1	Effects of population, latitude, and individual tree to leaf variation in oaks: An empirical
2	study and simulation of sampling strategies in bur oak (Quercus macrocarpa, Fagaceae)
3	
4	Sara C. Desmond ¹ , Mira Garner ¹ , Seamus Flannery ^{1,3} , Alan T. Whittemore ⁴ and Andrew L.
5	Hipp ^{1,5,6}
6	
7	¹ The Morton Arboretum, 4100 Illinois Route 53, Lisle, IL 60532, USA
8	² Current address:
9	³ The University of Chicago Laboratory Schools, 1362 East 59 th St., Chicago, IL 60637, USA
10	⁴ U.S. National Arboretum, 3501 New York Ave NE, Washington, DC 20002, USA
11	⁵ The Field Museum, 1400 S Lake Short Drive, Chicago, IL 60605, USA
12	⁶ Author for correspondence (email: ahipp@mortonarb.org)
13	
14	ABSTRACT
15	PREMISE: Oaks are notoriously variable in leaf morphology, but little is known regarding the
16	partial contributions of climate, population, latitude, and individual tree to total variation in leaf
17	morphology. This study examines the contributions of within-tree, among-tree, and among-site
18	variation to the total variation in leaf morphology in bur oak (Quercus macrocarpa), one of
19	North America's most geographically widespread oak species.
20	METHODS: Samples were collected from four sites each at northern, central, and southern
21	latitudes of the bur oak range. Ten leaf size traits were measured, and variance in these traits and
22	eight ratios was partitioned into tree, population, and latitude components. We then

23	parameterized a series of leaf collections simulations using empirical covariance among leaves
24	on trees and trees at sites.

- 26 more than tree to total variation in leaf morphology. Simulations suggest that power to detect
- among-site variance in leaf morphology increases with either increases in leaves per tree (10-11
- 28 leaves from each of 5 trees) or trees per site (5 leaves from each of 10+ trees).
- 29 CONCLUSIONS: Our study demonstrates the utility of both simulating sampling and controlling
- 30 for variance in sampling for leaf morphology, whether the questions being addressed are
- 31 ecological, evolutionary, or taxonomic. Simulation code is provided to help researchers plan
- 32 sampling strategies to maximize the ability to detect among-site variance in leaf morphology.

- 34 Keywords: climate; Fagaceae; leaf morphology; latitude; *Quercus macrocarpa*; sampling
- 35 simulation; variation
- 36
- 37 Running head: Leaf morphological variation in bur oak
- 38 Manuscript received _____; revision accepted _____.

40 INTRODUCTION

41

42	Leaf morphology and anatomy play key roles in plant adaptation to their environment
43	(Givnish, 1987; Wright et al., 2005; Xu et al., 2009). Leaf size, shape, and anatomy differ greatly
44	depending on the environment the plant is growing in (Bruschi et al., 2003) and the resources
45	available in that environment (Niinemets, 2015). Yet the morphology of tree leaves can vary
46	highly even within forest stands (Givnish, 1987). Factors such as position on the tree (Blue and
47	Jensen, 1988), light availability (Ducrey, 1992), climate (Peppe et al., 2011), and genetic
48	differences (Gurevitch, 1992) all contribute to variation in leaf shape and size, making sampling
49	strategy important for understanding determinants of tree leaf morphology.
50	Oaks have long been noted for their particularly variable morphology, both among trees
51	within individuals and among trees within sites. Detailed studies in oaks have utilized either
52	linear measurements (e.g., Baranski, 1975; Blue and Jensen, 1988; Bruschi et al., 2003) or
53	landmark approaches (e.g., Jensen 1990). Both approaches have demonstrated that while
54	variation among positions within a tree in both leaf shape and size may exceed variation among
55	sites, overall variance is generally greater among sites. These papers have highlighted that
56	studies investigating among-population divergence patterns must hold sampling season and leaf
57	position on the tree constant (i.e., high or low on the tree and disposed toward the edges or inside
58	of the canopy; Sokal et al., 1986; Blue and Jensen, 1988; Bruschi et al., 2003). The advantages of
59	understanding the sources of variance on leaf morphology are great, as such understanding
60	enables studies to utilize leaf morphology in investigating introgression, hybridization, and
61	morphological variation that distinguishes species (Jensen et al., 1984; Howard et al., 1997;
62	Kremer et al., 2002; González-Rodríguez et al., 2004, González-Rodríguez and Oyama 2005).

63	The aim of the current study was to quantify the relative contributions of within-tree,
64	among-tree, and among-site variation to the total variation in leaf morphology in bur oak. We
65	also aimed to determine to what extent we can predict variation in leaf morphology based on
66	latitude, and how much sampling is required to detect among-site differences in leaf
67	morphology. Bur oak (Quercus macrocarpa L.) serves as an excellent model species for this
68	study because it has exceptionally high morphological variation (Hamerlynck and Knapp, 1994;
69	Koenig et al., 2009) and an extensive distribution, ranging from Manitoba to the Gulf of Mexico
70	(Stein and Binon, 2003). The species also exhibits high within-population molecular genetic
71	variation (Schnabel and Hamrick, 1990), suggesting that an investigation of the leaf
72	morphological variation among vs within sites is appropriate as a precursor to future studies of
73	what environmental factors contribute to morphological variation in bur oak leaves.
74	
75	MATERIALS AND METHODS
76	
77	Collections and site attributes—During the summer and fall of 2017, samples were
78	collected from four sites each at northern, central, and southern latitudes of the bur oak range
79	(Fig. 1). The northern sites sampled were located in Manitoba (Assiniboine Park, Whiteshell
80	Provincial Park, and Spruce Woods Provincial Park) and Minnesota (The University of
81	Minnesota – Twin Cities). The central sites sampled were located in Illinois (The Morton
82	Arboretum), Indiana (Burr Oak Woods), Iowa (Cherokee Park Trail), and Minnesota (Prairie
82 83	Arboretum), Indiana (Burr Oak Woods), Iowa (Cherokee Park Trail), and Minnesota (Prairie Moon Nursery). The southern sites sampled were located in Oklahoma (Tallgrass Prairie

extracted 19 bioclim variables from the WorldClim database (resolution = 1 km²) and linked
them to our dataset in R v. 3.3.2 (R Development Core Team, 2017) using the raster (Hijmans
2017) and sp (Pebesma and Bivand 2005) packages. The map of collection sites was made using
the maps package (Becker et al. 2018).

