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ABSTRACT 17 

PREMISE: Oaks are notoriously variable in leaf morphology, but little is known regarding the 18 

partial contributions of climate, population, latitude, and individual tree to total variation in leaf 19 

morphology. This study examines the contributions of within-tree, among-tree, and among-site 20 

variation to the total variation in leaf morphology in bur oak (Quercus macrocarpa), one of 21 

North America’s most geographically widespread oak species.  22 
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METHODS: Samples were collected from four sites each at northern, central, and southern 23 

latitudes of the bur oak range. Ten leaf size traits were measured, and variance in these traits and 24 

eight ratios was partitioned into tree, population, and latitude components. We then 25 

parameterized a series of leaf collections simulations using empirical covariance among leaves 26 

on trees and trees at sites. 27 

KEY RESULTS: Leaf size measurements were highly responsive to latitude. Site contributed 28 

more than tree to total variation in leaf morphology. Simulations suggest that power to detect 29 

among-site variance in leaf morphology can be estimated most efficiently with increases in either 30 

leaves per tree (10-11 leaves from each of 5 trees) or trees per site (5 leaves from each of 10+ 31 

trees).  32 

CONCLUSIONS: Our study demonstrates the utility of both simulating sampling and controlling 33 

for variance in sampling for leaf morphology, whether the questions being addressed are 34 

ecological, evolutionary, or taxonomic. Simulation code is provided to help researchers plan 35 

sampling strategies to maximize the ability to detect among-site variance in leaf morphology.  36 

 37 
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INTRODUCTION   44 

Leaf morphology variation strongly influences species’ ability to compete and survive in different 45 

environments (Givnish, 1987). It has long been recognized that there is a correlation between 46 

temperature and the proportion of species exhibiting leaf dissection and toothing, and for more 47 

than a century this correlation has been used to model temperature changes in paleobotanical 48 

studies (Bailey and Sinnott, 1915, 1916; Greenwood et al., 2004; Royer and Wilf, 2006). Leaf size 49 

similarly has a well demonstrated correlation with temperature and resource availability (Bragg 50 

and Westoby, 2002; Peppe et al., 2011; McKee and Royer, 2017; Wright et al., 2017; Li et al., 2020), 51 

and traits such as compounding and phyllotaxy, base and apex morphology, leaf shape, and 52 

epidermal pigmentation vary along gradients of light availability, nutrient availability, soil 53 

moisture, temperature, or combinations of these (Givnish, 1987; Schmerler et al., 2012). In a global 54 

field study from 92 sites (Peppe et al., 2011), multiple regressions of climate (both precipitation 55 

and temperature) on leaf area, tooth number, and percent of species at the site with toothing 56 

showed relatively high predictive ability, inferred from the low standard error of the models 57 

(±4℃). However, while the sign of this correlation—more toothing and lobing in cooler areas—58 

is convergent across clades and geographic regions, the slope of the relationship between climate 59 

and leaf morphology varies among species (McKee et al., 2019), geographic regions 60 

(Greenwood et al., 2004; Aizen and Ezcurra, 2008), and phylogenetic lineages (Little et al., 61 

2010; Burnham and Tonkovich, 2011; Walls, 2011).  62 

 Many of these traits vary both among and within species, and correlations between 63 

community-weighted mean trait values at the site level are mirrored within species on short time 64 

scales, with toothing and leaf lobing correlated with cooler temperatures in most species studied 65 

as well as across communities (McKee and Royer, 2017; McKee et al., 2019). Moreover, the 66 

morphology of leaves can vary highly within communities (Givnish, 1987). Within forest trees in 67 
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particular, variation due to position on the tree (Blue and Jensen, 1988; McCarthy and Mason-68 

Gamer, 2019), light availability (Abrams and Kubiske, 1990; Ducrey, 1992), drought (Abrams, 69 

1994; Abrams et al., 1994) as well as genetic differences among trees within species (Abrams, 70 

1994; Ramírez-Valiente et al., 2017) all contribute to variation in leaf shape and size. Moreover, 71 

while sampling of a small number of leaves per population has been argued to be sufficient for 72 

detecting site level patterns in climate based in paleobotanical studies (Royer et al., 2005; Peppe 73 

et al., 2011), the relative contribution of within-tree, among-tree within-population, and among-74 

population variation to total morphological variation is not clear in many tree species, leading to 75 

observations for example that variation among leaves on a single tree is sometimes as great as 76 

the variation observed among named species (e.g., McCarthy and Mason-Gamer, 2019). 77 

Oaks have long been noted for their particularly variable morphology at all levels (among 78 

leaves on a single tree, among trees of a single population, and among populations of a single 79 

species). Detailed studies in oaks have utilized either linear measurements (Baranski, 1975; Blue 80 

and Jensen, 1988; Bruschi et al., 2003) or landmark approaches (Jensen, 1990). Both approaches 81 

have demonstrated that while variation among positions within a tree in both leaf shape and size 82 

may exceed variation among sites, overall variance is generally greater among sites. These 83 

papers have highlighted that studies investigating among-population divergence patterns can 84 

minimize within-individual morphological variance by holding sampling season and leaf position 85 

on the tree constant (i.e., high or low on the tree and disposed toward the edges or inside of the 86 

canopy) (Sokal et al., 1986; Blue and Jensen, 1988; Bruschi et al., 2003). Understanding these 87 

sources of variance in leaf shape and size is foundational to understanding how introgression, 88 

adaptation, and neutral variation influence leaf morphology both among and within species 89 

