicates an emission probability depending on quality scores. For instance, the 

emission probability of a match state, 
a
bMe  is calculated as: 

eM b
a

(xi,y j ) = P(s = xi | t = a)P(s = y j | t = b), 

where a and b indicate given types of bases, i.e., a, b = {A, C, G, T}. P(s=xi|t=a) is the 

conditional probability of observing a called base xi in a read, given a true base a in a 
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genome (P(s=yj|t=b), in turn). These probabilities are given by 
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where εi and εj, which represent the probabilities of base call errors, are calculated based on 

quality scores according to the well known Phred Q-score definition: εi = 10-qi/10 and εj = 

10-rj/10. Thus, the larger the quality score, the larger the probability of the case when xi=a, 

which means the correct calling probability, given a true base a (yj = b, in turn). We give 

equal probabilities for the three rest cases (i.e., x i≠ a), because we assume unbiased base 

call error for simplicity. Similarly, the emission probability )( i
I xe

a
−  of an insertion state Ix 

is defined as )|()( atxsPxe ii
I a

===− . πs indicate transition probabilities between two 

states in a CMU. We treat indels under the stochastically simplifying assumption that these 

are computed from the error frequency. For instance, we define the transition probability π* 

Ix to an insertion state Ix as π* Ix =εi P(Ins), where ‘*’ indicates any states in a CMU, i.e., * = 

Ix, Dx, M, Iy, Dy, Dd (and the begin state). Thus, the transition probability to a match state is: 

π* M =1-{εi P(Ins)+εi P(Del)+εj P(Ins)+εj P(Del)+εi P(Del)εj P(Del)}. Precisely speaking, 

adding the last term, εi P(Del)εj P(Del) leads to the overestimation of error probability. 

However, because the term has usually extremely small probability, we adopted this 

approximation for simplicity. The values, such as given in Table 1 of [2], can be adapted to 

P(Ins), which represents the rate of insertion sequencing errors (P(Del), in turn). The 

probabilities to the End state are 1, i.e., π* End=1, where *= Ix, Dx, M, Iy, Dy, and Dd. 
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We note that the occurrence of indel errors is non-random in sequences, for example 

occurring in homopolymers by technologies such as 454 pyrosequencing [17] and ion 

semiconductor sequencing [18]. Here we do not account for this directly, as it creates a 

problem of scalability to our model. Rather, we will rely on base callers that have intimate 

knowledge of the sequencing technology to provide accurate quality scores. We anticipate 

that a wide range of parameters for frameshift transitions based on quality scores will yield 

satisfactory results, which we evaluated as below. 

 

Pair HMM for alignment at the protein level 

An extended pair HMM in our model is used for evaluating the similarity of two reads at 

the protein level. The model is based on a standard three-state pair HMM for pairwise 

alignment of amino acid sequences, and is comprised of six states, M’, X’, and Y’, and their 

respective dummy states, in addition to three moieties described above, and the begin and 

end states. X’ and Y’ correspond to the gap (Insertion and Deletion) states and M’ 

corresponds to the Match/Mismatch state in protein space. We can obtain the optimal 

alignment of two reads by using the Viterbi algorithm for pair HMM. The recursion 

equations are: 
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Here λM’, λX’, and λY’ indicate respectively the probability calculated by a CMU, that 

consists of an elaborate profile HMM, in the Match/Mismatch, Insertion, and Deletion 

moiety described above. Pa’b’ denotes the target frequency, derived from any appropriate 

substitution matrix [19], for the amino acid pair, a’ and b’. Pa’ and Pb’ are the amino acid 

compositions of a’ and b’, respectively. k and l are arbitrary positive integers. k = l = 3, if 

there is no gap in a triplet. Again, any numbers of gaps are considered in a codon by a 

CMU. πs correspond to transition probabilities between any pair of states among three 

states in a standard three-state pair HMM for pairwise alignment of amino acid sequences. 