90 Three bur oak trees were sampled from each site using a pole pruner at two or four 91 meters in height, based on tree height. For each sample, a terminal branch was cut down from 92 each of the cardinal directions (N, S, E, W), determined using a compass. Only outermost 93 branches were sampled. Two endmost leaves were removed from each branch and immediately 94 pressed, for a total of 8 leaves per individual, 272 leaves overall. If the endmost leaves were 95 highly damaged, the next endmost leaves were selected. Leaves that were highly misshapen or 96 broken were excluded from analyses. Leaves were dried in a standard herbarium drier prior to 97 measuring, then redried at 49° C for a minimum of 48 hours and weighed on a PB303 Delta 98 Range scale to obtain dry mass.

99

100 Morphological Measurements—Ten size measurements (mm) were made on each leaf 101 using ImageJ (Schneider et al. 2012): blade length (bladeL), blade width (bladeW), width of 102 blade between deepest pair of sinuses (sinusMinW), petiole length (petioleL), petiole width 103 (petioleW), length of lamina from base to widest point (bladeLtoWidestPoint), width of blade 104 between pair of sinuses just above the deepest pair (sinusNextW), total length (BL.PL), leaf base 105 angle (bladeBaseAngle), and leaf area (Area) (Table 2, Fig. 2). Seven ratios were also calculated 106 from these measurements to distinguish leaf shape from leaf size (González-Rodríguez and 107 Oyama 2005): petioleL / BL.PL (PL.TL); sinusMinL / sinusNextL (SinusRatio); bladeL / 108 bladeW (BL.BW); petioleL / petioleW (PL.PW); BL.BW / PL.PW (BL.BW.over.PL.PW);

109	bladeL / bladeLtoWidestPoint (BL.BLWP); lobedness, calculated as blade width between the
110	deepest sinuses divided by total blade width, abbreviated (sinus.v.width); and specific leaf area
111	(SLA), calculated as leaf blade area / leaf blade mass (Table 2). A panel of significant
112	regressions was created using the packages grid (R Development Core Team, 2017) and
113	gridExtra (Auguie, 2017). Leaf shape was further investigated using Fourier analysis (Crampton
114	1995), discussed in analysis methods below.

116 Statistical Analysis—Linear Regressions and ANOVA—All statistical analyses were 117 conducted in R version 3.3.2 (R Development Core Team, 2017). 17 simple regressions were 118 performed on all leaf traits using the lm function to assess which leaf traits were most responsive 119 to latitude at the site level, aggregating leaf traits first to tree, then to site. Data were visualized 120 using ggplot2 (Wickham, 2009). In addition to simple regressions, we corrected for size by 121 conducting multiple regressions for all of our leaf traits using the lm function and including 122 blade length (bladeL) as a covariate. We used data scaled to a mean of zero and unit variance. 123 We performed a principal component analysis (PCA_{MORPH}) on all scalar measurements 124 and ratios using the prcomp function. The point MN-MG788 was removed prior to analysis because it significantly skewed the ordination graph. Two-dimensional nonmetric 125 126 multidimensional scaling on a Euclidean distance matrix based on principal component axes was 127 used to visualize the data. The scaling type was 'centering' with PC rotation. We used the 128 ordiellipse function in the package vegan (Oksanen et al., 2017) to plot bounding ellipses on our 129 ordination.

Two-way ANOVA was used to assess the relative contributions of site and tree to the
 total variation in bladeL, SLA, PC1_{MORPH} and PC2_{MORPH}. Principal components one and two

were extracted from the principal component analysis mentioned above and attached to our original dataset. ANOVA was conducted on the linear model of bladeL, SLA, $PC1_{MORPH}$, and $PC2_{MORPH}$ regressed against site and tree. We chose $PC1_{MORPH}$ and $PC2_{MORPH}$ for this analysis because together they accounted for 52.5% of the variance.

136 We complemented analyses based on linear measurements with Fourier analysis, which 137 generates shape-representative variables that are independent of size (Crampton, 1995), using the 138 elliptical Fourier analysis (EFA) method in the R package Momocs (Bonhomme et al., 2014). 139 We chose EFA because elliptical Fourier functions precisely and efficiently capture outline 140 measurements and can be applied to more complex shapes than polar Fourier functions (Tracey 141 et al., 2006). First, black and white silhouettes of each leaf image were created using ImageJ and 142 converted into jpeg files. Petioles were manually removed from all leaf images because ImageJ 143 did not remove them at a consistent location (some were broken in the middle, for example). The 144 jpeg files were then imported into R and converted into an Out object. We initially found that 145 EFA sometimes connected leaf outlines incorrectly, especially through the creation of "figure 8" 146 outlines, when points on one edge of the leaf incorrectly linked to points on the opposite edge. 147 To correct this, we normalized the outlines using four landmarks placed on the top, bottom, left, 148 and right of each outline. EFA was then performed again on the outlines using 17 harmonics (the 149 default setting), which yielded outlines that more closely resembled the actual leaves. PCA was 150 then performed on the EFA. A first analysis was completed including all leaf images; then a 151 second analysis was completed after eliminating the leaf silhouettes that were highly misshapen. 152 Principal component axes were extracted and simple regressions were performed to examine the 153 response of $PC1_{EFA}$ and $PC2_{EFA}$ to latitude.

154

155 Simulations of sampling strategies—We assessed the effectiveness of alternative 156 sampling scenarios to distinguish differences among populations by using our estimates of 157 variation to generate simulated morphological datasets for 20 populations that ranged from three 158 to 12 trees per site and three to 12 leaves per tree, a total of 100 sampling strategies. For each 159 strategy, we simulated 100 replicate datasets of all ten direct morphological measurements using 160 a hierarchical simulation strategy, using the data we collected to parameterize the simulation. For 161 each replicate, site-level means for all 10 traits were drawn from the multivariate normal 162 distribution with trait means and covariance C_{site} estimated from observed site means for all 163 traits; C_{site} is thus based on variance within and covariance among traits that we observed, 164 averaged for each site. Tree-level means were then drawn from the multivariate normal 165 distribution with the simulated site-level means and the covariance matrix C_{tree} estimated from 166 tree means at each site and averaged across sites: tree-level means were thus assumed to have a 167 constant variance and covariance among sites. Finally, individual leaf measurements for each 168 tree were drawn from the multivariate normal distribution with means from the second 169 simulation stage and covariance matrix C_{leaf} estimated from the leaf measurements for each tree 170 separately, then averaged across trees.