(Jensen et al., 1984; Howard et al., 1997; Kremer et al., 2002; González-Rodríguez et al., 2004; 90 
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González-Rodríguez and Oyama, 2005) and the balancing act that trees face in maximizing 91 

photosynthetic efficiency while minimizing the risks of drought, freezing, herbivory and other 92 

stresses (Wright et al., 2004). However, it is not clear what sampling strategy (leaves per 93 

individual, individuals per population) is most efficient for estimating among-population 94 

differences in leaf size and shape. Whereas simple simulation tools exist for planning sampling 95 

strategies for population genetics (Hoban et al., 2013; Hoban, 2014) and  conservation of genetic 96 

diversity (Hoban, 2019; Hoban et al., 2020), morphological sampling strategies that take into 97 

account covariance among leaves on a tree, among trees in a population, and among traits 98 

measured are lacking. Given that resources for sampling are limited, tools to help plan sampling 99 

strategies would make it possible to answer questions more definitively with the same amount of 100 

field work. 101 

We sampled leaves across a broad geographic range of bur oak (Quercus macrocarpa 102 

L.), one of North America’s most geographically widespread oak species, which ranges from 103 

Manitoba to the Gulf of Mexico (Fig. 1) to (1) quantify the relative contributions of within-tree, 104 

among-tree, and among-site variation to the total variation in leaf morphology in bur oak; (2) use 105 

this information to simulate how much sampling is required to detect among-site differences in 106 

leaf morphology; and (3) test the support for our observations in field and herbarium that leaf 107 

size and leaf-lobing increase from north to south in bur oak. Bur oak serves as an excellent 108 

model species for this study because it has exceptionally high morphological variation 109 

(Hamerlynck and Knapp, 1994; Koenig et al., 2009) and an extensive distribution, ranging from 110 

Manitoba to the Gulf of Mexico (Little, 1971; Stein et al., 2003). The species also exhibits high 111 

within-population molecular genetic variation (Schnabel and Hamrick, 1990; Garner et al., 2019; 112 

Hipp et al., 2019), suggesting that an investigation of the leaf morphological variation among vs 113 
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within sites is appropriate as a precursor to future studies of what environmental factors 114 

contribute to morphological variation in bur oak leaves.  115 

  116 

MATERIALS AND METHODS 117 

Collections and site attributes—During the summer and fall of 2017, samples were collected 118 

from four sites each at northern, central, and southern latitudes of the bur oak range (Fig. 1). 119 

Sites were selected in conjunction with sampling for ongoing population genetic studies of 120 

Quercus macrocarpa (Garner et al., 2019; Hipp et al., 2019) with the criteria that (1) preliminary 121 

collections suggested they would have numerous bur oaks, and (2) additional white oaks were 122 

present at the site or nearby. Most were forested, but some (e.g. The Morton Arboretum, Prairie 123 

Moon Nursery) were savannas. The northern sites sampled were located in Manitoba 124 

(Assiniboine Park, Whiteshell Provincial Park, and Spruce Woods Provincial Park) and 125 

Minnesota (The University of Minnesota – Twin Cities). The central sites sampled were located 126 

in Illinois (The Morton Arboretum), Indiana (Burr Oak Woods), Iowa (Cherokee Park Trail), and 127 

Minnesota (Prairie Moon Nursery). The southern sites sampled were located in Oklahoma 128 

(Tallgrass Prairie Preserve, Mohawk Park, Red Rock Canyon State Park) and Missouri (Buttin 129 

Rock Access). Trees selected at each site were mature, full-size trees; where possible, trees at a 130 

given site were located a minimum of 100 feet from each other. For each site, latitude and 131 

longitude were recorded to a precision of 5 decimal places (Table 1). We extracted 19 bioclim 132 

variables from the WorldClim database (resolution = 1 km2) and linked them to our dataset in R 133 

v. 3.4.4 (R Core Team, 2018) using raster v 2.6-7 (Hijmans, 2017) and sp_1.4-2 (Pebesma and 134 

Bivand, 2005; Bivand et al., 2013) packages. The map of collection sites was made using maps 135 

3.3.0 (Becker et al., 2018).  136 
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Three bur oak trees were sampled from each site using a pole pruner at two or four 137 

meters in height, based on tree height. For each sample, a terminal branch was cut down from 138 

each of the cardinal directions (N, S, E, W), determined using a compass. Only outermost 139 

branches were sampled. Two endmost leaves were removed from each branch and immediately 140 

pressed, for a total of 8 leaves per individual, 272 leaves overall. If the endmost leaves were 141 

highly damaged, the next leaves in from the end were selected. Leaves that were highly 142 

misshapen or broken were excluded from analyses (see ‘use’ field in dataset archived in GitHub, 143 

which indicates which leaves were excluded from analysis). Leaves were dried in a standard 144 

herbarium drier prior to measuring, then redried at 49° C for a minimum of 48 hours and 145 

weighed on a PB303 Delta Range scale to obtain dry mass.  146 

 147 

Morphological Measurements—Ten size measurements (mm) were made on each leaf 148 

using ImageJ (Schneider et al., 2012): blade length (bladeL), blade width (bladeW), width of 149 

blade between deepest pair of sinuses (sinusMinW), petiole length (petioleL), petiole width 150 