The transition probability from M’ to its dummy state is: πM’M’=1-2δ-τ, and the ones from 

M’ to X’ or Y’ are: πM’X’=πM’Y’=δ. The transition probabilities from X’ or Y’ to M’ are: 

πX’M’=πY’M’=1-ε’-τ. The transition probabilities from X’ or Y’ to their respective dummy 

states are: πX’X’=πY’Y’=ε’. These parameters, δ and ε’, associated with gap opening and 

extension, and τ are defined as usual manner in a standard pair HMM for pairwise 

alignment. In our implementation, we choose the following values for the parameters: δ = 

0.20, τ = 0.02, ε’ = 0.49. Herewith, the alignment algorithm generates the optimal 

alignment of the amino acids produced by matching pairs of triplets from each source DNA 

sequence. 

To obtain the transition probabilities from dummy states to CMUs in each moiety, we 
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combine target frequencies with codon usage frequencies in a genome. For instance, the 

transition probability from the dummy state of M’ to the AAA-AAG CMU is defined as the 

product of the target frequency for the Lysine-Lysine pair and the joint probability of the 

codon usage frequencies of AAA-AAG pair. The frequencies appeared in [20] can be used. 

The alignment algorithm computes the score for matching two amino acid distributions by 

using the target frequencies, weighted by the joint probability of each codon pair. Therefore, 

our model is completely consistent with a standard three-state pair HMM for pairwise 

sequence alignment, when there are no uncertainties in given reads. 

 

Degenerative model 

Because of the sheer number of states of the full model described above, it is not 

computationally feasible. We thus derive a degenerative model which is essentially 

equivalent to the full model, while reducing the number of states dramatically. The 

reduction of model is based on the degeneracy of the genetic code: the amino acid is mostly 

determined by the first two codon position, while the third codon position allowed to 

“wobble”. Our idea is to collapse the 16 CMUs in the full model representing matching 

between four AAX codons, including AAA, AAC, AAG, and AAT, and four TTX codons, 

including TTA, TTC, TTG, and TTT into one degenerative CMU (Figure 4). We recognize 

that all 16 CMUs share the HMM model structure relevant to the first two codon positions, 

so we keep this in the degenerative CMU. In the third codon position we use a single 

AAX-TTX third codon match state, AAX-TTX-M3, with an elaborated 4-by-4 emission 

probability table. 
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The emission probabilities are adjusted so it approximates the emission-transition 

probabilities of the relevant path in the full model. For example, since AAX translates into 

Lysine (AAA and AAG) and Asparagine (AAC and AAT), and TTX translates into Leucine 

(TTA and TTG) and Phenylalanine (TTC and TTT), we set the emission probability table of 

AAX-TTX-M3 as the following: 

Pd(emit A/A)=Pf(codon-match AAA-TTA), 

... 

Pd(emit T/T)=Pf(codon-match AAT-TTT), 

where Pd is a probability in the degenerated model and Pf is a probability in the full model. 

Using the redundancy in the third position we reduce 3721 CMUs in the full model to 256 

(=16×16) degenerated CMUs. Moreover, the CMUs in the full model have 22 states, while 

the CMUs in the degenerated model have 17 states, due to the simplification at the third 

codon position. Overall, the number of states in the generated model reduced 14.27-fold 

(92%) compared to the full model. 

We note that the degenerate model trades of completeness for computational feasibility. The 

full mode is capable of handling insertions in all three codon positions, while the 

degenerate model is capable of handling only insertions in the first two positions. However, 

this loss of capability is unlikely an issue in practice because that an alignment with an 

insertion at the third codon position can be approximated by a similarly scored alignment 

with an insertion at the nearby first or second codon position. 

 

Implementation 
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We implemented the algorithm in C++ as an extension of the existing HMMOC package 

[21]. The output alignment is calculated as the most probable path through the HMM 

determined by the Viterbi algorithm. A software package can be downloaded at 

https://github.com/shravan-repos/Metaalign. 

 

 

Simulation protocol for evaluation 

BAliBASE is a collection of expert-annotated structurally alignment of protein sequences 

[22], and is commonly used for benchmarking sequence alignment algorithms. In the 

present work, subsets of BAliBASE with varying sequence identities and lengths were 

considered. We chose the virtual read length to be about 200 nt, the typical length of a 454 

pyrosequencing read, in our simulation. This corresponds to 70 amino acids after reverse 

translation. 

