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ABSTRACT 14 

PREMISE: Oaks are notoriously variable in leaf morphology, but little is known regarding the 15 

partial contributions of climate, population, latitude, and individual tree to total variation in leaf 16 

morphology. This study examines the contributions of within-tree, among-tree, and among-site 17 

variation to the total variation in leaf morphology in bur oak (Quercus macrocarpa), one of 18 

North America’s most geographically widespread oak species.  19 

METHODS: Samples were collected from four sites each at northern, central, and southern 20 

latitudes of the bur oak range. Ten leaf size traits were measured, and variance in these traits and 21 

eight ratios was partitioned into tree, population, and latitude components. We then 22 
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parameterized a series of leaf collections simulations using empirical covariance among leaves 23 

on trees and trees at sites. 24 

KEY RESULTS: Leaf size measurements were highly responsive to latitude. Site contributed 25 

more than tree to total variation in leaf morphology. Simulations suggest that power to detect 26 

among-site variance in leaf morphology increases with either increases in leaves per tree (10-11 27 

leaves from each of 5 trees) or trees per site (5 leaves from each of 10+ trees).  28 

CONCLUSIONS: Our study demonstrates the utility of both simulating sampling and controlling 29 

for variance in sampling for leaf morphology, whether the questions being addressed are 30 

ecological, evolutionary, or taxonomic. Simulation code is provided to help researchers plan 31 

sampling strategies to maximize the ability to detect among-site variance in leaf morphology.  32 

 33 
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INTRODUCTION 40 

   41 

Leaf morphology and anatomy play key roles in plant adaptation to their environment 42 

(Givnish, 1987; Wright et al., 2005; Xu et al., 2009). Leaf size, shape, and anatomy differ greatly 43 

depending on the environment the plant is growing in (Bruschi et al., 2003) and the resources 44 

available in that environment (Niinemets, 2015). Yet the morphology of tree leaves can vary 45 

highly even within forest stands (Givnish, 1987). Factors such as position on the tree (Blue and 46 

Jensen, 1988), light availability (Ducrey, 1992), climate (Peppe et al., 2011), and genetic 47 

differences (Gurevitch, 1992) all contribute to variation in leaf shape and size, making sampling 48 

strategy important for understanding determinants of tree leaf morphology. 49 

Oaks have long been noted for their particularly variable morphology, both among trees 50 

within individuals and among trees within sites. Detailed studies in oaks have utilized either 51 

linear measurements (e.g., Baranski, 1975; Blue and Jensen, 1988; Bruschi et al., 2003) or 52 

landmark approaches (e.g., Jensen 1990). Both approaches have demonstrated that while 53 

variation among positions within a tree in both leaf shape and size may exceed variation among 54 

sites, overall variance is generally greater among sites. These papers have highlighted that 55 

studies investigating among-population divergence patterns must hold sampling season and leaf 56 

position on the tree constant (i.e., high or low on the tree and disposed toward the edges or inside 57 

of the canopy; Sokal et al., 1986; Blue and Jensen, 1988; Bruschi et al., 2003). The advantages of 58 

understanding the sources of variance on leaf morphology are great, as such understanding 59 

enables studies to utilize leaf morphology in investigating introgression, hybridization, and 60 

morphological variation that distinguishes species (Jensen et al., 1984; Howard et al., 1997; 61 

Kremer et al., 2002; González-Rodríguez et al., 2004, González-Rodríguez and Oyama 2005).  62 
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The aim of the current study was to quantify the relative contributions of within-tree, 63 

among-tree, and among-site variation to the total variation in leaf morphology in bur oak. We 64 

also aimed to determine to what extent we can predict variation in leaf morphology based on 65 

latitude, and how much sampling is required to detect among-site differences in leaf 66 

morphology. Bur oak (Quercus macrocarpa L.) serves as an excellent model species for this 67 

study because it has exceptionally high morphological variation (Hamerlynck and Knapp, 1994; 68 

Koenig et al., 2009) and an extensive distribution, ranging from Manitoba to the Gulf of Mexico 69 

(Stein and Binon, 2003). The species also exhibits high within-population molecular genetic 70 

variation (Schnabel and Hamrick, 1990), suggesting that an investigation of the leaf 71 

morphological variation among vs within sites is appropriate as a precursor to future studies of 72 

what environmental factors contribute to morphological variation in bur oak leaves.  73 

  74 

MATERIALS AND METHODS 75 

 76 

Collections and site attributes—During the summer and fall of 2017, samples were 77 

collected from four sites each at northern, central, and southern latitudes of the bur oak range 78 