(petioleW), length of lamina from base to widest point (bladeLtoWidestPoint), width of blade 151 

between pair of sinuses just above the deepest pair (sinusNextW), total length (BL.PL), leaf base 152 

angle (bladeBaseAngle), and leaf area (Area) (Table 2, Fig. 2). Seven ratios were also calculated 153 

from these measurements to distinguish leaf shape from leaf size (González-Rodríguez and 154 

Oyama, 2005): petioleL / BL.PL (PL.TL); sinusMinL / sinusNextL (SinusRatio); bladeL / 155 

bladeW (BL.BW); petioleL / petioleW (PL.PW); BL.BW / PL.PW (BL.BW.over.PL.PW); 156 

bladeL / bladeLtoWidestPoint (BL.BLWP); lobedness, calculated as blade width between the 157 

deepest sinuses divided by total blade width, abbreviated (sinus.v.width); and specific leaf area 158 
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(SLA), calculated as leaf blade area / leaf blade mass (Table 2). A panel of significant 159 

regressions was created using the R core functions and gridExtra 2.3 (Auguie, 2017).  160 

To investigate lobedness using more complex morphometric approaches, black and white 161 

silhouettes of each leaf image were created using ImageJ and converted into jpeg files, with 162 

petioles whited out manually. The jpeg files were then imported into R and converted into 163 

outlines using the R package Momocs v 1.3.2 (Bonhomme et al., 2014). An additional set of 40 164 

leaves that did not import well into Momocs or had leaf outlines that did not impair manual 165 

measurements but that were badly non-representative of typical leaf form were deleted at this 166 

stage (see scripts 05a and 05b in the GitHub repository for enumeration of these). We initially 167 

investigated shape variation using elliptical Fourier analysis (EFA), which generates shape-168 

representative variables that are independent of size (Crampton, 1995) and is well suited to 169 

comparing complex outlines that vary in shape and lobedness (Tracey et al., 2006). For these 170 

analyses, we normalized the outlines using four landmarks placed on the top, bottom, left, and 171 

right of each outline and analyzed the leaf outlines using 17 harmonics (the default setting).  172 

We also used Momocs to measure circularity (as the square of perimeter over the area) 173 

(Rosin, 2005) and Haralick’s circularity (as the mean distance from the leaf centroid to the 174 

perimeter pixels divided by the standard deviation of those distances) (Haralick, 1974). 175 

Haralick’s circularity is less sensitive to shape raggedness than the standard measure of 176 

circularity and  increases with increasing circularity; standard circularity decreases with 177 

increasing circularity. We aggregated both circularity measures to individual and then 178 

individuals to site to examine site-level effects of latitude on leaf circularity using simple least-179 

squares regressions. 180 

  181 
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 Statistical Analysis—Linear Regressions and ANOVA—All statistical analyses were 182 

conducted in R. Seventeen least squares were performed on all leaf linear measurements using 183 

the lm function to assess which leaf traits were most responsive to latitude at the site level, 184 

aggregating leaf traits first to tree, then tree mean trait values to site. An additional regression 185 

was performed of Haralick circularity on latitude, at the site level. Data were visualized using 186 

ggplot2 3.3.2 (Wickham, 2009). In addition to simple regressions, we corrected for size by 187 

conducting multiple regressions for all of our leaf traits using the lm function and including 188 

blade length (bladeL) as a covariate. We used data scaled to a mean of zero and unit variance.   189 

We performed a principal component analysis (PCAMORPH) on all scalar measurements 190 

and ratios using the prcomp function. The point MN-MG788 was removed prior to analysis 191 

because it significantly skewed the ordination. Two-dimensional nonmetric multidimensional 192 

scaling on a Euclidean distance matrix based on principal component axes was used to visualize 193 

the data. The scaling type was ‘centering’ with PC rotation. We used the ordiellipse function in 194 

vegan 2.4-5 (Oksanen et al., 2017) to plot bounding ellipses on our ordination. 195 

 Two-way ANOVA was used to assess the relative contributions of site and tree to the 196 

total variation in bladeL, SLA, PC1MORPH and PC2MORPH. Principal components one and two 197 

were extracted from the principal component analysis mentioned above and attached to our 198 

original dataset. ANOVA was conducted on the linear model of bladeL, SLA, PC1MORPH, and 199 

PC2MORPH regressed against site and tree. We chose PC1MORPH and PC2MORPH for this analysis 200 

because together they accounted for 52.5% of the variance.  201 

 202 

  Simulations of sampling strategies—We assessed the effectiveness of alternative 203 

sampling scenarios to distinguish differences among populations by using our estimates of 204 
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variation to generate simulated morphological datasets for 20 populations that ranged from three 205 

to 12 trees per site and three to 12 leaves per tree, a total of 100 sampling strategies. For each 206 

strategy, we simulated 100 replicate datasets of all ten direct morphological measurements using 207 

a hierarchical simulation strategy, using the data we collected to parameterize the simulation. For 208 

each replicate, site-level means for all 10 traits were drawn from the multivariate normal 209 

distribution with trait means and covariance Csite estimated from observed site means for all 210 

