Leaf shape and size variation in bur oaks: An empirical study and simulation of sampling strategies

Sara C. Desmond ${ }^{1, *}$, Mira Garner ${ }^{1,2}$, Seamus Flannery ${ }^{1,3,4}$, Alan T. Whittemore ${ }^{5}$ and Andrew L. Hipp ${ }^{1,5,6, *}$

${ }^{1}$ The Morton Arboretum, Center for Tree Science, 4100 Illinois Route 53, Lisle, IL 60532, USA
${ }^{2}$ Current address: The University of British Columbia, UBC Faculty of Forestry, Vancouver, BC Canada V6T 1Z4
${ }^{3}$ The University of Chicago Laboratory Schools, 1362 East $59^{\text {th }}$ St., Chicago, IL 60637, USA
${ }^{4}$ Current address: Haverford College, 370 Lancaster Avenue, Haverford, PA 19041, USA
${ }^{5}$ U.S. National Arboretum, 3501 New York Ave NE, Washington, DC 20002, USA
${ }^{6}$ The Field Museum, 1400 S Lake Shore Drive, Chicago, IL 60605, USA
${ }^{7}$ Author for correspondence (email: ahipp@mortonarb.org)

* These authors contributed equally to writing and data analysis for this paper.

Abstract

PREMISE: Oaks are notoriously variable in leaf morphology, but little is known regarding the partial contributions of climate, population, latitude, and individual tree to total variation in leaf morphology. This study examines the contributions of within-tree, among-tree, and among-site variation to the total variation in leaf morphology in bur oak (Quercus macrocarpa), one of North America's most geographically widespread oak species.

METHODS: Samples were collected from four sites each at northern, central, and southern latitudes of the bur oak range. Ten leaf size traits were measured, and variance in these traits and eight ratios was partitioned into tree, population, and latitude components. We then parameterized a series of leaf collections simulations using empirical covariance among leaves on trees and trees at sites.

KEY RESULTS: Leaf size measurements were highly responsive to latitude. Site contributed more than tree to total variation in leaf morphology. Simulations suggest that power to detect among-site variance in leaf morphology can be estimated most efficiently with increases in either leaves per tree (10-11 leaves from each of 5 trees) or trees per site (5 leaves from each of $10+$ trees).

CONCLUSIONS: Our study demonstrates the utility of both simulating sampling and controlling for variance in sampling for leaf morphology, whether the questions being addressed are ecological, evolutionary, or taxonomic. Simulation code is provided to help researchers plan sampling strategies to maximize the ability to detect among-site variance in leaf morphology.

Keywords: climate; Fagaceae; latitude; leaf morphology; leaf size; Quercus macrocarpa; sampling simulation

Running head: Leaf morphological variation in bur oak
Manuscript received \qquad ; revision accepted \qquad .

INTRODUCTION

Leaf morphology variation strongly influences species' ability to compete and survive in different environments (Givnish, 1987). It has long been recognized that there is a correlation between temperature and the proportion of species exhibiting leaf dissection and toothing, and for more than a century this correlation has been used to model temperature changes in paleobotanical studies (Bailey and Sinnott, 1915, 1916; Greenwood et al., 2004; Royer and Wilf, 2006). Leaf size similarly has a well demonstrated correlation with temperature and resource availability (Bragg and Westoby, 2002; Peppe et al., 2011; McKee and Royer, 2017; Wright et al., 2017; Li et al., 2020), and traits such as compounding and phyllotaxy, base and apex morphology, leaf shape, and epidermal pigmentation vary along gradients of light availability, nutrient availability, soil moisture, temperature, or combinations of these (Givnish, 1987; Schmerler et al., 2012). In a global field study from 92 sites (Peppe et al., 2011), multiple regressions of climate (both precipitation and temperature) on leaf area, tooth number, and percent of species at the site with toothing showed relatively high predictive ability, inferred from the low standard error of the models $\left(\pm 4^{\circ} \mathrm{C}\right)$. However, while the sign of this correlation-more toothing and lobing in cooler areasis convergent across clades and geographic regions, the slope of the relationship between climate and leaf morphology varies among species (McKee et al., 2019), geographic regions (Greenwood et al., 2004; Aizen and Ezcurra, 2008), and phylogenetic lineages (Little et al., 2010; Burnham and Tonkovich, 2011; Walls, 2011).

Many of these traits vary both among and within species, and correlations between community-weighted mean trait values at the site level are mirrored within species on short time scales, with toothing and leaf lobing correlated with cooler temperatures in most species studied as well as across communities (McKee and Royer, 2017; McKee et al., 2019). Moreover, the morphology of leaves can vary highly within communities (Givnish, 1987). Within forest trees in
particular, variation due to position on the tree (Blue and Jensen, 1988; McCarthy and MasonGamer, 2019), light availability (Abrams and Kubiske, 1990; Ducrey, 1992), drought (Abrams, 1994; Abrams et al., 1994) as well as genetic differences among trees within species (Abrams, 1994; Ramírez-Valiente et al., 2017) all contribute to variation in leaf shape and size. Moreover, while sampling of a small number of leaves per population has been argued to be sufficient for detecting site level patterns in climate based in paleobotanical studies (Royer et al., 2005; Peppe et al., 2011), the relative contribution of within-tree, among-tree within-population, and amongpopulation variation to total morphological variation is not clear in many tree species, leading to observations for example that variation among leaves on a single tree is sometimes as great as the variation observed among named species (e.g., McCarthy and Mason-Gamer, 2019).

Oaks have long been noted for their particularly variable morphology at all levels (among leaves on a single tree, among trees of a single population, and among populations of a single species). Detailed studies in oaks have utilized either linear measurements (Baranski, 1975; Blue and Jensen, 1988; Bruschi et al., 2003) or landmark approaches (Jensen, 1990). Both approaches have demonstrated that while variation among positions within a tree in both leaf shape and size may exceed variation among sites, overall variance is generally greater among sites. These papers have highlighted that studies investigating among-population divergence patterns can minimize within-individual morphological variance by holding sampling season and leaf position on the tree constant (i.e., high or low on the tree and disposed toward the edges or inside of the canopy) (Sokal et al., 1986; Blue and Jensen, 1988; Bruschi et al., 2003). Understanding these sources of variance in leaf shape and size is foundational to understanding how introgression, adaptation, and neutral variation influence leaf morphology both among and within species (Jensen et al., 1984; Howard et al., 1997; Kremer et al., 2002; González-Rodríguez et al., 2004;

González-Rodríguez and Oyama, 2005) and the balancing act that trees face in maximizing photosynthetic efficiency while minimizing the risks of drought, freezing, herbivory and other stresses (Wright et al., 2004). However, it is not clear what sampling strategy (leaves per individual, individuals per population) is most efficient for estimating among-population differences in leaf size and shape. Whereas simple simulation tools exist for planning sampling strategies for population genetics (Hoban et al., 2013; Hoban, 2014) and conservation of genetic diversity (Hoban, 2019; Hoban et al., 2020), morphological sampling strategies that take into account covariance among leaves on a tree, among trees in a population, and among traits measured are lacking. Given that resources for sampling are limited, tools to help plan sampling strategies would make it possible to answer questions more definitively with the same amount of field work.