(Fig. 1). The northern sites sampled were located in Manitoba (Assiniboine Park, Whiteshell 79 

Provincial Park, and Spruce Woods Provincial Park) and Minnesota (The University of 80 

Minnesota – Twin Cities). The central sites sampled were located in Illinois (The Morton 81 

Arboretum), Indiana (Burr Oak Woods), Iowa (Cherokee Park Trail), and Minnesota (Prairie 82 

Moon Nursery). The southern sites sampled were located in Oklahoma (Tallgrass Prairie 83 

Preserve, Mohawk Park, Red Rock Canyon State Park) and Missouri (Buttin Rock Access). For 84 

each site, latitude and longitude were recorded to a precision of 5 decimal places (Table 1). We 85 
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extracted 19 bioclim variables from the WorldClim database (resolution = 1 km2) and linked 86 

them to our dataset in R v. 3.3.2 (R Development Core Team, 2017) using the raster (Hijmans 87 

2017) and sp (Pebesma and Bivand 2005) packages. The map of collection sites was made using 88 

the maps package (Becker et al. 2018).  89 

Three bur oak trees were sampled from each site using a pole pruner at two or four 90 

meters in height, based on tree height. For each sample, a terminal branch was cut down from 91 

each of the cardinal directions (N, S, E, W), determined using a compass. Only outermost 92 

branches were sampled. Two endmost leaves were removed from each branch and immediately 93 

pressed, for a total of 8 leaves per individual, 272 leaves overall. If the endmost leaves were 94 

highly damaged, the next endmost leaves were selected. Leaves that were highly misshapen or 95 

broken were excluded from analyses. Leaves were dried in a standard herbarium drier prior to 96 

measuring, then redried at 49° C for a minimum of 48 hours and weighed on a PB303 Delta 97 

Range scale to obtain dry mass.  98 

 99 

Morphological Measurements—Ten size measurements (mm) were made on each leaf 100 

using ImageJ (Schneider et al. 2012): blade length (bladeL), blade width (bladeW), width of 101 

blade between deepest pair of sinuses (sinusMinW), petiole length (petioleL), petiole width 102 

(petioleW), length of lamina from base to widest point (bladeLtoWidestPoint), width of blade 103 

between pair of sinuses just above the deepest pair (sinusNextW), total length (BL.PL), leaf base 104 

angle (bladeBaseAngle), and leaf area (Area) (Table 2, Fig. 2). Seven ratios were also calculated 105 

from these measurements to distinguish leaf shape from leaf size (González-Rodríguez and 106 

Oyama 2005): petioleL / BL.PL (PL.TL); sinusMinL / sinusNextL (SinusRatio); bladeL / 107 

bladeW (BL.BW); petioleL / petioleW (PL.PW); BL.BW / PL.PW (BL.BW.over.PL.PW); 108 
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bladeL / bladeLtoWidestPoint (BL.BLWP); lobedness, calculated as blade width between the 109 

deepest sinuses divided by total blade width, abbreviated (sinus.v.width); and specific leaf area 110 

(SLA), calculated as leaf blade area / leaf blade mass (Table 2). A panel of significant 111 

regressions was created using the packages grid (R Development Core Team, 2017) and 112 

gridExtra (Auguie, 2017). Leaf shape was further investigated using Fourier analysis (Crampton, 113 

1995), discussed in analysis methods below. 114 

  115 

 Statistical Analysis—Linear Regressions and ANOVA—All statistical analyses were 116 

conducted in R version 3.3.2 (R Development Core Team, 2017). 17 simple regressions were 117 

performed on all leaf traits using the lm function to assess which leaf traits were most responsive 118 

to latitude at the site level, aggregating leaf traits first to tree, then to site. Data were visualized 119 

using ggplot2 (Wickham, 2009). In addition to simple regressions, we corrected for size by 120 

conducting multiple regressions for all of our leaf traits using the lm function and including 121 

blade length (bladeL) as a covariate. We used data scaled to a mean of zero and unit variance.   122 

We performed a principal component analysis (PCAMORPH) on all scalar measurements 123 

and ratios using the prcomp function. The point MN-MG788 was removed prior to analysis 124 

because it significantly skewed the ordination graph. Two-dimensional nonmetric 125 

multidimensional scaling on a Euclidean distance matrix based on principal component axes was 126 

used to visualize the data. The scaling type was ‘centering’ with PC rotation. We used the 127 

ordiellipse function in the package vegan (Oksanen et al., 2017) to plot bounding ellipses on our 128 

ordination. 129 

 Two-way ANOVA was used to assess the relative contributions of site and tree to the 130 

total variation in bladeL, SLA, PC1MORPH and PC2MORPH. Principal components one and two 131 
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were extracted from the principal component analysis mentioned above and attached to our 132 

original dataset. ANOVA was conducted on the linear model of bladeL, SLA, PC1MORPH, and 133 