traits; Csite is thus based on variance within and covariance among traits that we observed, 211 

averaged for each site. Tree-level means were then drawn from the multivariate normal 212 

distribution with the simulated site-level means and the covariance matrix Ctree estimated from 213 

tree means at each site and averaged across sites: tree-level means were thus assumed to have a 214 

constant variance and covariance among sites. Finally, individual leaf measurements for each 215 

tree were drawn from the multivariate normal distribution with means from the second 216 

simulation stage and covariance matrix Cleaf estimated from the leaf measurements for each tree 217 

separately, then averaged across trees. 218 

 The resulting 100,000 data matrices ranged from 180 to 2,880 simulated leaves, with trait 219 

covariance and variance among leaves within trees, among trees within populations, and among 220 

populations modeled according the measurements we made for this project. Because leaf size 221 

showed particularly strong variation among populations, we utilized ANOVA of bladeL on site + 222 

tree, combined with Tukey’s Honest Significant Different (HSD) method to assess the number of 223 

populations that could be differentiated from one another in each simulated data matrix. The 224 

number of letters needed for a compact letter display using Tukey’s HSD at α = 0.05 was used as 225 

a proxy for the number of groups that could be distinguished for each simulated dataset. Both the 226 

average number of groups distinguished for each simulated dataset and the percent of 227 
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simulations that distinguish at least 50% of populations (10 / 20) are reported as estimates of 228 

statistical power. All simulations were conducted in R using mvtnorm v 1.0-11 (Genz and Bretz, 229 

2009; Genz et al., 2019) (Genz et al. 2017), and code for performing simulations is archived in 230 

GitHub and Zenodo (https://github.com/andrew-hipp/oak-morph-2020; 231 

https://doi.org/10.5281/zenodo.4213821). The simulation code can be installed as package 232 

‘traitsPopSim’ from GitHub (https://github.com/andrew-hipp/traitsPopSim) and run using 233 

multivariate traits collected in a similarly structured design (measurements nested within 234 

individuals nested within sites; sample data included in the package are from the current study). 235 

 236 

RESULTS 237 

Analysis of empirical data—Among the size characters, bladeL, bladeW, BL.PL, petioleW, and 238 

Area all showed significant variation in response to latitude (Table 3, Fig. 3). Petiole width was 239 

the size trait that was the most significant (P < 0.001). Petiole length, sinusMinL, sinusNextL, 240 

and blade base angle were not significantly predicted by latitude (Table 3). Two ratios were 241 

significantly correlated with latitude: SLA (r2 = 0.466, P = 0.015) and the ratio of sinus depth to 242 

leaf width (sinus.v.width, a proxy for lobedness; r2 = 0.415, P = 0.024) (Table 3). In regressions 243 

controlling for size by including bladeL as a covariate, sinusNextL (P = 0.021), petioleW (P = 244 

0.017), bladeL (P = 0.012) and SLA (P = 0.011) were the only traits significantly affected by 245 

latitude alone (Table 3; Fig. 3). Regressions of all traits measured, significant or not, are 246 

presented in the supplement (Supplemental Fig. S1). Standard circularity (perimeter squared over 247 

area) was strongly affected by latitude (r2 = 0.506, P = 0.0043; Fig. 4), Haralick circularity 248 

(mean distance from leaf centroid to boundary pixels over the standard deviation of these 249 
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distances) was weakly predicted by latitude (r2 = 0.259, P = 0.063l; Fig. 4). Under both 250 

measures, southern leaves exhibited stronger lobing, northern leaves exhibited greater circularity.  251 

 PCA on the EFA yielded very high loading on PC1 (58%), very low on PC2 (8%), and a 252 

strong curvilinear relationship between PC1 and PC2 (Supplemental Fig. S2). This non-253 

independence between PC1 and PC2 can arise because variation is broad, such that the ends of 254 

the PC cloud have little in common, or because the variation is dominated by a single variable 255 

(Minchin, 1987). In our study, PC1 was dominated by size (Pearson’s product moment [r] = 256 

0.251 for blade width, 0.227 for blade area) and latitude (r = –0.213), and PC2 was more 257 

strongly associated with shape (r = 0.395 for the ratio of blade length to blade width, –0.375 for 258 

width of the sinus distal to the deepest sinus, 0.348 for the ratio of the width of the blade in the 259 

deepest sinus width of the blade in the second-deepest sinus), and to a lesser extent leaf blade 260 

width (r = –0.240). 261 

The effects of site and tree on bladeL, SLA, and the first two axes of the morphological 262 

(non-EFA) ordination (Supplemental Fig. S3) were significant based on ANOVA (P << 0.001; 263 

Table 4). Although site and tree both had significant effects, site contributed more than tree to 264 

the total variation in leaf morphology (F-values for site range from 30.38−41.76, while F-values 265 

for tree range from 5.83−12.4). Mean annual temperature among our sites ranged from 2.1–266 

15.3°C, and mean annual precipitation from 460 – 1121 mm. On average, leaf bladeL averaged 267 

34.0 mm shorter and SLA 50.39 mm2/g greater for each increase 10 degrees in latitude 268 

(northward).  269 

Regressions of individual traits on site-level temperature and moisture conditions inferred 270 

from BioClim closely matched regressions of those same traits on latitude. The latitudinal 271 

gradient in our study correlated tightly with climate: increases in latitude entail decreases in 272 
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mean annual precipitation (Bio12; R2 = 0.6803, p < 0.01) and temperature (Bio1; r2= 0.99, p << 273 