We sampled leaves across a broad geographic range of bur oak (Quercus macrocarpa L.), one of North America's most geographically widespread oak species, which ranges from Manitoba to the Gulf of Mexico (Fig. 1) to (1) quantify the relative contributions of within-tree, among-tree, and among-site variation to the total variation in leaf morphology in bur oak; (2) use this information to simulate how much sampling is required to detect among-site differences in leaf morphology; and (3) test the support for our observations in field and herbarium that leaf size and leaf-lobing increase from north to south in bur oak. Bur oak serves as an excellent model species for this study because it has exceptionally high morphological variation (Hamerlynck and Knapp, 1994; Koenig et al., 2009) and an extensive distribution, ranging from Manitoba to the Gulf of Mexico (Little, 1971; Stein et al., 2003). The species also exhibits high within-population molecular genetic variation (Schnabel and Hamrick, 1990; Garner et al., 2019; Hipp et al., 2019), suggesting that an investigation of the leaf morphological variation among vs
within sites is appropriate as a precursor to future studies of what environmental factors contribute to morphological variation in bur oak leaves.

MATERIALS AND METHODS

Collections and site attributes-During the summer and fall of 2017, samples were collected from four sites each at northern, central, and southern latitudes of the bur oak range (Fig. 1). Sites were selected in conjunction with sampling for ongoing population genetic studies of Quercus macrocarpa (Garner et al., 2019; Hipp et al., 2019) with the criteria that (1) preliminary collections suggested they would have numerous bur oaks, and (2) additional white oaks were present at the site or nearby. Most were forested, but some (e.g. The Morton Arboretum, Prairie Moon Nursery) were savannas. The northern sites sampled were located in Manitoba (Assiniboine Park, Whiteshell Provincial Park, and Spruce Woods Provincial Park) and Minnesota (The University of Minnesota - Twin Cities). The central sites sampled were located in Illinois (The Morton Arboretum), Indiana (Burr Oak Woods), Iowa (Cherokee Park Trail), and Minnesota (Prairie Moon Nursery). The southern sites sampled were located in Oklahoma (Tallgrass Prairie Preserve, Mohawk Park, Red Rock Canyon State Park) and Missouri (Buttin Rock Access). Trees selected at each site were mature, full-size trees; where possible, trees at a given site were located a minimum of 100 feet from each other. For each site, latitude and longitude were recorded to a precision of 5 decimal places (Table 1). We extracted 19 bioclim variables from the WorldClim database (resolution $=1 \mathrm{~km}^{2}$) and linked them to our dataset in R v. 3.4.4 (R Core Team, 2018) using raster v 2.6-7 (Hijmans, 2017) and sp_1.4-2 (Pebesma and Bivand, 2005; Bivand et al., 2013) packages. The map of collection sites was made using maps 3.3.0 (Becker et al., 2018).

Three bur oak trees were sampled from each site using a pole pruner at two or four meters in height, based on tree height. For each sample, a terminal branch was cut down from each of the cardinal directions (N, S, E, W), determined using a compass. Only outermost branches were sampled. Two endmost leaves were removed from each branch and immediately pressed, for a total of 8 leaves per individual, 272 leaves overall. If the endmost leaves were highly damaged, the next leaves in from the end were selected. Leaves that were highly misshapen or broken were excluded from analyses (see 'use' field in dataset archived in GitHub, which indicates which leaves were excluded from analysis). Leaves were dried in a standard herbarium drier prior to measuring, then redried at $49^{\circ} \mathrm{C}$ for a minimum of 48 hours and weighed on a PB303 Delta Range scale to obtain dry mass.

Morphological Measurements-Ten size measurements (mm) were made on each leaf using ImageJ (Schneider et al., 2012): blade length (bladeL), blade width (bladeW), width of blade between deepest pair of sinuses (sinusMinW), petiole length (petioleL), petiole width (petioleW), length of lamina from base to widest point (bladeLtoWidestPoint), width of blade between pair of sinuses just above the deepest pair (sinusNextW), total length (BL.PL), leaf base angle (bladeBaseAngle), and leaf area (Area) (Table 2, Fig. 2). Seven ratios were also calculated from these measurements to distinguish leaf shape from leaf size (González-Rodríguez and Oyama, 2005): petioleL / BL.PL (PL.TL); sinusMinL / sinusNextL (SinusRatio); bladeL / bladeW (BL.BW); petioleL / petioleW (PL.PW); BL.BW / PL.PW (BL.BW.over.PL.PW); bladeL / bladeLtoWidestPoint (BL.BLWP); lobedness, calculated as blade width between the deepest sinuses divided by total blade width, abbreviated (sinus.v.width); and specific leaf area
(SLA), calculated as leaf blade area / leaf blade mass (Table 2). A panel of significant regressions was created using the R core functions and gridExtra 2.3 (Auguie, 2017).

To investigate lobedness using more complex morphometric approaches, black and white silhouettes of each leaf image were created using ImageJ and converted into jpeg files, with petioles whited out manually. The jpeg files were then imported into R and converted into outlines using the R package Momocs v 1.3.2 (Bonhomme et al., 2014). An additional set of 40 leaves that did not import well into Momocs or had leaf outlines that did not impair manual measurements but that were badly non-representative of typical leaf form were deleted at this stage (see scripts 05 a and 05 b in the GitHub repository for enumeration of these). We initially investigated shape variation using elliptical Fourier analysis (EFA), which generates shaperepresentative variables that are independent of size (Crampton, 1995) and is well suited to comparing complex outlines that vary in shape and lobedness (Tracey et al., 2006). For these analyses, we normalized the outlines using four landmarks placed on the top, bottom, left, and right of each outline and analyzed the leaf outlines using 17 harmonics (the default setting).

We also used Momocs to measure circularity (as the square of perimeter over the area) (Rosin, 2005) and Haralick's circularity (as the mean distance from the leaf centroid to the perimeter pixels divided by the standard deviation of those distances) (Haralick, 1974). Haralick's circularity is less sensitive to shape raggedness than the standard measure of circularity and increases with increasing circularity; standard circularity decreases with increasing circularity. We aggregated both circularity measures to individual and then individuals to site to examine site-level effects of latitude on leaf circularity using simple leastsquares regressions.

Statistical Analysis—Linear Regressions and ANOVA—All statistical analyses were conducted in R. Seventeen least squares were performed on all leaf linear measurements using the lm function to assess which leaf traits were most responsive to latitude at the site level, aggregating leaf traits first to tree, then tree mean trait values to site. An additional regression was performed of Haralick circularity on latitude, at the site level. Data were visualized using ggplot2 3.3.2 (Wickham, 2009). In addition to simple regressions, we corrected for size by conducting multiple regressions for all of our leaf traits using the 1 m function and including blade length (bladeL) as a covariate. We used data scaled to a mean of zero and unit variance.

We performed a principal component analysis $\left(\mathrm{PCA}_{\text {MORPH }}\right)$ on all scalar measurements and ratios using the prcomp function. The point MN-MG788 was removed prior to analysis because it significantly skewed the ordination. Two-dimensional nonmetric multidimensional scaling on a Euclidean distance matrix based on principal component axes was used to visualize the data. The scaling type was 'centering' with PC rotation. We used the ordiellipse function in vegan 2.4-5 (Oksanen et al., 2017) to plot bounding ellipses on our ordination.