The resulting 100,000 data matrices ranged from 180 to 2,880 simulated leaves, with trait covariance and variance among leaves within trees, among trees within populations, and among populations modeled according the measurements we made for this project. Because leaf size showed particularly strong variation among populations, we utilized ANOVA of bladeL on site + tree, combined with Tukey's Honest Significant Different (HSD) method to assess the number of populations that could be differentiated from one another in each simulated data matrix. The number of letters needed for a compact letter display using Tukey's HSD at $\alpha = 0.05$ was used as

178	a proxy for the number of groups that could be distinguished for each simulated dataset. Both the
179	average number of groups distinguished for each simulated dataset and the percent of
180	simulations that distinguish at least 50% of populations (10 / 20) are reported as estimates of
181	statistical power. All simulations were conducted in R using the mytnorm package (Genz et al.
182	2017), and code for performing simulations is posted online (https://github.com/andrew-
183	hipp/oak-morph-2020). All code posted is readily adapted to any simulation study with
184	multivariate traits collected in a similarly structured design (measurements nested within
185	individuals nested within sites).
186	
187	RESULTS
188	Morphological measurements—Among the size characters, bladeL, bladeW, BL.PL,
189	petioleW, and Area all showed significant variation in response to latitude (Table 3, Fig. 3). To
189 190	petioleW, and Area all showed significant variation in response to latitude (Table 3, Fig. 3). To our surprise, petiole width was the size trait that was the most significant ($P < .001$). Petiole
190	our surprise, petiole width was the size trait that was the most significant ($P < .001$). Petiole
190 191	our surprise, petiole width was the size trait that was the most significant ($P < .001$). Petiole length, sinusMinL, sinusNextL, and blade base angle were not significantly different among
190 191 192	our surprise, petiole width was the size trait that was the most significant ($P < .001$). Petiole length, sinusMinL, sinusNextL, and blade base angle were not significantly different among latitudes (Table 3). On average, leaves were 155.32 mm long, 102.69 mm wide, and had an area
190 191 192 193	our surprise, petiole width was the size trait that was the most significant (P < .001). Petiole length, sinusMinL, sinusNextL, and blade base angle were not significantly different among latitudes (Table 3). On average, leaves were 155.32 mm long, 102.69 mm wide, and had an area of 8629.3 mm ² . The ratios that were significantly correlated with latitude were SLA and the ratio
190 191 192 193 194	our surprise, petiole width was the size trait that was the most significant (P < .001). Petiole length, sinusMinL, sinusNextL, and blade base angle were not significantly different among latitudes (Table 3). On average, leaves were 155.32 mm long, 102.69 mm wide, and had an area of 8629.3 mm ² . The ratios that were significantly correlated with latitude were SLA and the ratio of sinus depth to leaf width (sinus.v.width) (Table 3). After running the regressions a second
190 191 192 193 194 195	our surprise, petiole width was the size trait that was the most significant (P < .001). Petiole length, sinusMinL, sinusNextL, and blade base angle were not significantly different among latitudes (Table 3). On average, leaves were 155.32 mm long, 102.69 mm wide, and had an area of 8629.3 mm ² . The ratios that were significantly correlated with latitude were SLA and the ratio of sinus depth to leaf width (sinus.v.width) (Table 3). After running the regressions a second time using bladeL as a covariate, we found that sinusNextL (P = 0.021), petioleW (P = 0.017),
190 191 192 193 194 195 196	our surprise, petiole width was the size trait that was the most significant (P < .001). Petiole length, sinusMinL, sinusNextL, and blade base angle were not significantly different among latitudes (Table 3). On average, leaves were 155.32 mm long, 102.69 mm wide, and had an area of 8629.3 mm ² . The ratios that were significantly correlated with latitude were SLA and the ratio of sinus depth to leaf width (sinus.v.width) (Table 3). After running the regressions a second time using bladeL as a covariate, we found that sinusNextL (P = 0.021), petioleW (P = 0.017), bladeL (P = 0.012) and SLA (P = 0.011) were the only traits significantly affected by latitude

200	Analysis of empirical data—The effect of site and tree on bladeL, SLA, PC1, and PC2
201	was significant based on ANOVA (P $<< 0.001$; Table 4). Although site and tree both had
202	significant effects, site contributed more than tree to the total variation in leaf morphology (F-
203	values for site range from 30.38–41.76, while F-values for tree range from 5.83–12.4). Mean
204	annual temperature among our sites ranged from 2.1–15.3°C, and mean annual precipitation
205	from $460 - 1121$ mm. On average, leaf bladeL averaged 34.0 mm shorter and SLA 50.39 mm ² /g
206	greater for each increase 10 degrees in latitude (northward). When we extracted $PC1_{EFA}$ and
207	$PC2_{EFA}$ from the EFA to perform simple regressions against latitude, both were non-significant
208	(P = 0.74 and P = 0.29). After performing a principal component analysis on our dataset, we
209	found that together $PC1_{MORPH}$ and $PC2_{MORPH}$ explained 52.5% of the variance among leaves. As
210	shown in the ordination (Fig. 4), leaves collected from sites at northern latitudes tend to cluster
211	more tightly than leaves collected from southern sites, which tend to be more spread out. The
212	EFA PCA (Supplemental Figure S1) principal components $PC1_{EFA}$ and $PC2_{EFA}$ explained only
213	30.5% of the variance in leaf shape and are nonsignificant. They are not discussed further in this
214	paper.
215	Regressions of leaf morphology on climate closely matched the results of morphology
216	regressions on latitude. The latitudinal gradient in our study correlated tightly with climate:
217	increasing in latitude entails decreases in mean annual precipitation (Bio12; $R2 = 0.6803$, p <

218 0.01) and temperature (Bio1; r^2 = 0.99, p << 0.01), and an increase in temperature seasonality 219 (Bio4; R2 = 0.97, p << 0.01) (Fig. 5). As a consequence, climate is not considered further in this 220 study, but only latitude.

