Effects of population, latitude, and individual tree to leaf variation in oaks: An empirical study and simulation of sampling strategies in bur oak (Quercus macrocarpa, Fagaceae)

Sara C. Desmond ${ }^{1}$, Mira Garner ${ }^{1}$, Seamus Flannery ${ }^{1,3}$, Alan T. Whittemore ${ }^{4}$ and Andrew L. Hipp ${ }^{1,5,6}$
${ }^{1}$ The Morton Arboretum, 4100 Illinois Route 53, Lisle, IL 60532, USA
${ }^{2}$ Current address:
${ }^{3}$ The University of Chicago Laboratory Schools, 1362 East $59{ }^{\text {th }}$ St., Chicago, IL 60637, USA
${ }^{4}$ U.S. National Arboretum, 3501 New York Ave NE, Washington, DC 20002, USA
${ }^{5}$ The Field Museum, 1400 S Lake Short Drive, Chicago, IL 60605, USA
${ }^{6}$ Author for correspondence (email: ahipp@mortonarb.org)

Abstract

PREMISE: Oaks are notoriously variable in leaf morphology, but little is known regarding the partial contributions of climate, population, latitude, and individual tree to total variation in leaf morphology. This study examines the contributions of within-tree, among-tree, and among-site variation to the total variation in leaf morphology in bur oak (Quercus macrocarpa), one of North America's most geographically widespread oak species.

METHODS: Samples were collected from four sites each at northern, central, and southern latitudes of the bur oak range. Ten leaf size traits were measured, and variance in these traits and eight ratios was partitioned into tree, population, and latitude components. We then

parameterized a series of leaf collections simulations using empirical covariance among leaves on trees and trees at sites.

KEY RESULTS: Leaf size measurements were highly responsive to latitude. Site contributed more than tree to total variation in leaf morphology. Simulations suggest that power to detect among-site variance in leaf morphology increases with either increases in leaves per tree (10-11 leaves from each of 5 trees) or trees per site (5 leaves from each of $10+$ trees).

CONCLUSIONS: Our study demonstrates the utility of both simulating sampling and controlling for variance in sampling for leaf morphology, whether the questions being addressed are ecological, evolutionary, or taxonomic. Simulation code is provided to help researchers plan sampling strategies to maximize the ability to detect among-site variance in leaf morphology.

Keywords: climate; Fagaceae; leaf morphology; latitude; Quercus macrocarpa; sampling simulation; variation

Running head: Leaf morphological variation in bur oak Manuscript received \qquad ; revision accepted \qquad .

INTRODUCTION

Leaf morphology and anatomy play key roles in plant adaptation to their environment (Givnish, 1987; Wright et al., 2005; Xu et al., 2009). Leaf size, shape, and anatomy differ greatly depending on the environment the plant is growing in (Bruschi et al., 2003) and the resources available in that environment (Niinemets, 2015). Yet the morphology of tree leaves can vary highly even within forest stands (Givnish, 1987). Factors such as position on the tree (Blue and Jensen, 1988), light availability (Ducrey, 1992), climate (Peppe et al., 2011), and genetic differences (Gurevitch, 1992) all contribute to variation in leaf shape and size, making sampling strategy important for understanding determinants of tree leaf morphology.

Oaks have long been noted for their particularly variable morphology, both among trees within individuals and among trees within sites. Detailed studies in oaks have utilized either linear measurements (e.g., Baranski, 1975; Blue and Jensen, 1988; Bruschi et al., 2003) or landmark approaches (e.g., Jensen 1990). Both approaches have demonstrated that while variation among positions within a tree in both leaf shape and size may exceed variation among sites, overall variance is generally greater among sites. These papers have highlighted that studies investigating among-population divergence patterns must hold sampling season and leaf position on the tree constant (i.e., high or low on the tree and disposed toward the edges or inside of the canopy; Sokal et al., 1986; Blue and Jensen, 1988; Bruschi et al., 2003). The advantages of understanding the sources of variance on leaf morphology are great, as such understanding enables studies to utilize leaf morphology in investigating introgression, hybridization, and morphological variation that distinguishes species (Jensen et al., 1984; Howard et al., 1997; Kremer et al., 2002; González-Rodríguez et al., 2004, González-Rodríguez and Oyama 2005).

The aim of the current study was to quantify the relative contributions of within-tree, among-tree, and among-site variation to the total variation in leaf morphology in bur oak. We also aimed to determine to what extent we can predict variation in leaf morphology based on latitude, and how much sampling is required to detect among-site differences in leaf morphology. Bur oak (Quercus macrocarpa L.) serves as an excellent model species for this study because it has exceptionally high morphological variation (Hamerlynck and Knapp, 1994; Koenig et al., 2009) and an extensive distribution, ranging from Manitoba to the Gulf of Mexico (Stein and Binon, 2003). The species also exhibits high within-population molecular genetic variation (Schnabel and Hamrick, 1990), suggesting that an investigation of the leaf morphological variation among vs within sites is appropriate as a precursor to future studies of what environmental factors contribute to morphological variation in bur oak leaves.

MATERIALS AND METHODS

Collections and site attributes-During the summer and fall of 2017, samples were collected from four sites each at northern, central, and southern latitudes of the bur oak range (Fig. 1). The northern sites sampled were located in Manitoba (Assiniboine Park, Whiteshell Provincial Park, and Spruce Woods Provincial Park) and Minnesota (The University of Minnesota - Twin Cities). The central sites sampled were located in Illinois (The Morton Arboretum), Indiana (Burr Oak Woods), Iowa (Cherokee Park Trail), and Minnesota (Prairie Moon Nursery). The southern sites sampled were located in Oklahoma (Tallgrass Prairie Preserve, Mohawk Park, Red Rock Canyon State Park) and Missouri (Buttin Rock Access). For each site, latitude and longitude were recorded to a precision of 5 decimal places (Table 1). We
extracted 19 bioclim variables from the WorldClim database (resolution $=1 \mathrm{~km}^{2}$) and linked them to our dataset in R v. 3.3.2 (R Development Core Team, 2017) using the raster (Hijmans 2017) and sp (Pebesma and Bivand 2005) packages. The map of collection sites was made using the maps package (Becker et al. 2018).