PC2MORPH regressed against site and tree. We chose PC1MORPH and PC2MORPH for this analysis 134 

because together they accounted for 52.5% of the variance.  135 

 We complemented analyses based on linear measurements with Fourier analysis, which 136 

generates shape-representative variables that are independent of size (Crampton, 1995), using the 137 

elliptical Fourier analysis (EFA) method in the R package Momocs (Bonhomme et al., 2014). 138 

We chose EFA because elliptical Fourier functions precisely and efficiently capture outline 139 

measurements and can be applied to more complex shapes than polar Fourier functions (Tracey 140 

et al., 2006). First, black and white silhouettes of each leaf image were created using ImageJ and 141 

converted into jpeg files. Petioles were manually removed from all leaf images because ImageJ 142 

did not remove them at a consistent location (some were broken in the middle, for example). The 143 

jpeg files were then imported into R and converted into an Out object. We initially found that 144 

EFA sometimes connected leaf outlines incorrectly, especially through the creation of "figure 8" 145 

outlines, when points on one edge of the leaf incorrectly linked to points on the opposite edge. 146 

To correct this, we normalized the outlines using four landmarks placed on the top, bottom, left, 147 

and right of each outline. EFA was then performed again on the outlines using 17 harmonics (the 148 

default setting), which yielded outlines that more closely resembled the actual leaves. PCA was 149 

then performed on the EFA. A first analysis was completed including all leaf images; then a 150 

second analysis was completed after eliminating the leaf silhouettes that were highly misshapen. 151 

Principal component axes were extracted and simple regressions were performed to examine the 152 

response of PC1EFA and PC2EFA to latitude. 153 

 154 
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  Simulations of sampling strategies—We assessed the effectiveness of alternative 155 

sampling scenarios to distinguish differences among populations by using our estimates of 156 

variation to generate simulated morphological datasets for 20 populations that ranged from three 157 

to 12 trees per site and three to 12 leaves per tree, a total of 100 sampling strategies. For each 158 

strategy, we simulated 100 replicate datasets of all ten direct morphological measurements using 159 

a hierarchical simulation strategy, using the data we collected to parameterize the simulation. For 160 

each replicate, site-level means for all 10 traits were drawn from the multivariate normal 161 

distribution with trait means and covariance Csite estimated from observed site means for all 162 

traits; Csite is thus based on variance within and covariance among traits that we observed, 163 

averaged for each site. Tree-level means were then drawn from the multivariate normal 164 

distribution with the simulated site-level means and the covariance matrix Ctree estimated from 165 

tree means at each site and averaged across sites: tree-level means were thus assumed to have a 166 

constant variance and covariance among sites. Finally, individual leaf measurements for each 167 

tree were drawn from the multivariate normal distribution with means from the second 168 

simulation stage and covariance matrix Cleaf estimated from the leaf measurements for each tree 169 

separately, then averaged across trees. 170 

 The resulting 100,000 data matrices ranged from 180 to 2,880 simulated leaves, with trait 171 

covariance and variance among leaves within trees, among trees within populations, and among 172 

populations modeled according the measurements we made for this project. Because leaf size 173 

showed particularly strong variation among populations, we utilized ANOVA of bladeL on site + 174 

tree, combined with Tukey’s Honest Significant Different (HSD) method to assess the number of 175 

populations that could be differentiated from one another in each simulated data matrix. The 176 

number of letters needed for a compact letter display using Tukey’s HSD at α = 0.05 was used as 177 
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a proxy for the number of groups that could be distinguished for each simulated dataset. Both the 178 

average number of groups distinguished for each simulated dataset and the percent of 179 

simulations that distinguish at least 50% of populations (10 / 20) are reported as estimates of 180 

statistical power. All simulations were conducted in R using the mvtnorm package (Genz et al. 181 