221

Analysis of simulated data—The mean number of groups distinguished in our
simulations ranged from 5.49 to 10.41, and the probability of distinguishing 50% (10 / 20) of the
populations ranged from 0.01 to 0.71 (Fig. 6). The sampling strategy we implemented for this
study, 3 trees per site, 8 leaves per tree, had a power of only 38%. Increasing power to at least
50% would entail increasing sampling to 11–12 leaves from each of 5 trees, 5 leaves from each
of 10–11 trees, or any of a number of scenarios intermediate between these extremes.

228

229 **DISCUSSION**

230 Our study demonstrates that among-tree and among-site variation contribute significantly 231 to total variation in leaf morphology in bur oaks, and that both within-individual and within-232 population sampling are important components of a sampling strategy aimed at characterizing among-population variation in oak morphology. Our results give us insight into how variation is 233 234 distributed across different levels (within trees, among trees within populations, and among 235 populations) and provide insight into how to improve sampling methods in the future. Our 236 analyses demonstrate that among-site variation contributes most strongly to total leaf variation, 237 and we detected significant effects of latitude on both leaf size and specific leaf area, consistent 238 with expectations. Using simulation, we demonstrated that our sampling strategy, which included 239 8 leaves from different positions on each of 3 trees per site, was not optimal for resolving 240 among-site variation, even if it was sufficient to demonstrate the relationship between 241 morphology and latitudinal gradients. We provide guidance for future sampling as well as a 242 framework and code to conduct power analyses on morphological datasets composed of similarly hierarchical samples, where sites are composed of multiple individuals and individuals are each 243 244 represented by multiple measurements.

246 *How are leaf traits correlated with latitude and climate?*—Leaves that were collected at 247 southern latitudes averaged greater length, width, and area than leaves collected at northern 248 latitudes. Precipitation and temperature in our study increase from north to south. As water 249 availability regulates leaf growth and survival (Quero et al., 2006), and warm temperatures 250 increase transpiration rates (Nicotra et al., 2011) and photosynthetic efficiency (Peppe et al., 251 2011), the size gradient we observe likely represents a combination of adaptive plasticity and 252 genetic variation, though that inference is beyond the scope of the current study. Our results 253 nonetheless parallel previous work in *Ouercus ilex* (Garcia-Nogales et al., 2016), which 254 exhibited a similar leaf size gradient from north to south in the western Mediterranean basin. 255 Similar to our study, southern regions in the western Mediterranean basin were warmer and had 256 higher amounts of precipitation than northern regions. Our results also demonstrate that leaf size 257 and shape correlate with temperature and moisture at local and global scales (Peppe et al., 2011). 258 We had predicted that latitudinal differences in water availability would also affect leaf 259 lobing, because lobing influences how efficiently a leaf distributes heat (McDonald et al., 2003). 260 Leaves that are deeply lobed may be better adapted to warmer climates, because deeply lobed 261 and narrow leaves have a thinner leaf boundary layer, facilitating more rapid cooling (Givnish, 262 1987, McDonald et al. 2003). The ratio of sinus depth to leaf width (sinus.v.width) shows a weak 263 negative correlation with latitude (b = 0.013, P = 0.024), but this result is strongly affected by 264 one site, Red Rock Canyon, which had an exceptionally low value. When this outlier is 265 removed, the correlation is no longer significant (b = 0.007, P = 0.054). Similarly, the results of our EFA were not significant (total variance = 30.5%; $P_{PC1} = 0.74$ and $P_{PC2} = 0.29$), and we 266 267 believe this is also due to our sample size. In multiple regressions with scaled data and bladeL as

268 a covariate, thus explicitly holding size fixed, we found that depth of the sinus immediately 269 above the deepest sinus (sinusNextL), was significantly influenced by latitude (b = 0.893, P = 270 (0.021), even with the outlier removed (b = 0.926, P = 0.023). With leaf length as a covariate, 271 latitude also has a significant effect on specific leaf area (SLA; b = 0.987, P = 0.011). Leaves 272 that are low in SLA have higher water use efficiency (Mooney and Dunn, 1970), corresponding 273 with our observation that leaves at southern sites, where trees are exposed to warmer 274 temperatures and were likely more water-stressed, had significantly lower SLA than leaves 275 collected at northern sites.

Our results show that among-site variance for all traits investigated ($F_{11,236} = 30.38$ -276 277 41.76) contributes more to total variance in leaf morphology than among-tree variance ($F_{11,236}$ = 278 5.83–12.42), though both variance components are significant ($P \ll 0.001$; Table 4). This ability 279 to distinguish among sites is a key step in relating leaf variation to latitude or climatic predictors, 280 and measuring the slope of the relationship resulting from selective pressures along climatic 281 gradients (Wright et al., 2005). The measurements for each of our leaves were well predicted by 282 their latitude of origin: leaves were thicker, larger, and had deeper lobes at southern latitudes, 283 where leaves are exposed to warmer temperatures and higher precipitation, and have longer 284 growing seasons; and leaves were smaller, thinner, and had shallower lobes at northern latitudes, 285 where cold temperatures reduce water stress. Moreover, our results demonstrate that sampling 286 three trees per site, and eight leaves per tree is sufficient to distinguish random variation from 287 responsive variation. However, increasing sampling would increase our power to do this. 288 Overall, these results can be used in future studies to design a sampling method that will allow 289 researchers to detect significant, responsive variation in leaf morphology in bur oak.

290

How best to sample?—While we were able to detect among-site variation in leaf size and 291 292 SLA, we had minimal success detecting among-site variation in leaf shape. The simulations we 293 conducted of alternative sampling strategies suggests the strategy we selected of three trees per 294 site and eight leaves per tree has only a 38% probability of distinguishing 50% of 20 populations 295 drawn at random from distributions we observed. It may well be that our difficulty relating shape 296 to morphology is due to a lack of sampling within sites and trees. Based on the variance observed 297 in leaf length alone, achieving a 50% probability of distinguishing 50% of populations would 298 require 11-12 leaves from each of 5 trees per site, 5–6 leaves from each of 11-12 trees per site, 299 or something in between (Fig. 5). While among-site variance is higher than among-tree variance 300 within sites (Table 4 and discussion above), the variance we observe among leaves within a 301 single tree is still quite high. A previous study (Bruschi et al. 2003) found that among-leaf 302 morphological variance on a tree is higher than among-tree variance for most traits investigated, 303 and that this was in accord with findings from earlier work (Baranski, 1975; Blue and Jenson, 304 1988). However, in Bruschi (2003), leaves were sampled from both inner and outer positions on 305 the branch to maximize variance. In our study, we deliberately minimized this source of variance 306 by sampling leaves at a relatively constant height and all from the outer branch position, and we 307 further selected the endmost leaves from each branch sampled.