0.01), and an increase in temperature seasonality (Bio4; R2 = 0.97, p << 0.01) (Fig. 5). As a 274 

consequence, climate is not considered further in this study, but only latitude. 275 

 276 

Analysis of simulated data—The mean number of groups distinguished in our 277 

simulations ranged from 5.49 to 10.41, and the probability of distinguishing 50% (10 / 20) of the 278 

populations based on blade length ranged from 0.01 to 0.71 (Fig. 6). The sampling strategy we 279 

implemented for this study, 3 trees per site, 8 leaves per tree, had a power of only 38% to 280 

identify a number of groups equal to 50% of the sites sampled. Increasing power to at least 50% 281 

would entail increasing sampling to 11–12 leaves from each of 5 trees, 5 leaves from each of 10–282 

11 trees, or any of a number of scenarios intermediate between these extremes. 283 

 284 

DISCUSSION 285 

Our study has three important findings. First, among-tree and among-site variation 286 

contribute significantly to leaf shape and size variation in bur oaks. Consequently, within-287 

individual and within-population sampling are both important components of a sampling strategy 288 

aimed at characterizing among-population variation in oak morphology. This complements 289 

observations of high variance in temperate tree leaf morphology (Bruschi et al., 2003; Apostol et 290 

al., 2017; McCarthy and Mason-Gamer, 2019), demonstrating that among-site variation 291 

contributes most strongly to total leaf variation, but that within-site and within-tree sampling are 292 

important to detecting among-site variation in leaf shape and size. Second, we implement a 293 

general parametric simulation method and use it to demonstrate that our sampling strategy, 294 

which included 8 leaves from different positions on each of 3 trees per site, was not optimal for 295 
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resolving among-site variation, even if it was sufficient to demonstrate the relationship between 296 

morphology and latitudinal gradients. This simulation approach and the package provided 297 

(traitsPopSim) can serve as tools to guide morphological sampling in similar hierarchical studies, 298 

where sites are composed of multiple individuals and individuals are each represented by 299 

multiple measurements. Finally, our study demonstrates that leaf size and lobing decrease from 300 

south to north in bur oak, while specific leaf area increases. In cross-species comparisons, leaf 301 

size and SLA generally covary, suggesting that adaptive leaf variation in bur oak may rest in part 302 

on a tradeoff between leaf size and lobing. Our study of one of North America’s most 303 

widespread oak species is thus a jumping-off point for understanding adaptive leaf variation 304 

across the oaks of the Americas. 305 

 306 

Leaf size and shape variance are influenced by population and individual—Our results 307 

show that among-site variance for all traits investigated (F11,236 = 30.38–41.76) contributes more 308 

to total variance in leaf morphology than among-tree variance (F11,236 = 5.83–12.42), though both 309 

variance components are significant (P << 0.001; Table 4). This ability to distinguish among 310 

sites is important in relating leaf variation to latitude or climatic predictors and measuring the 311 

slope of the relationship resulting from selective pressures along climatic gradients (Wright et 312 

al., 2004). Moreover, our results demonstrate that sampling three trees per site, and eight leaves 313 

per tree is sufficient to correlate shape and size to latitude and climate. However, while among-314 

site variance is higher than among-tree variance within sites (Table 4), the variance we observe 315 

among leaves within a single tree is still quite high. A previous study (Bruschi et al., 2003) found 316 

that among-leaf morphological variance on a tree is higher than among-tree variance for most 317 

traits investigated, and that this was in accord with findings from earlier work (Baranski, 1975; 318 
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Blue and Jensen, 1988). However, in Bruschi (2003), leaves were sampled from both inner and 319 

outer positions on the branch to maximize variance. In our study, we deliberately minimized this 320 

source of variance by sampling leaves at a relatively constant height and all from the outer 321 

branch position, and we further selected the endmost leaves from each branch sampled. 322 

Simulating sampling strategies—The simulations we conducted of alternative sampling 323 

strategies suggests the strategy we selected of three trees per site and eight leaves per tree has 324 

only a 38% probability of distinguishing 50% of 20 populations drawn at random from 325 

distributions we observed. It may well be that our difficulty relating shape to climate is due to a 326 

lack of sampling within sites and trees. Based on the variance observed in leaf length alone, 327 

achieving a 50% probability of distinguishing 50% of populations would require 11–12 leaves 328 

from each of 5 trees per site, 5–6 leaves from each of 11–12 trees per site, or something in 329 

between (Fig. 6).  330 

Our simulations suggest two recommendations for others conducting similar studies. 331 

First, researchers are recommended to minimize the high within-individual variance observed in 332 

previous studies (Blue and Jensen, 1988; Bruschi et al., 2003; McCarthy and Mason-Gamer, 333 