The first step of our simulation is sampling of pair of aligned read sequences as following: 

A multiple sequence alignment is randomly selected from the BAliBASE and a pair of 

sequences of the multiple alignment is randomly chosen. If the selected sequences have 

more than 70 amino acids, random trimming is done and an interval consisting of exactly 

70 amino acids is selected. However, when short sequences containing less than 70 amino 

acids are chosen, we used those sequences without any additional trimming or padding. 

The second step is an in silico reverse-transcription from amino acid sequences to genomic 

DNA sequences. The genetic code has degeneracy. One amino acid can be encoded by 

multiple codons. In a species one codon may be favored than others, creating codon bias. In 
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our simulation, we define a parameter for codon bias, β, as following. If an amino acid has 

k codons, the probability of the first codon (in alphabetic order) C1 is P(C1)=1-β(k-1)/k; and 

the probability of any other codon is P(Cj)=β/k, for j>1. Therefore, when β=1, the reverse 

translation goes to the first codon deterministically; when β=0, all codons receive equal 

probabilities of β/k. In reality most species would have a codon bias in between. We 

consider β=0, 0.5, 1 in our simulation. 

The third step of our simulation is to introduce mutations and sequencing errors during the 

generation of read sequences from the genomic DNA sequences. These mutations can be 

thought as the combined effect of additional evolutionary mutations (nonsynonymous and 

synonymous), and sequencing errors. The sequencing error rate of most sequencing 

platforms are around 1(~2) %, with no preference of codon positions, while the 

evolutionary mutations typically are more concentrated on synonymous mutations or 

nonsynonymous mutations to similar amino acids than nonsynonymous mutations to 

dissimilar amino acids. In our simulation we do not intend to separate these two effects. 

Instead, we use a combined substitution rate, α, and vary it to be 0.5%, 2%, and 5%. In 

addition, we introduce single nucleotide insertions and deletions. These indels lead to 

frameshifts, which can drastically distort the translated amino acid sequences and thus 

create major challenge for aligning metagenomics reads. This is particularly a challenge for 

aligning reads from sequencing platforms prone to indels, such as 454 pyrosequencing. We 

test scenarios of having 0, 1, and 2 insertions. 

It should be noted that since our pairwise alignment of read sequences is extracted from the 

BAliBASE multiple sequence alignments, the pairwise alignment derived from the 
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BAliBASE may not be the alignment that maximizes a predefined score. We still use them 

as reference alignments on the bases that they represent bona fide structural alignments. 

 

 

Measuring metrics 

Two types of scores are used to assess the quality of an alignment produced by Meta-Align: 

the Developer Score and the Modeler score, proposed by [23]. The Developer score FD is 

defined as the ratio of the number of correctly aligned residue pairs to the number of 

aligned residue pairs in the reference alignment. FD measures the sensitivity of the 

algorithm. The Modeler score FM is defined as the ratio of number of correctly aligned 

residues pairs to the total number of aligned residue pairs by the algorithm. FM measures 

the specificity of the algorithm. 

The output of TBLASTX is essentially a list of local alignments. These alignments can 

represent overlapping regions, in different frames or strands. This contrasts with the output 

of Meta-Align, which is a global alignment. For the sake of comparison, we only consider 

the highest scoring region of TBLASTX. Therefore, it is likely that Meta-Align generates a 

longer aligned region (higher FD) than TBLASTX. What is more informative is whether 

Meta-Align also achieves higher specificities, i.e., offering higher FM scores than 

TBLASTX. 

 

 

Results 
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Comparison of Meta-Align versus TBLASTX 

We generated 100 pairs of virtual reads for each combination of codon bias, substitution 

rate, and indel count, totaling 2700 pairs of reads. Using the simulated data sets we 

compare the performance of Meta-Align and TBLASTX, which searches translated 

nucleotide database using a translated nucleotide query. As shown in Table 1, Meta-Align 

dominates TBLASTX, achieving significantly higher average FD scores across all 

parameter combinations and significantly higher average FM scores for almost all 

parameter combinations. 