Two-way ANOVA was used to assess the relative contributions of site and tree to the total variation in bladeL, SLA, $\mathrm{PC} 1_{\text {MORPH }}$ and $\mathrm{PC} 2_{\text {MORPH. }}$. Principal components one and two were extracted from the principal component analysis mentioned above and attached to our original dataset. ANOVA was conducted on the linear model of bladeL, SLA, PC1 ${ }_{\text {MORPH }}$, and $\mathrm{PC} 2_{\text {MORPH }}$ regressed against site and tree. We chose $\mathrm{PC} 1_{\text {MORPH }}$ and $\mathrm{PC} 2_{\text {MORPH }}$ for this analysis because together they accounted for 52.5% of the variance.

Simulations of sampling strategies-We assessed the effectiveness of alternative sampling scenarios to distinguish differences among populations by using our estimates of
variation to generate simulated morphological datasets for 20 populations that ranged from three to 12 trees per site and three to 12 leaves per tree, a total of 100 sampling strategies. For each strategy, we simulated 100 replicate datasets of all ten direct morphological measurements using a hierarchical simulation strategy, using the data we collected to parameterize the simulation. For each replicate, site-level means for all 10 traits were drawn from the multivariate normal distribution with trait means and covariance $\mathbf{C}_{\text {site }}$ estimated from observed site means for all traits; $\mathbf{C}_{\text {site }}$ is thus based on variance within and covariance among traits that we observed, averaged for each site. Tree-level means were then drawn from the multivariate normal distribution with the simulated site-level means and the covariance matrix $\mathbf{C}_{\text {tree }}$ estimated from tree means at each site and averaged across sites: tree-level means were thus assumed to have a constant variance and covariance among sites. Finally, individual leaf measurements for each tree were drawn from the multivariate normal distribution with means from the second simulation stage and covariance matrix $\mathbf{C}_{\text {leaf }}$ estimated from the leaf measurements for each tree separately, then averaged across trees.

The resulting 100,000 data matrices ranged from 180 to 2,880 simulated leaves, with trait covariance and variance among leaves within trees, among trees within populations, and among populations modeled according the measurements we made for this project. Because leaf size showed particularly strong variation among populations, we utilized ANOVA of bladeL on site + tree, combined with Tukey's Honest Significant Different (HSD) method to assess the number of populations that could be differentiated from one another in each simulated data matrix. The number of letters needed for a compact letter display using Tukey's HSD at $\alpha=0.05$ was used as a proxy for the number of groups that could be distinguished for each simulated dataset. Both the average number of groups distinguished for each simulated dataset and the percent of
simulations that distinguish at least 50% of populations (10/20) are reported as estimates of statistical power. All simulations were conducted in R using mvtnorm v 1.0-11 (Genz and Bretz, 2009; Genz et al., 2019) (Genz et al. 2017), and code for performing simulations is archived in GitHub and Zenodo (https://github.com/andrew-hipp/oak-morph-2020;
https://doi.org/10.5281/zenodo.4213821). The simulation code can be installed as package 'traitsPopSim' from GitHub (https://github.com/andrew-hipp/traitsPopSim) and run using multivariate traits collected in a similarly structured design (measurements nested within individuals nested within sites; sample data included in the package are from the current study).

RESULTS

Analysis of empirical data-Among the size characters, bladeL, bladeW, BL.PL, petioleW, and Area all showed significant variation in response to latitude (Table 3, Fig. 3). Petiole width was the size trait that was the most significant ($\mathrm{P}<0.001$). Petiole length, sinusMinL, sinusNextL, and blade base angle were not significantly predicted by latitude (Table 3). Two ratios were significantly correlated with latitude: $\operatorname{SLA}\left(r^{2}=0.466, \mathrm{P}=0.015\right)$ and the ratio of sinus depth to leaf width (sinus.v.width, a proxy for lobedness; $r^{2}=0.415, \mathrm{P}=0.024$) (Table 3). In regressions controlling for size by including bladeL as a covariate, sinusNextL $(\mathrm{P}=0.021)$, petioleW $(\mathrm{P}=$ $0.017)$, bladeL $(\mathrm{P}=0.012)$ and $\operatorname{SLA}(\mathrm{P}=0.011)$ were the only traits significantly affected by latitude alone (Table 3; Fig. 3). Regressions of all traits measured, significant or not, are presented in the supplement (Supplemental Fig. S1). Standard circularity (perimeter squared over area) was strongly affected by latitude $\left(r^{2}=0.506, \mathrm{P}=0.0043\right.$; Fig. 4), Haralick circularity (mean distance from leaf centroid to boundary pixels over the standard deviation of these
distances) was weakly predicted by latitude ($r 2=0.259, \mathrm{P}=0.0631$; Fig. 4). Under both measures, southern leaves exhibited stronger lobing, northern leaves exhibited greater circularity.

PCA on the EFA yielded very high loading on PC1 (58\%), very low on PC2 (8\%), and a strong curvilinear relationship between PC1 and PC2 (Supplemental Fig. S2). This nonindependence between PC1 and PC2 can arise because variation is broad, such that the ends of the PC cloud have little in common, or because the variation is dominated by a single variable (Minchin, 1987). In our study, PC1 was dominated by size (Pearson's product moment $[r]=$ 0.251 for blade width, 0.227 for blade area) and latitude ($r=-0.213$), and PC2 was more strongly associated with shape ($r=0.395$ for the ratio of blade length to blade width, -0.375 for width of the sinus distal to the deepest sinus, 0.348 for the ratio of the width of the blade in the deepest sinus width of the blade in the second-deepest sinus), and to a lesser extent leaf blade width $(r=-0.240)$.

The effects of site and tree on bladeL, SLA, and the first two axes of the morphological (non-EFA) ordination (Supplemental Fig. S3) were significant based on ANOVA ($\mathrm{P} \ll 0.001$; Table 4). Although site and tree both had significant effects, site contributed more than tree to the total variation in leaf morphology (F -values for site range from 30.38-41.76, while F-values for tree range from 5.83-12.4). Mean annual temperature among our sites ranged from 2.1$15.3^{\circ} \mathrm{C}$, and mean annual precipitation from $460-1121 \mathrm{~mm}$. On average, leaf bladeL averaged 34.0 mm shorter and SLA $50.39 \mathrm{~mm}^{2} / \mathrm{g}$ greater for each increase 10 degrees in latitude (northward).

Regressions of individual traits on site-level temperature and moisture conditions inferred from BioClim closely matched regressions of those same traits on latitude. The latitudinal gradient in our study correlated tightly with climate: increases in latitude entail decreases in
mean annual precipitation (Bio12; $R^{2}=0.6803, \mathrm{p}<0.01$) and temperature $\left(\mathrm{Bio1} ; r^{2}=0.99, \mathrm{p} \ll\right.$ 0.01), and an increase in temperature seasonality (Bio4; $R^{2}=0.97, \mathrm{p} \ll 0.01$) (Fig. 5). As a consequence, climate is not considered further in this study, but only latitude.

Analysis of simulated data-The mean number of groups distinguished in our simulations ranged from 5.49 to 10.41 , and the probability of distinguishing $50 \%(10 / 20)$ of the populations based on blade length ranged from 0.01 to 0.71 (Fig. 6). The sampling strategy we implemented for this study, 3 trees per site, 8 leaves per tree, had a power of only 38% to identify a number of groups equal to 50% of the sites sampled. Increasing power to at least 50% would entail increasing sampling to 11-12 leaves from each of 5 trees, 5 leaves from each of 1011 trees, or any of a number of scenarios intermediate between these extremes.