2019) by sampling leaves of a common age / developmental stage, in the same position on the 334 

twig, and from twigs with comparable positions on the plants. Second, simulating alternative 335 

sampling strategies will help maximize the ability to distinguish among populations, given 336 

limited time and resources. Researchers can use preliminary data to simulate alternative 337 

sampling strategies and estimate their power will be to distinguish populations under different 338 

scenarios. The tools we developed for this study require only a matrix of traits and assignment of 339 

those traits to populations and individuals to perform the simulations we describe above. We 340 

expect that their use will facilitate planning of sampling designs for similar projects. 341 
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Leaf size, lobing, and SLA are predicted by latitude— The measurements for each of our 342 

leaves were well predicted by their latitude of origin: leaves were thicker, larger, and had deeper 343 

lobes at southern latitudes, where leaves are exposed to warmer temperatures and higher 344 

precipitation, and have longer growing seasons; and leaves were smaller, thinner, and had 345 

shallower lobes at northern latitudes, where cold temperatures reduce water stress. This is in line 346 

with previous studies demonstrating that leaf area covaries positively with temperature (Moles et 347 

al., 2014; Wright et al., 2017) while SLA covaries negatively (Moles et al., 2014), and that leaf 348 

circularity tends to increase in northern or cooler environments (Halloy and Mark, 1996; 349 

Schmerler et al., 2012). Our results also parallel previous work in Quercus ilex, which exhibited 350 

a similar leaf size gradient from north to south in the western Mediterranean basin, where 351 

southern regions were likewise warmer and had higher amounts of precipitation than northern 352 

regions (García�Nogales et al., 2016). 353 

Our findings suggest a possible compensatory relationship between larger size and lobing 354 

in bur oak. Community-level studies tend to show a higher frequency of lobed leaves in cooler 355 

temperatures (Royer et al., 2005). These responses are individualistic, however, and among-356 

population responses in some species show no response or greater lobing in warmer temperatures 357 

(Royer et al., 2008; McKee and Royer, 2017; McKee et al., 2019). Leaves that are deeply lobed 358 

may be better adapted to warmer climates, because deeply lobed and narrow leaves have a 359 

thinner leaf boundary layer, facilitating more rapid cooling (Givnish, 1987; McDonald et al., 360 

2003). In our study, the ratio of sinus depth to leaf width (sinus.v.width) shows a weak negative 361 

correlation with latitude (b = 0.013, P = 0.024), but this result is strongly affected by one site, 362 

Red Rock Canyon, which had an exceptionally low value.  When this outlier is removed, the 363 

correlation is no longer significant (b = 0.007, P = 0.054). In multiple regressions with scaled 364 
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data and bladeL as a covariate, however, depth of the sinus immediately above the deepest sinus 365 

(sinusNextL) was significantly influenced by latitude (b = 0.893, P = 0.021), even with the 366 

outlier removed (b = 0.926, P = 0.023). Our whole-leaf estimates of shape (circularity and 367 

Haralick circularity) similarly both showed increased circularity northward, but their sensitivity 368 

to the latitudinal gradient is different. This may be a consequence to the relative insensitivity of 369 

Haralick circularity to leaf toothing (Haralick, 1974), which manifests in bur oak as differences 370 

in crenulation. We did not quantify this effect directly, but leave it to future studies. 371 

The hypothesis that leaf lobing increases southward in response to increased water stress 372 

is supported by the specific leaf area (SLA) data. With leaf length as a covariate, SLA increases 373 

northward (b = 0.987, P = 0.011), even as leaf size decreases. Leaves that are low in SLA have 374 

higher water use efficiency (Mooney and Dunn, 1970; Marron et al., 2003; Liu et al., 2017) and 375 

have been shown to vary within oaks according to water stress (Ramírez-Valiente and Cavender-376 

Bares, 2017; Ramírez-Valiente et al., 2017). This corresponds with our finding that bur oak 377 

leaves at southern sites, where trees are exposed to warmer temperatures and are likely more 378 

water-stressed, had significantly lower SLA than leaves collected at northern sites. However, leaf 379 

area in cross-species oak comparisons covaries with SLA (Ramírez�Valiente et al., 2020), and 380 

leaf area and SLA both decrease on average with increased water stress in cross-species 381 

comparisons (Kaproth and Cavender-Bares, 2016; Ramírez�Valiente et al., 2020). Our finding 382 

of larger leaf areas with lower SLA in bur oak, but with an increase in lobing, suggests that leaf 383 

lobing may compensate for increased size in areas with great water stress.  384 

The immense success of oaks (Quercus) in the Americas (Rodríguez-Correa et al., 2015; 385 

Hipp et al., 2018; Cavender-Bares, 2019) has been attributed in part to oaks’ ability to cross the 386 

temperate-tropical divide. Bur oak is exceptional in its climatic range, extending from near the 387 
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boreal zone in the north to the great plains and the humid subtropics. Our finding that leaf lobing, 388 

SLA, and leaf size compensate for one another along climatic gradients in bur oak may be 389 

echoed in other species. The work presented here consequently has the potential to inform 390 

studies of adaptive variation across oaks and temperate tree species more generally. 391 
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Table 1. Sampling localities, Bioclim values for each site, number of leaves collected per 611 

tree. Only leaves used for statistical analysis are counted. Broken or incomplete leaves were 612 

eliminated from statistical analysis. Abbreviations: Bio1 = mean annual temperature (in degrees 613 