2017), and code for performing simulations is posted online (https://github.com/andrew-182 

hipp/oak-morph-2020). All code posted is readily adapted to any simulation study with 183 

multivariate traits collected in a similarly structured design (measurements nested within 184 

individuals nested within sites). 185 

 186 

RESULTS 187 

Morphological measurements—Among the size characters, bladeL, bladeW, BL.PL, 188 

petioleW, and Area all showed significant variation in response to latitude (Table 3, Fig. 3). To 189 

our surprise, petiole width was the size trait that was the most significant (P < .001). Petiole 190 

length, sinusMinL, sinusNextL, and blade base angle were not significantly different among 191 

latitudes (Table 3). On average, leaves were 155.32 mm long, 102.69 mm wide, and had an area 192 

of 8629.3 mm2. The ratios that were significantly correlated with latitude were SLA and the ratio 193 

of sinus depth to leaf width (sinus.v.width) (Table 3). After running the regressions a second 194 

time using bladeL as a covariate, we found that sinusNextL (P = 0.021), petioleW (P = 0.017), 195 

bladeL (P = 0.012) and SLA (P = 0.011) were the only traits significantly affected by latitude 196 

alone (Table 3). Graphical representation for the six most significant regressions is shown in 197 

figure 3.  198 

 199 
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Analysis of empirical data—The effect of site and tree on bladeL, SLA, PC1, and PC2 200 

was significant based on ANOVA (P << 0.001; Table 4). Although site and tree both had 201 

significant effects, site contributed more than tree to the total variation in leaf morphology (F-202 

values for site range from 30.38−41.76, while F-values for tree range from 5.83−12.4). Mean 203 

annual temperature among our sites ranged from 2.1–15.3°C, and mean annual precipitation 204 

from 460 – 1121 mm. On average, leaf bladeL averaged 34.0 mm shorter and SLA 50.39 mm2/g 205 

greater for each increase 10 degrees in latitude (northward). When we extracted PC1EFA and 206 

PC2EFA from the EFA to perform simple regressions against latitude, both were non-significant 207 

(P = 0.74 and P = 0.29). After performing a principal component analysis on our dataset, we 208 

found that together PC1MORPH and PC2MORPH explained 52.5% of the variance among leaves. As 209 

shown in the ordination (Fig. 4), leaves collected from sites at northern latitudes tend to cluster 210 

more tightly than leaves collected from southern sites, which tend to be more spread out.  The 211 

EFA PCA (Supplemental Figure S1) principal components PC1EFA and PC2EFA explained only 212 

30.5% of the variance in leaf shape and are nonsignificant. They are not discussed further in this 213 

paper. 214 

Regressions of leaf morphology on climate closely matched the results of morphology 215 

regressions on latitude. The latitudinal gradient in our study correlated tightly with climate: 216 

increasing in latitude entails decreases in mean annual precipitation (Bio12; R2 = 0.6803, p < 217 

0.01) and temperature (Bio1; r2= 0.99, p << 0.01), and an increase in temperature seasonality 218 

(Bio4; R2 = 0.97, p << 0.01) (Fig. 5). As a consequence, climate is not considered further in this 219 

study, but only latitude.   220 

 221 
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Analysis of simulated data—The mean number of groups distinguished in our 222 

simulations ranged from 5.49 to 10.41, and the probability of distinguishing 50% (10 / 20) of the 223 

populations ranged from 0.01 to 0.71 (Fig. 6). The sampling strategy we implemented for this 224 

study, 3 trees per site, 8 leaves per tree, had a power of only 38%. Increasing power to at least 225 

50% would entail increasing sampling to 11–12 leaves from each of 5 trees, 5 leaves from each 226 

of 10–11 trees, or any of a number of scenarios intermediate between these extremes. 227 

 228 

DISCUSSION 229 

Our study demonstrates that among-tree and among-site variation contribute significantly 230 

to total variation in leaf morphology in bur oaks, and that both within-individual and within-231 

population sampling are important components of a sampling strategy aimed at characterizing 232 

among-population variation in oak morphology. Our results give us insight into how variation is 233 

distributed across different levels (within trees, among trees within populations, and among 234 

populations) and provide insight into how to improve sampling methods in the future. Our 235 

analyses demonstrate that among-site variation contributes most strongly to total leaf variation, 236 

and we detected significant effects of latitude on both leaf size and specific leaf area, consistent 237 

with expectations. Using simulation, we demonstrated that our sampling strategy, which included 238 

8 leaves from different positions on each of 3 trees per site, was not optimal for resolving 239 

among-site variation, even if it was sufficient to demonstrate the relationship between 240 

morphology and latitudinal gradients. We provide guidance for future sampling as well as a 241 

framework and code to conduct power analyses on morphological datasets composed of similarly 242 

hierarchical samples, where sites are composed of multiple individuals and individuals are each 243 

represented by multiple measurements.  244 
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 245 