DISCUSSION

Our study has three important findings. First, among-tree and among-site variation contribute significantly to leaf shape and size variation in bur oaks. Consequently, withinindividual and within-population sampling are both important components of a sampling strategy aimed at characterizing among-population variation in oak morphology. This complements observations of high variance in temperate tree leaf morphology (Bruschi et al., 2003; Apostol et al., 2017; McCarthy and Mason-Gamer, 2019), demonstrating that among-site variation contributes most strongly to total leaf variation, but that within-site and within-tree sampling are important to detecting among-site variation in leaf shape and size. Second, we implement a general parametric simulation method and use it to demonstrate that our sampling strategy, which included 8 leaves from different positions on each of 3 trees per site, was not optimal for
resolving among-site variation, even if it was sufficient to demonstrate the relationship between morphology and latitudinal gradients. This simulation approach and the package provided (traitsPopSim) can serve as tools to guide morphological sampling in similar hierarchical studies, where sites are composed of multiple individuals and individuals are each represented by multiple measurements. Finally, our study demonstrates that leaf size and lobing decrease from south to north in bur oak, while specific leaf area increases. In cross-species comparisons, leaf size and SLA generally covary, suggesting that adaptive leaf variation in bur oak may rest in part on a tradeoff between leaf size and lobing. Our study of one of North America's most widespread oak species is thus a jumping-off point for understanding adaptive leaf variation across the oaks of the Americas.

Leaf size and shape variance are influenced by population and individual—Our results show that among-site variance for all traits investigated $\left(\mathrm{F}_{11,236}=30.38-41.76\right)$ contributes more to total variance in leaf morphology than among-tree variance $\left(\mathrm{F}_{11,236}=5.83-12.42\right)$, though both variance components are significant ($\mathrm{P} \ll 0.001$; Table 4). This ability to distinguish among sites is important in relating leaf variation to latitude or climatic predictors and measuring the slope of the relationship resulting from selective pressures along climatic gradients (Wright et al., 2004). Moreover, our results demonstrate that sampling three trees per site, and eight leaves per tree is sufficient to correlate shape and size to latitude and climate. However, while amongsite variance is higher than among-tree variance within sites (Table 4), the variance we observe among leaves within a single tree is still quite high. A previous study (Bruschi et al., 2003) found that among-leaf morphological variance on a tree is higher than among-tree variance for most traits investigated, and that this was in accord with findings from earlier work (Baranski, 1975;

Blue and Jensen, 1988). However, in Bruschi (2003), leaves were sampled from both inner and outer positions on the branch to maximize variance. In our study, we deliberately minimized this source of variance by sampling leaves at a relatively constant height and all from the outer branch position, and we further selected the endmost leaves from each branch sampled.

Simulating sampling strategies-The simulations we conducted of alternative sampling strategies suggests the strategy we selected of three trees per site and eight leaves per tree has only a 38% probability of distinguishing 50% of 20 populations drawn at random from distributions we observed. It may well be that our difficulty relating shape to climate is due to a lack of sampling within sites and trees. Based on the variance observed in leaf length alone, achieving a 50% probability of distinguishing 50% of populations would require 11-12 leaves from each of 5 trees per site, 5-6 leaves from each of 11-12 trees per site, or something in between (Fig. 6).

Our simulations suggest two recommendations for others conducting similar studies.
First, researchers are recommended to minimize the high within-individual variance observed in previous studies (Blue and Jensen, 1988; Bruschi et al., 2003; McCarthy and Mason-Gamer, 2019) by sampling leaves of a common age / developmental stage, in the same position on the twig, and from twigs with comparable positions on the plants. Second, simulating alternative sampling strategies will help maximize the ability to distinguish among populations, given limited time and resources. Researchers can use preliminary data to simulate alternative sampling strategies and estimate their power will be to distinguish populations under different scenarios. The tools we developed for this study require only a matrix of traits and assignment of those traits to populations and individuals to perform the simulations we describe above. We expect that their use will facilitate planning of sampling designs for similar projects.

Leaf size, lobing, and SLA are predicted by latitude- The measurements for each of our leaves were well predicted by their latitude of origin: leaves were thicker, larger, and had deeper lobes at southern latitudes, where leaves are exposed to warmer temperatures and higher precipitation, and have longer growing seasons; and leaves were smaller, thinner, and had shallower lobes at northern latitudes, where cold temperatures reduce water stress. This is in line with previous studies demonstrating that leaf area covaries positively with temperature (Moles et al., 2014; Wright et al., 2017) while SLA covaries negatively (Moles et al., 2014), and that leaf circularity tends to increase in northern or cooler environments (Halloy and Mark, 1996; Schmerler et al., 2012). Our results also parallel previous work in Quercus ilex, which exhibited a similar leaf size gradient from north to south in the western Mediterranean basin, where southern regions were likewise warmer and had higher amounts of precipitation than northern regions (García \square Nogales et al., 2016).

Our findings suggest a possible compensatory relationship between larger size and lobing in bur oak. Community-level studies tend to show a higher frequency of lobed leaves in cooler temperatures (Royer et al., 2005). These responses are individualistic, however, and amongpopulation responses in some species show no response or greater lobing in warmer temperatures (Royer et al., 2008; McKee and Royer, 2017; McKee et al., 2019). Leaves that are deeply lobed may be better adapted to warmer climates, because deeply lobed and narrow leaves have a thinner leaf boundary layer, facilitating more rapid cooling (Givnish, 1987; McDonald et al., 2003). In our study, the ratio of sinus depth to leaf width (sinus.v.width) shows a weak negative correlation with latitude ($b=0.013, \mathrm{P}=0.024$), but this result is strongly affected by one site, Red Rock Canyon, which had an exceptionally low value. When this outlier is removed, the correlation is no longer significant ($b=0.007, \mathrm{P}=0.054$). In multiple regressions with scaled
data and bladeL as a covariate, however, depth of the sinus immediately above the deepest sinus (sinusNextL) was significantly influenced by latitude ($b=0.893, \mathrm{P}=0.021$), even with the outlier removed $(b=0.926, \mathrm{P}=0.023)$. Our whole-leaf estimates of shape (circularity and Haralick circularity) similarly both showed increased circularity northward, but their sensitivity to the latitudinal gradient is different. This may be a consequence to the relative insensitivity of Haralick circularity to leaf toothing (Haralick, 1974), which manifests in bur oak as differences in crenulation. We did not quantify this effect directly, but leave it to future studies.

The hypothesis that leaf lobing increases southward in response to increased water stress is supported by the specific leaf area (SLA) data. With leaf length as a covariate, SLA increases northward $(b=0.987, \mathrm{P}=0.011)$, even as leaf size decreases. Leaves that are low in SLA have higher water use efficiency (Mooney and Dunn, 1970; Marron et al., 2003; Liu et al., 2017) and have been shown to vary within oaks according to water stress (Ramírez-Valiente and CavenderBares, 2017; Ramírez-Valiente et al., 2017). This corresponds with our finding that bur oak leaves at southern sites, where trees are exposed to warmer temperatures and are likely more water-stressed, had significantly lower SLA than leaves collected at northern sites. However, leaf area in cross-species oak comparisons covaries with SLA (Ramírez \square Valiente et al., 2020), and leaf area and SLA both decrease on average with increased water stress in cross-species comparisons (Kaproth and Cavender-Bares, 2016; Ramírez \square Valiente et al., 2020). Our finding of larger leaf areas with lower SLA in bur oak, but with an increase in lobing, suggests that leaf lobing may compensate for increased size in areas with great water stress.