C); Bio12 = mean annual precipitation (in mm). 614 

Site Bio1, Bio12 Tree Latitude Longitude Lvs 

Whiteshell Provincial Park 2.07�, 566 
mm 

MB-SD004 49.4249 -95.1436 8 

  
MB-SD005 49.71279 -95.2444 8 

  MB-MG513 49.71209 -95.24496 8 

Spruce Woods Provincial 
Park 

2.50�, 460 
mm 

MB-MG516 49.76104 -99.15971 8 

  
MB-MG517 49.76095 -99.15983 8 

  
MB-MG518 49.76061 -99.15928 8 

Assiniboine Forest 2.10�, 519 
mm 

MB-MG528 49.85778 -97.24848 8 

  MB-MG529 49.85423 -97.2482 8 

  
MB-MG530 49.85392 -97.24828 8 

University of Minnesota  7.10�, 738 
mm 

MN-MG788 44.97882 -93.23768 8 

Campus 
 

MN-MG789 44.97739 -93.23761 8 
 

 
MN-MG790 44.97771 -93.23801 7 

Cherokee Park Trail 9.20�, 879 
mm 

IA-MG243 41.97454 -91.72161 8 

  
IA-MG244 41.97367 -91.72547 8 

  
IA-MG245 41.97362 -91.72565 6 

Morton Arboretum 9.50�, 932 
mm 

IL-SF001 41.81696 -88.0808 8 

  
IL-SF002 41.81331 -88.08266 8 

  
IL-SF003 41.81588 -88.07994 8 

Prairie Moon Nursery 6.80�, 837 
mm 

MN-SD001 43.89117 -91.64684 8 

  
MN-SD002 43.89804 -91.648 8 

  
MN-SD003 43.89088 -91.64689 2 

Burr Oak Woods 9.80�, 943 
mm 

IN-MG631 41.53273 -87.2948 8 

  
IN-MG636 41.5345 -87.29279 8 

  
IN-MG638 41.53253 -87.29661 8 

Red Rock Canyon State 
Park  

15.3�, 756 
mm 

OK-MG369 35.43874 -98.35495 8 

  
OK-MG370 35.43851 -98.35503 8 

  
OK-MG371 35.43854 -98.35497 8 

Mohawk Park 15.3�, 987 OK-MG347 36.21066 -95.89467 8 
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mm 

  
OK-MG349 36.2204 -95.89845 8 

  
OK-MG350 36.22064 -95.89877 8 

Tallgrass Prairie Preserve 14.3�, 939 
mm 

OK-MG282 36.84504 -96.42526 8 

  
OK-MG283 36.84485 -96.42479 2 

  
OK-MG284 36.84501 -96.42553 3 

Buttin Rock Access 13.1�, 1121 
mm 

MO-MG402 37.15687 -91.36471 8 

  
MO-MG403 37.15686 -91.36501 8 

  
MO-MG404 37.15726 -91.36518 8 

  615 
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Table 2. Descriptions of the leaf traits measured 616 

 

Leaf measurements 

Trait Abbreviation Definition 

Blade length (mm) bladeL Straight line distance measured from intersection of leaf 

and petiole to tip of the leaf at its point of intersection with 

the midvein 

Blade width (mm) bladeW The longest possible perpendicular line drawn from one 

edge of the blade to the other; vein position used to 

identify the leaves opposite one another 

Width of blade between deepest pair of 

sinuses (mm) 

sinusMinL The shortest distance that separates the deepest sinus from 

its corresponding sinus. (The deepest sinus is defined as 

the sinus that has the longest distance from the most 

interior point of the sinus to the line that connects the two 

most exterior points of that sinus) 

Width of blade between sinuses just 

above the deepest pair (mm) 

sinusNextL The width between the sinuses that are immediately distal 

to the deepest sinuses (as defined in sinusMinL) 

Petiole length (mm) petioleL Measured from the base of the blade as defined by bladeL 

to the base of the petiole, defined as the line of intersection 

between petiole and branch, upper surface of the petiole 

Petiole width (mm) petioleW Measured at the point of intersection between the blade 

and the petiole, where blade is not visible 

Length of lamina from base to widest 

point (mm) 

bladeLtoWidestPoint Measured from the base of the blade to the point of 

intersection between the midvein and the line used to 

measure leaf blade width 

Blade base angle (degrees) bladeBaseAngle Measured using the lines that define the widest angle 

between the base and either edge of the leaf 

Total length (mm) BL.PL Total length is the blade length added to the petiole length 

Leaf area (mm2) Area  Calculated in imageJ. 
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Ratios 

Petiole length / Total length PL.TL The petiole length divided by the total length 

Sinus ratio SinusRatio The width of the blade between the deepest pair of sinuses 

divided by the width of the blade between the pair of 

sinuses just above the deepest pair 

Blade length/ Blade width BL.BW The blade length divided by the blade width 

Petiole length / Petiole width PL.PW The petiole length divided by the petiole width 

Blade length / Blade length to widest 

point 

BL.BLWP The blade length divided by the length of the blade from 

the base to the widest point  

Ratio of Leaf size to petiole length 

 

BL.BW.over.PL.PW The blade length divided by the blade width divided by the 

petiole length divided by the petiole width 

Specific leaf area  SLA Leaf area divided by the mass of the leaf  

Lobedness sinus.v.width The width of the blade between the deepest pair of sinuses 

divided by the blade width 

 617 

 618 

  619 
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Table 3. Simple and multiple regressions for all leaf traits. The columns for Blade length and 620 