 How are leaf traits correlated with latitude and climate?—Leaves that were collected at 246 

southern latitudes averaged greater length, width, and area than leaves collected at northern 247 

latitudes. Precipitation and temperature in our study increase from north to south. As water 248 

availability regulates leaf growth and survival (Quero et al., 2006), and warm temperatures 249 

increase transpiration rates (Nicotra et al., 2011) and photosynthetic efficiency (Peppe et al., 250 

2011), the size gradient we observe likely represents a combination of adaptive plasticity and 251 

genetic variation, though that inference is beyond the scope of the current study. Our results 252 

nonetheless parallel previous work in Quercus ilex (Garcia-Nogales et al., 2016), which 253 

exhibited a similar leaf size gradient from north to south in the western Mediterranean basin. 254 

Similar to our study, southern regions in the western Mediterranean basin were warmer and had 255 

higher amounts of precipitation than northern regions. Our results also demonstrate that leaf size 256 

and shape correlate with temperature and moisture at local and global scales (Peppe et al., 2011). 257 

We had predicted that latitudinal differences in water availability would also affect leaf 258 

lobing, because lobing influences how efficiently a leaf distributes heat (McDonald et al., 2003). 259 

Leaves that are deeply lobed may be better adapted to warmer climates, because deeply lobed 260 

and narrow leaves have a thinner leaf boundary layer, facilitating more rapid cooling (Givnish, 261 

1987, McDonald et al. 2003). The ratio of sinus depth to leaf width (sinus.v.width) shows a weak 262 

negative correlation with latitude (b = 0.013, P = 0.024), but this result is strongly affected by 263 

one site, Red Rock Canyon, which had an exceptionally low value.  When this outlier is 264 

removed, the correlation is no longer significant (b = 0.007, P = 0.054). Similarly, the results of 265 

our EFA were not significant (total variance = 30.5%; PPC1 = 0.74 and PPC2 = 0.29), and we 266 

believe this is also due to our sample size. In multiple regressions with scaled data and bladeL as 267 
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a covariate, thus explicitly holding size fixed, we found that depth of the sinus immediately 268 

above the deepest sinus (sinusNextL), was significantly influenced by latitude (b = 0.893, P = 269 

0.021), even with the outlier removed (b = 0.926, P = 0.023). With leaf length as a covariate, 270 

latitude also has a significant effect on specific leaf area (SLA; b = 0.987, P = 0.011). Leaves 271 

that are low in SLA have higher water use efficiency (Mooney and Dunn, 1970), corresponding 272 

with our observation that leaves at southern sites, where trees are exposed to warmer 273 

temperatures and were likely more water-stressed, had significantly lower SLA than leaves 274 

collected at northern sites. 275 

Our results show that among-site variance for all traits investigated (F11,236 = 30.38–276 

41.76) contributes more to total variance in leaf morphology than among-tree variance (F11,236 = 277 

5.83–12.42), though both variance components are significant (P << 0.001; Table 4). This ability 278 

to distinguish among sites is a key step in relating leaf variation to latitude or climatic predictors, 279 

and measuring the slope of the relationship resulting from selective pressures along climatic 280 

gradients (Wright et al., 2005). The measurements for each of our leaves were well predicted by 281 

their latitude of origin: leaves were thicker, larger, and had deeper lobes at southern latitudes, 282 

where leaves are exposed to warmer temperatures and higher precipitation, and have longer 283 

growing seasons; and leaves were smaller, thinner, and had shallower lobes at northern latitudes, 284 

where cold temperatures reduce water stress. Moreover, our results demonstrate that sampling 285 

three trees per site, and eight leaves per tree is sufficient to distinguish random variation from 286 

responsive variation. However, increasing sampling would increase our power to do this. 287 

Overall, these results can be used in future studies to design a sampling method that will allow 288 

researchers to detect significant, responsive variation in leaf morphology in bur oak.  289 

 290 
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How best to sample?—While we were able to detect among-site variation in leaf size and 291 

SLA, we had minimal success detecting among-site variation in leaf shape. The simulations we 292 

conducted of alternative sampling strategies suggests the strategy we selected of three trees per 293 

site and eight leaves per tree has only a 38% probability of distinguishing 50% of 20 populations 294 

drawn at random from distributions we observed. It may well be that our difficulty relating shape 295 

to morphology is due to a lack of sampling within sites and trees. Based on the variance observed 296 

in leaf length alone, achieving a 50% probability of distinguishing 50% of populations would 297 

require 11–12 leaves from each of 5 trees per site, 5–6 leaves from each of 11–12 trees per site, 298 

or something in between (Fig. 5). While among-site variance is higher than among-tree variance 299 

within sites (Table 4 and discussion above), the variance we observe among leaves within a 300 

single tree is still quite high. A previous study (Bruschi et al. 2003) found that among-leaf 301 

morphological variance on a tree is higher than among-tree variance for most traits investigated, 302 

and that this was in accord with findings from earlier work (Baranski, 1975; Blue and Jenson, 303 