The immense success of oaks (Quercus) in the Americas (Rodríguez-Correa et al., 2015; Hipp et al., 2018; Cavender-Bares, 2019) has been attributed in part to oaks' ability to cross the temperate-tropical divide. Bur oak is exceptional in its climatic range, extending from near the
boreal zone in the north to the great plains and the humid subtropics. Our finding that leaf lobing, SLA, and leaf size compensate for one another along climatic gradients in bur oak may be echoed in other species. The work presented here consequently has the potential to inform studies of adaptive variation across oaks and temperate tree species more generally.

ACKNOWLEDGMENTS

This study was funded by The Morton Arboretum Center for Tree Science and USDA Project 8020-21000-070-03S, a non-assistance cooperative agreement between U.S. National Arboretum and The Morton Arboretum. We would like to thank Marlene Hahn for assisting with curation of herbarium and leaf samples and Matthew Kaproth for advice on measurement of SLA. Ricardo Kriebel provided particularly detailed advice on morphometric analysis, including code to assist in generating landmarks and excellent feedback on interpretation of our results; and Associate Editor Dylan Schwilk, with an anonymous reviewer and Kriebel, provided editorial feedback that substantially improved the manuscript.

AUTHOR CONTRIBUTIONS

A.L.H., A.T.W. and S.C.D. conceptualized and designed the project. S.C.D., M.G., and S.F. collected specimens and data. S.C.D. and A.L.H. conducted data analyses. S.C.D. wrote the first draft of the manuscript, and A.L.H. revised the manuscript in response to reviewers. A.L.H. coded and analyzed simulations and contributed to data analysis. All authors contributed to writing and revisions; A.L.H. and S.C.D. contributed equally to analysis and writing.

DATA ACCESSIBILITY

Data and scripts used to conduct the statistical analysis are archived in GitHub (https://github.com/andrew-hipp/oak-morph-2020) and released through Zenodo (https://doi.org/10.5281/zenodo.4213821). Supplemental figures are available in the GitHub repository and in the online Supplement.

REFERENCES CITED

Abrams, M. D. 1994. Genotypic and phenotypic variation as stress adaptations in temperate tree species: a review of several case studies. Tree Physiology 14: 833-842.

Abrams, M. D., and M. E. Kubiske. 1990. Leaf structural characteristics of 31 hardwood and conifer tree species in central Wisconsin: Influence of light regime and shade-tolerance rank. Forest Ecology and Management 31: 245-253.

Abrams, M. D., M. E. Kubiske, and S. A. Mostoller. 1994. Relating Wet and Dry Year Ecophysiology to Leaf Structure in Contrasting Temperate Tree Species. Ecology 75: 123-133.

Aizen, M. A., and C. Ezcurra. 2008. Do leaf margins of the temperate forest flora of southern South America reflect a warmer past? Global Ecology and Biogeography 17: 164-174.

Apostol, E. N., A. L. Curtu, L. M. Daia, B. Apostol, C. G. Dinu, and N. Şofletea. 2017. Leaf morphological variability and intraspecific taxonomic units for pedunculate oak and grayish oak (genus Quercus L., series Pedunculatae Schwz.) in Southern Carpathian Region (Romania). Science of The Total Environment 609: 497-505.

Auguie, B. 2017. gridExtra: Miscellaneous Functions for 'Grid’ Graphics.
Bailey, I. W., and E. W. Sinnott. 1915. A Botanical Index of Cretaceous and Tertiary Climates. Science 41: 831-834.

Bailey, I. W., and E. W. Sinnott. 1916. The Climatic Distribution of Certain Types of Angiosperm Leaves. American Journal of Botany 3: 24-39.

Baranski, M. J. 1975. An analysis of variation within white oak (Quercus alba L.). North Carolina Agricultural Experiment Station, Raleigh.

Becker, R. A., A. R. Wilks, R. Brownrigg, T. P. Minka, and A. Deckmyn. 2018. maps: Draw Geographical Maps.

Bivand, R. S., E. Pebesma, and V. Gomez-Rubio. 2013. Applied spatial data analysis with R, Second edition. Springer, NY.

Blue, M. P., and R. J. Jensen. 1988. Positional and seasonal variation in oak (Quercus, Fagaceae) leaf morphology. American Journal of Botany 75: 939-947.

Bonhomme, V., S. Picq, C. Gaucherel, and J. Claude. 2014. Momocs: Outline Analysis Using R. Journal of Statistical Software 56: 1-24.

Bragg, J. G., and M. Westoby. 2002. Leaf size and foraging for light in a sclerophyll woodland. Functional Ecology 16: 633-639.

Bruschi, P., P. Grossoni, and F. Bussotti. 2003. Within- and among-tree variation in leaf morphology of Quercus petraea (Matt.) Liebl. natural populations. Trees 17: 164-172.

Burnham, R. J., and G. S. Tonkovich. 2011. Climate, leaves, and the legacy of two giants. New Phytologist 190: 514-517.

Cavender-Bares, J. 2019. Diversification, adaptation, and community assembly of the American oaks (Quercus), a model clade for integrating ecology and evolution. New Phytologist 221: 669-692.

Crampton, J. S. 1995. Elliptic Fourier shape analysis of fossil bivalves: some practical considerations. Lethaia 28: 179-186.

Ducrey, M. 1992. Variation in leaf morphology and branching pattern of some tropical rain forest species from Guadeloupe (French West Indies) under semi-controlled light conditions. Annales des Sciences Forestières 49: 553-570.

García-Nogales, A., J. C. Linares, R. G. Laureano, J. I. Seco, and J. Merino. 2016. Range-wide variation in life-history phenotypes: spatiotemporal plasticity across the latitudinal gradient of the evergreen oak Quercus ilex. Journal of Biogeography 43: 2366-2379.

Garner, M., K. K. Pham, A. T. Whittemore, J. Cavender-Bares, P. F. Gugger, P. S. Manos, I. S. Pearse, and A. L. Hipp. 2019. From Manitoba to Texas: A study of the population genetic structure of bur oak (Quercus macrocarpa). International Oaks: The Journal of the International Oak Society 30: 131-138.

Genz, A., and F. Bretz. 2009. Computation of Multivariate Normal and t Probabilities. SpringerVerlag, Heidelberg.

Genz, A., F. Bretz, T. Miwa, X. Mi, F. Leisch, F. Scheipl, and T. Hothorn. 2019. mvtnorm: Multivariate Normal and t Distributions.

Givnish, T. J. 1987. Comparative Studies of Leaf Form: Assessing the Relative Roles of Selective Pressures and Phylogenetic Constraints. New Phytologist 106: 131-160.

González-Rodríguez, A., D. M. Arias, S. Valencia-Avalos, and K. Oyama. 2004. Morphological and RAPD analysis of hybridization between Quercus affinis and Q. laurina (Fagaceae), two Mexican red oaks. American Journal of Botany 91: 401-409.

González-Rodríguez, A., and K. Oyama. 2005. Leaf morphometric variation in Quercus affinis and Q. laurina (Fagaceae), two hybridizing Mexican red oaks. Botanical Journal of the Linnean Society 147: 427-435.

Greenwood, D. R., P. Wilf, S. L. Wing, and D. C. Christophel. 2004. Paleotemperature Estimation Using Leaf-Margin Analysis: Is Australia Different? PALAIOS 19: 129-142.

Halloy, S. R. P., and A. F. Mark. 1996. Comparative leaf morphology spectra of plant communities in New Zealand, the Andes and the European Alps. Journal of the Royal Society of New Zealand 26: 41-78.