Latitude represent the regression coefficient and p-value for a multiple regression with each leaf 621 

trait regressed against Blade length and Latitude. Note that after Bonferroni correction for 622 

multiple tests, only the regression of blade length on latitude + petiole width is significant; and 623 

for that multiple regression, only the coefficient for latitude is significant 624 

 625 

 626 

Leaf trait p-value r2 Blade length Latitude R2 

bladeL 0.012 0.486  -0.697, p = 0.012 0.486 

bladeW 0.014 0.469 0.926, p < .001 -0.039, p = 0.780 0.911 

sinusMinL 0.208 0.153 -0.069, p = 0.874 0.343, p =  0.443 0.156 

sinusNextL 0.492 0.048 0.966, p = 0.014 0.893, p = 0.021 0.528 

petioleL 0.262 0.124 0.812, p = 0.041 0.214, p = 0.546 0.463 

petioleW p < 0.001 0.692 0.119, p = 0.649 -0.749, p = 0.017 0.699 

bladeLtoWidestPoint 0.011 0.494 0.920, p < .001 -0.062, p = 0.630 0.929 

bladeBaseAngle 0.151 0.195 -0.363, p = 0.386 -0.695, p = 0.116 0.263 

TotalL.PL.BL 0.019 0.438 1.03, p < 0.001 0.052, p = 0.459 0.979 

Area 0.014 0.469 0.949, p <0 .001 -0.024, p = 0.847 0.933 

SLA 0.015 0.466 0.438, p = 0.188 0.987, p = 0.011 0.564 

PL.TL 0.945 r2 < 0.001 0.347, p = 0.461 0.264, p = 0.572 0.062 

SinusRatio 0.425 0.065 -0.253, p = 0.580 0.078, p = 0.864 0.098 

BL.BW 0.313 0.101 -0.367, p = 0.408 0.062, p = 0.886 0.171 

BL.BLWP 0.834 0.005 0.183, p = 0.699 0.196, p = 0.680 0.022 

sinus.v.width 0.024 0.415 -0.551, p = 0.103 0.259, p = 0.415 0.571 

sinus.v.width (no 

spruce woods) 

0.054 0.352 -0.296, p = 0.152 0.163, p = 0.391 0.507 
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Table 4. ANOVA for bladeL, SLA, PC1, PC2 627 

Response Df Sum of Squares Mean 

Square 

F-value Pr(>F) 

bladeL site  11 177345 16122.3 38.9996 < 2.2e-16 

tree 24 83159 3465.0 8.3817 < 2.2e-16 

residuals 236 97562 413.4   

SLA site  11 1017054857 92459532 30.3766 < 2.2e-16 

tree 24 703085034 29295210 9.6246 < 2.2e-16 

residuals 236 718331913 3043779   

PC1 site  11 984.70 89.519 41.7620 <2.2e-16 

tree 24 300.10 12.504 5.8335 8.101e-14 

residuals 236 505.88 2.144   

PC2 site  11 400.34 36.394 34.042 <2.2e-16 

tree 24 318.70 13.279 12.421 <2.2e-16 

residuals 236 252.30 1.069   

 628 

  629 
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 630 

FIGURE LEGENDS 631 

 632 

Figure 1. Locations of sampling sites for this study as well as mean annual temperature across 633 

the bur oak range. WorldClim temperature data are scaled to a factor of 10. Specific information 634 

about site, name, location, and number of samples collected can be found in Table 1.   635 

 636 

Figure 2. Leaf trait measurements used in this study. All measurements used in this study were 637 

linear measurements or ratios of linear measurements, plus one angle. Details and definitions are 638 

found in Table 4.  639 

 640 

Figure 3. Simple regressions of traits and environment that are significant at the 0.05 level. P-641 

values are not corrected for multiple tests; a total of seventeen regressions were performed 642 

(Table 3). 643 

 644 

Figure 4. Simple regressions of circularity on latitude. 645 

 646 

Figure 5. Regressions of bioclim variables on latitude. Latitude shows up as the strongest single 647 

predictor of leaf morphology in the current study, as it integrates over both day length and 648 

several aspects of climate: bio 1 (mean annual temperature), bio 12 (mean annual precipitation), 649 

bio 4 (mean temperature seasonality).  650 

 651 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 3, 2020. ; https://doi.org/10.1101/2020.05.11.088039doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.11.088039
http://creativecommons.org/licenses/by-nc-nd/4.0/


33 

Figure 6. Sampling simulations. Simulated sampling strategies accounted for covariance among 652 

traits within leaves; among leaves on trees within sites; and among trees within sites. Here, two 653 

estimates of power are reported: the number of groups of sites recognized as distinct from each 654 

other using Tukey’s HSD at α = 0.05; and the probability of recognizing at least 50% of sites as 655 

distinct from each other. colors scale from darker as a higher number of groups are recognized, 656 

lighter as fewer are. Simulated numbers of sites distinguished (left panel) and probabilities of 657 

distinguishing at least 50% of simulated sites (right panel) are reported in each cell of the 658 

simulation. 659 

 660 

Supplemental Figure S1. Biplots of all simple regressions performed, whether significant or not 661 

Supplemental Figure S2. PCA based on eFourier analysis of leaf outlines.  662 

Supplemental Figure S3. Non-metric multidimensional scaling ordination of PCA on leaf 663 

measurements 664 
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