Three bur oak trees were sampled from each site using a pole pruner at two or four meters in height, based on tree height. For each sample, a terminal branch was cut down from each of the cardinal directions (N, S, E, W), determined using a compass. Only outermost branches were sampled. Two endmost leaves were removed from each branch and immediately pressed, for a total of 8 leaves per individual, 272 leaves overall. If the endmost leaves were highly damaged, the next endmost leaves were selected. Leaves that were highly misshapen or broken were excluded from analyses. Leaves were dried in a standard herbarium drier prior to measuring, then redried at $49^{\circ} \mathrm{C}$ for a minimum of 48 hours and weighed on a PB303 Delta Range scale to obtain dry mass.

Morphological Measurements-Ten size measurements (mm) were made on each leaf using ImageJ (Schneider et al. 2012): blade length (bladeL), blade width (bladeW), width of blade between deepest pair of sinuses (sinusMinW), petiole length (petioleL), petiole width (petioleW), length of lamina from base to widest point (bladeLtoWidestPoint), width of blade between pair of sinuses just above the deepest pair (sinusNextW), total length (BL.PL), leaf base angle (bladeBaseAngle), and leaf area (Area) (Table 2, Fig. 2). Seven ratios were also calculated from these measurements to distinguish leaf shape from leaf size (González-Rodríguez and Oyama 2005): petioleL / BL.PL (PL.TL); sinusMinL / sinusNextL (SinusRatio); bladeL / bladeW (BL.BW); petioleL / petioleW (PL.PW); BL.BW / PL.PW (BL.BW.over.PL.PW);
bladeL / bladeLtoWidestPoint (BL.BLWP); lobedness, calculated as blade width between the deepest sinuses divided by total blade width, abbreviated (sinus.v.width); and specific leaf area (SLA), calculated as leaf blade area / leaf blade mass (Table 2). A panel of significant regressions was created using the packages grid (R Development Core Team, 2017) and gridExtra (Auguie, 2017). Leaf shape was further investigated using Fourier analysis (Crampton, 1995), discussed in analysis methods below.

Statistical Analysis—Linear Regressions and ANOVA—All statistical analyses were conducted in R version 3.3.2 (R Development Core Team, 2017). 17 simple regressions were performed on all leaf traits using the lm function to assess which leaf traits were most responsive to latitude at the site level, aggregating leaf traits first to tree, then to site. Data were visualized using ggplot2 (Wickham, 2009). In addition to simple regressions, we corrected for size by conducting multiple regressions for all of our leaf traits using the lm function and including blade length (bladeL) as a covariate. We used data scaled to a mean of zero and unit variance.

We performed a principal component analysis $\left(\mathrm{PCA}_{\mathrm{MORPH}}\right)$ on all scalar measurements and ratios using the prcomp function. The point MN-MG788 was removed prior to analysis because it significantly skewed the ordination graph. Two-dimensional nonmetric multidimensional scaling on a Euclidean distance matrix based on principal component axes was used to visualize the data. The scaling type was 'centering' with PC rotation. We used the ordiellipse function in the package vegan (Oksanen et al., 2017) to plot bounding ellipses on our ordination.

Two-way ANOVA was used to assess the relative contributions of site and tree to the total variation in bladeL, SLA, $\mathrm{PC} 1_{\text {MORPH }}$ and $\mathrm{PC} 2_{\text {MORPH. }}$. Principal components one and two
were extracted from the principal component analysis mentioned above and attached to our original dataset. ANOVA was conducted on the linear model of bladeL, SLA, PC1 $1_{\text {MORPH }}$, and PC2 $2_{\text {MORPH }}$ regressed against site and tree. We chose $\operatorname{PC} 1_{\text {MORPH }}$ and $\mathrm{PC} 2_{\text {MORPH }}$ for this analysis because together they accounted for 52.5% of the variance.

We complemented analyses based on linear measurements with Fourier analysis, which generates shape-representative variables that are independent of size (Crampton, 1995), using the elliptical Fourier analysis (EFA) method in the R package Momocs (Bonhomme et al., 2014). We chose EFA because elliptical Fourier functions precisely and efficiently capture outline measurements and can be applied to more complex shapes than polar Fourier functions (Tracey et al., 2006). First, black and white silhouettes of each leaf image were created using ImageJ and converted into jpeg files. Petioles were manually removed from all leaf images because ImageJ did not remove them at a consistent location (some were broken in the middle, for example). The jpeg files were then imported into R and converted into an Out object. We initially found that EFA sometimes connected leaf outlines incorrectly, especially through the creation of "figure 8" outlines, when points on one edge of the leaf incorrectly linked to points on the opposite edge. To correct this, we normalized the outlines using four landmarks placed on the top, bottom, left, and right of each outline. EFA was then performed again on the outlines using 17 harmonics (the default setting), which yielded outlines that more closely resembled the actual leaves. PCA was then performed on the EFA. A first analysis was completed including all leaf images; then a second analysis was completed after eliminating the leaf silhouettes that were highly misshapen. Principal component axes were extracted and simple regressions were performed to examine the response of $\mathrm{PC} 1_{\mathrm{EFA}}$ and $\mathrm{PC} 2_{\mathrm{EFA}}$ to latitude.