Variance among leaves on each tree was nonetheless high in our study. Thus, despite this effort to minimize the within-tree variance component—a practice we recommend—we found that additional sampling of leaves within individuals might have given us greater power to distinguish among populations (Fig. 5) by reducing the overall within-site variance relative to among-site variance. Based on the empirical and simulation work presented here, we make two recommendations to researchers conducting a study of among-site morphological variation in

oaks, forest trees, or in fact any type of plant. First, control within-individual variance by
sampling leaves from comparable positions within the trees. The variation in leaf shape and size
on a single oak tree can be daunting. While a wide sampling of leaves from each tree is needed to
accurately characterize the mean and variance of the leaves, minimize the variance where
possible by selecting leaves of a common age / developmental stage, in the same position on the
twig, from twigs with comparable positions on the plants.

320 Second, simulate alternative sampling strategies to maximize your ability to 321 distinguish among populations. Your time and resources will be limited. Should you expend it 322 gathering more plants per site? More leaves per plant? More sites? Use your preliminary data to 323 simulate alternative sampling strategies and estimate what your power will be to distinguish 324 populations under different scenarios. The tools we developed for this study require only a 325 matrix of traits and assignment of those traits to populations and individuals to perform the 326 simulations we describe above (https://github.com/andrew-hipp/oak-morph-2020). We expect 327 that their use will facilitate planning of sampling designs for similar projects.

328

329 ACKNOWLEDGMENTS

This study was funded by The Morton Arboretum Center for Tree Science and USDA Project 8020-21000-070-03S, a non-assistance cooperative agreement between U.S. National Arboretum and The Morton Arboretum. We would like to thank Marlene Hahn for assisting with curation of herbarium and leaf samples, Matthew Kaproth for advice on measurement of SLA, and Ricardo Kriebel for advice on morphometric analysis.

335

336 AUTHOR CONTRIBUTIONS

337	A.L.H., A.T.W. and S.C.D. conceptualized and designed the project. S.C.D., M.G., and
338	S.F. collected specimens and data. S.C.D. conducted data analyses, and wrote the first draft of
339	the manuscript. A.L.H. coded and analyzed simulations and contributed to data analysis. All
340	authors contributed to writing and revisions.
341	
342	DATA ACCESSIBILITY
343	Data used to conduct the statistical analysis and additional figures are available in the
344	online Supplement.
345	
346	LITERATURE CITED
347	Auguie, B. 2017. gridExtra: Miscellaneous Functions for "Grid" Graphics. R package version
348	2.3. https://CRAN.R-project.org/package=gridExtra
349	Baranski, M. J. 1975. An analysis of variation within white oak (Quercus alba L.). Bulletin No.
350	236, North Carolina Agricultural Experiment Station, Raleigh.
351	Becker, R. A., A. R. Wilks, R. Brownrigg, T. P. Minka, and A. Deckmyn. 2018. maps: Draw
352	Geographical Maps. R package version 3.3.0. https://CRAN.R-project.org/package=maps
353	Blue, M. P., and R. J. Jensen. 1988. Positional and seasonal variation in oak (Quercus, Fagaceae)
354	leaf morphology. American Journal of Botany 75: 939–947.
355	Bonhomme, V., S. Picq, C. Gaucherel, and J. Claude. 2014. Momocs: Outline Analysis Using R.
356	Journal of Statistical Software 56: 1–24. URL http://www.jstatsoft.org/v56/i13/.
357	Bruschi, P., P. Grossoni, and F. Bussotti. 2003. Within- and among-tree variation in leaf
358	morphology of Quercus petraea (Matt.) Liebl. natural populations. Trees 17: 164–172.

- 359 Crampton, J. S. 1995. Elliptic Fourier shape analysis of fossil bivalves: some practical
 360 considerations. *Lethaia* 28: 179–186.
- 361 Ducrey, M. 1992. Variation in leaf morphology and branching pattern of some tropical rain
- 362 forest species from Guadeloupe (French West Indies) under semi-controlled light

363 conditions. *Annales des Sciences Forestières* 49: 553–570.

- 364 García-Nogales, A., J. C. Linares, R. G. Laureano, J. I. Seco, and J. Merino. 2016. Range-wide
- variation in life-history phenotypes: spatiotemporal plasticity across the latitudinal
 gradient of the evergreen oak *Quercus ilex. Journal of Biogeography* 43: 2366–2379.
- 367 Genz, A., F. Bretz, T. Miwa, X. Mi, F. Leisch, F. Scheipl, and T. Hothorn. 2017. mvtnorm:
- 368 Multivariate Normal and t Distributions. R package version 1.0-6. URL http://CRAN.R 369 project.org/package=mvtnorm
- Givnish, T. J. 1987. Comparative studies of leaf form: assessing the relative roles of selective
 pressures and phylogenetic constraints. *New Phytologist* 106: 131–160.
- 372 Gurevitch, J. 1992. Sources of variation in leaf shape among two populations of Achillea

373 *lanulosa. Genetics* 130: 385–394.

- 374 González-Rodríguez, A., D. M. Arias, S. Valencia-A., and K. Oyama. 2004. Morphological and
- 375 RAPD analysis of hybridization between *Quercus affinis* and *Q. laurina* (Fagaceae), two
 376 Mexican red oaks. *American Journal of Botany* 91: 401–409.
- González-Rodríguez, A., and K. Oyama. 2005. Leaf morphometric variation in *Quercus affinis*and *Q. laurina* (Fagaceae), two hybridizing Mexican red oaks. *Botanical Journal of the*
- **379** *Linnean Society* 147: 427–435.

- Hamerlynck, E. P., and A. K. Knapp. 1994. Leaf-level responses to light and temperature in two
- 381 co-occurring *Quercus* (Fagaceae) species: implications for tree distribution patterns.
- *Forest Ecology and Management* 68: 149–159.
- 383 Hijmans, R.J. 2017. raster: Geographic Data Analysis and Modeling. R package version 2.6-7.