For “no codon bias” (β=0) and “some codon bias” (β=0.5) cases, Meta-Align outperforms 

TBLASTX for a wide margin in every one of the simulated sets. For “complete codon bias” 

(β=1) cases, Meta-Align has superior FD scores. However, the FM scores of Meta-Align 

and TBLASTX are similar, with Meta-Align marginally better. Moreover, there is no 

obvious effect of codon bias to the performance of TBLASTX. 

Interestingly, while there is no obvious difference in performance of Meta-Align for “no 

codon bias” and “some codon bias” cases, Meta-Align has much worse performance for 

“complete codon bias” cases. This result indicates that, because the sequence identity is 

very low in our test cases, Meta-Align relies on the randomness signals in the codon choice 

to discern the coding frame and thus making the alignment. When complete codon bias is 

present, there is no signal for the coding frame and thus Meta-Align’s performance is 

degraded into one that is similar to TBLASTX. 

For both Meta-Align and TBLASTX, two trends are observable. First, with increasing 

mutation rates, both FD and FM scores become lower. Second, with increasing indels, both 
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FD and FM become lower. Interestingly, with increasing indels, the FD of TBLASTX 

decreases faster than the FM of TBLASTX. This is consistent with the idea that TBLASTX 

is a local alignment program and reports any local alignment above a significance threshold. 

With higher indel rates, TBLASTX finds shorter alignment (lower FD scores) but 

maintaining the alignment quality (FM scores). On the other hand, the HMM has advantage, 

because the HMM can compute the full probability that sequences X and Y could be 

generated by a given pair HMM; thus, a probabilistic measure can be introduced to help 

establish evolutionary relationships. 

 

Effect of amino acid level similarity on Meta-Align 

To articulate the contribution of amino acid level similarity of our HMM model, we 

compare Meta-Align to a scaled down version of HMM model, HMM_NUC. The 

HMM_NUC model is the paired HMM model with only the nucleotide-level similarity and 

quality scores. Although HMM_NUC does a nucleotide level alignment, it still incorporates 

some amount of amino acid alignment information, not as complete as Meta-Align. Since it 

does not completely consider the sequence similarity at the amino acid level, it contains 

much smaller number of states and it runs drastically faster than Meta-Align. 

We compare the performance of Meta-Align and HMM_NUC using the same simulated 

data set as in the above Meta-Align and TBLASTX comparison. As shown in Table 2, 

Meta-Align clearly outperforms HMM_NUC when mild codon bias present. Noticing this 

level of codon bias is the most relevant in real biological sequences, we believe that 

Meta-Align offer a higher quality alignment than HMM_NUC. 
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Effect of quality scores on Meta-Align 

To study the effect of input quality scores on the performance of Meta-Align, we compare 

the result using real and fake quality scores. For a pair of genomic sequences 

reverse-transcribed from BAliBASE, we first generate quality scores for every nucleotide 

position, drawn from a uniform distribution from 5 to 30. Based on these quality scores we 

generate read sequences by introducing either a substitution (with a 70% probability) or an 

insertion (with a 30% probability). Subsequently, we run Meta-Align with two choices of 

quality score sequences: (i) the real quality score sequence based on which the sequences 

were generated, and (ii) a “fake” quality score sequence containing a constant value 20 at 

all nucleotide positions. Since Meta-Align takes into account the quality scores, it is 

expected to perform better when the real quality scores are used. We compared the results 

for 45 pairs of random sequences from BAliBASE and indeed Meta-Align with correct 

quality scores had a higher quality alignment at the amino acid level (Table 3). 

 

The handling of different types of sequencing error 

Traditionally there is only a single quality score indicating the probability of instrument 

reading error at a nucleotide position, and there is no way to distinguish between what type 

of error the instrument error might be. This could be a problem as it is known that some 

sequencing machines have specific error characteristics. For example, sequencers such as 

454 and Ion Torrent are known to tend to make error in determining the length of a 

homopolymer run, resulting in higher indel error rates at such regions, while the probability 
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of making a substitution reading error is similar to other regions. 