Simulations of sampling strategies-We assessed the effectiveness of alternative sampling scenarios to distinguish differences among populations by using our estimates of variation to generate simulated morphological datasets for 20 populations that ranged from three to 12 trees per site and three to 12 leaves per tree, a total of 100 sampling strategies. For each strategy, we simulated 100 replicate datasets of all ten direct morphological measurements using a hierarchical simulation strategy, using the data we collected to parameterize the simulation. For each replicate, site-level means for all 10 traits were drawn from the multivariate normal distribution with trait means and covariance $\mathbf{C}_{\text {site }}$ estimated from observed site means for all traits; $\mathbf{C}_{\text {site }}$ is thus based on variance within and covariance among traits that we observed, averaged for each site. Tree-level means were then drawn from the multivariate normal distribution with the simulated site-level means and the covariance matrix $\mathbf{C}_{\text {tree }}$ estimated from tree means at each site and averaged across sites: tree-level means were thus assumed to have a constant variance and covariance among sites. Finally, individual leaf measurements for each tree were drawn from the multivariate normal distribution with means from the second simulation stage and covariance matrix $\mathbf{C}_{\text {leaf }}$ estimated from the leaf measurements for each tree separately, then averaged across trees.

The resulting 100,000 data matrices ranged from 180 to 2,880 simulated leaves, with trait covariance and variance among leaves within trees, among trees within populations, and among populations modeled according the measurements we made for this project. Because leaf size showed particularly strong variation among populations, we utilized ANOVA of bladeL on site + tree, combined with Tukey's Honest Significant Different (HSD) method to assess the number of populations that could be differentiated from one another in each simulated data matrix. The number of letters needed for a compact letter display using Tukey's HSD at $\alpha=0.05$ was used as
a proxy for the number of groups that could be distinguished for each simulated dataset. Both the average number of groups distinguished for each simulated dataset and the percent of simulations that distinguish at least 50% of populations (10/20) are reported as estimates of statistical power. All simulations were conducted in R using the mvtnorm package (Genz et al. 2017), and code for performing simulations is posted online (https://github.com/andrew-hipp/oak-morph-2020). All code posted is readily adapted to any simulation study with multivariate traits collected in a similarly structured design (measurements nested within individuals nested within sites).

RESULTS

Morphological measurements-Among the size characters, bladeL, bladeW, BL.PL, petioleW, and Area all showed significant variation in response to latitude (Table 3, Fig. 3). To our surprise, petiole width was the size trait that was the most significant $(\mathrm{P}<.001)$. Petiole length, sinusMinL, sinusNextL, and blade base angle were not significantly different among latitudes (Table 3). On average, leaves were 155.32 mm long, 102.69 mm wide, and had an area of $8629.3 \mathrm{~mm}^{2}$. The ratios that were significantly correlated with latitude were SLA and the ratio of sinus depth to leaf width (sinus.v.width) (Table 3). After running the regressions a second time using bladeL as a covariate, we found that sinusNextL $(\mathrm{P}=0.021)$, petioleW $(\mathrm{P}=0.017)$, bladeL $(\mathrm{P}=0.012)$ and SLA $(\mathrm{P}=0.011)$ were the only traits significantly affected by latitude alone (Table 3). Graphical representation for the six most significant regressions is shown in figure 3.

Analysis of empirical data-The effect of site and tree on bladeL, SLA, PC1, and PC2 was significant based on ANOVA ($\mathrm{P} \ll 0.001$; Table 4). Although site and tree both had significant effects, site contributed more than tree to the total variation in leaf morphology (Fvalues for site range from 30.38-41.76, while F-values for tree range from 5.83-12.4). Mean annual temperature among our sites ranged from $2.1-15.3^{\circ} \mathrm{C}$, and mean annual precipitation from 460-1121 mm. On average, leaf bladeL averaged 34.0 mm shorter and SLA $50.39 \mathrm{~mm}^{2} / \mathrm{g}$ greater for each increase 10 degrees in latitude (northward). When we extracted $\mathrm{PC} 1_{\mathrm{EFA}}$ and $\mathrm{PC} 2_{\mathrm{EFA}}$ from the EFA to perform simple regressions against latitude, both were non-significant $(\mathrm{P}=0.74$ and $\mathrm{P}=0.29)$. After performing a principal component analysis on our dataset, we found that together $\mathrm{PC} 1_{\text {MORPH }}$ and $\mathrm{PC} 2_{\text {MORPH }}$ explained 52.5% of the variance among leaves. As shown in the ordination (Fig. 4), leaves collected from sites at northern latitudes tend to cluster more tightly than leaves collected from southern sites, which tend to be more spread out. The EFA PCA (Supplemental Figure S 1) principal components $\mathrm{PC} 1_{\mathrm{EFA}}$ and $\mathrm{PC} 2_{\mathrm{EFA}}$ explained only 30.5% of the variance in leaf shape and are nonsignificant. They are not discussed further in this paper.

Regressions of leaf morphology on climate closely matched the results of morphology regressions on latitude. The latitudinal gradient in our study correlated tightly with climate: increasing in latitude entails decreases in mean annual precipitation (Bio12; $\mathrm{R} 2=0.6803, \mathrm{p}<$ 0.01) and temperature (Bio1; $r^{2}=0.99, \mathrm{p} \ll 0.01$), and an increase in temperature seasonality (Bio4; R2 $=0.97, \mathrm{p} \ll 0.01$) (Fig. 5). As a consequence, climate is not considered further in this study, but only latitude.