1988). However, in Bruschi (2003), leaves were sampled from both inner and outer positions on 304 

the branch to maximize variance. In our study, we deliberately minimized this source of variance 305 

by sampling leaves at a relatively constant height and all from the outer branch position, and we 306 

further selected the endmost leaves from each branch sampled.  307 

Variance among leaves on each tree was nonetheless high in our study. Thus, despite this 308 

effort to minimize the within-tree variance component—a practice we recommend—we found 309 

that additional sampling of leaves within individuals might have given us greater power to 310 

distinguish among populations (Fig. 5) by reducing the overall within-site variance relative to 311 

among-site variance. Based on the empirical and simulation work presented here, we make two 312 

recommendations to researchers conducting a study of among-site morphological variation in 313 
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oaks, forest trees, or in fact any type of plant. First, control within-individual variance by 314 

sampling leaves from comparable positions within the trees. The variation in leaf shape and size 315 

on a single oak tree can be daunting. While a wide sampling of leaves from each tree is needed to 316 

accurately characterize the mean and variance of the leaves, minimize the variance where 317 

possible by selecting leaves of a common age / developmental stage, in the same position on the 318 

twig, from twigs with comparable positions on the plants.  319 

Second, simulate alternative sampling strategies to maximize your ability to 320 

distinguish among populations. Your time and resources will be limited. Should you expend it 321 

gathering more plants per site? More leaves per plant? More sites? Use your preliminary data to 322 

simulate alternative sampling strategies and estimate what your power will be to distinguish 323 

populations under different scenarios. The tools we developed for this study require only a 324 

matrix of traits and assignment of those traits to populations and individuals to perform the 325 

simulations we describe above (https://github.com/andrew-hipp/oak-morph-2020). We expect 326 

that their use will facilitate planning of sampling designs for similar projects. 327 
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Table 1. Sampling localities, Bioclim values for each site, number of leaves collected per 441 

tree. Only leaves used for statistical analysis are counted. Broken or incomplete leaves were 442 

eliminated from statistical analysis. Abbreviations: Bio1 = mean annual temperature (in degrees 443 

C); Bio12 = mean annual precipitation (in mm). 444 

Site Bio1, Bio12 Tree Latitude Longitude Lvs 

Whiteshell Provincial Park 2.07�, 566 
mm 

MB-SD004 49.4249 -95.1436 8 

  
MB-SD005 49.71279 -95.2444 8 

  MB-MG513 49.71209 -95.24496 8 

Spruce Woods Provincial 
Park 

2.50�, 460 
mm 

MB-MG516 49.76104 -99.15971 8 

  
MB-MG517 49.76095 -99.15983 8 

  
MB-MG518 49.76061 -99.15928 8 

Assiniboine Forest 2.10�, 519 
mm 

MB-MG528 49.85778 -97.24848 8 

  MB-MG529 49.85423 -97.2482 8 

  
MB-MG530 49.85392 -97.24828 8 

University of Minnesota  7.10�, 738 
mm 

MN-MG788 44.97882 -93.23768 8 

Campus 
 

MN-MG789 44.97739 -93.23761 8 
 

 
MN-MG790 44.97771 -93.23801 7 

Cherokee Park Trail 9.20�, 879 
mm 

IA-MG243 41.97454 -91.72161 8 

  
IA-MG244 41.97367 -91.72547 8 

  
IA-MG245 41.97362 -91.72565 6 

Morton Arboretum 9.50�, 932 
mm 

IL-SF001 41.81696 -88.0808 8 

  
IL-SF002 41.81331 -88.08266 8 

  
IL-SF003 41.81588 -88.07994 8 

Prairie Moon Nursery 6.80�, 837 
mm 

MN-SD001 43.89117 -91.64684 8 

  
MN-SD002 43.89804 -91.648 8 

  
MN-SD003 43.89088 -91.64689 2 

Burr Oak Woods 9.80�, 943 
mm 

IN-MG631 41.53273 -87.2948 8 

  
IN-MG636 41.5345 -87.29279 8 

  
IN-MG638 41.53253 -87.29661 8 

Red Rock Canyon State 
Park  

15.3�, 756 
mm 

OK-MG369 35.43874 -98.35495 8 

  
OK-MG370 35.43851 -98.35503 8 

  
OK-MG371 35.43854 -98.35497 8 

Mohawk Park 15.3�, 987 OK-MG347 36.21066 -95.89467 8 
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mm 