We can specify different probabilities for different types of sequencing errors, 

accommodating characteristic sequencing errors resulting from different instruments. For 

this purpose, we can introduce two quality scores at each nucleotide position, qi, and qs, 

corresponding to the probabilities for indel errors and substitution errors, respectively. For a 

position with quality score q, we first assign the error probabilities according to the quality 

scores, ei=es=10-q/10. For 454 sequencing, we adjust the indel quality score of the j-th 

nucleotide position in a homopolymer run starting from the second nucleotide in the repeat, 

qi=max(q-j*5, 10), i.e., the quality scores degrade linearly, till a threshold maximum error, 

beyond which it is maintained constant, and leave qs intact. This dual quality score also 

comes handy for handling “N”-nucleotides. The “N”-nucleotide normally indicates the 

existence of a nucleotide, but with a very low confidence to discern which nucleotide it 

actually is. For such positions, we adjust qi to be 20 (low probability 1% of making an 

indel) and leave qs unchanged (at a high probability corresponding to the low quality 

score). 

 

Statistical Significance of Meta-Align 

The probability value output from Meta-Align is an indication of the sequence similarity 

between the input pair of reads. To evaluate the statistical significance of the probability 

value found by Meta-Align, we follow the Z-value approach first proposed by [24] and 

extensively researched by [25].  We consider a pair of sequences (X, Y) and obtain an 

alignment score S(X, Y) using Meta-Align. We randomly shuffle one of the sequences, Y to 
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Y*, and compute the score S(X, Y*) using Meta-Align. By performing this shuffling 250 

times we can obtain a Z-statistics, 

σ
μ−= ),( YXS

Z , 

where µ and σ are the mean and the standard deviation of scores S(X, Y*) from random 

shuffling. 

As shown in Figure 5, a Z-score of 11.23 was obtained between a pair of sequences from 

BAliBASE based on 250 random shuffles. It has been proposed by [25], based on 

Chebyshev inequality, that a Z score about 8 is an indicator that the alignment scores are 

significant. Therefore, we conclude that the alignment generated by Meta-Align is 

statistically significant. Actually, it can be seen from Figure 5 that the score distribution of 

Meta-Align has an exponential-like tail which may relate to the Gumbel distribution of 

Viterbi scores [26-28], and this Z-score of 11.23 is probably more significant than what 

Chebyshev inequality suggested. 

 

 

Discussion 

Metagenomic sequence data differs from traditional sequence data in a number of important 

ways. Most importantly, most microbial communities are diverse and highly uneven. 

Consequently, and the amount of sequence data that is tractable to acquire is a tiny fraction 

of the total genetic material in the community. As a result, sequence reads in metagenomic 

sequencing projects sample most underlying genomes only sparsely, and so many reads 

cannot be assembled (except perhaps reads from a few dominant species). Protein-coding 
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regions found on these reads are consequently highly fragmentary; due to the random 

nature and limited read length of sequencing, a sequenced read typically overlaps only part 

of the complete coding sequence in the original genome from which it is derived. In the 

case of isolate genome sequencing, high coverage allows detection and correction of 

sequencing errors; in contrast, these errors typically remain uncorrected in the metagenomic 

case, where (even high quality) reads are mostly single-pass and so cannot be confirmed. 

To date, scant attention has been given to the impact of fragmentation and errors on 

downstream data analysis. 

We addressed the issues in the present study. Our approach has a key innovation to 

incorporate quality scores from sequencing and also to accommodate the uncertainty 

created by gaps in or between codons. As a result, our approach is capable of accounting for 

all types of errors of NGS data. Specifically, in our algorithm each triplet (possible codon) 

is not assigned a single amino acid translation as would ordinarily be the case. Instead, each 

possible codon is treated as a distribution of amino acids, in which each of the 20 possible 

amino acids is assigned a probability of being encoded by the combination of DNA bases 

and gaps contained within the codon. To construct distributions for each possible codon 

from a DNA sequence, we begin with the quality score for each called DNA base, which 

determines the probability of the called base; the remainder of the probability is distributed 

equally among the other three potential nucleotides. 

Indel errors are frequently associated with homopolymers, particularly in the case of 

pyrosequencing. While we could include details of this tendency in the algorithm, we 

currently believe it will be sufficient to apply a uniform error rate. We will compute 
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realistic aggregate indel rates based on the distribution of species with different GC 

contents observed in real metagenomic data sets. This will enhance the accuracy of 

Meta-Align. 