Analysis of simulated data-The mean number of groups distinguished in our
simulations ranged from 5.49 to 10.41 , and the probability of distinguishing $50 \%(10 / 20)$ of the populations ranged from 0.01 to 0.71 (Fig. 6). The sampling strategy we implemented for this study, 3 trees per site, 8 leaves per tree, had a power of only 38%. Increasing power to at least 50% would entail increasing sampling to 11-12 leaves from each of 5 trees, 5 leaves from each of 10-11 trees, or any of a number of scenarios intermediate between these extremes.

DISCUSSION

Our study demonstrates that among-tree and among-site variation contribute significantly to total variation in leaf morphology in bur oaks, and that both within-individual and withinpopulation sampling are important components of a sampling strategy aimed at characterizing among-population variation in oak morphology. Our results give us insight into how variation is distributed across different levels (within trees, among trees within populations, and among populations) and provide insight into how to improve sampling methods in the future. Our analyses demonstrate that among-site variation contributes most strongly to total leaf variation, and we detected significant effects of latitude on both leaf size and specific leaf area, consistent with expectations. Using simulation, we demonstrated that our sampling strategy, which included 8 leaves from different positions on each of 3 trees per site, was not optimal for resolving among-site variation, even if it was sufficient to demonstrate the relationship between morphology and latitudinal gradients. We provide guidance for future sampling as well as a framework and code to conduct power analyses on morphological datasets composed of similarly hierarchical samples, where sites are composed of multiple individuals and individuals are each represented by multiple measurements.

How are leaf traits correlated with latitude and climate?-Leaves that were collected at southern latitudes averaged greater length, width, and area than leaves collected at northern latitudes. Precipitation and temperature in our study increase from north to south. As water availability regulates leaf growth and survival (Quero et al., 2006), and warm temperatures increase transpiration rates (Nicotra et al., 2011) and photosynthetic efficiency (Peppe et al., 2011), the size gradient we observe likely represents a combination of adaptive plasticity and genetic variation, though that inference is beyond the scope of the current study. Our results nonetheless parallel previous work in Quercus ilex (Garcia-Nogales et al., 2016), which exhibited a similar leaf size gradient from north to south in the western Mediterranean basin. Similar to our study, southern regions in the western Mediterranean basin were warmer and had higher amounts of precipitation than northern regions. Our results also demonstrate that leaf size and shape correlate with temperature and moisture at local and global scales (Peppe et al., 2011).

We had predicted that latitudinal differences in water availability would also affect leaf lobing, because lobing influences how efficiently a leaf distributes heat (McDonald et al., 2003). Leaves that are deeply lobed may be better adapted to warmer climates, because deeply lobed and narrow leaves have a thinner leaf boundary layer, facilitating more rapid cooling (Givnish, 1987, McDonald et al. 2003). The ratio of sinus depth to leaf width (sinus.v.width) shows a weak negative correlation with latitude $(b=0.013, \mathrm{P}=0.024)$, but this result is strongly affected by one site, Red Rock Canyon, which had an exceptionally low value. When this outlier is removed, the correlation is no longer significant ($b=0.007, \mathrm{P}=0.054$). Similarly, the results of our EFA were not significant (total variance $=30.5 \% ; \mathrm{P}_{\mathrm{PC} 1}=0.74$ and $\mathrm{P}_{\mathrm{PC} 2}=0.29$), and we believe this is also due to our sample size. In multiple regressions with scaled data and bladeL as
a covariate, thus explicitly holding size fixed, we found that depth of the sinus immediately above the deepest sinus (sinusNextL), was significantly influenced by latitude $(b=0.893, \mathrm{P}=$ $0.021)$, even with the outlier removed $(b=0.926, \mathrm{P}=0.023)$. With leaf length as a covariate, latitude also has a significant effect on specific leaf area (SLA; $b=0.987, \mathrm{P}=0.011$). Leaves that are low in SLA have higher water use efficiency (Mooney and Dunn, 1970), corresponding with our observation that leaves at southern sites, where trees are exposed to warmer temperatures and were likely more water-stressed, had significantly lower SLA than leaves collected at northern sites.

Our results show that among-site variance for all traits investigated $\left(\mathrm{F}_{11,236}=30.38-\right.$ 41.76) contributes more to total variance in leaf morphology than among-tree variance ($\mathrm{F}_{11,236}=$ 5.83-12.42), though both variance components are significant ($\mathrm{P} \ll 0.001$; Table 4). This ability to distinguish among sites is a key step in relating leaf variation to latitude or climatic predictors, and measuring the slope of the relationship resulting from selective pressures along climatic gradients (Wright et al., 2005). The measurements for each of our leaves were well predicted by their latitude of origin: leaves were thicker, larger, and had deeper lobes at southern latitudes, where leaves are exposed to warmer temperatures and higher precipitation, and have longer growing seasons; and leaves were smaller, thinner, and had shallower lobes at northern latitudes, where cold temperatures reduce water stress. Moreover, our results demonstrate that sampling three trees per site, and eight leaves per tree is sufficient to distinguish random variation from responsive variation. However, increasing sampling would increase our power to do this. Overall, these results can be used in future studies to design a sampling method that will allow researchers to detect significant, responsive variation in leaf morphology in bur oak.

How best to sample? -While we were able to detect among-site variation in leaf size and SLA, we had minimal success detecting among-site variation in leaf shape. The simulations we conducted of alternative sampling strategies suggests the strategy we selected of three trees per site and eight leaves per tree has only a 38% probability of distinguishing 50% of 20 populations drawn at random from distributions we observed. It may well be that our difficulty relating shape to morphology is due to a lack of sampling within sites and trees. Based on the variance observed in leaf length alone, achieving a 50% probability of distinguishing 50% of populations would require 11-12 leaves from each of 5 trees per site, 5-6 leaves from each of 11-12 trees per site, or something in between (Fig. 5). While among-site variance is higher than among-tree variance within sites (Table 4 and discussion above), the variance we observe among leaves within a single tree is still quite high. A previous study (Bruschi et al. 2003) found that among-leaf morphological variance on a tree is higher than among-tree variance for most traits investigated, and that this was in accord with findings from earlier work (Baranski, 1975; Blue and Jenson, 1988). However, in Bruschi (2003), leaves were sampled from both inner and outer positions on the branch to maximize variance. In our study, we deliberately minimized this source of variance by sampling leaves at a relatively constant height and all from the outer branch position, and we further selected the endmost leaves from each branch sampled.