Hamerlynck, E. P., and A. K. Knapp. 1994. Leaf-level responses to light and temperature in two co-occurring Quercus (Fagaceae) species: implications for tree distribution patterns. Forest Ecology and Management 68: 149-159.

Haralick, R. M. 1974. A Measure for Circularity of Digital Figures. IEEE Transactions on Systems, Man, and Cybernetics SMC-4: 394-396.

Hijmans, R. 2017. raster: Geographic Data Analysis and Modeling. R package version 2.6-7.
Hipp, A. L., P. S. Manos, A. González-Rodríguez, M. Hahn, M. Kaproth, J. D. McVay, S. V. Avalos, and J. Cavender-Bares. 2018. Sympatric parallel diversification of major oak clades in the Americas and the origins of Mexican species diversity. New Phytologist 217: 439-452.

Hipp, A. L., A. T. Whittemore, M. Garner, M. Hahn, E. Fitzek, E. Guichoux, J. Cavender-Bares, et al. 2019. Genomic identity of white oak species in an eastern North American syngameon. Annals of the Missouri Botanical Garden 104: 455-477.

Hoban, S. 2014. An overview of the utility of population simulation software in molecular ecology. Molecular Ecology 23: 2383-2401.

Hoban, S. 2019. New guidance for ex situ gene conservation: Sampling realistic population systems and accounting for collection attrition. Biological Conservation 235: 199-208.

Hoban, S., T. Callicrate, J. Clark, S. Deans, M. Dosmann, J. Fant, O. Gailing, et al. 2020. Taxonomic similarity does not predict necessary sample size for ex situ conservation: a comparison among five genera. Proceedings of the Royal Society B: Biological Sciences 287: 20200102.

Hoban, S., O. Gaggiotti, and G. Bertorelle. 2013. Sample Planning Optimization Tool for conservation and population Genetics (SPOTG): a software for choosing the appropriate number of markers and samples. Methods in Ecology and Evolution 4: 299-303.

Howard, D., R. Preszler, J. Williams, S. Fenchel, and W. Boecklen. 1997. How discrete are oak species? Insights from a hybrid zone between Quercus grisea and Quercus gambelii. Evolution 51: 747-755.

Jensen, R. J. 1990. Detecting shape variation in oak leaf morphology: A comparison of rotational-fit methods. American Journal of Botany 77: 1279-1293.

Jensen, R. J., R. Depiero, and B. K. Smith. 1984. Vegetative characters, population variation, and the hybrid origin of Quercus ellipsoidalis. American Midland Naturalist 111: 364370.

Kaproth, M. A., and J. Cavender-Bares. 2016. Drought tolerance and climatic distributions of the American oaks. International Oak Journal 27: 49-60.

Koenig, W. D., J. M. H. Knops, J. L. Dickinson, and B. Zuckerberg. 2009. Latitudinal decrease in acorn size in bur oak (Quercus macrocarpa) is due to environmental constraints, not avian dispersal. Botany 87: 349-356.

Kremer, A., J. Dupouey, J. Deans, J. Cottrell, U. Csaikl, R. Finkeldey, S. Espinel, et al. 2002. Leaf morphological differentiation between Quercus robur and Quercus petraea is stable across western European mixed oak stands. Annals of Forest Science 59: 777-787.

Li, Y., P. B. Reich, B. Schmid, N. Shrestha, X. Feng, T. Lyu, B. S. Maitner, et al. 2020. Leaf size of woody dicots predicts ecosystem primary productivity. Ecology Letters 23: 10031013.

Little, E. L. 1971. Atlas of United States trees, volume 1, Conifers and important hardwoods. U.S. Dept. of Agriculture, Forest Service, Washington, D.C. $\square:$

Little, S. A., S. W. Kembel, and P. Wilf. 2010. Paleotemperature Proxies from Leaf Fossils Reinterpreted in Light of Evolutionary History. PLOS ONE 5: e15161.

Liu, M., Z. Wang, S. Li, X. Lü, X. Wang, and X. Han. 2017. Changes in specific leaf area of dominant plants in temperate grasslands along a 2500-km transect in northern China. Scientific Reports 7: 10780.

Marron, N., E. Dreyer, E. Boudouresque, D. Delay, J.-M. Petit, F. M. Delmotte, and F. Brignolas. 2003. Impact of successive drought and re-watering cycles on growth and specific leaf area of two Populus \times canadensis (Moench) clones, 'Dorskamp' and 'Luisa_Avanzo'. 23: 11.

McCarthy, D. M., and R. J. Mason-Gamer. 2019. Morphological Variation in North American Tilia and Its Value in Species Delineation. International Journal of Plant Sciences 181: 175-195.

McDonald, P. G., C. R. Fonseca, J. M. Overton, and M. Westoby. 2003. Leaf-size divergence along rainfall and soil-nutrient gradients: is the method of size reduction common among clades? Functional Ecology 17: 50-57.

McKee, M. L., D. L. Royer, and H. M. Poulos. 2019. Experimental evidence for speciesdependent responses in leaf shape to temperature: Implications for paleoclimate inference. PLOS ONE 14: e0218884.

McKee, M., and D. L. Royer. 2017. How Does Temperature Impact Leaf Size and Shape in Four Woody Dicot Species? Testing the Assumptions of Leaf Physiognomy-Climate Models. AGU Fall Meeting Abstracts 11.

Minchin, P. R. 1987. An evaluation of the relative robustness of techniques for ecological ordination. Vegetatio 69: 89-107.

Moles, A. T., S. E. Perkins, S. W. Laffan, H. Flores-Moreno, M. Awasthy, M. L. Tindall, L. Sack, et al. 2014. Which is a better predictor of plant traits: temperature or precipitation? Journal of Vegetation Science 25: 1167-1180.

Mooney, H. A., and E. L. Dunn. 1970. Convergent Evolution of Mediterranean-Climate Evergreen Sclerophyll Shrubs. Evolution 24: 292-303.

Oksanen, J., F. G. Blanchet, M. Friendly, R. Kindt, P. Legendre, D. McGlinn, P. R. Minchin, et al. 2017. vegan: Community Ecology Package. R package version 2.4-5.

Pebesma, E. J., and R. S. Bivand. 2005. Classes and methods for spatial data in R. R News 5: 9-13.

Peppe, D. J., D. L. Royer, B. Cariglino, S. Y. Oliver, S. Newman, E. Leight, G. Enikolopov, et al. 2011. Sensitivity of leaf size and shape to climate: global patterns and paleoclimatic applications. New Phytologist 190: 724-739.

R Core Team. 2018. R: A language and environment for statistical computing, version 3.4.4. R Foundation for Statistical Computing, Vienna.

Ramírez-Valiente, J. A., and J. Cavender-Bares. 2017. Evolutionary trade-offs between drought resistance mechanisms across a precipitation gradient in a seasonally dry tropical oak (Quercus oleoides). Tree Physiology: 1-13.

Ramírez-Valiente, J. A., A. Center, J. Sparks, K. Sparks, J. Etterson, T. Longwell, G. Pilz, and J. Cavender-Bares. 2017. Population-level differentiation in growth rates and leaf traits in seedlings of the neotropical live oak Quercus oleoides grown under natural and manipulated precipitation regimes. Frontiers in Plant Science 8.

Ramírez-Valiente, J. A., R. López, A. L. Hipp, and I. Aranda. 2020. Correlated evolution of morphology, gas exchange, growth rates and hydraulics as a response to precipitation and temperature regimes in oaks (Quercus). New Phytologist 227: 794-809.