While, at present, this approach is not fast enough for large-scale database searches, we 

think that this will not be a concern because majority of data can be processed commonly 

available tools. Making more realistic models by including more precise information will 

enhance our algorithm. We will also develop a version of the algorithm, such as BLASTX, to 

permit nucleotide versus protein alignments. This will often be the case when metagenomic 

data are aligned with sequences from protein databases. We believe our algorithm can be 

also highly useful for this purpose, in addition to pairwise gene finding. 

 

 

Conclusions 

We have developed a novel HMM-based algorithm, Meta-Align that allows for aligning 

DNA sequences in protein space and incorporating quality scores to address the issues 

caused by insertions and deletions which are relatively common in metagenomic data. 

Meta-Align is capable of accounting for the frameshifts, substitutions, and indels, and 

obtaining the most likely alignment of the amino acids produced by matching pairs of 

triplets, that are predicted codons in each source genomic sequence. Each triplet may 

contain any numbers of gaps in its DNA sequence, thereby seamlessly accommodating 

frameshift errors into the alignment process. We have shown that Meta-Align outperforms 

TBLASTX using a diverse set of simulated reads, and that Meta-Align can produce better 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 12, 2020. ; https://doi.org/10.1101/2020.05.11.087676doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.11.087676


 25

alignments using real quality scores. Thus, we expect that Meta-Align will be particularly 

useful when applied to error-prone read sequences with low quality scores. 

 

 

Availability and requirements 

Project name: Metaalign 

Project home page: https://github.com/shravan-repos/Metaalign 

Operating system(s): Linux 

Programming language: C++ 

License: GNU GPL 
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Figures 

Figure 1 - Transducer HMM of Meta-Align 

Meta-Align consists of five pair HMMs, h1, h2, h3, h2
-1, and h1

-1. h1 and h1
-1 model the 

sequencing process, where state Mn is the sequencing read out, with emission probability 

encoding sequencing substitution errors; states Xn and Yn corresponds to sequencing 

insertion and deletion errors. h2 and h2
-1 are 2nd order HMMs corresponding to the genetic 

code, where states n1 and n2 emit the nucleotides at the first two codon positions, and the 

state n3/aa emits the nucleotide at the last codon position and the encoded amino acid, 

depending on the previous two codon positions. The central HMM h3 models the protein 

sequence alignment, where state Ma is the match state parameterized by an amino acid 

substitution matrix, and states Xa and Ya corresponds to insertion and deletion. 

 

Figure 2 - Schematic of the full HMM of Meta-Align. See text for a detailed 

description. 

 

Figure 3 - A codon Match/Mismatch unit (CMU) in the full HMM 

A CMU has six types of states, i.e., match states that emit aligned pairs of xi and yj, 

insertion (happened in X) states that emit xi and a gap, deletion (happened in X) states that 

emit a gap and yj, insertion (happened in Y) states that emit a gap and yj, deletion (happened 

in Y) states that emit xi and a gap, and silent double deletion states that emit nothing. 

 

Figure 4 - Schematic of collapsing the 16 CMUs in the full model into a single 

CMU in the degenerated model. See text for a detailed description. 

 

Figure 5 - Statistical significance of the Meta-Align’s score of two sequences 

from BAliBASE 

Panel (a) shows the distribution of Meta-Align scores for 250 randomly shuffled sequences 

in blue, and the score for the pair of real sequence in red. Panel (b) shows Meta-Align’s 
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output for the pair of sequences in 6-tract format: Each block representing a CMU match, 

tract 1 and track 6 represent the input pair of reads. Tract 2 and tract 5 shows the inferred 

error-corrected DNA sequences of the input pair, where codon AAK represents a 

degenerated CMU matching AAX where the symbol K in the last position represents the 

amino acid encoded by the degenerated codon. Tract 3 and tract 4 represent the amino acid 

match.

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 12, 2020. ; https://doi.org/10.1101/2020.05.11.087676doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.11.087676


 31

Tables 

Table 1 - Comparison of the performances of Meta-Align and TBLASTX using 

simulated data sets 

Each line reports the summary of 100 randomly sampled read pairs using a particular 

parameter setting (mutation rate, indel count, and codon bias). The FD and FM scores are 

calculated based on the structurally aligned amino acid sequences from the BAliBASE. 