Variance among leaves on each tree was nonetheless high in our study. Thus, despite this effort to minimize the within-tree variance component-a practice we recommend-we found that additional sampling of leaves within individuals might have given us greater power to distinguish among populations (Fig. 5) by reducing the overall within-site variance relative to among-site variance. Based on the empirical and simulation work presented here, we make two recommendations to researchers conducting a study of among-site morphological variation in
oaks, forest trees, or in fact any type of plant. First, control within-individual variance by sampling leaves from comparable positions within the trees. The variation in leaf shape and size on a single oak tree can be daunting. While a wide sampling of leaves from each tree is needed to accurately characterize the mean and variance of the leaves, minimize the variance where possible by selecting leaves of a common age / developmental stage, in the same position on the twig, from twigs with comparable positions on the plants.

Second, simulate alternative sampling strategies to maximize your ability to

distinguish among populations. Your time and resources will be limited. Should you expend it gathering more plants per site? More leaves per plant? More sites? Use your preliminary data to simulate alternative sampling strategies and estimate what your power will be to distinguish populations under different scenarios. The tools we developed for this study require only a matrix of traits and assignment of those traits to populations and individuals to perform the simulations we describe above (https://github.com/andrew-hipp/oak-morph-2020). We expect that their use will facilitate planning of sampling designs for similar projects.

ACKNOWLEDGMENTS

This study was funded by The Morton Arboretum Center for Tree Science and USDA Project 8020-21000-070-03S, a non-assistance cooperative agreement between U.S. National Arboretum and The Morton Arboretum. We would like to thank Marlene Hahn for assisting with curation of herbarium and leaf samples, Matthew Kaproth for advice on measurement of SLA, and Ricardo Kriebel for advice on morphometric analysis.

AUTHOR CONTRIBUTIONS

A.L.H., A.T.W. and S.C.D. conceptualized and designed the project. S.C.D., M.G., and S.F. collected specimens and data. S.C.D. conducted data analyses, and wrote the first draft of the manuscript. A.L.H. coded and analyzed simulations and contributed to data analysis. All authors contributed to writing and revisions.

DATA ACCESSIBILITY

Data used to conduct the statistical analysis and additional figures are available in the online Supplement.

LITERATURE CITED

Auguie, B. 2017. gridExtra: Miscellaneous Functions for "Grid" Graphics. R package version 2.3. https://CRAN.R-project.org/package=gridExtra

Baranski, M. J. 1975. An analysis of variation within white oak (Quercus alba L.). Bulletin No. 236, North Carolina Agricultural Experiment Station, Raleigh.

Becker, R. A., A. R. Wilks, R. Brownrigg, T. P. Minka, and A. Deckmyn. 2018. maps: Draw Geographical Maps. R package version 3.3.0. https://CRAN.R-project.org/package=maps Blue, M. P., and R. J. Jensen. 1988. Positional and seasonal variation in oak (Quercus, Fagaceae) leaf morphology. American Journal of Botany 75: 939-947.

Bonhomme, V., S. Picq, C. Gaucherel, and J. Claude. 2014. Momocs: Outline Analysis Using R. Journal of Statistical Software 56: 1-24. URL http://www.jstatsoft.org/v56/i13/.

Bruschi, P., P. Grossoni, and F. Bussotti. 2003. Within- and among-tree variation in leaf morphology of Quercus petraea (Matt.) Liebl. natural populations. Trees 17: 164-172.

Crampton, J. S. 1995. Elliptic Fourier shape analysis of fossil bivalves: some practical considerations. Lethaia 28: 179-186.

Ducrey, M. 1992. Variation in leaf morphology and branching pattern of some tropical rain forest species from Guadeloupe (French West Indies) under semi-controlled light conditions. Annales des Sciences Forestières 49: 553-570.

García-Nogales, A., J. C. Linares, R. G. Laureano, J. I. Seco, and J. Merino. 2016. Range-wide variation in life-history phenotypes: spatiotemporal plasticity across the latitudinal gradient of the evergreen oak Quercus ilex. Journal of Biogeography 43: 2366-2379.

Genz, A., F. Bretz, T. Miwa, X. Mi, F. Leisch, F. Scheipl, and T. Hothorn. 2017. mvtnorm: Multivariate Normal and t Distributions. R package version 1.0-6. URL http://CRAN.Rproject.org/package=mvtnorm

Givnish, T. J. 1987. Comparative studies of leaf form: assessing the relative roles of selective pressures and phylogenetic constraints. New Phytologist 106: 131-160.

Gurevitch, J. 1992. Sources of variation in leaf shape among two populations of Achillea lanulosa. Genetics 130: 385-394.

González-Rodríguez, A., D. M. Arias, S. Valencia-A., and K. Oyama. 2004. Morphological and RAPD analysis of hybridization between Quercus affinis and Q. laurina (Fagaceae), two Mexican red oaks. American Journal of Botany 91: 401-409.

González-Rodríguez, A., and K. Oyama. 2005. Leaf morphometric variation in Quercus affinis and Q. laurina (Fagaceae), two hybridizing Mexican red oaks. Botanical Journal of the Linnean Society 147: 427-435.