Rodríguez-Correa, H., K. Oyama, I. MacGregor-Fors, and A. González-Rodríguez. 2015. How are oaks distributed in the neotropics? A perspective from species turnover, areas of endemism, and climatic niches. International Journal of Plant Sciences 176: 222-231.

Rosin, P. L. 2005. Computing global shape measures. Handbook of Pattern Recognition and Computer Vision, 177-196. WORLD SCIENTIFIC.

Royer, D. L., J. C. McElwain, J. M. Adams, and P. Wilf. 2008. Sensitivity of leaf size and shape to climate within Acer rubrum and Quercus kelloggii. New Phytologist 179: 808-817.

Royer, D. L., and P. Wilf. 2006. Why Do Toothed Leaves Correlate with Cold Climates? Gas Exchange at Leaf Margins Provides New Insights into a Classic Paleotemperature Proxy. International Journal of Plant Sciences 167: 11-18.

Royer, D. L., P. Wilf, D. A. Janesko, E. A. Kowalski, and D. L. Dilcher. 2005. Correlations of climate and plant ecology to leaf size and shape: potential proxies for the fossil record. American Journal of Botany 92: 1141-1151.

Schmerler, S. B., W. L. Clement, J. M. Beaulieu, D. S. Chatelet, L. Sack, M. J. Donoghue, and E. J. Edwards. 2012. Evolution of leaf form correlates with tropical-temperate transitions in Viburnum (Adoxaceae). Proceedings of the Royal Society B: Biological Sciences 279: 3905-3913.

Schnabel, A., and J. L. Hamrick. 1990. Comparative Analysis of Population Genetic Structure in Quercus macrocarpa and Q. gambelii (Fagaceae). Systematic Botany 15: 240-251.

Schneider, C. A., W. S. Rasband, and K. W. Eliceiri. 2012. NIH Image to ImageJ: 25 years of image analysis. Nature Methods 9: 671-675.

Sokal, R. R., T. J. Crovello, and R. S. Unnasch. 1986. Geographic Variation of Vegetative Characters of Populus deltoides. Systematic Botany 11: 419-432.

Stein, J., D. Binion, and R. Acciavatti. 2003. Field Guide to Native Oak Species of Eastern North America (FHTET-2003-01). United States Department of Agriculture Forest Service, Forest Health Technology Enterprise Team, Morgantown.

Tracey, S. R., J. M. Lyle, and G. Duhamel. 2006. Application of elliptical Fourier analysis of otolith form as a tool for stock identification. Fisheries Research 77: 138-147.

Walls, R. L. 2011. Angiosperm leaf vein patterns are linked to leaf functions in a global-scale data set. American Journal of Botany 98: 244-253.

Wickham, H. 2009. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag, New York.
Wright, I. J., N. Dong, V. Maire, I. C. Prentice, M. Westoby, S. Díaz, R. V. Gallagher, et al. 2017. Global climatic drivers of leaf size. Science 357: 917-921.

Wright, I. J., P. B. Reich, M. Westoby, D. D. Ackerly, Z. Baruch, F. Bongers, J. Cavender-Bares, et al. 2004. The worldwide leaf economics spectrum. Nature 428: 821-827.

611 Table 1. Sampling localities, Bioclim values for each site, number of leaves collected per

 tree. Only leaves used for statistical analysis are counted. Broken or incomplete leaves were eliminated from statistical analysis. Abbreviations: Bio1 = mean annual temperature (in degrees C); Bio12 = mean annual precipitation (in mm).| Site | Bio1, Bio12 | Tree | Latitude | Longitude | $\underline{\text { Lvs }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Whiteshell Provincial Park | $\begin{aligned} & 2.07^{\circ} \mathrm{C}, 566 \\ & \mathrm{~mm} \end{aligned}$ | MB-SD004 | 49.4249 | -95.1436 | 8 |
| | | MB-SD005 | 49.71279 | -95.2444 | 8 |
| | | MB-MG513 | 49.71209 | -95.24496 | 8 |
| Spruce Woods Provincial Park | $\begin{aligned} & 2.50^{\circ} \mathrm{C}, 460 \\ & \mathrm{~mm} \end{aligned}$ | MB-MG516 | 49.76104 | -99.15971 | 8 |
| | | MB-MG517 | 49.76095 | -99.15983 | 8 |
| | | MB-MG518 | 49.76061 | -99.15928 | 8 |
| Assiniboine Forest | $\begin{aligned} & 2.10^{\circ} \mathrm{C}, 519 \\ & \mathrm{~mm} \end{aligned}$ | MB-MG528 | 49.85778 | -97.24848 | 8 |
| | | MB-MG529 | 49.85423 | -97.2482 | 8 |
| | | MB-MG530 | 49.85392 | -97.24828 | 8 |
| University of Minnesota | $\begin{aligned} & 7.10^{\circ} \mathrm{C}, 738 \\ & \mathrm{~mm} \end{aligned}$ | MN-MG788 | 44.97882 | -93.23768 | 8 |
| Campus | | MN-MG789 | 44.97739 | -93.23761 | 8 |
| | | MN-MG790 | 44.97771 | -93.23801 | 7 |
| Cherokee Park Trail | $\begin{aligned} & 9.20^{\circ} \mathrm{C}, 879 \\ & \mathrm{~mm} \end{aligned}$ | IA-MG243 | 41.97454 | -91.72161 | 8 |
| | | IA-MG244 | 41.97367 | -91.72547 | 8 |
| | | IA-MG245 | 41.97362 | -91.72565 | 6 |
| Morton Arboretum | $\begin{aligned} & 9.50^{\circ} \mathrm{C}, 932 \\ & \mathrm{~mm} \end{aligned}$ | IL-SF001 | 41.81696 | -88.0808 | 8 |
| | | IL-SF002 | 41.81331 | -88.08266 | 8 |
| | | IL-SF003 | 41.81588 | -88.07994 | 8 |
| Prairie Moon Nursery | $6.80^{\circ} \mathrm{C}, 837$ | MN-SD001 | 43.89117 | -91.64684 | 8 |
| | | MN-SD002 | 43.89804 | -91.648 | 8 |
| | | MN-SD003 | 43.89088 | -91.64689 | 2 |
| Burr Oak Woods | $\begin{aligned} & 9.80^{\circ} \mathrm{C}, 943 \\ & \mathrm{~mm} \end{aligned}$ | IN-MG631 | 41.53273 | -87.2948 | 8 |
| | | IN-MG636 | 41.5345 | -87.29279 | 8 |
| | | IN-MG638 | 41.53253 | -87.29661 | 8 |
| Red Rock Canyon State Park | $\begin{aligned} & 15.3^{\circ} \mathrm{C}, 756 \\ & \mathrm{~mm} \end{aligned}$ | OK-MG369 | 35.43874 | -98.35495 | 8 |
| | | OK-MG370 | 35.43851 | -98.35503 | 8 |
| | | OK-MG371 | 35.43854 | -98.35497 | 8 |
| Mohawk Park | $15.3^{\circ} \mathrm{C}, 987$ | OK-MG347 | 36.21066 | -95.89467 | 8 |

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.11.088039; this version posted November 3, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