  
OK-MG349 36.2204 -95.89845 8 

  
OK-MG350 36.22064 -95.89877 8 

Tallgrass Prairie Preserve 14.3�, 939 
mm 

OK-MG282 36.84504 -96.42526 8 

  
OK-MG283 36.84485 -96.42479 2 

  
OK-MG284 36.84501 -96.42553 3 

Buttin Rock Access 13.1�, 1121 
mm 

MO-MG402 37.15687 -91.36471 8 

  
MO-MG403 37.15686 -91.36501 8 

  
MO-MG404 37.15726 -91.36518 8 

  445 
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Table 2. Descriptions of the leaf traits measured 446 

 

Leaf measurements 

Trait Abbreviation Definition 

Blade length (mm) bladeL Straight line distance measured from intersection of leaf 

and petiole to tip of the leaf at its point of intersection with 

the midvein 

Blade width (mm) bladeW The longest possible perpendicular line drawn from one 

edge of the blade to the other; vein position used to 

identify the leaves opposite one another 

Width of blade between deepest pair of 

sinuses (mm) 

sinusMinL The shortest distance that separates the deepest sinus from 

its corresponding sinus. (The deepest sinus is defined as 

the sinus that has the longest distance from the most 

interior point of the sinus to the line that connects the two 

most exterior points of that sinus) 

Width of blade between sinuses just 

above the deepest pair (mm) 

sinusNextL The width between the sinuses that are immediately distal 

to the deepest sinuses (as defined in sinusMinL) 

Petiole length (mm) petioleL Measured from the base of the blade as defined by bladeL 

to the base of the petiole, defined as the line of intersection 

between petiole and branch, upper surface of the petiole 

Petiole width (mm) petioleW Measured at the point of intersection between the blade 

and the petiole, where blade is not visible 

Length of lamina from base to widest 

point (mm) 

bladeLtoWidestPoint Measured from the base of the blade to the point of 

intersection between the midvein and the line used to 

measure leaf blade width 

Blade base angle (degrees) bladeBaseAngle Measured using the lines that define the widest angle 

between the base and either edge of the leaf 

Total length (mm) BL.PL Total length is the blade length added to the petiole length 

Leaf area (mm2) Area  Calculated in imageJ. 
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Ratios 

Petiole length / Total length PL.TL The petiole length divided by the total length 

Sinus ratio SinusRatio The width of the blade between the deepest pair of sinuses 

divided by the width of the blade between the pair of 

sinuses just above the deepest pair 

Blade length/ Blade width BL.BW The blade length divided by the blade width 

Petiole length / Petiole width PL.PW The petiole length divided by the petiole width 

Blade length / Blade length to widest 

point 

BL.BLWP The blade length divided by the length of the blade from 

the base to the widest point  

Ratio of Leaf size to petiole length 

 

BL.BW.over.PL.PW The blade length divided by the blade width divided by the 

petiole length divided by the petiole width 

Specific leaf area  SLA Leaf area divided by the mass of the leaf  

Lobedness sinus.v.width The width of the blade between the deepest pair of sinuses 

divided by the blade width 

 447 

 448 

  449 
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Table 3. Simple and multiple regressions for all leaf traits. The columns for Blade length and 450 

Latitude represent the regression coefficient and p-value for a multiple regression with each leaf 451 

trait regressed against Blade length and Latitude. Note that after Bonferroni correction for 452 

multiple tests, only the regression of blade length on latitude + petiole width is significant; and 453 

for that multiple regression, only the coefficient for latitude is significant 454 