P-values of one-sided paired t-tests were used to evaluate the statistical significance of the 

difference between Meta-Align and TBLASTX. 

Mutation 

rate, α 

InDel 

count 

Condon 

bias, β 

FD FD FM FM P-Value 

(FD) 

P-Value 

(FM) Meta-Align TBLASTX Meta-Align TBLASTX 

0.005 0 0 0.715 0.384 0.727 0.549 2.89E-22 6.75E-07 

0.005 1 0 0.683 0.305 0.695 0.556 1.48E-30 2.44E-05 

0.005 2 0 0.623 0.268 0.638 0.516 4.53E-27 2.80E-04 

0.02 0 0 0.675 0.362 0.689 0.523 1.95E-22 4.64E-07 

0.02 1 0 0.649 0.282 0.662 0.487 6.80E-26 2.21E-07 

0.02 2 0 0.597 0.249 0.609 0.497 2.12E-23 1.33E-03 

0.05 0 0 0.635 0.313 0.654 0.465 1.87E-21 6.28E-07 

0.05 1 0 0.576 0.222 0.593 0.448 4.88E-23 1.33E-04 

0.05 2 0 0.564 0.210 0.582 0.441 4.74E-24 2.00E-04 

0.005 0 0.5 0.701 0.397 0.713 0.561 1.68E-22 2.07E-06 

0.005 1 0.5 0.685 0.313 0.697 0.568 1.45E-30 2.94E-05 

0.005 2 0.5 0.651 0.265 0.662 0.530 1.15E-32 1.28E-04 

0.02 0 0.5 0.684 0.359 0.699 0.477 1.06E-21 6.40E-10 

0.02 1 0.5 0.651 0.260 0.667 0.472 2.67E-28 2.17E-07 

0.02 2 0.5 0.630 0.257 0.640 0.501 8.41E-28 3.38E-05 

0.05 0 0.5 0.652 0.294 0.670 0.445 1.83E-23 1.11E-08 
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0.05 1 0.5 0.614 0.257 0.631 0.456 1.25E-26 1.09E-06 

0.05 2 0.5 0.584 0.229 0.598 0.509 8.34E-27 5.57E-03 

0.005 0 1 0.572 0.384 0.584 0.559 2.99E-12 2.39E-01 

0.005 1 1 0.557 0.281 0.566 0.511 3.18E-21 3.53E-02 

0.005 2 1 0.547 0.232 0.557 0.497 5.40E-26 4.17E-02 

0.02 0 1 0.549 0.370 0.562 0.530 4.46E-14 1.56E-01 

0.02 1 1 0.551 0.285 0.561 0.552 2.00E-18 3.88E-01 

0.02 2 1 0.513 0.241 0.524 0.534 1.30E-19 3.86E-01 

0.05 0 1 0.536 0.336 0.551 0.527 1.68E-10 2.67E-01 

0.05 1 1 0.509 0.240 0.521 0.498 3.88E-20 2.52E-01 

0.05 2 1 0.492 0.185 0.504 0.419 5.92E-22 1.07E-02 

 

Table 2 - Comparison of Meta-Align versus HMM_NUC 

The average FD scores for aligning 900 pairs of reads randomly sampled from BAliBASE 

alignments are presented. 

  Meta-Align HMM_NUC 

β =0 0.635 0.635 

β =0.5 0.650 0.594 

 

Table 3 - Comparison of Meta-Align using real quality scores versus using fake (flat) 

quality scores 

The average results for 45 pairs of randomly chosen short sequences with varying sequence 

identity from BAliBASE are shown. 