384 <u>https://CRAN.R-project.org/package=raster</u>

- Howard, D., R. Preszler, J. Williams, S. Fenchel, and W. Boecklen. 1997. How discrete are oak
 species? Insights from a hybrid zone between *Quercus grisea* and *Quercus gambelii*. *Evolution* 51: 747–755.
- 388 Jensen, R. J., R. Depiero, and B.K. Smith. 1984. Vegetative characters, population variation, and
- the hybrid origin of *Quercus ellipsoidalis*. *American Midland Naturalist* 111: 364–370.
- Jensen, R. J.1990. Detecting shape variation in oak leaf morphology: a comparison of
 rotational-fit methods. *American Journal of Botany* 77: 1279–1293
- 392 Koenig, W. D., J. M. H. Knops, J. L. Dickinson, and B. Zuckerberg. 2009. Latitudinal decrease
- in acorn size in bur oak (*Quercus macrocarpa*) is due to environmental constraints, not
 avian dispersal. *Botany* 87: 349–356.
- 395 Kremer, A., J. Dupouey, J. Deans, J. Cottrell, U. Csaikl, R. Finkeldey, S. Espinel, et al. 2002.
- Leaf morphological differentiation between *Quercus robur* and *Quercus petraea* is stable
 across western European mixed oak stands. *Annals of Forest Science* 59: 777–787.
- 398 McDonald, P. G., C. R. Fonseca, J. M. C. C. Overton, and M. Westoby. 2003. Leaf-size
- divergence along rainfall and soil-nutrient gradients: is the method of size reduction
 common among clades? *Functional Ecology* 17: 50–57.
- 401 Mooney, H. A., and E. L. Dunn. 1970. Convergent evolution of Mediterranean-climate evergreen
 402 sclerophyll shrubs. *Evolution* 24: 292–303.

- 403 Nicotra, A. B., A. Leigh, C. K. Boyce, C. S. Jones, K. J. Niklas, D. L. Royer, and H. Tsukaya.
- 404 2011. The evolution and functional significance of leaf shape in the
- 405 angiosperms. *Functional Plant Biology* 38: 535–552.
- 406 Niinemets, Ü. 2015. Is there a species spectrum within the world-wide leaf economics spectrum?
- 407 Major variations in leaf functional traits in the Mediterranean sclerophyll *Quercus ilex*.
 408 *New Phytologist* 205: 79–96.
- 409 Oksanen, J., F. G. Blanchet, M. Friendly, R. Kindt, P. Legendre, D. McGlinn, P. R. Minchin, et
- 410 al. 2017. vegan: Community Ecology Package. R package version 2.4-5.
- 411 https://CRAN.R-project.org/package=vegan
- 412 Pebesma, E. J., and R. S. Bivand, 2005. Classes and methods for spatial data in R. *R News* 5:
 413 9–13. https://cran.r-project.org/doc/Rnews/.
- 414 Peppe, D. J., D. L. Royer, B. Cariglino, S. Y. Oliver, S. Newman, E. Leight, G. Enikolopov, et
- 415 al. 2011. Sensitivity of leaf size and shape to climate: global patterns and paleoclimatic
 416 applications. *New Phytologist* 190: 724–739.
- 417 Quero, J. L., R. Villar, T. Marañón, and R. Zamora. 2006. Interactions of drought and shade
- 418 effects on seedlings of four *Quercus* species: physiological and structural leaf responses.
 419 *New Phytologist* 170: 819–834.
- 420 R Development Core Team. 2017. R: A language and environment for statistical computing. R
- 421 Foundation for Statistical Computing, Vienna, Austria. URL <u>https://www.R-project.org/</u>
- 422 Schnabel, A., and J. L. Hamrick. 1990. Comparative Analysis of Population Genetic Structure in
- 423 *Quercus macrocarpa* and *Q. gambelii* (Fagaceae). *Systematic Botany* 15: 240–251.

- 424 Schneider, C. A., W. S. Rasband, and K. W. Eliceiri. 2012. NIH Image to ImageJ: 25 years of
 425 image analysis. *Nature Methods* 9: 671–675.
- Sokal, R. R., T. J. Crovello, and R. S. Unnasch. 1986. Geographic Variation of Vegetative
 Characters of *Populus deltoides*. *Systematic Botany* 11: 419–432.
- 428 Stein, J. D., D. Binion, and R. E. Acciavatti. 2003. Field guide to native oak species of eastern
- 429 North America. USDA Forest Service, Forest Health Technology Enterprise Team,
 430 Publication FHTET-2003-01, Morgantown.
- 431 Tracey, S. R., J. M. Lyle, and G. Duhamel. 2006. Application of elliptical Fourier analysis of
 432 otolith form as a tool for stock identification. *Fisheries Research*, 77: 138–147.
- 433 Wickham H. 2009. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag, New York.
- 434 Wright, I. J., R. P. Reich, J. H. Cornelissen, D. S. Falster, P. K. Groom, K. Hikosaka, W. Lee, et
- 435 al. 2005. Modulation of leaf economic traits and trait relationships by climate. *Global*436 *Ecology and Biogeography* 14: 411–421.
- 437 Xu, F., W. Guo, W. Xu, Y. Wei, and R. Wang. 2009. Leaf morphology correlates with water and
- 438 light availability: what consequences for simple and compound leaves? *Progress in*
- 439 *Natural Science* 19: 1789–1798.

441 Table 1. Sampling localities, Bioclim values for each site, number of leaves collected per

- 442 tree. Only leaves used for statistical analysis are counted. Broken or incomplete leaves were
- 443 eliminated from statistical analysis. Abbreviations: Bio1 = mean annual temperature (in degrees
- 444 C); Bio12 = mean annual precipitation (in mm).