 455 

 456 

Leaf trait p-value r2 Blade length Latitude R2 

bladeL 0.012 0.486  -0.697, p = 0.012 0.486 

bladeW 0.014 0.469 0.926, p < .001 -0.039, p = 0.780 0.911 

sinusMinL 0.208 0.153 -0.069, p = 0.874 0.343, p =  0.443 0.156 

sinusNextL 0.492 0.048 0.966, p = 0.014 0.893, p = 0.021 0.528 

petioleL 0.262 0.124 0.812, p = 0.041 0.214, p = 0.546 0.463 

petioleW p < 0.001 0.692 0.119, p = 0.649 -0.749, p = 0.017 0.699 

bladeLtoWidestPoint 0.011 0.494 0.920, p < .001 -0.062, p = 0.630 0.929 

bladeBaseAngle 0.151 0.195 -0.363, p = 0.386 -0.695, p = 0.116 0.263 

TotalL.PL.BL 0.019 0.438 1.03, p < 0.001 0.052, p = 0.459 0.979 

Area 0.014 0.469 0.949, p <0 .001 -0.024, p = 0.847 0.933 

SLA 0.015 0.466 0.438, p = 0.188 0.987, p = 0.011 0.564 

PL.TL 0.945 r2 < 0.001 0.347, p = 0.461 0.264, p = 0.572 0.062 

SinusRatio 0.425 0.065 -0.253, p = 0.580 0.078, p = 0.864 0.098 

BL.BW 0.313 0.101 -0.367, p = 0.408 0.062, p = 0.886 0.171 

BL.BLWP 0.834 0.005 0.183, p = 0.699 0.196, p = 0.680 0.022 

sinus.v.width 0.024 0.415 -0.551, p = 0.103 0.259, p = 0.415 0.571 

sinus.v.width (no 

spruce woods) 

0.054 0.352 -0.296, p = 0.152 0.163, p = 0.391 0.507 
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Table 4. ANOVA for bladeL, SLA, PC1, PC2 457 

Response Df Sum of Squares Mean 

Square 

F-value Pr(>F) 

bladeL site  11 177345 16122.3 38.9996 < 2.2e-16 

tree 24 83159 3465.0 8.3817 < 2.2e-16 

residuals 236 97562 413.4   

SLA site  11 1017054857 92459532 30.3766 < 2.2e-16 

tree 24 703085034 29295210 9.6246 < 2.2e-16 

residuals 236 718331913 3043779   

PC1 site  11 984.70 89.519 41.7620 <2.2e-16 

tree 24 300.10 12.504 5.8335 8.101e-14 

residuals 236 505.88 2.144   

PC2 site  11 400.34 36.394 34.042 <2.2e-16 

tree 24 318.70 13.279 12.421 <2.2e-16 

residuals 236 252.30 1.069   

 458 

  459 
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 460 

FIGURE LEGENDS 461 

 462 

Figure 1. Locations of sampling sites for this study as well as mean annual temperature across 463 

the bur oak range. WorldClim temperature data are scaled to a factor of 10. Specific information 464 

about site, name, location, and number of samples collected can be found in Table 1.   465 

 466 

Figure 2. Leaf trait measurements used in this study. All measurements used in this study were 467 

linear measurements or ratios of linear measurements, plus one angle. Details and definitions are 468 

found in Table 4.  469 

 470 

Figure 3. Simple regressions of traits and environment that are significant at the 0.05 level. P-471 

values are not corrected for multiple tests; a total of seventeen regressions were performed 472 

(Table 3). 473 

 474 

 Figure 4. Ordination of all individuals. Each color represents a different site: Assiniboine Forest 475 

(red), Bur Oak Woods (orange), Buttin Rock Access (yellow), Cherokee Park Trail (green), 476 

Mohawk Park (blue), Morton Arboretum (purple), Prairie Moon Nursery (brown), Red Rock 477 

Canyon State Park (deep pink), Spruce Woods Provincial Park (olive drab), Tallgrass Prairie 478 

Preserve (magenta), University of Minnesota Campus (black), Whiteshell Provincial Park (sky 479 

blue). Each symbol represents a different tree within the site, and each point represents a 480 

different leaf from the tree. Thus, each symbol / color combination appears in the plot up to four 481 

times for the up to four leaves per tree in the study. 482 
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 483 

Figure 5. Regressions of bioclim variables on latitude. Latitude shows up as the strongest single 484 

predictor of leaf morphology in the current study, as it integrates over both day length and 485 

several aspects of climate: bio 1 (mean annual temperature), bio 12 (mean annual precipitation), 486 

bio 4 (mean temperature seasonality).  487 

 488 

Figure 6. Sampling simulations. Simulated sampling strategies accounted for covariance among 489 

traits within leaves; among leaves on trees within sites; and among trees within sites. Here, two 490 

estimates of power are reported: the number of groups of sites recognized as distinct from each 491 

other using Tukey’s HSD at α = 0.05; and the probability of recognizing at least 50% of sites as 492 

distinct from each other. colors scale from darker as a higher number of groups are recognized, 493 

lighter as fewer are. Simulated numbers of sites distinguished (left panel) and probabilities of 494 

distinguishing at least 50% of simulated sites (right panel) are reported in each cell of the 495 

simulation. 496 

 497 

Supplemental Figure S1. PCA based on eFourier analysis of leaf outlines.  498 

 499 
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