616 Table 2. Descriptions of the leaf traits measured

Leaf measurements		
Trait	Abbreviation	Definition
Blade length (mm)	bladeL	Straight line distance measured from intersection of leaf
		and petiole to tip of the leaf at its point of intersection with the midvein
Blade width (mm)	bladeW	The longest possible perpendicular line drawn from one
		edge of the blade to the other; vein position used to
		identify the leaves opposite one another
Width of blade between deepest pair of sinuses (mm)	sinusMinL	The shortest distance that separates the deepest sinus from
		its corresponding sinus. (The deepest sinus is defined as
		the sinus that has the longest distance from the most
		interior point of the sinus to the line that connects the two
		most exterior points of that sinus)
Width of blade between sinuses just	sinusNextL	The width between the sinuses that are immediately distal
above the deepest pair (mm)		to the deepest sinuses (as defined in sinusMinL)
Petiole length (mm)	petioleL	Measured from the base of the blade as defined by bladeL
		to the base of the petiole, defined as the line of intersection
		between petiole and branch, upper surface of the petiole
Petiole width (mm)	petioleW	Measured at the point of intersection between the blade
		and the petiole, where blade is not visible
Length of lamina from base to widest	bladeLtoWidestPoint	Measured from the base of the blade to the point of
point (mm)		intersection between the midvein and the line used to
		measure leaf blade width
Blade base angle (degrees)	bladeBaseAngle	Measured using the lines that define the widest angle
		between the base and either edge of the leaf
Total length (mm)	BL.PL	Total length is the blade length added to the petiole length
Leaf area (mm^{2})	Area	Calculated in imageJ.

Ratios

\(\left.\begin{array}{lll}Petiole length / Total length \& PL.TL \& The petiole length divided by the total length

Sinus ratio \& SinusRatio \& The width of the blade between the deepest pair of sinuses

divided by the width of the blade between the pair of\end{array}\right\}\)	sinuses just above the deepest pair

Leaf trait	p-value	\boldsymbol{r}^{2}	Blade length	Latitude	\mathbf{R}^{2}
bladeL	0.012	0.486		$-0.697, \mathrm{p}=0.012$	0.486
bladeW	0.014	0.469	$0.926, \mathrm{p}<.001$	$-0.039, \mathrm{p}=0.780$	0.911
sinusMinL	0.208	0.153	$-0.069, \mathrm{p}=0.874$	$0.343, \mathrm{p}=0.443$	0.156
sinusNextL	0.492	0.048	$0.966, \mathrm{p}=0.014$	$0.893, \mathrm{p}=0.021$	0.528
petioleL	0.262	0.124	$0.812, \mathrm{p}=0.041$	$0.214, \mathrm{p}=0.546$	0.463
petioleW	$\mathrm{p}<0.001$	0.692	$0.119, \mathrm{p}=0.649$	$-0.749, \mathrm{p}=0.017$	0.699
bladeLtoWidestPoint	0.011	0.494	$0.920, \mathrm{p}<.001$	$-0.062, \mathrm{p}=0.630$	0.929
bladeBaseAngle	0.151	0.195	$-0.363, \mathrm{p}=0.386$	$-0.695, \mathrm{p}=0.116$	0.263
TotalL.PL.BL	0.019	0.438	$1.03, \mathrm{p}<0.001$	$0.052, \mathrm{p}=0.459$	0.979
Area	0.014	0.469	$0.949, \mathrm{p}<0.001$	$-0.024, \mathrm{p}=0.847$	0.933
SLA	0.015	0.466	$0.438, \mathrm{p}=0.188$	$0.987, \mathrm{p}=0.011$	0.564
PL.TL	0.945	$\mathrm{r}^{2}<0.001$	$0.347, \mathrm{p}=0.461$	$0.264, \mathrm{p}=0.572$	0.062
SinusRatio	0.425	0.065	$-0.253, \mathrm{p}=0.580$	$0.078, \mathrm{p}=0.864$	0.098
BL.BW	0.313	0.101	$-0.367, \mathrm{p}=0.408$	$0.062, \mathrm{p}=0.886$	0.171
BL.BLWP	0.834	0.005	$0.183, \mathrm{p}=0.699$	$0.196, \mathrm{p}=0.680$	0.022
sinus.v.width	0.024	0.415	$-0.551, \mathrm{p}=0.103$	$0.259, \mathrm{p}=0.415$	0.571
sinus.v.width (no	0.054	0.352	$-0.296, \mathrm{p}=0.152$	$0.163, \mathrm{p}=0.391$	0.507
spruce woods)					

Table 3. Simple and multiple regressions for all leaf traits. The columns for Blade length and Latitude represent the regression coefficient and p-value for a multiple regression with each leaf trait regressed against Blade length and Latitude. Note that after Bonferroni correction for multiple tests, only the regression of blade length on latitude + petiole width is significant; and for that multiple regression, only the coefficient for latitude is significant

Response		Df	Sum of Squares	Mean	F-value	Pr(>F)
			Square			
bladeL	site	11	177345	16122.3	38.9996	$<2.2 \mathrm{e}-16$
	tree	24	83159	3465.0	8.3817	$<2.2 \mathrm{e}-16$
	residuals	236	97562	413.4		
	site	11	1017054857	92459532	30.3766	$<2.2 \mathrm{e}-16$
	tree	24	703085034	29295210	9.6246	$<2.2 \mathrm{e}-16$
	residuals	236	718331913	3043779		
	site	11	984.70	89.519	41.7620	$<2.2 \mathrm{e}-16$
	tree	24	300.10	12.504	5.8335	$8.101 \mathrm{e}-14$
	residuals	236	505.88	2.144		
	site	11	400.34	36.394	34.042	$<2.2 \mathrm{e}-16$
	tree	24	318.70	13.279	12.421	$<2.2 \mathrm{e}-16$

FIGURE LEGENDS

Figure 1. Locations of sampling sites for this study as well as mean annual temperature across the bur oak range. WorldClim temperature data are scaled to a factor of 10 . Specific information about site, name, location, and number of samples collected can be found in Table 1.

Figure 2. Leaf trait measurements used in this study. All measurements used in this study were linear measurements or ratios of linear measurements, plus one angle. Details and definitions are found in Table 4.

Figure 3. Simple regressions of traits and environment that are significant at the 0.05 level. Pvalues are not corrected for multiple tests; a total of seventeen regressions were performed (Table 3).

Figure 4. Simple regressions of circularity on latitude.

Figure 5. Regressions of bioclim variables on latitude. Latitude shows up as the strongest single predictor of leaf morphology in the current study, as it integrates over both day length and several aspects of climate: bio 1 (mean annual temperature), bio 12 (mean annual precipitation), bio 4 (mean temperature seasonality).

Figure 6. Sampling simulations. Simulated sampling strategies accounted for covariance among traits within leaves; among leaves on trees within sites; and among trees within sites. Here, two estimates of power are reported: the number of groups of sites recognized as distinct from each other using Tukey's HSD at $\alpha=0.05$; and the probability of recognizing at least 50% of sites as distinct from each other. colors scale from darker as a higher number of groups are recognized, lighter as fewer are. Simulated numbers of sites distinguished (left panel) and probabilities of distinguishing at least 50% of simulated sites (right panel) are reported in each cell of the simulation.

Supplemental Figure S1. Biplots of all simple regressions performed, whether significant or not Supplemental Figure S2. PCA based on eFourier analysis of leaf outlines.

Supplemental Figure S3. Non-metric multidimensional scaling ordination of PCA on leaf measurements

Mean groups recognized out of 20 populations
Probability of recognizing 50 percent of populations