Site	<u>Bio1, Bio12</u>	<u>Tree</u>	<u>Latitude</u>	<u>Longitude</u>	Lvs
Whiteshell Provincial Park	2.07℃, 566 mm	MB-SD004	49.4249	-95.1436	8
		MB-SD005	49.71279	-95.2444	8
		MB-MG513	49.71209	-95.24496	8
Spruce Woods Provincial Park	2.50°C, 460 mm	MB-MG516	49.76104	-99.15971	8
		MB-MG517	49.76095	-99.15983	8
		MB-MG518	49.76061	-99.15928	8
Assiniboine Forest	2.10℃, 519 mm	MB-MG528	49.85778	-97.24848	8
		MB-MG529	49.85423	-97.2482	8
		MB-MG530	49.85392	-97.24828	8
University of Minnesota	7.10℃, 738 mm	MN-MG788	44.97882	-93.23768	8
Campus		MN-MG789	44.97739	-93.23761	8
		MN-MG790	44.97771	-93.23801	7
Cherokee Park Trail	9.20℃, 879 mm	IA-MG243	41.97454	-91.72161	8
		IA-MG244	41.97367	-91.72547	8
		IA-MG245	41.97362	-91.72565	6
Morton Arboretum	9.50℃, 932 mm	IL-SF001	41.81696	-88.0808	8
		IL-SF002	41.81331	-88.08266	8
		IL-SF003	41.81588	-88.07994	8
Prairie Moon Nursery	6.80℃, 837 mm	MN-SD001	43.89117	-91.64684	8
		MN-SD002	43.89804	-91.648	8
		MN-SD003	43.89088	-91.64689	2
Burr Oak Woods	9.80℃, 943 mm	IN-MG631	41.53273	-87.2948	8
		IN-MG636	41.5345	-87.29279	8
		IN-MG638	41.53253	-87.29661	8
Red Rock Canyon State Park	15.3℃, 756 mm	OK-MG369	35.43874	-98.35495	8
		OK-MG370	35.43851	-98.35503	8
		OK-MG371	35.43854	-98.35497	8
Mohawk Park	15.3℃, 987	OK-MG347	36.21066	-95.89467	8

	mm				
		OK-MG349	36.2204	-95.89845	8
		OK-MG350	36.22064	-95.89877	8
Tallgrass Prairie Preserve	14.3℃, 939 mm	OK-MG282	36.84504	-96.42526	8
		OK-MG283	36.84485	-96.42479	2
		OK-MG284	36.84501	-96.42553	3
Buttin Rock Access	13.1℃, 1121 mm	MO-MG402	37.15687	-91.36471	8
		MO-MG403	37.15686	-91.36501	8
		MO-MG404	37.15726	-91.36518	8

446 Table 2. Descriptions of the leaf traits measured

Leaf measurements			
Trait	Abbreviation	Definition	
Blade length (mm)	bladeL	Straight line distance measured from intersection of leaf	
		and petiole to tip of the leaf at its point of intersection with	
		the midvein	
Blade width (mm)	bladeW	The longest possible perpendicular line drawn from one	
		edge of the blade to the other; vein position used to	
		identify the leaves opposite one another	
Width of blade between deepest pair of	sinusMinL	The shortest distance that separates the deepest sinus from	
sinuses (mm)		its corresponding sinus. (The deepest sinus is defined as	
		the sinus that has the longest distance from the most	
		interior point of the sinus to the line that connects the two	
		most exterior points of that sinus)	
Width of blade between sinuses just	sinusNextL	The width between the sinuses that are immediately distal	
above the deepest pair (mm)		to the deepest sinuses (as defined in sinusMinL)	
Petiole length (mm)	petioleL	Measured from the base of the blade as defined by bladeL	
		to the base of the petiole, defined as the line of intersection	
		between petiole and branch, upper surface of the petiole	
Petiole width (mm)	petioleW	Measured at the point of intersection between the blade	
		and the petiole, where blade is not visible	
Length of lamina from base to widest	bladeLtoWidestPoint	Measured from the base of the blade to the point of	
point (mm)		intersection between the midvein and the line used to	
		measure leaf blade width	
Blade base angle (degrees)	bladeBaseAngle	Measured using the lines that define the widest angle	
		between the base and either edge of the leaf	
Total length (mm)	BL.PL	Total length is the blade length added to the petiole length	
Leaf area (mm ²)	Area	Calculated in imageJ.	

Ratios										
Petiole length / Total length	PL.TL	The petiole length divided by the total length								
Sinus ratio	SinusRatio	The width of the blade between the deepest pair of sinuse								
		divided by the width of the blade between the pair of								
		sinuses just above the deepest pair								
Blade length/ Blade width	BL.BW	The blade length divided by the blade width								
Petiole length / Petiole width	PL.PW	The petiole length divided by the petiole width								
Blade length / Blade length to widest	BL.BLWP	The blade length divided by the length of the blade from								
point		the base to the widest point								
Ratio of Leaf size to petiole length	BL.BW.over.PL.PW	The blade length divided by the blade width divided by the								
		petiole length divided by the petiole width								
Specific leaf area	SLA	Leaf area divided by the mass of the leaf								
Lobedness	sinus.v.width	The width of the blade between the deepest pair of sinus								
		divided by the blade width								

450 Table 3. Simple and multiple regressions for all leaf traits. The columns for Blade length and 451 Latitude represent the regression coefficient and p-value for a multiple regression with each leaf 452 trait regressed against Blade length and Latitude. Note that after Bonferroni correction for 453 multiple tests, only the regression of blade length on latitude + petiole width is significant; and 454 for that multiple regression, only the coefficient for latitude is significant

Leaf trait	p-value	r^2	Blade length	Latitude	R ²		
bladeL	0.012	0.486		-0.697, p = 0.012	0.486		
bladeW	0.014	0.469	0.926, p < .001	-0.039, p = 0.780	0.911		
sinusMinL	0.208	0.153	-0.069, p = 0.874	0.343, p = 0.443	0.156		
sinusNextL	0.492	0.048	0.966, p = 0.014	0.893, p = 0.021	0.528		
petioleL	0.262	0.124	0.812, p = 0.041	0.214, p = 0.546	0.463		
petioleW	p < 0.001	0.692	0.119, p = 0.649	-0.749, p = 0.017	0.699		
bladeLtoWidestPoint	0.011	0.494	0.920, p < .001	-0.062, p = 0.630	0.929		
bladeBaseAngle	0.151	0.195	-0.363, p = 0.386	-0.695, p = 0.116	0.263		
TotalL.PL.BL	0.019	0.438	1.03, p < 0.001	0.052, p = 0.459	0.979		
Area	0.014	0.469	0.949, p <0 .001	-0.024, p = 0.847	0.933		
SLA	0.015	0.466	0.438, p = 0.188	0.987, p = 0.011	0.564		
PL.TL	0.945	$r^2 < 0.001$	0.347, p = 0.461	0.264, p = 0.572	0.062		
SinusRatio	0.425	0.065	-0.253, p = 0.580	0.078, p = 0.864	0.098		
BL.BW	0.313	0.101	-0.367, p = 0.408	0.062, p = 0.886	0.171		
BL.BLWP	0.834	0.005	0.183, p = 0.699	0.196, p = 0.680	0.022		
sinus.v.width	0.024	0.415	-0.551, p = 0.103	0.259, p = 0.415	0.571		
sinus.v.width (no	0.054	0.352	-0.296, p = 0.152	0.163, p = 0.391	0.507		
spruce woods)							