Hamerlynck, E. P., and A. K. Knapp. 1994. Leaf-level responses to light and temperature in two co-occurring Quercus (Fagaceae) species: implications for tree distribution patterns. Forest Ecology and Management 68: 149-159.

Hijmans, R.J. 2017. raster: Geographic Data Analysis and Modeling. R package version 2.6-7. https://CRAN.R-project.org/package=raster

Howard, D., R. Preszler, J. Williams, S. Fenchel, and W. Boecklen. 1997. How discrete are oak species? Insights from a hybrid zone between Quercus grisea and Quercus gambelii. Evolution 51: 747-755.

Jensen, R. J., R. Depiero, and B.K. Smith. 1984. Vegetative characters, population variation, and the hybrid origin of Quercus ellipsoidalis. American Midland Naturalist 111: 364-370.

Jensen, R. J.1990. Detecting shape variation in oak leaf morphology: a comparison of rotational-fit methods. American Journal of Botany 77: 1279-1293

Koenig, W. D., J. M. H. Knops, J. L. Dickinson, and B. Zuckerberg. 2009. Latitudinal decrease in acorn size in bur oak (Quercus macrocarpa) is due to environmental constraints, not avian dispersal. Botany 87: 349-356.

Kremer, A., J. Dupouey, J. Deans, J. Cottrell, U. Csaikl, R. Finkeldey, S. Espinel, et al. 2002. Leaf morphological differentiation between Quercus robur and Quercus petraea is stable across western European mixed oak stands. Annals of Forest Science 59: 777-787.

McDonald, P. G., C. R. Fonseca, J. M. C. C. Overton, and M. Westoby. 2003. Leaf-size divergence along rainfall and soil-nutrient gradients: is the method of size reduction common among clades? Functional Ecology 17: 50-57.

Mooney, H. A., and E. L. Dunn. 1970. Convergent evolution of Mediterranean-climate evergreen sclerophyll shrubs. Evolution 24: 292-303.

Nicotra, A. B., A. Leigh, C. K. Boyce, C. S. Jones, K. J. Niklas, D. L. Royer, and H. Tsukaya. 2011. The evolution and functional significance of leaf shape in the angiosperms. Functional Plant Biology 38: 535-552.

Niinemets, Ü. 2015. Is there a species spectrum within the world-wide leaf economics spectrum? Major variations in leaf functional traits in the Mediterranean sclerophyll Quercus ilex. New Phytologist 205: 79-96.

Oksanen, J., F. G. Blanchet, M. Friendly, R. Kindt, P. Legendre, D. McGlinn, P. R. Minchin, et al. 2017. vegan: Community Ecology Package. R package version 2.4-5. https://CRAN.R-project.org/package=vegan

Pebesma, E. J., and R. S. Bivand, 2005. Classes and methods for spatial data in R. R News 5: 9-13. https://cran.r-project.org/doc/Rnews/.

Peppe, D. J., D. L. Royer, B. Cariglino, S. Y. Oliver, S. Newman, E. Leight, G. Enikolopov, et al. 2011. Sensitivity of leaf size and shape to climate: global patterns and paleoclimatic applications. New Phytologist 190: 724-739.

Quero, J. L., R. Villar, T. Marañón, and R. Zamora. 2006. Interactions of drought and shade effects on seedlings of four Quercus species: physiological and structural leaf responses. New Phytologist 170: 819-834.

R Development Core Team. 2017. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/ Schnabel, A., and J. L. Hamrick. 1990. Comparative Analysis of Population Genetic Structure in Quercus macrocarpa and Q. gambelii (Fagaceae). Systematic Botany 15: 240-251.

Schneider, C. A., W. S. Rasband, and K. W. Eliceiri. 2012. NIH Image to ImageJ: 25 years of image analysis. Nature Methods 9: 671-675.

Sokal, R. R., T. J. Crovello, and R. S. Unnasch. 1986. Geographic Variation of Vegetative Characters of Populus deltoides. Systematic Botany 11: 419-432.

Stein, J. D., D. Binion, and R. E. Acciavatti. 2003. Field guide to native oak species of eastern North America. USDA Forest Service, Forest Health Technology Enterprise Team, Publication FHTET-2003-01, Morgantown.

Tracey, S. R., J. M. Lyle, and G. Duhamel. 2006. Application of elliptical Fourier analysis of otolith form as a tool for stock identification. Fisheries Research, 77: 138-147.

Wickham H. 2009. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag, New York.
Wright, I. J., R. P. Reich, J. H. Cornelissen, D. S. Falster, P. K. Groom, K. Hikosaka, W. Lee, et al. 2005. Modulation of leaf economic traits and trait relationships by climate. Global Ecology and Biogeography 14: 411-421.

Xu, F., W. Guo, W. Xu, Y. Wei, and R. Wang. 2009. Leaf morphology correlates with water and light availability: what consequences for simple and compound leaves? Progress in Natural Science 19: 1789-1798.

Table 1. Sampling localities, Bioclim values for each site, number of leaves collected per tree. Only leaves used for statistical analysis are counted. Broken or incomplete leaves were eliminated from statistical analysis. Abbreviations: Bio1 = mean annual temperature (in degrees C); Bio12 = mean annual precipitation (in mm).