Parameter P-Value (Pair T-test) 

FD (Amino Acid Sequence) 

FM (Amino Acid Sequence) 

FD (Nucleotide Sequence) 

FM (Nucleotide Sequence) 

0.02125 

0.02674 

0.3207 

0.5926 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 12, 2020. ; https://doi.org/10.1101/2020.05.11.087676doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.11.087676


 33

 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 12, 2020. ; https://doi.org/10.1101/2020.05.11.087676doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.11.087676


Read1 TGT --- AAA TTT TGT TAT A-C CGA

Gene1 TGT --- AAA TTA TGT TAT AAC CGA

Prot1 Cys --- Lys Leu Cys Tyr Asn Lys

Prot2 Cys Ala Tyr Ile Cys Trp Asn Arg

Gene2 TGT GCT TAY ATT TGT TGG AAT GAC

Read2 TGT GCT TAT ATT TGT TGG AAT GAC
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ReaSeq1 AAG GAT GGT TAC CTT GTC GAC GCG AAG GGT TGT AAG AAA AAT TGT TAT AAAC TTGGT AAA 

GenSeq1 AAK GAD GGG TAY CTL GTV GAD GCA AAK GGG TGC AAK AAK AAN TGC TAY AAXN TTXXF AAK 

ProSeq1 Lys Asp Gly Tyr Leu Val Asp Ala Lys Gly Cys Lys Lys Asn Cys Tyr XAsn XXPhe Lys  

ProSeq2 Lys Asp Gly Tyr Pro Val Glu Tyr Asp Asn Cys Ala Tyr Ile Cys Trp .Asn ..Tyr Asp 

GenSeq2 AAK GAD GGG TAY CCP GTV GAE TAY GAD AAN TGC GCA TAY ATI TGC TGW AA.N TA..Y GAD 

ReaSeq2 AAG GAT GGG TAT CCT GTT GAA TAT GAT AAT TGT GCT TAT ATT TGT TGG AA.T TA..C GAC 

 

ReaSeq1 AAT GAT TAT TGT AAT CGT GAG TGT CGT ATG AAG CAT CGA GGT GGT TCC TAC GGT TAT TGC  

GenSeq1 AAN GAD TAY TGC AAN CGR GAE TGC CGR ATM AAK CAH CGR GGG GGG TCS TAY GGG TAY TGC 

ProSeq1 Asn Asp Tyr Cys Asn Arg Glu Cys Arg Met Lys His Arg Gly Gly Ser Tyr Gly Tyr Cys 

ProSeq2 Asn Ala Tyr Cys Asp Lys Leu Cys Lys Asp Lys Lys Ala Asp Ser Gly Tyr Cys Tyr Trp 

GenSeq2 AAN GCA TAY TGC GAD AAK CTL TGC AAK GAD AAK AAK GCA GAD TCS GGG TAY TGC TAY TGW 

ReaSeq2 AAC GCT TAT TGT GAT AAA CTG TGT AAA GAT AAG AAA GCT GAC TCT GGT TAC TGC TAC TGG 

 

ReaSeq1 TAT GGG TTT GGC TGC TAT TGT GAA GGT TTA TCG GAC TCT ACT CCC ACG TGG CCT CTC CCT 

GenSeq1 TAY GGG TTF GGG TGC TAY TGC GAE GGG TTL TCS GAD TCS ACT CCP ACT TGW CCP CTL CCP 

ProSeq1 Tyr Gly Phe Gly Cys Tyr Cys Glu Gly Leu Ser Asp Ser Thr Pro Thr Trp Pro Leu Pro 

ProSeq2 Val His Ile Leu Cys Tyr Cys Tyr Gly Leu Pro Asp Ser Glu Pro Thr Lys Thr Asn Gly  

GenSeq2 GTV CAH ATI CTL TGC TAY TGC TAY GGG CTL CCP GAD AGS GAE CCP ACT AAK ACT AAN GGG 

ReaSeq2 GTT CAT ATT CTT TGT TAT TGT TAT GGT CTT CCT GAT AGT GAA CCT ACT AAG ACT AAT GGG 

 

ReaSeq1 AAT AAA ACG TGC TCT GGT AAA  

GenSeq1 AAN AAK ACT TGC TCS GGG AAK  

ProSeq1 Asn Lys Thr Cys Ser Gly Lys  

ProSeq2 Lys Cys Lys Ser Gly Lys Lys  

GenSeq2 AAK TGC AAK AGS GGG AAK AAK  

ReaSeq2 AAA TGT AAA AGT GGT AAA AAA 
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