455

457	Table 4. ANOVA for bladeL, SLA, PC1, PC2
-----	--

Response		Df	Sum of Squares	Mean	F-value	Pr(>F)
				Square		
bladeL	site	11	177345	16122.3	38.9996	< 2.2e-16
	tree	24	83159	3465.0	8.3817	< 2.2e-16
	residuals	236	97562	413.4		
SLA	site	11	1017054857	92459532	30.3766	< 2.2e-16
	tree	24	703085034	29295210	9.6246	< 2.2e-16
	residuals	236	718331913	3043779		
PC1	site	11	984.70	89.519	41.7620	<2.2e-16
	tree	24	300.10	12.504	5.8335	8.101e-14
	residuals	236	505.88	2.144		
PC2	site	11	400.34	36.394	34.042	<2.2e-16
	tree	24	318.70	13.279	12.421	<2.2e-16
	residuals	236	252.30	1.069		

460

461 FIGURE LEGENDS

462

- 463 Figure 1. Locations of sampling sites for this study as well as mean annual temperature across
- the bur oak range. WorldClim temperature data are scaled to a factor of 10. Specific information
- about site, name, location, and number of samples collected can be found in Table 1.

466

467 Figure 2. Leaf trait measurements used in this study. All measurements used in this study were

468 linear measurements or ratios of linear measurements, plus one angle. Details and definitions are

found in Table 4.

470

471 Figure 3. Simple regressions of traits and environment that are significant at the 0.05 level. P472 values are not corrected for multiple tests; a total of seventeen regressions were performed
473 (Table 3).

474

475 Figure 4. Ordination of all individuals. Each color represents a different site: Assiniboine Forest 476 (red), Bur Oak Woods (orange), Buttin Rock Access (yellow), Cherokee Park Trail (green), 477 Mohawk Park (blue), Morton Arboretum (purple), Prairie Moon Nursery (brown), Red Rock 478 Canyon State Park (deep pink), Spruce Woods Provincial Park (olive drab), Tallgrass Prairie 479 Preserve (magenta), University of Minnesota Campus (black), Whiteshell Provincial Park (sky 480 blue). Each symbol represents a different tree within the site, and each point represents a 481 different leaf from the tree. Thus, each symbol / color combination appears in the plot up to four 482 times for the up to four leaves per tree in the study.

484	Figure 5. Regressions of bioclim variables on latitude. Latitude shows up as the strongest single
485	predictor of leaf morphology in the current study, as it integrates over both day length and
486	several aspects of climate: bio 1 (mean annual temperature), bio 12 (mean annual precipitation),
487	bio 4 (mean temperature seasonality).
488	
489	Figure 6. Sampling simulations. Simulated sampling strategies accounted for covariance among
490	traits within leaves; among leaves on trees within sites; and among trees within sites. Here, two
491	estimates of power are reported: the number of groups of sites recognized as distinct from each
492	other using Tukey's HSD at $\alpha = 0.05$; and the probability of recognizing at least 50% of sites as
493	distinct from each other. colors scale from darker as a higher number of groups are recognized,
494	lighter as fewer are. Simulated numbers of sites distinguished (left panel) and probabilities of
495	distinguishing at least 50% of simulated sites (right panel) are reported in each cell of the
496	simulation.
497	
498	Supplemental Figure S1. PCA based on eFourier analysis of leaf outlines.
499	

MDS1

Mean groups recognized out of 20 populations

Number of trees per site

Probability of recognizing 50 percent of populations

12 -	9.01	9.26	9.31	9.64	9.93	10.02	9.77	10.31			12 -	0.39	0.44	0.47	0.56	0.66	0.64	0.56			0.66
11 -	8.76	9.08	9.42	9.49	9.44	9.92		10.1		10.17	11 -	0.31	0.4	0.5	0.51	0.46	0.61	0.61	0.64	0.69	0.65
10 -	8.86	9.07	9.46	9.4	9.73	9.84	9.76	10.22	10.21	10.17	10 -	0.31	0.43	0.55	0.41	0.58	0.57	0.58	0.67	0.63	0.62
9 -	8.65	8.93	9.01	9.44	9.57	9.66	9.66	9.73	9.97	9.92	9 -	0.32	0.35	0.41	0.5	0.53	0.59	0.52	0.53	0.58	0.62
8 -	7.96	8.64	8.66	9.37	9.76	9.85	9.83	9.93	9.62	9.83	8 -	0.17	0.28	0.33	0.47	0.55	0.58	0.59	0.61	0.52	0.58
7 -	7.7	8.5	8.81	9.08	9.47	9.48	9.66	9.7	10.07	9.56	7 -	0.09	0.25	0.32	0.36	0.49	0.55	0.59	0.56	0.62	0.52
6 -	7.72	8.56	8.51	9.01	9.27	9.12	9.68	9.84	9.84	9.82	6 -	0.14	0.2	0.28	0.33	0.47	0.38	0.55	0.58	0.57	0.58
5 -	7.25	7.99	8.66	8.43	8.8	9.09	9.08	9.27	9.6	9.61	5 -	0.07	0.15	0.29	0.24	0.31	0.36	0.47	0.42	0.51	0.57
4 -	7.06	7.56	8.25	8.29	8.77	8.82	8.9	9.42	9.07	9.34	4 -	0.05	0.09	0.22	0.27	0.32	0.34	0.34	0.48	0.42	0.46
3 -	6.49	7.13	7.93	8.18	8.44	8.82	9.06	8.86	9.19	9.05	3 -	0.01	0.04	0.15	0.15	0.21	0.38	0.35	0.37	0.43	0.35
	3	4	5	6	7	8	9	10	11	12		3	4	5	6	7	8	9	10	11	12
	0	-	5	0	1	0	3	10		14		0	-	5	0	'	0	3	10		14

Number of leaves per tree