Site	Bio1, Bio12	Tree	Latitude	Longitude	$\underline{\text { Lvs }}$
Whiteshell Provincial Park	$\begin{aligned} & 2.07^{\circ} \mathrm{C}, 566 \\ & \mathrm{~mm} \end{aligned}$	MB-SD004	49.4249	-95.1436	8
		MB-SD005	49.71279	-95.2444	8
		MB-MG513	49.71209	-95.24496	8
Spruce Woods Provincial Park	$\begin{aligned} & 2.50^{\circ} \mathrm{C}, 460 \\ & \mathrm{~mm} \end{aligned}$	MB-MG516	49.76104	-99.15971	8
		MB-MG517	49.76095	-99.15983	8
		MB-MG518	49.76061	-99.15928	8
Assiniboine Forest	$\begin{aligned} & 2.10^{\circ} \mathrm{C}, 519 \\ & \mathrm{~mm} \end{aligned}$	MB-MG528	49.85778	-97.24848	8
		MB-MG529	49.85423	-97.2482	8
		MB-MG530	49.85392	-97.24828	8
University of Minnesota	$\begin{aligned} & 7.10^{\circ} \mathrm{C}, 738 \\ & \mathrm{~mm} \end{aligned}$	MN-MG788	44.97882	-93.23768	8
Campus		MN-MG789	44.97739	-93.23761	8
		MN-MG790	44.97771	-93.23801	7
Cherokee Park Trail	$\begin{aligned} & 9.20^{\circ} \mathrm{C}, 879 \\ & \mathrm{~mm} \end{aligned}$	IA-MG243	41.97454	-91.72161	8
		IA-MG244	41.97367	-91.72547	8
		IA-MG245	41.97362	-91.72565	6
Morton Arboretum	$\begin{aligned} & 9.50^{\circ} \mathrm{C}, 932 \\ & \mathrm{~mm} \end{aligned}$	IL-SF001	41.81696	-88.0808	8
		IL-SF002	41.81331	-88.08266	8
		IL-SF003	41.81588	-88.07994	8
Prairie Moon Nursery	$\begin{aligned} & 6.80^{\circ} \mathrm{C}, 837 \\ & \mathrm{~mm} \end{aligned}$	MN-SD001	43.89117	-91.64684	8
		MN-SD002	43.89804	-91.648	8
		MN-SD003	43.89088	-91.64689	2
Burr Oak Woods	$\underset{\substack{9.80^{\circ} \mathrm{C}, 943 \\ \mathrm{~mm}}}{ }$	IN-MG631	41.53273	-87.2948	8
		IN-MG636	41.5345	-87.29279	8
		IN-MG638	41.53253	-87.29661	8
Red Rock Canyon State Park	$\begin{aligned} & 15.3^{\circ} \mathrm{C}, 756 \\ & \mathrm{~mm} \end{aligned}$	OK-MG369	35.43874	-98.35495	8
		OK-MG370	35.43851	-98.35503	8
		OK-MG371	35.43854	-98.35497	8
Mohawk Park	$15.3{ }^{\circ} \mathrm{C}, 987$	OK-MG347	36.21066	-95.89467	8

mm					
Tallgrass Prairie Preserve	$\begin{aligned} & 14.3^{\circ} \mathrm{C}, 939 \\ & \mathrm{~mm} \end{aligned}$	OK-MG349	36.2204	-95.89845	8
		OK-MG350	36.22064	-95.89877	8
		OK-MG282	36.84504	-96.42526	8
		OK-MG283	36.84485	-96.42479	2
Buttin Rock Access	$\begin{aligned} & 13.1^{\circ} \mathrm{C}, 1121 \\ & \mathrm{~mm} \end{aligned}$	OK-MG284	36.84501	-96.42553	3
		MO-MG402	37.15687	-91.36471	8
		MO-MG403	37.15686	-91.36501	8
		MO-MG404	37.15726	-91.36518	8

Table 2. Descriptions of the leaf traits measured

Trait	Leaf measurements	
	Abbreviation	Definition
Blade length (mm)	bladeL	Straight line distance measured from intersection of leaf
		and petiole to tip of the leaf at its point of intersection with the midvein
Blade width (mm)	bladeW	The longest possible perpendicular line drawn from one
		edge of the blade to the other; vein position used to
		identify the leaves opposite one another
Width of blade between deepest pair of sinuses (mm)	sinusMinL	The shortest distance that separates the deepest sinus from
		its corresponding sinus. (The deepest sinus is defined as
		the sinus that has the longest distance from the most
		interior point of the sinus to the line that connects the two
		most exterior points of that sinus)
Width of blade between sinuses just	sinusNextL	The width between the sinuses that are immediately distal
above the deepest pair (mm)		to the deepest sinuses (as defined in sinusMinL)
Petiole length (mm)	petioleL	Measured from the base of the blade as defined by bladeL
		to the base of the petiole, defined as the line of intersection
		between petiole and branch, upper surface of the petiole
Petiole width (mm)	petioleW	Measured at the point of intersection between the blade
		and the petiole, where blade is not visible
Length of lamina from base to widest	bladeLtoWidestPoint	Measured from the base of the blade to the point of
point (mm)		intersection between the midvein and the line used to
		measure leaf blade width
Blade base angle (degrees)	bladeBaseAngle	Measured using the lines that define the widest angle
		between the base and either edge of the leaf
Total length (mm)	BL.PL	Total length is the blade length added to the petiole length
Leaf area (mm^{2})	Area	Calculated in imageJ.

Ratios

\(\left.\begin{array}{lll}Petiole length / Total length \& PL.TL \& The petiole length divided by the total length

Sinus ratio \& SinusRatio \& The width of the blade between the deepest pair of sinuses

divided by the width of the blade between the pair of\end{array}\right\}\)	sinuses just above the deepest pair

Leaf trait	p-value	\boldsymbol{r}^{2}	Blade length	Latitude	\mathbf{R}^{2}
bladeL	0.012	0.486		$-0.697, p=0.012$	0.486
bladeW	0.014	0.469	$0.926, \mathrm{p}<.001$	$-0.039, \mathrm{p}=0.780$	0.911
sinusMinL	0.208	0.153	$-0.069, \mathrm{p}=0.874$	$0.343, \mathrm{p}=0.443$	0.156
sinusNextL	0.492	0.048	$0.966, \mathrm{p}=0.014$	$0.893, \mathrm{p}=0.021$	0.528
petioleL	0.262	0.124	$0.812, \mathrm{p}=0.041$	$0.214, \mathrm{p}=0.546$	0.463
petioleW	$\mathrm{p}<0.001$	0.692	$0.119, \mathrm{p}=0.649$	$-0.749, \mathrm{p}=0.017$	0.699
bladeLtoWidestPoint	0.011	0.494	$0.920, \mathrm{p}<.001$	$-0.062, \mathrm{p}=0.630$	0.929
bladeBaseAngle	0.151	0.195	$-0.363, \mathrm{p}=0.386$	$-0.695, \mathrm{p}=0.116$	0.263
TotalL.PL.BL	0.019	0.438	$1.03, \mathrm{p}<0.001$	$0.052, \mathrm{p}=0.459$	0.979
Area	0.014	0.469	$0.949, \mathrm{p}<0.001$	$-0.024, \mathrm{p}=0.847$	0.933
SLA	0.015	0.466	$0.438, \mathrm{p}=0.188$	$0.987, \mathrm{p}=0.011$	0.564
PL.TL	0.945	$\mathrm{r}^{2}<0.001$	$0.347, \mathrm{p}=0.461$	$0.264, \mathrm{p}=0.572$	0.062
SinusRatio	0.425	0.065	$-0.253, \mathrm{p}=0.580$	$0.078, \mathrm{p}=0.864$	0.098
BL.BW	0.313	0.101	$-0.367, \mathrm{p}=0.408$	$0.062, \mathrm{p}=0.886$	0.171
BL.BLWP	0.834	0.005	$0.183, \mathrm{p}=0.699$	$0.196, \mathrm{p}=0.680$	0.022
sinus.v.width	0.024	0.415	$-0.551, \mathrm{p}=0.103$	$0.259, \mathrm{p}=0.415$	0.571
sinus.v.width (no	0.054	0.352	$-0.296, \mathrm{p}=0.152$	$0.163, \mathrm{p}=0.391$	0.507
spruce woods)					

Table 3. Simple and multiple regressions for all leaf traits. The columns for Blade length and Latitude represent the regression coefficient and p-value for a multiple regression with each leaf trait regressed against Blade length and Latitude. Note that after Bonferroni correction for multiple tests, only the regression of blade length on latitude + petiole width is significant; and for that multiple regression, only the coefficient for latitude is significant

457
Table 4. ANOVA for bladeL, SLA, PC1, PC2

Response		Df	Sum of Squares	Mean	F-value	$\operatorname{Pr}(>$ F)
				Square		
bladeL	site	11	177345	16122.3	38.9996	<2.2e-16
	tree	24	83159	3465.0	8.3817	<2.2e-16
	residuals	236	97562	413.4		
SLA	site	11	1017054857	92459532	30.3766	<2.2e-16
	tree	24	703085034	29295210	9.6246	< $2.2 \mathrm{e}-16$
	residuals	236	718331913	3043779		
PC1	site	11	984.70	89.519	41.7620	$<2.2 \mathrm{e}-16$
	tree	24	300.10	12.504	5.8335	8.101e-14
	residuals	236	505.88	2.144		
PC2	site	11	400.34	36.394	34.042	<2.2e-16
	tree	24	318.70	13.279	12.421	<2.2e-16
	residuals	236	252.30	1.069		

458
459

FIGURE LEGENDS

Figure 1. Locations of sampling sites for this study as well as mean annual temperature across the bur oak range. WorldClim temperature data are scaled to a factor of 10 . Specific information about site, name, location, and number of samples collected can be found in Table 1.

Figure 2. Leaf trait measurements used in this study. All measurements used in this study were linear measurements or ratios of linear measurements, plus one angle. Details and definitions are found in Table 4.

Figure 3. Simple regressions of traits and environment that are significant at the 0.05 level. Pvalues are not corrected for multiple tests; a total of seventeen regressions were performed (Table 3).

Figure 4. Ordination of all individuals. Each color represents a different site: Assiniboine Forest (red), Bur Oak Woods (orange), Buttin Rock Access (yellow), Cherokee Park Trail (green), Mohawk Park (blue), Morton Arboretum (purple), Prairie Moon Nursery (brown), Red Rock Canyon State Park (deep pink), Spruce Woods Provincial Park (olive drab), Tallgrass Prairie Preserve (magenta), University of Minnesota Campus (black), Whiteshell Provincial Park (sky blue). Each symbol represents a different tree within the site, and each point represents a different leaf from the tree. Thus, each symbol / color combination appears in the plot up to four times for the up to four leaves per tree in the study.

Figure 5. Regressions of bioclim variables on latitude. Latitude shows up as the strongest single predictor of leaf morphology in the current study, as it integrates over both day length and several aspects of climate: bio 1 (mean annual temperature), bio 12 (mean annual precipitation), bio 4 (mean temperature seasonality).

Figure 6. Sampling simulations. Simulated sampling strategies accounted for covariance among traits within leaves; among leaves on trees within sites; and among trees within sites. Here, two estimates of power are reported: the number of groups of sites recognized as distinct from each other using Tukey's HSD at $\alpha=0.05$; and the probability of recognizing at least 50% of sites as distinct from each other. colors scale from darker as a higher number of groups are recognized, lighter as fewer are. Simulated numbers of sites distinguished (left panel) and probabilities of distinguishing at least 50% of simulated sites (right panel) are reported in each cell of the simulation.

Supplemental Figure S1. PCA based on eFourier analysis of leaf outlines.

Mean groups recognized out of 20 populations
Probability of recognizing 50 percent of populations

